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Abstract

Building machine learning models for natu-
ral language understanding (NLU) tasks relies
heavily on labeled data. Weak supervision has
been proven valuable when large amount of
labeled data is unavailable or expensive to ob-
tain. Existing works studying weak supervi-
sion for NLU either mostly focus on a specific
task or simulate weak supervision signals from
ground-truth labels. It is thus hard to compare
different approaches and evaluate the benefit
of weak supervision without access to a uni-
fied and systematic benchmark with diverse
tasks and real-world weak labeling rules. In this
paper, we propose such a benchmark, named
WALNUT1, to advocate and facilitate research
on weak supervision for NLU. WALNUT con-
sists of NLU tasks with different types, includ-
ing document-level and token-level prediction
tasks. WALNUT is the first semi-weakly super-
vised learning benchmark for NLU, where each
task contains weak labels generated by multiple
real-world weak sources, together with a small
set of clean labels. We conduct baseline evalu-
ations on WALNUT to systematically evaluate
the effectiveness of various weak supervision
methods and model architectures. Our results
demonstrate the benefit of weak supervision for
low-resource NLU tasks and highlight interest-
ing patterns across tasks. We expect WALNUT
to stimulate further research on methodologies
to leverage weak supervision more effectively.
The benchmark and code for baselines are avail-
able at aka.ms/walnut_benchmark.

1 Introduction

To tackle natural language understanding (NLU)
tasks via supervised learning, high-quality labeled
examples are crucial. Recent advances on large
pre-trained language models (Peters et al., 2018;
Devlin et al., 2018; Radford et al., 2019) lead to
impressive gains on NLU benchmarks, including
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Figure 1: WALNUT, a benchmark with 8 NLU tasks
with real-world weak labeling rules. Each task in
WALNUT comes with few labeled data and weakly
labeled data for semi-weakly supervised learning.

GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019), at the assumption that large amount
of labeled examples are available. For many real-
world applications, however, it is expensive and
time-consuming to manually obtain large-scale
high-quality labels, while it is relatively easier to
obtain auxiliary supervision signals, or weak super-
vision, as a viable source to boost model perfor-
mance without expensive data annotation process.

Learning from weak supervision for NLU tasks
is attracting increasing attention. Various types
of weak supervision have been considered, such
as knowledge bases (Mintz et al., 2009; Xu et al.,
2013), keywords (Karamanolakis et al., 2019; Ren
et al., 2020), regular expression patterns (Augen-
stein et al., 2016), and other metadata such as user
interactions in social media (Shu et al., 2017). Also,
inspired by recent advances from semi-supervised
learning, semi-weakly supervised learning meth-
ods which leverage both a small set of clean la-
bels and a larger set of weak supervision (Papan-
dreou et al., 2015; Hendrycks et al., 2018; Shu
et al., 2019; Mazzetto et al., 2021; Karamanolakis
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et al., 2021; Maheshwari et al., 2021; Zheng et al.,
2021) are emerging to further boost task perfor-
mance. However, a unified and systematic evalua-
tion benchmark supporting both weakly and semi-
weakly supervised learning for NLU tasks is rather
limited. On the one hand, many existing works only
study specific NLU tasks with weak supervision,
thus evaluations of proposed techniques leverag-
ing weak supervision on a small set of tasks do
not necessarily generalized onto other NLU tasks.
On the other hand, some works rely on simulated
weak supervision, such as weak labels corrupted
from ground-truth labels (Hendrycks et al., 2018),
while real-world weak supervision signals can be
far more complex than simulated ones. Further-
more, existing weakly and semi-weakly supervised
approaches are evaluated on different data with dif-
ferent metrics and weak supervision sources, mak-
ing it difficult to understand and compare.

To better advocate and facilitate research on
leveraging weak supervision for NLU, in this paper
we propose WALNUT (Figure 1), a semi-weakly
supervised learning benchmark of NLU tasks with
real-world weak supervision signals. Following
the tradition of existing benchmarks (e.g., GLUE),
we propose to cover different types of NLU tasks
and domains, including document-level classifica-
tion tasks (e.g., sentiment analysis on online re-
views, fake news detection on news articles), and
token-level classification tasks (e.g., named entity
recognition in news and biomedical documents).
WALNUT provides few labeled and many weakly
labeled examples (Figure 1) and encourages a con-
sistent and robust evaluation of different techniques,
as we will describe in Section 3.

In addition to the proposed benchmark, in Sec-
tion 4.2 we shed light on the benefit of weak su-
pervision for NLU tasks in a collective manner, by
evaluating several representative weak and semi-
weak supervision methods for and several base
models of various sizes (e.g., BiLSTM, BERT,
RoBERTa), leading to more than 2,000 groups of
experiments. Our large-scale analysis demonstrates
that weak supervision is valuable for low-resource
NLU tasks and that there is large room for per-
formance improvement, thus motivating future re-
search. Also, by computing the average perfor-
mance across tasks and model architectures, we
show surprising new findings. First, simple tech-
niques for aggregating multiple weak labels (such
as unweighted majority voting) achieve better per-

formance than more complex weak supervision
paradigms. Second, weak supervision has smaller
benefit in larger base models such as RoBERTa, be-
cause larger pre-trained models can already achieve
impressively high performance using just a few
clean labeled data and no weakly labeled data at all.
We identify several more challenges on leveraging
weak supervision for NLU tasks and shed light on
possible future work based on WALNUT.

The main contributions of this paper are: (1) We
propose a new benchmark on semi-weakly super-
vised learning for NLU, which covers eight estab-
lished annotated datasets and various text genres,
dataset sizes, and degrees of task difficulty; (2)
We conduct an exploratory analysis from differ-
ent perspectives to demonstrate and analyze the
results for several major existing weak supervision
approaches across tasks; and (3) We discuss the
benefits and provide insights for potential weak
supervision studies for representative NLU tasks.

2 Related Work

2.1 Weak Supervision for NLU

Document-level classification Existing works
on weakly supervised learning for document-level
classification attempt to correct the weak labels
by incorporating a loss correction mechanism for
text classification (Sukhbaatar et al., 2014; Patrini
et al., 2017). Other works further assume access to
a small set of clean labeled examples (Hendrycks
et al., 2018; Ren et al., 2018; Varma and Ré, 2018;
Shu et al., 2020b). Recent works also consider
the scenario where weak signals are available from
multiple sources (Ratner et al., 2017; Meng et al.,
2018; Ren et al., 2020) to exploit the redundancy as
well as the consistency in the labeling information.
Despite the recent progress on weak supervision for
text classification, there is no agreed upon bench-
mark that can guide future directions and devel-
opment of NLU tasks in semi-weakly supervised
setting.

Token-level classification Weak supervision has
also been studied for token-level classification (se-
quence tagging) tasks, focusing on Named Entity
Recognition (NER). One of the most common ap-
proaches is distant supervision (Mintz et al., 2009),
which uses knowledge bases to heuristically an-
notate training data. Besides distant supervision,
several weak supervision approaches have recently
addressed NER by introducing various types of
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labeling rules, for example based on keywords, lex-
icons, and regular expressions (Fries et al., 2017;
Ratner et al., 2017; Shang et al., 2018; Safranchik
et al., 2020; Lison et al., 2020; Li et al., 2021).
WALNUT integrates existing weak rules into a uni-
fied representation and evaluation format.

2.2 NLU Benchmarks

Accompanying the emerging of large pre-trained
language models, NLU benchmarks has been a
focus for NLP research, including GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019).
On such benchmarks, the major focus is put on ob-
taining best possible performance (He et al., 2020)
under the full training setting, which assumes that
a large quantity of manually labeled examples are
available for all tasks. Few-shot NLU benchmarks
exist (Schick and Schütze, 2021; Xu et al., 2021;
Ye et al., 2021; Mukherjee et al., 2021), however
these do not contain weak supervision. Though
research in weak supervision in NLU has gained
significant interest (Hendrycks et al., 2018; Shu
et al., 2019; Zheng et al., 2021), most of these work
either focus on a small set of tasks or simulate weak
supervision signals from ground-truth labels, hin-
dering its generalization ability to real-world NLU
tasks. The lack of a unified test bed covering differ-
ent NLU task types and data domains motivates us
to construct such a benchmark to better understand
and leverage semi-weakly supervised learning for
NLU in this paper.

Different from existing work based on crowd-
sourcing (Hovy et al., 2013; Gokhale et al., 2014)
to obtain noisy labels, we focus specifically on
the semi-weakly supervised learning setting, where
we collect tasks with weak labels obtained from
human-written labeling rules. (Zhang et al., 2021)
is concurrent work that also features weak supervi-
sion for various (not necessarily text-based) tasks
and assumes a purely weakly supervised setting,
i.e., no clean labeled data is available. In contrast,
WALNUT focuses on NLU tasks under a more-
realistic semi-weakly supervised setting and, as we
show in Section 3, a small amount of clean labeled
data plays an important role in determining the
benefit of weak supervision for a target task.

3 WALNUT

3.1 Benchmark Construction Principles

We first describe the design principles guiding the
benchmark construction.

Task Selection Criterion We aim to create a
testbed which covers a broad range of NLU tasks
where real-world weak supervision signals are
available. To this end, WALNUT includes eight
English text understanding tasks from diverse
domains, ranging from news articles, movie re-
views, merchandise reviews, biomedical corpus,
wikipedia documents, to tweets. The eight tasks
are categorized evenly into two types, namely doc-
ument classification and token classification (se-
quence labeling). It’s worth noting that we didn’t
create any labeling rules ourselves to avoid bias,
but rather opted with labeling rules which already
exist and are extensively studied by previous re-
search. Therefore, WALNUT does not include
other NLU tasks, such as natural language infer-
ence and question answering, as we are not aware
of previous research with human labeling rules for
these tasks.

Semi-weakly Supervised Learning Setting
While many previous works studied weak supervi-
sion in a purely weakly supervised setting, recent
advances in few-shot and semi-supervised learning
suggest that a small set of cleanly labeled exam-
ples together with unlabeled examples greatly helps
boosting the task performance. Though large scale
labeled examples for a task is difficult to collect,
we acknowledge that it’s rather practical to col-
lect a small set of labeled examples. In addition,
recent methods leveraging weak supervision also
demonstrate greater gains of combining a small
set of labeled examples with large weakly labeled
examples (Hendrycks et al., 2018; Shu et al., 2019;
Zheng et al., 2021). Therefore, WALNUT is de-
signed to emphasize the semi-weakly supervised
learning setting. Specifically, each dataset contains
both a small number of clean labeled instances and
a large number of weakly-labeled instances. Each
weakly-labeled instance comes with multiple weak
labels (assigned by multiple rules) and a single ag-
gregated weak label derived from weak rules. Note
that this way WALNUT can be naturally used to
support the conventional weakly supervised setting
by ignoring the provided clean labels.

Consistent and Robust Evaluation To address
discrepancies in evaluation protocols from exist-
ing research on weak supervision and to better ac-
count for the small set of clean examples per task,
WALNUT is constructed to promote systematic
and robust evaluations across all eight tasks. Specif-

875



Table 1: Statistics of the eight document- and token-level tasks in WALNUT. See Section 3.2 for details.

Dataset AGNews IMDB Yelp GossipCop CoNLL NCBI WikiGold LaptopReview

Label granularity doc. doc. doc. doc. token token token token
Task topic sentiment sentiment fake NER NER NER NER
Domain news movies restaurants news news biomed web tech
# Classes 4 2 2 2 9 3 9 3
# Train-clean (|DC |) 80 40 40 40 180 60 360 150
# Train-weak (|DW |) 4,439 16,626 10,954 6,462 13,861 532 995 2,286
# Dev 12,000 2,500 3,800 1,430 3,250 99 169 609
# Test 12,000 2,500 3,800 957 3,453 99 170 800
# Weak rules 9 8 8 3 50 12 16 12

ically, for each task, we first determine the number
of clean examples to sample with pilot experiments
(with the rest treated as weakly labeled examples
by applying the corresponding weak labeling rules),
such that the weakly supervised examples can be
still helpful with the small clean examples present
(typically 20-50 per class; see Sec. 3.3 for details);
second, to consider sampling uncertainty, we re-
peat the sampling process for the desired number
of clean examples 5 times and provide all 5 splits
in WALNUT. Methods on WALNUT are expected
to be using all 5 pre-computed splits and reporting
the mean and variance of its performance.

To summarize, WALNUT can facilitate research
on weakly- and semi-weakly supervised learning
by offering the following:

• Eight NLU tasks from diverse domains;

• For each task, five pairs of clean and weakly
labeled samples for robust evaluation;

• For each individual weakly labeled example,
all weak labels from multiple rules and a sin-
gle aggregated weak label.

3.2 Task Categories
Here, we describe the eight tasks in WALNUT (Ta-
ble 1), grouped into four document-level classifi-
cation tasks (Section 3.2.1) and four token-level
classification tasks (Section 3.2.2).

3.2.1 Document-level Classification
The goal of document-level classification tasks is to
classify a sequence of tokens x1, . . . , xN to a class
c ∈ C, where C is a pre-defined set of classes. We
consider binary and multi-class classification prob-
lems from different application domains such as
sentiment classification (Zhang et al., 2015), fake
news detection (Shu et al., 2020c), and topic clas-
sification (Zhang et al., 2015). Concretely, we in-
clude the following widely-used document-level

text classification datasets: AGNews (Zhang et al.,
2015), Yelp (Zhang et al., 2015), IMDB (Maas
et al., 2011) and GossipCop (Shu et al., 2020a).

For Yelp, IMDB, and AGNews, the weak rules
are derived from the text using keyword-based
heuristics, third-party tools as detailed in (Ren et al.,
2020). For GossipCop, the weak labeling rules are
derived from social context information accompa-
nying the news articles, including related users’
social engagements on the news items (e.g., user
comments in Twitter). For example, a weak label-
ing rule for fake news can be “If a news piece has a
standard deviation of user sentiment scores greater
than a threshold, then the news is weakly labeled
as fake news. ” (Shu et al., 2020c).

3.2.2 Token-level Classification

The goal of token-level classification tasks is to
classify a sequence of tokens x1, . . . , xN to a se-
quence of tags y1, . . . , yN ∈ C ′, where C ′ is a
pre-defined set of tag classes (e.g., person or or-
ganization). As one of the most common token-
level classification tasks, Named Entity Recogni-
tion (NER) deals with recognizing categories of
named entities (e.g., person, organization, location)
and is important in several NLP pipelines, includ-
ing information extraction and question answering.

We include in WALNUT the following four
NER datasets from different domains, for which
weak rules are available: CoNLL (Sang and
De Meulder, 2003), the NCBI Disease cor-
pus (Doğan et al., 2014), WikiGold (Balasuriya
et al., 2009) and the LaptopReview corpus (Pon-
tiki et al., 2016) from the SemEval 2014 Challenge.
For the CoNLL and WikiGold dataset, we use weak
rules provided by (Lison et al., 2020). For the
NCBI and LaptopReview dataset, we use weak
rules provided by (Safranchik et al., 2020).
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Figure 2: F1 score by varying (in the x-axis) the number of clean instances per class considered in the clean training
set (DC). The importance of weak supervision is more evident for settings with smaller numbers of instances,
where the gap in performance between the “Clean” approach and “Clean+Weak” approach is larger. For a robust
evaluation across tasks, WALNUT provides five clean/weak splits per task. See Section 3.3 for details.

3.3 Dataset Pre-Processing
To construct a semi-weakly supervised learning set-
ting, we split the training dataset for each task into
a small subset with clean labels (DC) and a large
subset with weak labels (DW ). For robust evalua-
tion, we create five different clean/weak train splits
as we noticed that the model performances may
vary with different clean train instances. The vali-
dation/test sets are always the same across splits.

Because of different dataset characteristics (e.g.,
differences in number of classes, difficulty), we
choose the size for DC per dataset via pilot stud-
ies. (After having selected the instances for the
DC , we consider the remaining instances as part
of the DW split.) We defined the size of DC such
that we demonstrate the benefits of weak supervi-
sion and at the same time leave substantial room
for improvement in future research. To this end,
we compare the performances of the same base
classification model (e.g., BiLSTM), trained using
only DC (“Clean” approach) v.s. using both DC

and DW (“Clean+Weak” approach). As shown in
Figure 2, for each dataset, we choose a small size
of DC , such that the “Clean+Weak” approach has
a substantially higher F1 score than the “Clean” ap-
proach and at the same time the “Clean” approach
has no trivial F1 score.

The statistics of the pre-processed datasets in-
cluded in WALNUT are shown in Table 1.

4 Baseline Evaluation in WALNUT

In this section, we describe the baselines and eval-
uation procedure (Section 4.1), and discuss evalua-

tion results in WALNUT (Section 4.2). Our results
highlight the value of weak supervision, important
differences across different baselines, and the po-
tential utility of WALNUT for future research on
weak supervision.

4.1 Baselines and Evaluation Procedure
We evaluate several baseline approaches in
WALNUT by considering different base models
(text encoders) and different (semi-)weakly super-
vised learning methods to train the base model.

Encoder Models To encode input text, we ex-
periment with various text encoders, ranging from
shallow LSTMs to large pre-trained transformer-
based encoders (Vaswani et al., 2017). In par-
ticular, we consider a series of models with in-
creasing model size: Bi-directional LSTM with
Glove embeddings (Pennington et al., 2014), Dis-
tilBERT (Sanh et al., 2019), BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), BERT-large,
and RoBERTa-large. For each text encoder, a clas-
sification head is placed on top of the encoder to
perform the task. For more details on the base
model configurations see Appendix A.1.

Learning Methods Given the semi-weakly su-
pervised setting in WALNUT, we evaluate eight
supervision approaches in the following categories:

• Learning from clean labeled examples only.
The model is trained on only the small amount
of available clean examples DC , a naive base-
line method leveraging no weak supervision,
which we denote as C.
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• Learning from weakly labeled examples only.
The model is trained on all weakly labeled ex-
amples DW . To produce a single weak label
from the multiple labeling rules for training,
we aggregate the rules via two methods: ma-
jority voting (denoted by W) and Snorkel (Rat-
ner et al., 2017) (denoted by Snorkel).

• Learning from both clean and weakly labeled
examples. The model is trained with both DC

and DW in a weakly-supervised setting. The
first two baselines in this category is simply
concatenating DC and the aggregated weak
labels (from either W and Snorkel), and the
model is trained on the combination. We de-
note these two as C+W and C+Snorkel, re-
spectively. We also test three recent semi-
weakly supervised learning methods which
proposed better ways to leverage both DC

and DW : GLC which is a loss correction ap-
proach (Hendrycks et al., 2018), MetaWN
which is a meta-learning approach to learn the
importance of weakly labeled examples (Shu
et al., 2019; Ren et al., 2018) and MLC, a
meta-learning approach to learn to correct the
weak labels (Zheng et al., 2021).

To establish an estimate of the ceiling performance
on WALNUT, for each task we also train with all
clean training examples in the original dataset (de-
noted by Full Clean).

Experimental Procedure For a robust evalua-
tion, we repeat each experiment five times on the
five splits of DC and DW (clean and weak exam-
ples for each task; see Section 3.3), and report the
average scores and the standard deviation across
the five runs. In WALNUT, we report the average
micro-average F1 score on the test set.2 Datasets
and code for WALNUT are publicly available at
aka.ms/walnut_benchmark.

4.2 Experimental Results and Analysis
Table 2 shows the main evaluation results on
WALNUT. Rows correspond to supervision meth-
ods for the base model, columns correspond to
tasks, and each block corresponds to a different
base model. Unless explicitly mentioned, in the
rest of this section we will compare approaches
based on their average performance across tasks
(rightmost column in Table 2).

2For token-level F1, we use the conlleval implementation:
https://huggingface.co/metrics/seqeval

As expected, training with Full Clean achieves
the highest F1 score, corresponding to the high-
resource setting where all clean labeled data are
available. Such method is not directly comparable
to the rest of the methods but serves as an estimate
of the ceiling performance for WALNUT. Train-
ing with only limited clean examples achieves the
lowest overall F1 score: in the low-resource setting,
which is the main focus in WALNUT, using just
the available clean subset (DC) is not effective.

Weak supervision is valuable for low-resource
NLU. “W” and “Snorkel” achieve better F1
scores than “C” for many base models: even using
only weakly-labeled data in DW is more effec-
tive than using just DC , thus demonstrating that
simple weak supervision approaches can be useful
in the low-resource setting. Approaches such as
“C+W” and “C+Snorkel” lead to further improve-
ments compared to “C” and “Snorkel”, thus high-
lighting that even simple approaches for integrating
clean and weak labeled data (here by concatenating
DC and DW ) are more effective than considering
each separately.

There is no clear winner in WALNUT. Our re-
sults in Table 4.2 indicate that the performance of
weak supervision techniques varies substantially
across tasks. Therefore, it is important to evaluate
such techniques in a diverse set of tasks to achieve
a fair comparison and more complete picture of
their performance. The performance of various
techniques also varies across different splits (See
Table 14 in Appendix for variances of all exper-
iments). Interestingly, “C+W” and “C+Snorkel”
sometimes perform better than more complicated
approaches, such as GLC, MetaWN and MLC.

Larger base models achieve better overall per-
formance. We further aggregate statistics across
tasks, methods, and base models in Table 3. The
bottom row reports the average performance across
methods for each base model and leads to a consis-
tent ranking in F1 score among base models: BiL-
STM ≤ DistilBERT ≤ BERT-base ≤ RoBERTa-
base. Observing higher scores for larger trans-
former models such as RoBERTa agrees with pre-
vious observations (Brown et al., 2020). Interest-
ingly, switching from BERT-base to BERT-large
(and from RoBERTa-base to RoBERTa-large) in
base model architecture leads to marginal improve-
ment, suggesting the need to explore more effective
learning methods leveraging weak supervision.
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Table 2: Main results on WALNUT with F1 score (in %) on all tasks. The rightmost column reports the average F1
score across all tasks. (MLC is not shown for BERT-large and RoBERTa-large due to OOM.)

Method AGNews IMDB Yelp GossipCop CoNLL NCBI WikiGold LaptopReview AVG

BiLSTM (20M parameters)
Full Clean 89.4 83.1 86.4 64.5 31.9 69.9 21.8 62.6 63.7

C 79.5 56.2 59.5 50.8 00.8 58.2 15.8 42.3 45.4
W 78.0 75.2 70.8 62.0 11.1 52.3 02.7 49.4 50.2

Snorkel 79.9 75.4 76.0 61.4 06.7 52.5 02.7 49.4 52.1
C+W 82.0 75.6 70.2 64.1 17.2 56.8 15.7 51.2 52.5

C+Snorkel 82.9 75.4 66.5 62.6 07.7 59.2 10.7 53.8 52.4
GLC 56.5 72.2 63.7 60.5 05.1 58.9 08.7 55.2 47.6

MetaWN 55.2 72.7 65.5 58.2 00.0 53.9 03.4 51.6 45.1
MLC 55.3 72.3 65.7 52.5 00.0 52.5 05.9 51.5 43.7

DistilBERT-base (66M parameters)
Full Clean 92.1 88.8 93.7 75.1 88.6 75.7 79.7 75.8 83.7

C 80.8 71.2 73.1 55.3 51.4 57.7 69.5 53.0 64.0
W 72.2 75.0 70.2 70.8 66.9 62.0 57.4 53.8 66.0

Snorkel 70.2 70.7 65.9 68.4 64.3 62.9 56.3 54.0 65.1
C+W 83.3 74.8 71.5 71.4 66.9 66.2 64.0 57.3 68.5

C+Snorkel 84.3 81.7 81.8 69.1 64.6 67.8 64.4 57.5 71.4
GLC 67.8 74.1 68.1 67.3 72.4 72.8 71.7 66.8 70.1

MetaWN 70.0 74.4 69.3 70.0 65.7 64.2 58.5 58.2 66.3
MLC 70.4 74.3 69.4 69.6 69.2 66.2 58.3 58.0 66.9

BERT-base (110M parameters)
Full Clean 92.5 90.0 74.7 74.7 89.4 78.4 81.1 76.2 82.1

C 82.9 63.8 60.3 57.1 67.3 66.6 71.9 54.6 65.6
W 72.3 75.5 69.6 69.0 67.5 59.5 56.7 55.9 65.8

Snorkel 73.7 72.9 65.6 68.2 65.1 60.9 53.8 56.2 66.0
C+W 80.1 81.8 71.3 68.4 68.4 67.9 65.0 59.2 68.9

C+Snorkel 76.2 82.6 75.3 67.1 65.9 69.9 64.3 59.6 70.1
GLC 68.8 75.7 68.8 68.1 74.7 74.7 70.7 65.8 70.9

MetaWN 72.8 75.2 68.1 69.8 66.9 66.7 58.9 59.2 67.2
MLC 73.0 74.7 70.0 71.3 70.4 68.4 58.5 59.7 68.2

RoBERTa-base (125M parameters)
Full Clean 92.8 92.4 95.9 77.2 91.2 83.1 87.2 80.2 87.5

C 84.1 74.5 70.2 57.4 72.9 72.9 78.2 61.3 71.4
W 66.4 76.1 70.4 71.4 64.9 69.9 64.1 58.9 67.8

Snorkel 71.9 70.1 66.3 69.2 61.2 70.0 61.8 59.7 67.5
C+W 70.6 76.5 70.4 72.2 64.1 74.0 71.6 61.2 68.9

C+Snorkel 74.6 68.2 66.4 71.4 62.2 73.4 72.2 61.6 68.8
GLC 67.6 74.9 69.0 68.0 74.6 79.1 79.6 71.5 73.0

MetaWN 69.6 75.4 69.0 71.8 63.8 69.9 63.5 62.5 68.2
MLC 70.4 74.5 69.9 72.9 68.3 74.3 63.1 63.6 69.6

BERT-large (336M parameters)
Full Clean 92.5 91.4 94.9 73.5 90.2 80.5 82.8 78.9 85.6

C 72.5 65.4 68.4 57.8 67.2 69.7 73.9 51.1 65.8
W 68.5 75.9 70.7 69.3 65.7 62.0 57.1 54.2 65.4

Snorkel 73.3 70.9 65.8 70.0 63.6 67.3 57.2 54.4 66.5
C+W 73.4 74.8 71.8 70.2 66.7 70.7 66.9 55.7 67.6

C+Snorkel 73.6 71.3 65.9 71.3 63.6 69.7 63.4 57.2 67.0
GLC 67.1 74.6 67.3 69.8 71.8 76.1 68.1 65.4 70.0

MetaWN 71.6 74.2 67.0 70.8 64.4 70.1 53.9 45.9 64.7
RoBERTa-large (355M parameters)

Full Clean 93.1 94.4 96.9 78.5 91.3 83.5 87.7 80.4 88.2
C 86.1 69.1 84.8 69.1 76.4 77.7 77.1 60.6 75.1

W 74.3 77.7 70.5 73.2 63.6 67.4 61.2 57.3 68.2
Snorkel 75.5 72.6 67.1 69.3 61.1 68.1 61.0 59.2 67.9

C+W 71.9 77.4 70.6 71.6 63.8 71.2 70.4 60.2 68.5
C+Snorkel 74.0 69.0 66.5 73.7 61.1 71.8 69.1 62.4 68.5

GLC 67.8 75.8 68.7 64.1 56.7 80.0 78.3 68.4 70.0
MetaWN 68.6 66.2 71.1 64.6 63.2 69.5 59.3 61.5 65.5

Rules (no base model)
Rules 61.8 73.9 65.9 73.5 61.3 64.7 52.2 60.0 64.1
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Table 3: Average F1 score across the eight tasks in WALNUT. The bottom row computes the average F1 score
across tasks and supervision methods. The three right-most columns report the average F1 score across model
architectures and all tasks (“All”), document-level tasks (“Doc”), and token-level tasks (“Token”).

Base Model Architecture Average Results
Method BiLSTM DistilBERT BERT RoBERTa BERT-large RoBERTa-large All Doc Token

Full Clean 63.7 83.7 82.1 87.5 85.6 88.2 81.8 86.6 77.0
C 45.4 64.0 65.6 71.4 65.8 75.1 64.5 68.7 60.3

W 50.2 66.0 65.8 67.8 65.4 68.2 63.9 71.9 55.9
Snorkel 52.1 65.1 66.0 67.5 66.5 67.9 64.2 70.4 57.9

C+W 52.5 68.5 68.9 68.9 67.6 68.5 65.8 73.6 58.0
C+Snorkel 52.4 71.4 70.1 68.8 67.0 68.5 66.3 73.0 59.7

GLC 47.6 70.1 70.9 73.0 70.0 70.0 66.9 68.6 65.3
MetaWN 45.1 66.3 67.2 68.2 64.7 65.5 62.8 69.2 56.4

AVG 51.1 69.4 69.6 71.6 69.1 71.5

Table 4: Overall performance gain and gap of all weak supervision methods (Weak Sup, by averaging performance
of W, Snorkel, C+W, C+Snorkel, GLC, MetaWN and MLC) against no weak supervision (C) and full clean training.
Note that RoBERTa-large in included here, as the standard deviation of its performance with different splits on tasks
varies significantly (See Table 14 in Appendix) hence using its performance mean as an indicator is less conclusive.

BiLSTM DistilBERT BERT RoBERTa BERT-large AVG

Perf. gain: Weak Sup − C 3.90 4.21 2.98 -2.07 1.32 2.07
Perf. gap: Full Clean − Weak Sup 14.42 15.47 13.58 18.13 18.51 16.00

Weak supervision has smaller benefit in larger
base models. Another question that we attempt
to address in WALNUT is on whether weak su-
pervision equally benefits each base model archi-
tecture. To quantify such benefit we compare the
performance differences between models trained
using semi-weak supervision and models trained
using clean data only. The “Weak Sup” approach
in Table 4 is computed as the average F1 score
across all semi-weak supervision methods (C+W,
C+Snorkel, GLC, and MetaWN). The performance
gap between “Weak Sup” and “C” (training with
few clean data only) is smaller for larger models.
Additionally, the performance gap between “Full
Clean” (full clean data training) and “Weak Sup”
approach is larger for larger models. The two above
observations highlight that weak supervision has
smaller benefit in larger models. An important fu-
ture research direction is to develop better learning
algorithms and improving the effectiveness of weak
supervision in larger models.

Analysis of weak rules. For now, we have fo-
cused on the evaluation of base models trained
using weak labels generated by multiple weak la-
beling rules. It is interesting also to decouple the
base model performance from the rule aggregation

technique (e.g., majority voting, Snorkel) that was
used to generate the training labels, which is an es-
sential modeling component for weak supervision.
The bottom row in Table 2 (“Rules”) reports the
test performance of rules computed by taking the
majority voting of weak labels on the test instances.
(For test instances that are not covered by any rules,
a random class is predicted.) Such majority label
is available in our pre-processed datasets. Interest-
ingly, “Rules” sometimes outperforms base models
trained using weak labels (“W”, “Snorkel”). Note
however that “Rules” assumes access to all weak
labels on the test set, which might not always be
available. On the other hand, the base model learns
text features beyond the heuristic-based rules and
does not require access to rules during test time
and thus can be applied for any test instance.

For a more in-depth analysis of the rule quality,
WALNUT also supports the analysis of individ-
ual rules and multi-source aggregation techniques,
such as majority voting or Snorkel. Figure 3 shows
a precision-recall scatter plot for each rule on each
of the dataset in WALNUT. For instance, in the
CoNLL dataset rules vary in characteristics, where
most rules have a relatively low recall while there
are a few rules that have substantially higher recall
than the rest. Across datasets, we observe that rules
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Figure 3: Scatterplots of precision-recall for weak supervision rules. Each point corresponds to a rule. (GossipCop
is omitted as it contains only three rules.)

have higher precision than recall, as most rules are
sparse, i.e., apply to a small number of instances
in the dataset (e.g., instances containing a specific
keyword). Similar trends are observed on other
datasets as well. For detailed descriptions of all
weak rules in all datasets, refer to Table 6 - 13 in
the appendix.

5 Conclusions

Motivated by the lack of a unified evaluation plat-
form for semi-weakly supervised learning for low-
resource NLU, in this paper we propose a new
benchmark WALNUT covering a broad range of
data domains to advocate research on leveraging

both weak supervision and few-shot clean supervi-
sion. We evaluate a series of different semi-weakly
supervised learning methods with different model
architecture on both document-level and token-
level classification tasks, and demonstrate the util-
ity of weak supervision in real-world NLU tasks.
We find that no single semi-weakly supervised
learning method wins on WALNUT and there is
still gap between semi-weakly supervised learning
and fully supervised training. We expect WALNUT
to enable systematic evaluations of semi-weakly
supervised learning methods and stimulate further
research in directions such as more effective learn-
ing paradigms leveraging weak supervision.
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A Appendix

Limitations and Broader Impact

The proposed benchmark is likely to stimulate re-
search on weakly supervised learning for NLU,
and offer the research community on weakly super-
vised learning a unified testbed for evaluating new
methodologies developed for low-resource NLU.
For many practical NLU applications, large amount
of manually labeled data is unavailable or expen-
sive to obtain due to either cost or privacy concerns,
resorting to proxy signals such as weak supervi-
sion is a viable solution to mitigate this annotation
scarce problem. We hope WALNUT would pro-
vide such an evaluation environment to advocate
progress in this direction.

Limitations. Due to the lack of existing real-
world weak supervision for many NLU tasks,
WALNUT does not include NLU tasks such as
Natural Language Inference for which it is hard to
construct weak supervision rules. Also, currently
WALNUT only considers English data; a possible
extension is to also include multi-lingual corpus
with weak supervision available to boost the per-
formance of multi-lingual language models with
weakly supervised learning.

A.1 Implementation Details

We implement all baseline experiments with Py-
Torch and each experiment runs on a single
NVIDIA GPU. Below are hyper-parameter specifi-
cations for all baseline methods (hyperparameters
not mentioned below are given default values):

• Full Clean, C, C+W, Snorkel, C+Snorkel:
Batch size is 32 for document-level classi-
fication datasets and 16 for the token-level
classification datasets. The code for Snorkel
is adapted from: https://github.com/
snorkel-team/snorkel. Each training
experiment is conducted for the 10 epochs
with the checkpoint with the best validation
performance saved for evaluation on the test
set.

• GLC: Code is adapted from https://
github.com/mmazeika/glc. Batch
size is 16 for the 4 document-level classifica-
tion datasets and 8 for the 4 token-level classi-
fication datasets. Each experiment trains for
10 epochs with the checkpoint with the best

validation performance saved for evaluation
on test set.

• MetaWN: Code is adapted from
https://github.com/xjtushujun/
meta-weight-net. Batch size is 8 for
the 4 document-level classification datasets
and 4 for the 4 token-level classification
datasets. The meta-network is a three-layer
feed-forward network with hidden dimension
of 128. Each experiment trains for 10 epochs
with the checkpoint with the best validation
performance saved for evaluation on test set.

• MLC: Code is adapted from https://
github.com/microsoft/MLC. Batch
size is 8 for the 4 document-level classifi-
cation datasets and 4 for the 4 token-level
classification datasets. The meta-network is
a three-layer feed-forward network with hid-
den dimension of 128; the label embedding
dimension used in the meta-network is 64.
Each experiment trains for 10 epochs with
the checkpoint with the best validation perfor-
mance saved for evaluation on test set.

To encode input text, we experiment with
various text encoders, ranging from shallow
LSTMs to large pre-trained transformerbased en-
coders (Vaswani et al., 2017):

• BiLSTM-based encoder: the BiLSTM imple-
mentations are all based on 50-dimensional
pre-trained glove word embeddings (Penning-
ton et al., 2014) and bi-directional LSTMs
with hidden size 128. Note that our implemen-
tation is different than other BiLSTM imple-
mentations used by previous work, which are
based on 100-dimensional word embeddings
and LSTM hidden size 300. This renders our
BiLSTM models roughly 3 times smaller than
those used by previous work, thus the num-
bers are not directly comparable. We chose a
smaller model capacity for BiLSTMs to con-
trast the performance with larger models in-
cluding DistilBERT and others to show the im-
portance of model capacity on WALNUT. Dur-
ing training, we use a learning rate of 0.005
for all BiLSTM-based models.

• Transformer-based encoders: we consider
pre-trained DistilBERT (Sanh et al., 2019),
BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), BERT-large, and RoBERTa-large.
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We fine-tune these models (via the hugging-
face library) using task-specific classification
heads on top of the encoder and a learning
rate of 0.00001.

B Additional Benchmark Details

B.1 Document-level classification
• AGNews: and multi-class topic classifica-

tion (world vs. sports vs. business vs.
sci/tech) on news articles from the AGNews
dataset (Zhang et al., 2015).

• Yelp: binary sentiment classification (neg-
ative vs. positive) of Yelp restaurant re-
views (Zhang et al., 2015).

• IMDB: binary sentiment classification (neg-
ative vs. positive) of IMDB movie re-
views (Maas et al., 2011).

• GossipCop: binary fake news detection (fake
vs. not fake) on news articles from the Gos-
sipCop3 fact-checking websites. The Gossip-
Cop dataset is part of the fake news detection
benchmark FakeNewsNet (Shu et al., 2020a).
(We only include the results of Gossipcop to
represent fake news classification task as the
results for Politifact are similar.)

B.2 Token-level classification
According to the BIO tagging scheme, “B,” “I,”
and “O,” represent the beginning, inside, and out-
side, of a named entity span, respectively. (Not
extracting any values corresponds to a sequence
of “O”-only tags.) Consider, for example, named
entity recognition in the CoNLL dataset:

Tokens: Barack Obama lives in Washington
Tags: B-PER I-PER O O B-LOC

• CoNLL: the CoNLL 2003 dataset (Sang and
De Meulder, 2003) contains news articles
from Reuters (split into sentences). In total,
there are 35,089 entities from 4 types: organi-
zation (ORG), person (PER), location (LOC),
and miscellaneous (MISC). Tag classes C ′:
[’O’, ’B-PER’, ’I-PER’, ’B-ORG’, ’I-ORG’,
’B-LOC’, ’I-LOC’, ’B-MISC’, ’I-MISC’]

• NCBI: the NCBI Disease corpus (Doğan
et al., 2014) contains PubMed abstracts with

3https://www.gossipcop.com/

6,866 disease mentions. Tag types: [’O’, ’B’,
’I’]

• WikiGold: the WikiGold dataset (Balasuriya
et al., 2009) contains English Wikipedia ar-
ticles that were randomly selected and man-
ually annotated with the same entity types
as CoNLL. Tag classes C ′: [’O’, ’B-PER’, ’I-
PER’, ’B-ORG’, ’I-ORG’, ’B-LOC’, ’I-LOC’,
’B-MISC’, ’I-MISC’]

• LaptopReview: the Laptop Review corpus
from the SemEval 2014 Challenge (Pontiki
et al., 2016) contains 3,012 mentions to laptop
features. Tag types C ′: [’O’, ’B’, ’I’]

Table 5 shows detailed statistics for token-level
classification datasets. More dataset statistics are
provided in Table 1. Tables 6-13 show detailed
information for all rules. Figures 4-10 show exam-
ples of weak rules for various datasets.
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Table 5: Extra token-level statistics for the token-level classification datasets.

CoNLL NCBI WikiGold LaptopReview

# train tokens 203,621 135,572 31,560 41,525
# dev tokens 51,362 23,789 3,683 9,970
# test tokens 46,435 24,219 3,762 11,884

Table 6: List of rules for the AGNews dataset. The rules are the same as the tagging rules in (Zhang
et al., 2015). The Python implementations can be found in: https://github.com/weakrules/

Denoise-multi-weak-sources/blob/master/rules-noisy-labels/Agnews/angews_rule.py

Rule name Description
1. world1 Keyword-based detection of the WORLD topic
2. world2 Keyword-based detection of the WORLD topic
3. sports1 Keyword-based detection of the SPORTS topic
4. sports2 Keyword-based detection of the SPORTS topic
5. sports3 Keyword-based detection of the SPORTS topic
6. tech1 Keyword-based detection of the TECH topic
7. tech2 Keyword-based detection of the TECH topic
8. business1 Keyword-based detection of the BUSINESS topic
9. business2 Keyword-based detection of the BUSINESS topic

Table 7: List of rules for the IMDB dataset. The rules are the same as in (Zhang et al., 2015). The Python im-
plementations can be found in: https://github.com/weakrules/Denoise-multi-weak-sources/blob/
master/rules-noisy-labels/IMDB/imdb_rule.py

Rule name Description
1. expression_nexttime Regex-based detection of POSITIVE sentiment (re-watching expressions)
2. expression_recommend Regex-based detection of POSITIVE sentiment (recommendation expressions)
3. expression_value Regex-based detection of POSITIVE sentiment (value expressions)
4. keyword_compare Keyword-based detection of NEGATIVE sentiment based on movie comparisons
5. keyword_general Keyword-based detection of POSITIVE and NEGATIVE sentiment
6. keyword_actor Keyword-based detection of POSITIVE sentiment regarding the actors
7. keyword_finish Keyword-based detection of NEGATIVE sentiment
8. keyword_plot Keyword-based detection of POSITIVE and NEGATIVE sentiment regarding the plot

Table 8: List of rules for the Yelp dataset. The rules are the same as in (Zhang et al., 2015). The Python implementa-
tions can be found in: https://github.com/weakrules/Denoise-multi-weak-sources/blob/master/
rules-noisy-labels/Yelp/yelp_rules.py

Rule name Description
1. textblob_lf Model-based detection of POSITIVE and NEGATIVE sentiment (TextBlob model)
2. keyword_recommend Regex-based detection of POSITIVE sentiment (recommendation expressions)
3. keyword_general Regex-based detection of POSITIVE and POSITIVE sentiment (general expressions)
4. keyword_mood Keyword-based detection of POSITIVE and NEGATIVE sentiment based on the user’s mood
5. keyword_service Keyword-based detection of POSITIVE and NEGATIVE sentiment relevant to the service
6. keyword_price Keyword-based detection of POSITIVE and NEGATIVE sentiment regarding the prices
7. keyword_environment Keyword-based detection of POSITIVE and NEGATIVE sentiment relevant to the ambience
8. keyword_food Keyword-based detection of POSITIVE and NEGATIVE sentiment relevant to the food
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Table 9: List of rules for the GossipCop dataset. The rules are the same as in (Shu et al., 2020a) (page 8 in
http://www.cs.iit.edu/~kshu/files/ecml_pkdd_mwss.pdf).

Rule name Description
1. mean_scores User interaction-based detection of FAKE news: If a news piece has a

standard deviation of user sentiment scores greater than a threshold τ1,
then the news is weakly labeled as FAKE news.

2. std_scores User interaction-based detection of FAKE news: If the mean value of
users’ absolute bias scores - sharing a piece of news – is greater than
a threshold τ2, then the news piece is weakly-labeled as FAKE news.

3. credibility_score User interaction-based detection of FAKE news: If a news piece has
an average credibility score less than a threshold τ3, then the news
is weakly-labeled as FAKE news.
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Table 10: List of rules for the CoNLL dataset. The Python implementation of CoNLL rules
is provided in the “skweak” repo: https://github.com/NorskRegnesentral/skweak/blob/

670fcdec680930ce3e497886d06d61e6a1f2c195/examples/ner/conll2003_ner.py

Rule name Description
1. date_detector Heuristic detection of entities of type DATE

2. time_detector Heuristic detection of entities of type TIME

3. money_detector Heuristic detection of entities of type MONEY

4. proper_detector Heuristic detection of proper names based on casing
5. infrequent_proper_detector Heuristic detection of proper names based on casing

+ including at least one infrequent token
6. proper2_detector Heuristic detection of proper names based on casing
7. infrequent_proper2_detector Heuristic detection of proper names based on casing

+ including at least one infrequent token
8. nnp_detector Heuristic detection of sequences of tokens with NNP as POS-tag
9. infrequent_nnp_detector Heuristic detection of sequences of tokens with NNP as POS-tag

+ including at least one infrequent token (rank > 15000 in vocabulary)
10. compound_detector Heuristic detection of proper noun phrases with compound dependency relations
11. infrequent_compound_detector Heuristic detection of proper noun phrases with compound dependency relations

+ including at least one infrequent token
12. misc_detector Heuristic detection of entities of type NORP, LANGUAGE, FAC or EVENT

13. legal_detector Heuristic detection of entities of type LAW

14. company_type_detector Gazetteer using a large list of company names
15. full_name_detector Heuristic function to detect full person names
16. number_detector Heuristic detection of entities CARDINAL,ORDINAL, PERCENT and QUANTITY

17. snips Probabilistic parser specialised in the recognition of dates,
+ times, money amounts, percents, and cardinal/ordinal values

18. core_web_md NER model trained on Ontonotes 5.0
19. core_web_md+c NER model trained on Ontonotes 5.0 + postprocessing
20. BTC NER model trained on the Broad Twitter Corpus
21. BTC+c NER model trained on the Broad Twitter Corpus + postprocessing
22. SEC NER model trained on SEC-filings
23. SEC+c NER model trained on SEC-filings + postprocessing
24. edited_core_web_md NER model trained on Ontonotes 5.0 + alternative postprocessing
25. edited_core_web_md+c NER model trained on Ontonotes 5.0 + alternative postprocessing
26. wiki_cased Gazetteer (case-sensitive) using Wikipedia entries
27. wiki_uncased Gazetteer (case-insensitive) using Wikipedia entries
28. multitoken_wiki_cased Same as above, but restricted to multitoken entities
29. multitoken_wiki_uncased Same as above, but restricted to multitoken entities
30. wiki_small_cased Gazetteer (case-sensitive) using Wikipedia entries with non-empty description
31. wiki_small_uncased Gazetteer (case-insensitive) using Wikipedia entries with non-empty description
32. multitoken_wiki_small_cased Same as above, but restricted to multitoken entities
33. multitoken_wiki_small_uncased Same as above, but restricted to multitoken entities
34. geo_cased Gazetteer (case-sensitive) using the Geonames database
35. geo_uncased Gazetteer (case-insensitive) using the Geonames database
36. multitoken_geo_cased Same as above, but restricted to multitoken entities
37. multitoken_geo_uncased Same as above, but restricted to multitoken entities
38. crunchbase_cased Gazetteer (case-sensitive) using the Crunchbase Open Data Map
39. crunchbase_uncased Gazetteer (case-insensitive) using the Crunchbase Open Data Map
40. multitoken_crunchbase_cased Same as above, but restricted to multitoken entities
41. multitoken_crunchbase_uncased Same as above, but restricted to multitoken entities
42. product_cased Gazetteer (case-sensitive) using products extracted from DBPedia
43. product_uncased Gazetteer (case-insensitive) using products extracted from DBPedia
44. multitoken_product_cased Same as above, but restricted to multitoken entities
45. multitoken_product_uncased Same as above, but restricted to multitoken entities
46. doclevel_voter Considers all appearances of the same entity string in the document
47. doc_history_cased Considers already introduced entities in the document (case-sensitive)
48. doc_history_uncased Considers already introduced entities in the document (case-insensitive)
49. doc_majority_cased Considers all entities in the document (case-sensitive)
50. doc_majority_uncased Considers all majority labels in the document (case-insensitive)
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Table 11: List of rules for the NCBI dataset. The rules are the same as the tagging rules in (Safranchik et al.,
2020). Python implementations: https://github.com/BatsResearch/safranchik-aaai20-code/blob/
master/NCBI-Disease/train_generative_models.py

Rule name Description
1. CoreDictionaryUncased AutoNER dictionary (biomedical entities)
2. CoreDictionaryExact AutoNER dictionary (biomedical entities, exact match)
3. CancerLike Heuristic detection of entities that are relevant to cancer
4. CommonSuffixes Heuristic detection of entities that are relevant to common diseases
5. Deficiency Heuristic detection of entities that are relevant to deficiencies
6. Disorder Heuristic detection of entities that are relevant to disorders
7. Lesion Heuristic detection of entities that are relevant to lesions
8. Syndrome Heuristic detection of entities that are relevant to syndroms
9. BodyTerms UMLS dictionary entries for terms that are relevant to body parts
10. OtherPOS Heuristic detection of parts of speech that are not relevant to any disease
11. StopWords Heuristic detection of stop words that are not relevant to any disease
12. Punctuation Heuristic detection of punctiations that are not relevant to any disease

Table 12: List of rules for the WikiGold dataset. The Python implementation of WikiGold
rules is provided in the “skweak” repo: https://github.com/NorskRegnesentral/skweak/blob/

670fcdec680930ce3e497886d06d61e6a1f2c195/examples/ner/conll2003_ner.py

Rule name Description
1. BTC NER model trained on the Broad Twitter Corpus
2. core_web_md NER model trained on Ontonotes 5.0
3. crunchbase_cased Gazetteer (case-sensitive) using the Crunchbase Open Data Map
4. crunchbase_uncased Gazetteer (case-insensitive) using the Crunchbase Open Data Map
5. full_name_detector Heuristic function to detect full person names
6. geo_cased Gazetteer (case-sensitive) using the Geonames database
7. geo_uncased Gazetteer (case-insensitive) using the Geonames database
8. misc_detector Heuristic detection of entities of type NORP, LANGUAGE, FAC or EVENT

9. wiki_cased Gazetteer (case-sensitive) using Wikipedia entries
10. wiki_uncased Gazetteer (case-insensitive) using Wikipedia entries
11. multitoken_crunchbase_cased Same as above, but restricted to multitoken entities
12. multitoken_crunchbase_uncased Same as above, but restricted to multitoken entities
13. multitoken_geo_cased Same as above, but restricted to multitoken entities
14. multitoken_geo_uncased Same as above, but restricted to multitoken entities
15. multitoken_wiki_cased Same as above, but restricted to multitoken entities
16. multitoken_wiki_uncased Same as above, but restricted to multitoken entities
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Table 13: List of rules for the LaptopReview dataset. The rules are the same as the tagging rules in (Safranchik
et al., 2020). Python implementations: https://github.com/BatsResearch/safranchik-aaai20-code/
blob/master/LaptopReview/train_generative_models.py

Rule name Description
1. CoreDictionary AutoNER dict with entries of terms that are relevant to electronics
2. OtherTerms Heuristic detection of laptop entities based on a pre-defined keyword list
3. ReplaceThe Heuristic detection of laptop entities based on the “replace the” phrase
4. iStuff Heuristic detection of laptop entities based on uppercase letters
5. Feelings Heuristic detection of laptop entities based on common expressions
6. ProblemWithThe Heuristic detection of laptop entities based on common expressions
7. External Heuristic detection of laptop entities based on common hardware expression
8. StopWords Heuristic detection of stop words that are not relevant to electronics
9. Punctuation Heuristic detection of punctuation that are not relevant to electronics
10. Pronouns Heuristic detection of pronouns that are not relevant to electronics
11. NotFeatures Heuristic detection of terms that are not relevant to laptop features
12. Adv Heuristic detection of adverbs that are not relevant to electronics
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Figure 4: Example of weak rule from the Yelp dataset (rule 6: keyword_price from Table 8).

Figure 5: Example of weak rule from the Yelp dataset (rule 1: textblob_lf from Table 8).

Figure 6: Example of weak rule from the CoNLL dataset (rule 3: money_detector from Table 10). This rule
heuristically detects entities that are relevant to money.
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Figure 7: Example of weak rule from the CoNLL dataset (rule 16: number_detector from Table 10). This rule
heuristically detects entities that are relevant to numbers.

Figure 8: Example of weak rule from the NCBI dataset (rule 3: CancerLike from Table 11). This rule heuristically
detects entities that are relevant to cancer.

Figure 9: Example of weak rule from the NCBI dataset (rule 11: StopWords from Table 11). This rule heuristically
detects stop words and assigns the ‘O’ tag to the corresponding tokens by assuming that they are not relevant to any
disease.
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Figure 10: Example of weak rule from the LaptopReview dataset (rule 5: Feelings from Table 13). This rule
heuristically detects entities that are relevant to laptop features based on keywords that express the user’s feelings.
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C Additional Results

Table 14 shows standard deviation results for all
datasets, methods, and base models. The rightmost
column responds the average standard deviation
(AVG std) across tasks, which we also reported in
Table 3.

Analysis of individual weak rules. Tables 15-
21 show performance results for each weak rule
for the datasets in WALNUT. We evaluate two
different strategies for majority voting in case of an
instance that is not covered by any rules: (1) “Strict”
counts the instance as misclassified and (2) “Loose”
assigns a random label to the instance. Most rules
have very low F1 score while there are a few rules
with a relatively high F1 score.

Figure 3 shows the precision-recall scatter plots
for each weak rule individually. (We skip the scat-
ter plot for GossipCop as it has just 3 rules.) Several
rules have relatively high precision but most rules
have very low recall.
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Table 14: Standard deviation results on WALNUT.

Method AGNews IMDB Yelp GossipCop CoNLL NCBI WikiGold LaptopReview AVG

BiLSTM
Full Clean 0.2 0.5 0.3 1.0 7.2 1.6 0.5 2.5 1.7

C 1.1 2.9 4.4 2.0 1.0 1.5 0.9 5.0 2.4
W 6.1 0.5 2.4 0.9 3.2 1.5 0.6 1.2 2.1

C+W 0.3 0.9 1.2 1.1 6.7 1.1 0.6 2.9 1.9
Snorkel 3.9 0.8 0.6 0.4 2.3 2.1 0.7 1.4 1.5

C+Snorkel 0.4 1.0 1.2 1.5 2.8 1.7 0.6 2.1 1.4
GLC 1.3 0.3 0.9 1.7 7.2 1.2 0.5 0.9 1.7

MetaWN 1.8 0.3 2.0 1.3 0.0 1.3 0.4 0.5 0.9
MLC 2.1 0.3 3.8 1.6 0.0 1.1 0.3 0.7 1.2

DistilBERT
Full Clean 0.2 0.3 0.3 1.5 0.4 0.4 0.7 3.5 0.9

C 6.2 6.8 7.4 6.4 3.6 2.0 1.3 1.7 4.4
W 3.9 1.1 1.5 1.1 0.9 1.2 0.3 2.0 1.5

C+W 0.6 0.2 0.9 1.2 0.8 1.4 0.4 3.6 1.1
Snorkel 3.0 1.6 0.6 0.5 1.1 1.5 0.4 2.2 1.4

C+Snorkel 0.7 0.5 2.0 0.8 0.9 1.9 0.4 3.6 1.4
GLC 2.8 0.5 1.5 2.0 2.1 1.8 0.2 1.5 1.5

MetaWN 1.6 1.3 0.8 2.2 1.8 1.4 0.3 0.6 1.3
MLC 2.5 0.6 0.7 1.6 1.2 1.8 0.4 2.3 1.4

BERT
Full Clean 0.1 0.5 0.2 1.0 0.6 0.5 1.0 1.8 0.7

C 0.9 8.1 5.2 1.8 1.3 0.8 1.3 2.5 2.7
W 2.7 0.5 1.1 2.2 1.2 2.8 0.9 1.8 1.7

C+W 0.4 0.6 1.4 1.5 0.9 1.4 0.8 1.5 1.1
Snorkel 2.3 3.7 1.3 0.9 1.3 3.5 1.0 1.3 1.9

C+Snorkel 1.0 0.5 0.6 0.6 1.6 1.7 0.8 2.6 1.2
GLC 1.6 0.8 2.2 2.8 2.4 1.2 0.4 1.2 1.6

MetaWN 1.1 1.0 1.0 2.4 1.6 0.5 0.3 1.4 1.2
MLC 2.0 0.8 1.3 1.4 2.1 2.8 0.2 0.4 1.4

RoBERTa
Full Clean 0.1 0.4 0.2 1.0 0.3 0.7 1.0 2.0 0.7

C 2.0 5.4 5.9 5.2 2.3 2.1 1.7 4.1 3.6
W 1.2 0.7 1.2 2.4 1.4 1.5 0.9 2.7 1.5

C+W 0.9 1.7 1.4 1.0 1.6 1.5 0.6 5.3 1.8
Snorkel 3.2 2.3 2.9 0.6 2.0 1.1 0.9 2.9 2.0

C+Snorkel 0.7 2.2 1.6 1.8 1.8 3.1 0.8 5.7 2.2
GLC 1.3 0.7 1.8 2.3 3.2 0.4 0.4 0.8 1.4

MetaWN 2.7 0.9 1.4 2.1 0.7 0.9 0.3 1.1 1.3
MLC 1.6 1.2 1.0 1.3 1.2 2.7 0.2 3.1 1.6

Method AGNews IMDB Yelp GossipCop CoNLL NCBI BC5CDR LaptopReview AVGBERT-large
Full Clean 0.1 0.4 0.3 0.6 1.0 1.4 1.2 3.1 1.0

C 22.6 3.7 5.8 3.2 4.0 2.4 2.3 3.4 5.9
W 1.1 2.4 1.2 1.4 1.2 2.0 1.1 1.0 1.4

C+W 2.1 1.6 0.9 1.8 1.6 1.9 0.9 3.8 1.8
Snorkel 2.2 1.5 0.5 1.5 0.7 4.0 1.1 1.6 1.6

C+Snorkel 0.9 1.4 0.8 1.4 1.0 4.5 1.1 2.8 1.7
GLC 2.0 0.9 1.1 1.2 1.7 1.2 0.9 2.0 1.4

MetaWN 1.9 1.0 3.9 2.0 1.5 1.0 0.9 23.0 4.4
RoBERTa-large

Full Clean 0.07 0.33 0.16 0.59 0.7 0.7 0.8 2.0 0.7
C 1.8 9.6 7.8 1.0 1.5 1.2 0.7 4.7 3.5

W 0.8 0.7 0.5 2.7 2.0 4.1 1.8 2.9 1.9
C+W 1.2 1.6 1.6 2.6 1.9 1.3 0.7 5.0 2.0

Snorkel 0.8 2.5 2.5 1.9 1.2 2.9 1.9 4.4 2.3
C+Snorkel 2.1 2.5 1.5 2.3 2.5 3.1 0.7 2.8 2.2

GLC 1.7 1.0 2.1 1.2 28.4 1.2 0.8 3.8 5.0
MetaWN 2.0 16.6 3.0 15.6 1.4 1.5 0.6 2.9 5.5
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Table 15: Performance of each rule on AGNews.

AG News
unlabeled train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 1 0.179 0.078 0.109 0.179 0.114 0.140 0.182 0.077 0.108 0.180 0.079 0.110
rule 2 0.157 0.082 0.108 0.156 0.121 0.136 0.159 0.082 0.108 0.154 0.081 0.106
rule 3 0.162 0.093 0.118 0.162 0.134 0.147 0.160 0.094 0.118 0.166 0.094 0.120
rule 4 0.192 0.011 0.021 0.192 0.018 0.033 0.192 0.012 0.022 0.193 0.011 0.021
rule 5 0.187 0.064 0.095 0.189 0.090 0.122 0.190 0.067 0.099 0.188 0.068 0.099
rule 6 0.140 0.053 0.077 0.141 0.100 0.117 0.137 0.054 0.077 0.141 0.051 0.075
rule 7 0.161 0.052 0.079 0.163 0.096 0.121 0.163 0.050 0.077 0.163 0.051 0.078
rule 8 0.136 0.114 0.124 0.138 0.168 0.152 0.134 0.113 0.123 0.137 0.118 0.127
rule 9 0.152 0.007 0.014 0.153 0.011 0.020 0.149 0.007 0.013 0.154 0.008 0.014

Majority (strict) 0.649 0.426 0.512 0.814 0.812 0.812 0.645 0.424 0.509 0.650 0.429 0.514
Majority (loose) 0.618 0.620 0.617 0.814 0.812 0.812 0.611 0.613 0.610 0.618 0.620 0.618

Table 16: Performance of each rule on IMDB.

IMDB
unlabeled train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 1 0.182 0.001 0.001 0.000 0.000 0.000 0.333 0.000 0.001 0.000 0.000 0.000
rule 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 4 0.497 0.405 0.446 0.502 0.478 0.489 0.505 0.404 0.448 0.513 0.423 0.463
rule 5 0.538 0.044 0.073 0.549 0.045 0.075 0.408 0.039 0.067 0.481 0.046 0.077
rule 6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 7 0.457 0.109 0.176 0.463 0.120 0.190 0.448 0.095 0.156 0.459 0.115 0.183
rule 8 0.655 0.006 0.012 0.644 0.004 0.009 0.630 0.008 0.015 0.667 0.008 0.015

Majority (strict) 0.495 0.426 0.457 0.749 0.745 0.745 0.501 0.423 0.458 0.511 0.448 0.476
Majority (loose) 0.708 0.707 0.706 0.749 0.745 0.745 0.710 0.708 0.708 0.740 0.739 0.739

Table 17: Performance of each rule on Yelp.

Yelp
unlabeled train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 1 0.642 0.047 0.085 0.638 0.053 0.094 0.643 0.052 0.093 0.614 0.042 0.076
rule 2 0.214 0.029 0.051 0.221 0.036 0.063 0.213 0.028 0.050 0.239 0.031 0.054
rule 3 0.501 0.328 0.371 0.504 0.393 0.419 0.514 0.338 0.381 0.492 0.324 0.367
rule 4 0.498 0.064 0.114 0.485 0.081 0.139 0.501 0.069 0.121 0.491 0.066 0.117
rule 5 0.502 0.101 0.163 0.503 0.122 0.191 0.489 0.090 0.147 0.519 0.105 0.168
rule 6 0.426 0.035 0.065 0.433 0.046 0.083 0.417 0.036 0.066 0.398 0.036 0.066
rule 7 0.486 0.044 0.081 0.484 0.053 0.095 0.509 0.044 0.081 0.479 0.039 0.071
rule 8 0.553 0.049 0.085 0.556 0.060 0.103 0.515 0.049 0.086 0.553 0.053 0.092

Majority (strict) 0.508 0.389 0.411 0.762 0.700 0.692 0.515 0.392 0.415 0.498 0.381 0.404
Majority (loose) 0.710 0.677 0.663 0.762 0.700 0.692 0.719 0.683 0.671 0.706 0.672 0.659
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Table 18: Performance of each rule on GossipCop.

GossipCop
train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 1 0.632 0.629 0.627 0.614 0.610 0.607 0.629 0.627 0.625
rule 2 0.648 0.622 0.604 0.643 0.620 0.604 0.658 0.630 0.613
rule 3 0.740 0.731 0.728 0.754 0.746 0.744 0.732 0.726 0.724

majority 0.758 0.732 0.725 0.757 0.728 0.721 0.760 0.740 0.735

Table 19: Performance of each rule on NCBI.

NCBI
train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 1 0.490 0.025 0.047 0.460 0.066 0.116 0.537 0.031 0.058
rule 2 0.514 0.017 0.034 0.140 0.010 0.019 0.349 0.016 0.030
rule 3 0.317 0.035 0.064 0.241 0.018 0.033 0.295 0.024 0.045
rule 4 0.875 0.219 0.350 0.911 0.118 0.208 0.807 0.172 0.283
rule 5 0.823 0.412 0.549 0.707 0.445 0.546 0.793 0.412 0.542
rule 6 0.678 0.037 0.071 0.794 0.035 0.066 0.667 0.030 0.057
rule 7 0.227 0.002 0.004 0.333 0.001 0.003 0.000 0.000 0.000
rule 8 0.250 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
rule 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 12 0.325 0.016 0.031 0.036 0.001 0.002 0.375 0.013 0.024

Majority 0.749 0.637 0.688 0.659 0.566 0.609 0.716 0.590 0.647
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Table 20: Performance of each rule on WikiGold.

WikiGold
train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 0 0.590 0.406 0.481 0.539 0.399 0.459 0.591 0.397 0.475
rule 1 0.593 0.538 0.564 0.597 0.558 0.577 0.624 0.557 0.589
rule 2 0.252 0.059 0.095 0.235 0.049 0.081 0.229 0.059 0.093
rule 3 0.226 0.060 0.095 0.193 0.049 0.078 0.211 0.061 0.095
rule 4 0.621 0.091 0.158 0.596 0.086 0.150 0.633 0.101 0.175
rule 5 0.776 0.137 0.233 0.814 0.147 0.249 0.886 0.104 0.186
rule 6 0.773 0.137 0.233 0.814 0.147 0.249 0.886 0.104 0.186
rule 7 0.576 0.092 0.159 0.542 0.080 0.139 0.587 0.099 0.169
rule 8 0.558 0.030 0.058 0.471 0.025 0.047 0.684 0.035 0.066
rule 9 0.547 0.030 0.058 0.471 0.025 0.047 0.684 0.035 0.066
rule 10 0.875 0.020 0.038 0.857 0.037 0.071 1.000 0.024 0.047
rule 11 0.862 0.020 0.038 0.857 0.037 0.071 1.000 0.024 0.047
rule 12 0.885 0.177 0.295 0.864 0.215 0.344 0.857 0.176 0.292
rule 13 0.869 0.178 0.296 0.855 0.218 0.347 0.825 0.176 0.290
rule 14 0.780 0.352 0.485 0.803 0.387 0.522 0.781 0.315 0.449
rule 15 0.758 0.353 0.482 0.768 0.387 0.514 0.727 0.312 0.437

Majority 0.490 0.564 0.524 0.488 0.558 0.521 0.490 0.560 0.522

Table 21: Performance of each rule on LaptopReview.

LaptopReview
train validation test

Rule Prec Rec F1 Prec Rec F1 Prec Rec F1

rule 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 2 0.679 0.595 0.634 0.656 0.584 0.618 0.722 0.512 0.599
rule 3 0.667 0.003 0.006 1.000 0.004 0.008 0.500 0.003 0.006
rule 4 0.500 0.006 0.012 0.400 0.009 0.017 0.750 0.009 0.018
rule 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 6 0.423 0.006 0.011 0.467 0.015 0.029 0.000 0.000 0.000
rule 7 1.000 0.001 0.002 0.500 0.002 0.004 0.000 0.000 0.000
rule 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 10 0.333 0.001 0.001 1.000 0.002 0.004 0.000 0.000 0.000
rule 11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rule 12 0.735 0.013 0.026 0.800 0.009 0.017 0.250 0.006 0.012

Majority 0.671 0.609 0.638 0.644 0.599 0.621 0.706 0.521 0.600
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