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Abstract

Transformer-based models are now predom-
inant in NLP. They outperform approaches
based on static models in many respects. This
success has in turn prompted research that re-
veals a number of biases in the language mod-
els generated by transformers. In this paper we
utilize this research on biases to investigate to
what extent transformer-based language models
allow for extracting knowledge about object re-
lations (X occurs in Y ; X consists of Z; action
A involves using X). To this end, we compare
contextualized models with their static counter-
parts. We make this comparison dependent on
the application of a number of similarity mea-
sures and classifiers. Our results are threefold:
Firstly, we show that the models combined with
the different similarity measures differ greatly
in terms of the amount of knowledge they allow
for extracting. Secondly, our results suggest
that similarity measures perform much worse
than classifier-based approaches. Thirdly, we
show that, surprisingly, static models perform
almost as well as contextualized models – in
some cases even better.

1 Introduction

Few models have recently influenced NLP as much
as transformers (Vaswani et al., 2017). Hardly any
new NLP system today is introduced without a
transformer-based model such as BERT (Devlin
et al., 2019) or GPT (Radford et al., 2019). As a re-
sult, static models such as word2vec (Mikolov et al.,
2013) are increasingly being substituted. Never-
theless, transformers are still far from being fully
understood. Thus, research studies are being con-
ducted to find out how they work and what proper-
ties the language models they generate have.

During training, transformers seem to capture
both syntactic and semantic features (Rogers et al.,
2020). For example, dependency trees can be re-
constructed from trained attention heads (Clark
et al., 2019), syntactic trees can be reconstructed

from word encodings (Hewitt and Manning, 2019),
and these encodings can be clustered into represen-
tations of word senses (Reif et al., 2019). BERT
also seems to encode information about entity types
and semantic roles (Tenney et al., 2019). For an
overview of this research see Rogers et al. (2020).

Since BERT and other transformers are trained
on various data crawled from the internet, they are
sensitive to biases (Caliskan et al., 2017; May et al.,
2019; Bender et al., 2021). In practice, instead
of reproducing negative biases, they are expected
to allow for the derivation of statements, such as
that toothbrushes are spatially associated with bath-
rooms rather than living rooms. In this line of
thinking, approaches such as the popularization of
knowledge graphs can be located (Yao et al., 2019;
Petroni et al., 2019; Heinzerling and Inui, 2021).
Our paper is situated in this context. More specifi-
cally, we examine the extent to which knowledge
about spatial objects and their relations is implic-
itly encoded in these models. Since the underlying
texts are rather implicit regarding such information,
it can be assumed that the object relations derivable
from transformers are weakly encoded (cf. Landau
and Jackendoff, 1993; Hayward and Tarr, 1995).
Reading, for example, the sentence:

“After getting up, I ate an apple”
one may assume that the narrator got up from

his bed in the bedroom, went to the kitchen, took
an apple, washed it in the sink, and finally ate it.
The apple is also likely to have been peeled and cut.
Equally, however, nothing is said in the sentence
about a bedroom or a kitchen. Nevertheless, it is a
well known approach to explore the usage regulari-
ties of words, currently most efficiently represented
by neural networks, as a source for knowledge ex-
traction (see, e.g. Zhang et al., 2017; Bouraoui
et al., 2020; Shin et al., 2020; Petroni et al., 2019).

In this work, we use a number of methods to
identify biases in contextualized models and ask
to what extent they can be used to extract object-

5791



based knowledge from these models. To this end,
we consider three relations:

1. Spatial containment of (source) objects in (tar-
get) rooms: e.g. a fridge probably belongs in
a kitchen, but not in a living room;

2. Parts (source) in relation to composite objects
(target): e.g. a refrigerator compartment is
probably a part of a fridge;

3. Objects (source) in relation to actions (tar-
get) that involve them: e.g. reading involves
something being read, e.g., a book.

Regarding these relations, we examine a set of pre-
trained contextualized and static word representa-
tion models. This is done to answer the question to
what extent they allow the extraction of instances of
these relations when trained on very large datasets.
We focus on rather common terms (kitchen, to read
etc.) as part of the general language.

It is assumed that (static or contextualized) mod-
els implicitly represent such relations, so that it is
possible to identify probable targets starting from
certain sources. That is, for a word like fridge
(source), we expect it to be semantically more
strongly associated with kitchen (target) than with
words naming other rooms, since fridges are more
likely to be found in kitchens than in other rooms,
and that certain word representation models reflect
this association. We also assume that this associa-
tion is asymmetric and exists to a lesser extent from
target to source (cf. Tversky and Gati (2004)).

The paper is organized as follows: Related work
is reported in Sec. 2. The datasets we use are repre-
sented in Sec. 3 and our method in Sec. 4. Our ex-
periments are presented in Sec. 5 and discussed in
Sec. 6. Sec. 7 provides a conclusion. All used data,
scripts and results are open source on GitHub1.

2 Related Work

Biases in NLP models are not a new problem that
appeared with BERT, but affect almost all models
trained on language datasets (Caliskan et al., 2017).
As such, there are methods for measuring social
biases in static models such as word2vec (Mikolov
et al., 2013). One of the best known approaches is
WEAT (Caliskan et al., 2017). Here, two groups
of concepts are compared with two groups of at-
tributes based on the difference between the sums
of their cosine similarities (see Section 4). This ap-
proach already points to a methodological premise

1https://github.com/texttechnologylab/
SpatialAssociationsInLM

that also guides our work: Relations of entities
are tentatively determined by similarity analyses of
vectorial word representations.

However, a direct comparison of word vec-
tors is not possible with contextualized methods
such as BERT, where the vector representation
of a word varies with the context of its occur-
rence (cf. Ethayarajh, 2019). Efforts to transfer
the cosine-based approach from static to contextu-
alized models have not been able to recreate sim-
ilar performances (May et al., 2019). Therefore,
new approaches have been developed based on the
specifics of contextualized models. For example,
BERT is trained using masked language model-
ing, where the model estimates the probability of
masked words in sentences (Devlin et al., 2019).
The probability distribution for a masked word in
a given context can then be used as information to
characterize candidate words (Kurita et al., 2019).
Sec. 4.3 describes this approach in more detail. An
alternative approach is to examine the interpretabil-
ity of models (Belinkov and Glass, 2019; Jiang
et al., 2020; Petroni et al., 2019, 2020; Bommasani
et al., 2020; Hupkes et al., 2020), which goes be-
yond the scope of this paper. In any event, both
approaches share the same basic ideas, e.g., the
probability prediction of mask tokens (cf. Kurita
et al., 2019; Belinkov and Glass, 2019).

Work has also been done on how BERT repre-
sents information about spatial objects. For ex-
ample, BERT has problems with certain object
properties (e.g. cheap or cute) or implicit visual
properties that are rarely expressed (Da and Kasai,
2019). Problems are also encountered with extract-
ing numerical commonsense knowledge, such as
the typical number of tires on a car or the feet on a
bird (Lin et al., 2020). More than that, the models
seem to allow for extracting some object knowl-
edge, but not with respect to properties based on
their affordance (e.g. objects through which one
can see are transparent (Forbes et al., 2019)). Even
though these results seem to question the use of
BERT and its competitors for knowledge extrac-
tion, these models still perform better in down-
stream tasks than their static competitors (Devlin
et al., 2019; Liu et al., 2019; Brown et al., 2020; Da
and Kasai, 2019). Bouraoui et al. (2020) compared
these models using different datasets and lexical
relations. These include relations similar to those
examined here (e.g. a pot is usually found in a
kitchen), but beyond the level of detail achieved in
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our study.
What will become increasingly important is the

so-called grounding of language models (Merrill
et al., 2021): Here, the models are trained not only
on increasingly large text data, but also, for exam-
ple, on images thus enabling better “understanding”
of spatial relations (Sileo, 2021; Li et al., 2020). In
this paper, we focus on models without grounding.

3 Datasets Used for Evaluation

3.1 Spatial Containment
The NYU Depth V2 Dataset (Silberman et al., 2012)
consists of video sequences of numerous indoor
scenes. It features 464 labeled scenes using a rich
category set. We use this dataset as a basis for
evaluating the probability of occurrence of objects
in rooms (e.g. kitchen, living room, etc.). That is,
we estimate the conditional probability P (r | o)
of a room r (target) given an object o (source). In
this way, we aim to measure the strength of an ob-
ject’s association with a particular room as reflect-
ing the corresponding spatial containment relation.
At the same time, we want to filter out objects such
as window that are evenly distributed among the
rooms studied here. In our experiments, we con-
sider the ten most frequently mentioned objects
in NYU to associate with the five most frequently
mentioned spaces. This data is shown in the Table
4 (appendix).

The advantage of NYU over other scene datasets
such as 3D-Front (Fu et al., 2020) is that it deals
with real spaces and not artificially created ones.
In addition, NYU’s object category set is rela-
tively fine-grained (we counted 895 different ob-
ject names) and uses colloquial terms. This is in
contrast to, for example, SUNCG (Song et al.,
2017) (with categories like “slot machine with
chair”,“range hood with cabinet”, “food proces-
sor”) and ShapeNetCore (Chang et al., 2015) with
only 55 object categories or COCO (Lin et al.,
2014) with 80 object categories. This makes NYU
more suitable for our task of evaluating word rep-
resentation models as resources for knowledge ex-
traction starting from general language.

3.2 Part-whole Relations
We use a subset of the object descriptions from
Online-Bildwörterbuch2. This resource describes
very fine-grained part-whole relations of objects

2http://www.bildwoerterbuch.com/en/
home

expressed by colloquial names, in contrast to, e.g.,
PartNet (Mo et al., 2019) where one finds labels
such as seat single surface or arm near vertical bar.
The list of objects from Online-Bildwörterbuch
used in our study and their subdivisions is shown
in Table 5. The selected objects were chosen by
hand, provided that the chosen examples are gen-
eral enough and the subdivision is sufficiently fine.

3.3 Action-object Relations

To study entities as typical objects of certain ac-
tions, we derive a dataset from HowToKB (Chu
et al., 2017) which is based on WikiHow3. In
HowToKB, task frames, temporal sequences of
subtasks, and attributes for involved objects were
extracted from WikiHow articles. Some changes
were made to the knowledge database, including
a newly crawled version of WikiHow. In addition,
the pre-processing tools have been updated and
partially extended (see Table 6).

3.3.1 Related Datasets
For evaluating static models, there are datasets and
approaches to measuring lexical relations, such
as DiffVec (Vylomova et al., 2016), BATS (Glad-
kova et al., 2016) or BLiMP (Warstadt et al., 2020).
Although these datasets are also used to evaluate
BERT (Bouraoui et al., 2020), they represent only
an unstructured subset of the data we used and are
thus not appropriate for our study.

4 Approach

We now present the static and contextualized mod-
els used in our study. Table 7 in the appendix lists
these models and their sources. We also specify the
measures used to compute word associations as a
source of knowledge extraction, and describe how
to use classifiers as an alternative to them.

4.1 Static Models

Probably the best known static model is word2vec
(Mikolov et al., 2013). Its CBOW variant is trained
to predict words in the context of their surrounding
words. The word representations trained in this
way partially encode semantic relations (Mikolov
et al., 2013), making them a suitable candidate for
comparison with the corresponding information
values of contextualized word representations. In
addition to word2vec, we consider GloVe (Penning-
ton et al., 2014), Levy (Levy and Goldberg, 2014),

3https://www.wikihow.com/
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fastText (Mikolov et al., 2018) and a static BERT
model (Gupta and Jaggi, 2021). Unlike window-
based approaches to static embeddings, Levy em-
beddings are trained on dependency trees.

4.2 Contextualized Models

Unlike static models, the vector representations of
(sub-)word (units) in contextualized models depend
on the context in which they occur so that tokens of
the same type may each be represented differently
in different contexts. All contextual models we
evaluate here are pre-trained and come from the
huggingface models repository4. We evaluate two
types of contextualized models:
Masked Language Models (MLM) are trained
to reconstruct randomly masked words in input
sequences. We experiment with BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), ELEC-
TRA (Clark et al., 2020) and ALBERT (Lan et al.,
2019). The models differ in training, training data,
and model size. BERT is trained using masked
language modeling and next sentence prediction.
RoBERTa omits the second task, but uses much
more training data. Two models are trained for
ELECTRA: one on masked language modeling
(generator) and a second one that recognizes just
these replaced tokens (discriminator). Since many
of our evaluations need mask tokens, we only use
the generator model for the evaluations. Finally,
ALBERT is trained to predict the order of pairs of
consecutive text segments in addition to masked
language modeling.
Causal Language Models (CLM) are trained to
predict the next word for a given input text. From
this class we experiment with GPT-2 (Radford
et al., 2019), GPT-Neo (Gao et al., 2021; Black
et al., 2021) and GPT-J (Wang and Komatsuzaki,
2021). GPT-Neo and GPT-J are re-implementations
of GPT-3 (Brown et al., 2020) where GPT-J was
trained on a significantly larger data set named The
Pile (Gao et al., 2021) (cf. Table 7 in the appendix).

4.3 Similarity Measures

To compute similarities of word associations based
on the models studied here, we make use of re-
search on biases in such models. These approaches
calculate biases between two groups of concepts
with respect to candidate groups of attributes. To
this end, associations are evaluated by computing
the similarities of vector representations of con-

4https://huggingface.co/models

cepts and attributes. We adopt this approach to
investigate our research question. However, as we
consider knowledge extraction starting from source
words (e.g. toaster, shower) in relation to target
words (e.g. kitchen, bathroom), we modify it as
described below.

4.3.1 Cosine and Correlation Measures
Based on the human implicit association
test (Greenwald et al., 1998), WEAT (Caliskan
et al., 2017) is originally designed to compare
the association between two sets of concepts (X
and Y ) and two sets of attributes (A and B). The
degree of bias is calculated as follows:

s(X,Y,A,B) =
∑

x∈X
s(x,A,B)−

∑

y∈Y
s(y,A,B)

(1)

s(w,A,B) =
∑

a∈A
cos (w, a)−

∑

b∈B
cos (w, b)

(2)

Since we are considering source words in relation
to target words, we use the following variant:

s(X,A) =
1

|X||A|
∑

x∈X

∑

a∈A
cos (x, a) (3)

For contextualized models, we adopt the approach
of May et al. (2019), that is, we generate sentences
such as “This is a {x}.” or “A {x} is here”. All tem-
plates used in our study are listed in the appendix
Table 8. However, instead of using the BERT to-
ken [CLS] (the default token at the beginning of
an input sequence, which often serves as the de-
fault representation of the entire sequence), we use
the maximum of the vector representations of all
subwords of the expression. This approach is suit-
able for models like RoBERTa that do not use the
[CLS] token for training, or the GPT models that
do not have this token at all. In addition, we also
achieved slightly better results on regular BERT
models using this approach. We explain this with
the fact that our focus is actually only on single
tokens and that the vector representation of the
[CLS] token often focuses only on a few dimen-
sions (Zhou et al., 2019). Our approach results
in a set of contextualized representations for each
source and target word, which are then compared
using formula 3. We were able to obtain better
results in our experiments with this representation
than with those generated via the [CLS] token. For
static models, if there is no vector representation
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for a potential multiword expressions (MWE)5, the
average of the vectors of their components is used.
This representation yielded the largest bias in the
work of Azarpanah and Farhadloo (2021). For
the static models, we also experimented with dis-
tance correlation (Székely et al., 2007), Pearson
correlation (Benesty et al., 2009), Spearman corre-
lation (Kokoska and Zwillinger, 2000), Kendall’s
tau (Kendall, 1938) and Mahalanobis distance (Ma-
halanobis, 1936) – cf. Torregrossa et al. (2020);
Azarpanah and Farhadloo (2021) – of the word
vectors. Due to space limitations, only the values
of the distance correlation and Kendall’s tau are
shown (see Table 1); the other correlation measures
behave similarly. Moreover, the values for these
measures tend to perform worse for contextualized
models. This observation is consistent with find-
ings of Azarpanah and Farhadloo (2021) where the
Mahalanobis distance measure performed worst.

4.3.2 Increased Log Probability
The cosine measure has shown to be problematic
for assessing bias in contextualized models such
as BERT (May et al., 2019; Kurita et al., 2019).
Kurita et al. (2019) have therefore developed a
new approach for models trained using masked
language modeling. They weight the probability
of a target word in a simple sentence template,
assuming that an attribute is given or not:

score(target , attribute) =

log
P ([MASK] = [target ] | [MASK] is a [attribute])

P ([MASK1] = [target ] | [MASK1] is a [MASK2])

Experiments show that the values of this measure
correlate significantly better with human biases.

Since this measure is based on the context sen-
sitivity of models, it cannot be applied to static
models. For contextualized models, we use the
probability of the last token (e.g. curtain in the case
of shower curtain) for source-forming MWEs and
the first token (e.g. living in the case of living room)
for target-forming MWEs. We also performed ex-
periments with multiple masks, one for each of
the components of a MWE. However, this did not
produce better results. We adapt this approach for
causal language models as follows: Instead of a
complete sentence, we use incomplete sentence
templates such as “A(n) {object} is usually in the
. . . ” or “In the {room} is usually a/an . . . ”. The
model should then predict the next token. Instead

5Word2Vec contains vectors for MWE’s.

of masking the seed word, a neutral equivalent is
used for calculation:

A(n) {object} is usually in the ...
⇓

This is usually in the ....

Instead of performing the analysis in only one di-
rection, we determine the score for both the target
and the source given the other.

4.3.3 Classifier-based Measures
In addition to the previously described measures,
we experiment with classifiers. To this end, we
train three classifiers on the model representations
of the source word to determine the associated tar-
get word as a class label (e.g. predict kitchen, given
the vector of frying pan). We generate the set of
source word representations X in the same way
as in the case of the cosine measure (see Section
4.3.1) and average them before classification:

target = Classifier

(
1

|X|
∑

x⃗∈X
x⃗

)

The training runs on a leave-one-out cross-valida-
tion repeated 100 times. The target vector was then
generated from the counted predicted classes (see
Figure 2b in Appendix). We trained a k-nearest
neighbors classifier with k = 5 (KNN), an SVM
with a linear kernel and a feed-forward network
(FFN). A small hyperparameter optimization was
performed for the FFN, which resulted in the fol-
lowing parameters: Adam Optimizer (Kingma and
Ba, 2014) with a learning rate of 0.01 over 100
epochs and one hidden layer of size 100 and ReLU
as activation function.

4.4 Scoring Measures and Classifiers
Given a word representation model, we compute
the final score for the measures and classifiers to es-
timate how well they reconstruct the original prob-
ability distribution of the source entities relative
to the target entities (see Table 4, 5, and 6). This
is computed by the distance correlation (Székely
et al., 2007) between the target-source probability
distributions and the corresponding association dis-
tributions of the respective measure or classifier.
The advantage of the distance correlation over the
Pearson correlation is that it can also measure non-
linear relations. This was calculated both for all
targets individually (correlation of all sources to
one target) and then concatenated for all targets
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together; we denote this variant by CONC. There-
fore, CONC does not correspond to the average of
the individual distance correlations.

5 Experiments

Using the apparatus of Section 4, we now evaluate
the classes of word representation models (static,
MLMs and CLMs) in conjunction with the sim-
ilarity measures and classifiers. The results for
the static models are shown in Table 1, for the
MLMs in Table 2 and for the CLMs in Table 3.
Figure 2, 3 and 4 in Appendix show a visualization
of the associations computed by means of cosine,
masked-target & masked-source increased log sim-
ilarity measures and the FFN classifier based on
BERT-Large using the different datasets.

An experiment was also conducted with word
frequencies via Google Ngram6 (see Section A.1
in the appendix).

5.1 Model-related Observations
The basic expectation that the cosine measure
would generally perform the worst and the FFN
classifier the best was met (see Tables 1–3). Inter-
estingly, cosine is also outperformed by distance
correlation in almost all cases.

Among the static models, GloVe and fastText
performed best in most cases, especially on the
room and part dataset (Table 1). Although Levy per-
forms by far the worst in the room dataset, it keeps
up with all classification results in the verb dataset.
One reason for this could be the dependency-based
learning strategy, which seems to work very well
for verb associations, even though it was trained on
a much smaller data set.

Among the masked-language models, BERT-
Base surprisingly performed the best (Table 2).
BERT-Large achieved the better Increased Log
Probabilities, but the FFN classifier still worked
better with the vector representations of the Base
variant. This suggests that although associations
are represented in a more fine-grained manner in
BERT-Large, they are more difficult to retrieve due
to the size of this model.

Among the masked-language models, GPT-J
(which was trained with by far the largest training
data) performs best (Table 3). Context-based mod-
els generally seem to determine the target given
the source (P (target | source)) more easily than
the reverse (P (source | target)). With verbs, on

6https://books.google.com/ngrams

the other hand, the reverse effect occurs. The GPT
models show that the results for sources are better
when weighted, while for targets the results are
better without weighting.

In general, the SVM performed surprisingly well,
even though only a linear kernel was used. But also
the KNN method mostly performed better than the
similarity measures. However, FFN performs best
in all cases, outperforming cosine (worst case) by
increases in the interval [6%, 52%] and outperform-
ing the KNN approach (worst classifier) in each
case by increases in the interval [2%, 43%].

5.2 Dataset-related Observations
In terms of rooms, bathroom scores the best, while
living room or office usually score the worst. This
may be because many bathroom objects are related
to specific bathroom activities (e.g., toothbrush,
bathtub), while objects that used to be located in the
living room are increasingly found in other rooms
(e.g., television in the bedroom). This would also
explain why the results for kitchen are also better.

On the part dataset, the static models actually
performed significantly better than the contextual-
ized models. This relates especially to GloVe and
fastText which outperformed almost all contextual-
ized models. Thus, static models are in some cases
a good alternative to their contextualized counter-
parts. However, the more technical the objects
become (here mortise lock and dishwasher), the
worse the results become.

On the verb dataset, the contextualized models
perform minimally better. As mentioned earlier,
these models can associate objects with verbs more
easily than the other way around. Here, the largest
difference in performance is observed in the case
of Levy, where the results are almost equal to those
of the other models, probably due to the learning
strategy based on dependency trees.

In summary, knowledge extraction using lan-
guage models, whether static or contextualized, is
more effective using classifiers than using similar-
ity measures commonly used in the field of bias
research: there is potential for this type of knowl-
edge extraction, but at the price of training classi-
fiers – if one uses similarity measures instead, this
knowledge is mostly out of reach.

5.3 Relation Observation
All previous evaluations only examined associ-
ations between instances and concepts, but not
whether the models represent their true relations.
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Word2Vec GloVe Levy fastText static-BERT
cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn

R
oo

m

bathroom 0.37 0.37 0.37 0.39 0.62 0.82 0.38 0.39 0.38 0.57 0.93 0.93 0.39 0.40 0.39 0.14 0.34 0.37 0.53 0.53 0.52 0.73 0.67 0.90 0.54 0.50 0.50 0.25 0.66 0.70
bedroom 0.20 0.20 0.20 0.13 0.49 0.70 0.31 0.29 0.30 0.28 0.66 0.45 0.21 0.21 0.21 0.10 0.25 0.11 0.30 0.31 0.32 0.26 0.44 0.59 0.28 0.27 0.27 0.35 0.33 0.35
kitchen 0.35 0.34 0.35 0.20 0.55 0.53 0.37 0.40 0.41 0.52 0.65 0.81 0.17 0.17 0.18 0.09 0.32 0.30 0.38 0.36 0.34 0.41 0.66 0.76 0.40 0.41 0.41 0.45 0.53 0.68
living room 0.23 0.23 0.24 0.06 0.33 0.35 0.30 0.27 0.28 0.10 0.49 0.51 0.24 0.24 0.23 0.40 0.16 0.25 0.25 0.26 0.24 0.09 0.36 0.60 0.19 0.19 0.19 0.00 0.10 0.46
office 0.28 0.28 0.26 0.51 0.51 0.55 0.14 0.31 0.35 0.51 0.59 0.64 0.25 0.27 0.28 0.40 0.36 0.25 0.25 0.30 0.33 0.45 0.32 0.63 0.40 0.44 0.45 0.10 0.21 0.32
CONC 0.23 0.23 0.23 0.22 0.50 0.60 0.27 0.31 0.32 0.37 0.67 0.67 0.16 0.15 0.15 0.15 0.11 0.23 0.30 0.31 0.31 0.40 0.45 0.70 0.31 0.31 0.31 0.18 0.39 0.48

Pa
rt

bed 0.41 0.41 0.40 0.64 0.56 0.56 0.38 0.51 0.51 0.56 0.76 0.84 - - - - - - 0.42 0.51 0.52 0.69 0.61 0.67 0.47 0.48 0.46 0.16 0.59 0.54
dishwasher 0.19 0.23 0.23 0.06 0.37 0.27 0.33 0.32 0.30 0.03 0.19 0.32 - - - - - - 0.35 0.33 0.33 0.06 0.13 0.23 0.17 0.17 0.17 0.13 0.28 0.31
door 0.12 0.11 0.11 0.54 0.75 0.75 0.19 0.23 0.22 0.48 0.81 0.85 - - - - - - 0.25 0.27 0.24 0.36 0.55 0.84 0.24 0.25 0.25 0.36 0.73 0.67
mortise lock 0.15 0.16 0.16 0.16 0.50 0.54 0.22 0.26 0.28 0.45 0.74 0.68 - - - - - - 0.11 0.17 0.20 0.68 0.55 0.68 0.20 0.21 0.21 0.14 0.49 0.47
refrigerator 0.44 0.46 0.46 0.51 0.47 0.52 0.53 0.57 0.56 0.55 0.55 0.66 - - - - - - 0.54 0.58 0.58 0.28 0.40 0.55 0.50 0.50 0.50 0.56 0.56 0.53
toilet 0.28 0.28 0.28 0.01 0.49 0.55 0.33 0.33 0.32 0.31 0.63 0.60 - - - - - - 0.37 0.34 0.33 0.55 0.50 0.72 0.24 0.23 0.23 0.34 0.57 0.58
CONC 0.25 0.27 0.26 0.28 0.52 0.53 0.30 0.34 0.34 0.39 0.60 0.65 - - - - - - 0.28 0.33 0.33 0.35 0.43 0.61 0.29 0.29 0.29 0.23 0.54 0.52

Ve
rb

eat 0.79 0.79 0.77 0.89 0.89 0.89 0.77 0.86 0.80 0.89 0.89 0.92 0.46 0.45 0.45 0.66 0.87 0.87 0.73 0.80 0.79 0.69 0.89 0.89 0.83 0.84 0.83 0.61 0.89 0.87*
listen to 0.54 0.64 0.56 0.21 0.38 0.46 0.59 0.70 0.65 0.06 0.53 0.49 0.28 0.22 0.23 0.20 0.38 0.52 0.42 0.53 0.63 0.21 0.42 0.40 0.54 0.56 0.53 0.00 0.39 0.50
play 0.64 0.69 0.64 0.60 0.66 0.60 0.65 0.80 0.73 0.43 0.45 0.45 0.44 0.45 0.43 0.41 0.50 0.57 0.63 0.69 0.68 0.28 0.66 0.66 0.56 0.56 0.54 0.00 0.49 0.63*
read 0.43 0.52 0.48 0.38 0.59 0.61 0.51 0.60 0.59 0.48 0.53 0.50 0.31 0.31 0.31 0.49 0.31 0.50 0.54 0.56 0.59 0.42 0.50 0.59 0.48 0.52 0.48 0.00 0.31 0.47
wash with 0.53 0.54 0.53 0.48 0.61 0.63 0.48 0.57 0.53 0.66 0.66 0.62 0.37 0.34 0.35 0.41 0.66 0.62 0.45 0.51 0.49 0.67 0.66 0.66 0.39 0.40 0.40 0.11 0.55 0.61
wear 0.76 0.78 0.76 0.88 0.84 0.88 0.80 0.87 0.84 0.88 0.83 0.85 0.56 0.52 0.50 0.82 0.85 0.85 0.77 0.80 0.79 0.59 0.93 0.92 0.78 0.82 0.80 0.72 0.81 0.84
CONC 0.58 0.60 0.57 0.56 0.64 0.67 0.59 0.68 0.65 0.55 0.65 0.65 0.34 0.32 0.31 0.46 0.59 0.65 0.51 0.58 0.58 0.43 0.66 0.68 0.54 0.55 0.54 0.15 0.56 0.65

Table 1: All results of the static models. cos: Cosine Measure, dist: Distance Correlation, kend: Kendall’s Tau, knn:
K-Nearest Neighbors, svm: Support Vector Machine, fnn: Feed-Forward Network. The gap in Levy is due to its
small training set and the corresponding small vocabulary. (A gray cell indicates significant values at p < 0.01)

BERT-Base BERT-Large RoBERTa ElectraGen Albert
cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn

R
oo

m

bathroom 0.57 0.13 0.52 0.72 0.87 0.93 0.65 0.30 0.59 0.78 0.93 0.93 0.21 0.24 0.52 0.55 0.83 0.88 0.58 0.32 0.34 0.49 0.72 0.73 0.24 0.18 0.39 0.52 0.75 0.90
bedroom 0.48 0.33 0.43 0.53 0.66 0.77 0.44 0.41 0.44 0.44 0.87 0.78 0.23 0.18 0.36 0.17 0.53 0.60 0.32 0.31 0.37 0.37 0.37 0.39 0.23 0.22 0.47 0.31 0.44 0.68
kitchen 0.56 0.25 0.58 0.62 0.81 0.83 0.43 0.24 0.54 0.72 0.77 0.79 0.39 0.27 0.59 0.16 0.62 0.73 0.34 0.24 0.36 0.48 0.34 0.39 0.25 0.17 0.30 0.05 0.56 0.69
living room 0.30 0.37 0.26 0.51 0.78 0.79 0.23 0.38 0.24 0.57 0.49 0.66 0.13 0.38 0.28 0.49 0.74 0.65 0.26 0.48 0.33 0.15 0.27 0.26 0.15 0.35 0.54 0.20 0.29 0.40
office 0.46 0.39 0.28 0.40 0.59 0.61 0.40 0.37 0.31 0.25 0.52 0.71 0.14 0.37 0.38 0.18 0.74 0.63 0.17 0.37 0.23 0.42 0.27 0.36 0.23 0.22 0.42 0.45 0.66 0.81
CONC 0.43 0.26 0.33 0.54 0.73 0.78 0.34 0.26 0.36 0.55 0.72 0.78 0.19 0.22 0.31 0.28 0.69 0.71 0.22 0.30 0.27 0.38 0.40 0.43 0.19 0.15 0.23 0.25 0.53 0.69

Pa
rt

bed 0.55 0.41 0.51 0.51 0.69 0.79 0.49 0.41 0.55 0.56 0.69 0.69 0.20 0.42 0.62 0.49 0.52 0.60 0.37 0.31 0.43 0.44 0.44 0.43 0.26 0.40 0.54 0.36 0.66 0.71
dishwasher 0.22 0.16 0.22 0.27 0.31 0.28 0.30 0.18 0.31 0.29 0.17 0.18 0.16 0.19 0.19 0.13 0.24 0.17 0.26 0.19 0.21 0.01 0.23 0.36 0.17 0.18 0.25 0.26 0.25 0.23
door 0.19 0.32 0.20 0.34 0.65 0.63 0.13 0.28 0.39 0.47 0.60 0.62 0.15 0.33 0.27 0.52 0.42 0.51 0.14 0.20 0.17 0.41 0.57 0.60 0.13 0.29 0.21 0.36 0.50 0.54
mortise lock 0.12 0.14 0.09 0.16 0.26 0.28 0.14 0.23 0.11 0.19 0.26 0.35 0.07 0.29 0.12 0.08 0.18 0.28 0.16 0.18 0.15 0.39 0.59 0.39 0.09 0.27 0.22 0.16 0.31 0.39
refrigerator 0.44 0.21 0.40 0.48 0.47 0.54 0.38 0.21 0.54 0.42 0.51 0.50 0.18 0.38 0.45 0.49 0.43 0.49 0.37 0.33 0.43 0.46 0.45 0.53 0.44 0.27 0.51 0.66 0.51 0.61
toilet 0.18 0.16 0.29 0.16 0.34 0.45 0.25 0.16 0.26 0.36 0.55 0.50 0.22 0.34 0.41 0.45 0.51 0.51 0.34 0.26 0.42 0.26 0.41 0.46 0.24 0.23 0.25 0.22 0.31 0.46
CONC 0.20 0.20 0.24 0.33 0.45 0.49 0.22 0.21 0.28 0.39 0.46 0.46 0.07 0.29 0.29 0.39 0.39 0.43 0.21 0.19 0.23 0.32 0.45 0.47 0.08 0.23 0.27 0.35 0.42 0.49

Ve
rb

eat 0.78 0.65 0.67 0.89 0.84 0.90 0.65 0.58 0.72 0.80 0.89 0.90 0.26 0.66 0.81 0.65 0.87 0.86 0.62 0.64 0.76 0.74 0.79 0.79 0.53 0.61 0.74 0.57 0.84 0.85
listen to 0.46 0.53 0.51 0.42 0.52 0.57 0.50 0.52 0.50 0.43 0.55 0.52 0.30 0.53 0.55 0.23 0.49 0.54 0.57 0.47 0.59 0.00 0.36 0.39 0.23 0.47 0.51 0.07 0.44 0.57
play 0.63 0.58 0.69 0.54 0.58 0.61 0.55 0.60 0.73 0.54 0.64 0.66 0.37 0.64 0.65 0.38 0.53 0.59 0.64 0.53 0.69 0.64 0.64 0.65 0.37 0.42 0.52 0.45 0.60 0.62
read 0.42 0.46 0.65 0.34 0.73 0.65 0.30 0.42 0.66 0.42 0.77 0.59 0.26 0.29 0.59 0.21 0.44 0.44 0.41 0.43 0.63 0.51 0.68 0.69 0.31 0.19 0.57 0.35 0.63 0.60
wash with 0.49 0.46 0.33 0.49 0.66 0.63 0.42 0.53 0.45 0.61 0.62 0.60 0.30 0.56 0.30 0.23 0.60 0.59 0.42 0.50 0.35 0.52 0.40 0.41 0.33 0.42 0.32 0.18 0.46 0.51
wear 0.66 0.64 0.76 0.88 0.90 0.92 0.62 0.57 0.74 0.79 0.90 0.85 0.24 0.64 0.77 0.36 0.72 0.79 0.53 0.62 0.74 0.90 0.84 0.83 0.30 0.61 0.77 0.61 0.77 0.86
CONC 0.53 0.53 0.38 0.59 0.69 0.71 0.37 0.50 0.44 0.60 0.73 0.68 0.20 0.55 0.37 0.28 0.59 0.64 0.49 0.51 0.37 0.60 0.61 0.62 0.15 0.40 0.26 0.29 0.62 0.67

Table 2: All results of the contextual masked-language models. cos: Cosine Measure, m-s: Masked-Source Log
Score, m-t: Masked-Target Log Score, knn: K-Nearest Neighbors, svm: Support Vector Machine, fnn: Feed-Forward
Network. (A gray cell indicates significant values at p < 0.01)

GPT2 GPT-Neo GPT-J
cos p-s p-s-l p-t p-t-l knn svm ffn cos p-s p-s-l p-t p-t-l knn svm ffn cos p-s p-s-l p-t p-t-l knn svm ffn

R
oo

m

bathroom 0.52 0.20 0.38 0.50 0.37 0.31 0.95 0.95 0.30 0.22 0.51 0.36 0.25 0.53 0.89 0.91 0.50 0.26 0.60 0.66 0.48 0.35 0.89 0.92
bedroom 0.26 0.31 0.23 0.47 0.38 0.26 0.61 0.54 0.19 0.33 0.21 0.53 0.48 0.55 0.49 0.57 0.24 0.32 0.23 0.62 0.48 0.33 0.70 0.64
kitchen 0.34 0.41 0.45 0.69 0.60 0.53 0.82 0.83 0.31 0.49 0.67 0.70 0.57 0.38 0.51 0.81 0.33 0.36 0.52 0.83 0.70 0.70 0.82 0.83
living room 0.21 0.43 0.26 0.41 0.33 0.16 0.27 0.46 0.26 0.57 0.39 0.60 0.44 0.28 0.13 0.48 0.21 0.50 0.47 0.67 0.45 0.46 0.40 0.63
office 0.13 0.21 0.43 0.37 0.23 0.31 0.44 0.73 0.33 0.30 0.43 0.46 0.34 0.24 0.53 0.72 0.23 0.36 0.53 0.49 0.39 0.37 0.52 0.69
CONC 0.26 0.23 0.30 0.46 0.35 0.30 0.61 0.72 0.15 0.34 0.44 0.44 0.35 0.40 0.52 0.71 0.23 0.32 0.42 0.56 0.41 0.42 0.66 0.74

Pa
rt

bed 0.36 0.30 0.51 0.67 0.45 0.55 0.59 0.70 0.32 0.38 0.46 0.77 0.70 0.66 0.78 0.88 0.46 0.38 0.36 0.81 0.68 0.71 0.83 0.84
dishwasher 0.11 0.34 0.22 0.25 0.23 0.18 0.21 0.28 0.06 0.23 0.30 0.30 0.29 0.15 0.15 0.24 0.09 0.26 0.30 0.44 0.38 0.12 0.15 0.32
door 0.23 0.07 0.14 0.20 0.28 0.20 0.65 0.66 0.27 0.10 0.17 0.35 0.42 0.20 0.44 0.66 0.15 0.13 0.12 0.37 0.41 0.25 0.67 0.77
mortise lock 0.07 0.34 0.43 0.17 0.18 0.27 0.63 0.65 0.11 0.49 0.42 0.30 0.22 0.27 0.49 0.61 0.15 0.43 0.43 0.47 0.31 0.04 0.63 0.66
refrigerator 0.42 0.41 0.24 0.53 0.52 0.47 0.39 0.51 0.29 0.33 0.33 0.47 0.55 0.44 0.47 0.57 0.46 0.51 0.41 0.57 0.63 0.55 0.53 0.63
toilet 0.29 0.36 0.44 0.20 0.17 0.16 0.49 0.54 0.27 0.42 0.50 0.25 0.26 0.23 0.50 0.58 0.32 0.45 0.48 0.32 0.37 0.26 0.53 0.62
CONC 0.14 0.24 0.28 0.28 0.25 0.29 0.47 0.54 0.12 0.30 0.34 0.37 0.36 0.32 0.46 0.57 0.16 0.34 0.32 0.42 0.43 0.33 0.54 0.62

Ve
rb

eat 0.49 0.82 0.65 - - 0.82 0.87 0.87 0.45 0.86 0.66 - - 0.76 0.87 0.88 0.48 0.68 0.74 - - 0.63 0.89 0.89
listen to 0.22 0.57 0.51 - - 0.29 0.50 0.58 0.22 0.47 0.47 - - 0.20 0.42 0.55 0.21 0.60 0.56 - - 0.29 0.52 0.60
play 0.40 0.64 0.62 - - 0.62 0.61 0.59 0.32 0.66 0.61 - - 0.20 0.55 0.62 0.34 0.66 0.70 - - 0.37 0.67 0.67
read 0.32 0.63 0.30 - - 0.32 0.45 0.45 0.32 0.61 0.34 - - 0.29 0.52 0.49 0.40 0.63 0.41 - - 0.20 0.59 0.49
Wash with 0.39 0.77 0.51 - - 0.57 0.61 0.63 0.28 0.66 0.52 - - 0.39 0.41 0.60 0.23 0.69 0.52 - - 0.66 0.61 0.64
wear 0.44 0.38 0.72 - - 0.76 0.84 0.87 0.16 0.39 0.66 - - 0.68 0.79 0.85 0.21 0.38 0.62 - - 0.87 0.84 0.87
CONC 0.31 0.52 0.53 - - 0.51 0.64 0.66 0.19 0.49 0.52 - - 0.40 0.59 0.66 0.23 0.50 0.56 - - 0.48 0.68 0.69

Table 3: All results of the contextual causal-language models. p-s: Predict Source Score, p-s-l: : Predict Source Log
Score, p-t: Predict Target Score, p-t-l: Predict Target Log Score. The gap for the verb p-t score is due to the lack of
an easily applicable sentence templates in this direction. (A gray cell indicates significant values at p < 0.01)
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Figure 1: Small relation evaluation of BERT-large after
the method of Kurita et al. (2019).

To fill this gap, we repeated the experimental setup
of Kurita et al. (2019) for the room and part dataset
on BERT-large, but this time masked the relation.
The results are shown in Figure 1. Our selection of
relations does not claim to be exhaustive, but serves
as an illustration. It shows that while BERT-large
is still very good at assigning objects in rooms, the
dominant relation predicted for parts is used by.
This suggests that BERT has problems correctly
assigning object parts, an observation that could
explain its poorer results while being consistent
with findings of (Lin et al., 2020) (e.g., regarding
counting parts).

6 Discussion

As good as the results obtained using classifiers
are, they must be viewed with caution. One can
attribute their success to the fine-tuning of numer-
ous parameters (and ultimately to overfitting); how-
ever, one can also attribute this success to nonlinear
structuring of the information encoded in language
models. In other words, these models appear to
encode object knowledge, but require a sophisti-
cated apparatus to retrieve it. Thus, they should
not be considered as an alternative to unsupervised

approaches.
Another issue is that our experiments do not yet

allow for a comparison of model architectures, as
the models studied differ significantly in terms of
the size of their parameter spaces and training data.
Our experiments do suggest that certain smaller
models come close to or even outperform the re-
sults of larger models. However, a comparison
of model architectures would require controlling
for these parameters. Nevertheless, the results we
have obtained are, in part, promising enough to
encourage such research.

Finally, our experiments show that static mod-
els can perform better than contextualized models
to some extent. This finding is conditioned by
our experiments and their context of application.
These observations that older models perform bet-
ter on certain tasks are consistent with other work
(e.g. LSTMs on small datasets for intent classi-
fication (Ezen-Can, 2020) or definiteness predic-
tion (Kabbara and Cheung, 2021). At this point, a
much broader analysis is needed (considering more
areas and object relations), which also exploits con-
textual knowledge represented in contextualized
models more than has been done here and in re-
lated work. Nevertheless, it is generally difficult
to obtain data for such a broader analysis, and our
experiments are already broader in scope and con-
sider finer relationships than similar approaches.

7 Conclusion

We evaluated static and contextualized models as
potential resources for object-related knowledge
extraction. To this end, we examined three datasets
(to identify typical artifacts in rooms, objects of
actions, or parts of objects). We also experimented
with different similarity measures and classifiers to
extract the information contained in the language
models. In doing so, we have shown that the mod-
els in combination with the measures differ greatly
in terms of the amount of knowledge they allow for
extracting. There is a weak trend that BERT-Base
is the best performer among contextualized models,
and GloVe and fastText among static models. Sec-
ondly, our results suggest that approaches based on
classifiers perform significantly better than similar-
ity measures. Thirdly, we have shown that static
models perform almost as well as contextualized
models – in some cases even better. This result
shows that research on these models needs to be
advanced. In future work we will also investigate
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how grounded language models perform on such
datasets. However, as noted above, this requires a
significant expansion of bias research, such as that
conducted here to enable knowledge extraction.
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A Appendix

A tabular breakdown of the datasets used can be
seen in Table 4, 5 and 6. The exact models used
are listed in Table 7. The heatmap visualizations
for the other two datasets are in Figure 3 and 4.

A.1 Word Frequency
We also conducted an experiment to correlate the
scores with their frequency. For this purpose,
the corresponding objects of each target were se-
lected. And then the distance correlation between
the scores and the corresponding word frequency
was calculated based on the average of the last 10
years of Google Ngrams. The results are shown in
Table 9. The correlations are not particularly sig-
nificant (mostly p ≥ 0.1), but it is noticeable that
especially the cosine score depends strongly on the
word frequency. The classifiers are generally less
sensitive.
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bathroom bedroom kitchen living room office
object score object score object score object score object score

toilet 1.00 dresser 1.00 drying rack 1.00 coffee table 0.94 whiteboard 1.00
bathtub 1.00 night stand 1.00 kitchen island 1.00 ottoman 0.93 room divider 0.94
toothbrush holder 1.00 headboard 1.00 pot 1.00 fireplace 0.87 stapler 0.92
toothpaste 1.00 bed 0.97 frying pan 1.00 dvd player 0.69 cork board 0.92
shower curtain 1.00 alarm clock 0.97 spice rack 1.00 sofa 0.68 file 0.88
toothbrush 0.97 laundry basket 0.86 cutting board 1.00 decorative plate 0.61 keyboard 0.85
towel rod 0.96 hat 0.74 blender 1.00 tv stand 0.57 mouse 0.84
toilet paper 0.96 doll 0.70 knife 1.00 blanket 0.55 pen 0.83
squeeze tube 0.95 stuffed animal 0.60 stove 0.98 television 0.53 computer 0.82
faucet handle 0.82 pillow 0.56 dishwasher 0.97 remote control 0.50 column 0.81

Table 4: Statistics generated from ScanNet using NYU categories: score is the conditional probability P (room |
object) of the room given the object based on the frequencies observable in NYU.

bed dishwasher door mortise lock refrigerator toilet
object score object score object score object score object score object score

pillow 1.00 drain hose 1.00 lock 1.00 ring 1.00 switch 1.00 valve seat shaft 1.00
bolster 1.00 overflow protection

switch
1.00 cornice 1.00 keyway 1.00 refrigerator compart-

ment
1.00 tank lid 1.00

mattress cover 1.00 tub 1.00 hanging stile 1.00 cotter pin 1.00 egg tray 1.00 conical washer 1.00
leg 1.00 pump 1.00 entablature 1.00 spring 1.00 shelf channel 1.00 lift chain 1.00
box spring 1.00 gasket 1.00 top rail 1.00 rotor 1.00 magnetic gasket 1.00 seat 1.00
headboard 1.00 water hose 1.00 middle panel 1.00 cylinder case 1.00 storage door 1.00 shutoff valve 1.00
mattress 1.00 heating element 1.00 bottom rail 1.00 key 1.00 freezer door 1.00 trip lever 1.00
pillow protector 1.00 rack 1.00 panel 1.00 faceplate 1.00 guard rail 1.00 ball-cock supply

valve
1.00

elastic 1.00 cutlery basket 1.00 jamb 1.00 dead bolt 1.00 crisper 1.00 toilet bowl 1.00
footboard 1.00 wash tower 1.00 doorknob 1.00 cylinder 1.00 glass cover 1.00 flush handle 1.00

motor 1.00 threshold 1.00 stator 1.00 butter compartment 1.00 wax seal 1.00
detergent dispenser 1.00 weatherboard 1.00 strike plate 1.00 thermostat control 1.00 tank ball 1.00
slide 1.00 lock rail 1.00 freezer compartment 1.00 float ball 1.00
leveling foot 1.00 shutting stile 1.00 ice cube tray 1.00 filler tube 1.00
insulating material 1.00 header 1.00 meat keeper 1.00 waste pipe 1.00
spray arm 1.00 door stop 1.00 seat cover 1.00
rinse-aid dispenser 1.00 shelf 1.00 cold-water supply

line
1.00

dairy compartment 1.00 overflow tube 1.00
door shelf 1.00 trap 1.00

refill tube 1.00

Table 5: A subset of part-whole relations extracted from Online-Bildwörterbuch. All parts have a value of 1.00 in
our data set, because they only occur with this object.

eat listen to play read wash with wear
object score object score object score object score object score object score

food 0.13 music 0.22 game 0.27 book 0.08 soap 0.29 clothing 0.07
diet 0.08 song 0.03 music 0.06 label 0.06 water 0.29 glove 0.06
meal 0.07 body 0.03 note 0.04 instruction 0.05 vinegar 0.04 shoe 0.05
breakfast 0.04 side 0.02 sport 0.03 review 0.04 solution 0.03 clothes 0.05
balanced diet 0.03 partner 0.02 chord 0.02 body language 0.02 detergent 0.03 shirt 0.02
fruit 0.03 child 0.02 song 0.02 rule 0.02 baking soda 0.03 makeup 0.02
vegetable 0.03 perspective 0.02 video game 0.02 example 0.02 cream 0.02 gear 0.02
plenty 0.03 response 0.02 card 0.02 complaint 0.01 shampoo 0.02 boot 0.02
protein 0.03 parent 0.02 role 0.02 law 0.01 towel 0.02 dress 0.02
snack 0.02 people 0.02 video 0.02 story 0.01 cold water 0.02 sock 0.02

Table 6: A subset of verb-object relations extracted from an updated version of HowToKB.
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Model Specification Dimension Parameters Dataset Size
(T ; S)

URL

word2vec GoogleNews-vectors-negative300 300 - 100B ; - https://code.google.com/archive/p/word2vec/
Glove Common Crawl - glove.840B.300d 300 - 840B ; - https://nlp.stanford.edu/projects/glove/
Levy Dependency-Based Words 300 - English Wiki

(∼ 2B tokens)
https://levyomer.wordpress.com/2014/04/25/
dependency-based-word-embeddings/

fastText crawl-300d-2M-subword 300 - 600B ; - https://fasttext.cc/docs/en/
english-vectors.html

static-BERT bert_12layer_sent 768 - +1.28B ; - https://zenodo.org/record/5055755

BERT-Base bert-base-uncased 768 ∼ 110M 3.3B ; 16GB https://huggingface.co/bert-base-uncased
BERT-Large bert-large-uncased 1024 ∼ 336M 3.3B ; 16GB https://huggingface.co/bert-large-uncased
RoBERTa roberta-large 1024 ∼ 336M - ; 160GB https://huggingface.co/roberta-large
ELECTRA electra-large-generator 256 ∼ 51M https://huggingface.co/google/

electra-large-generator
ALBERT albert-xxlarge-v2 4096 ∼ 223M 3.3B ; 16GB https://huggingface.co/albert-xxlarge-v2

GPT2 gpt2-large 1280 ∼ 774M - ; 40GB https://huggingface.co/gpt2-large
GPT-Neo gpt-neo-2.7B 2560 ∼ 2.7B 420B ; - https://huggingface.co/EleutherAI/

gpt-neo-2.7B
GPT-J gpt-j-6B 4096 ∼ 6B - ; 825GB https://huggingface.co/EleutherAI/gpt-j-6B

Table 7: Model overview. Mostly only the token quantity (T) or the dataset size (S) was given.

Task Model Data Templates

Cosine Score
&

Classification
MLM & CLM

Room & Objects & Parts

This is a/an {x}.
That is a/an {x}.
There is a/an {x}.
Here is a/an {x}.
A/An {x} is here.
A/An {x} is there.

Verbs

I {x} something.
I {x} anything.
I {x}.
You {x} something.
You {x} anything.
You {x}.

Increased
Log Probability

MLM
Room & Object A/An {obj} is usually in the {room}.
Object & Part A/An {part} is usually part of a/an {obj}.
Verb & Object I usually {verb} this {obj}.

CLM

Room & Object A/An {obj} is usually in the ...
In the {room} is usually a/an ...

Object & Part A/An {part} is usually part of a ...
In the {obj} is usually a/an ...

Verb & Object I usually {verb} this ...

Table 8: Templates for calculating scores regarding Masked Language Models (MLM) and Causal Language Models
(CLM). For more details, see Sec. 4.

Word2Vec GloVe Levy fastText static-BERT
cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn cos dist kend knn svm ffn

R
oo

m

bathroom 0.73 0.75 0.78 0.31 0.31 0.22 0.53 0.56 0.57 0.23 0.00 0.23 0.65 0.67 0.68 0.25 0.00 0.32 0.65 0.67 0.70 0.00 0.00 0.00 0.74 0.75 0.76 0.56 0.41 0.47
bedroom 0.55 0.53 0.56 0.00 0.36 0.35 0.72 0.72 0.69 0.50 0.35 0.57 0.51 0.51 0.50 0.00 0.00 0.37 0.58 0.54 0.53 0.66 0.55 0.35 0.45 0.44 0.44 0.68 0.35 0.36
kitchen 0.51 0.52 0.51 0.35 0.49 0.42 0.37 0.34 0.34 0.29 0.35 0.33 0.46 0.46 0.46 0.20 0.00 0.20 0.33 0.36 0.40 0.30 0.20 0.37 0.46 0.46 0.46 0.20 0.31 0.42
living room 0.63 0.61 0.61 0.36 0.46 0.50 0.48 0.62 0.63 0.44 0.29 0.30 0.53 0.57 0.57 0.41 0.41 0.54 0.39 0.57 0.59 0.28 0.29 0.27 0.52 0.54 0.53 0.00 0.30 0.52
office 0.65 0.65 0.58 0.38 0.26 0.37 0.52 0.57 0.56 0.38 0.43 0.47 0.66 0.66 0.65 0.27 0.50 0.50 0.45 0.43 0.41 0.58 0.35 0.30 0.37 0.40 0.40 0.57 0.17 0.42

BERT-Base BERT-Large RoBERTa ElectraGen Albert
cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn cos m-s m-t knn svm ffn

R
oo

m

bathroom 0.40 0.35 0.30 0.23 0.23 0.23 0.52 0.34 0.50 0.23 0.23 0.24 0.61 0.47 0.42 0.43 0.23 0.35 0.58 0.66 0.39 0.35 0.35 0.40 0.69 0.56 0.36 0.34 0.36 0.39
bedroom 0.61 0.47 0.41 0.45 0.28 0.37 0.63 0.36 0.37 0.42 0.19 0.36 0.67 0.56 0.33 0.42 0.28 0.41 0.41 0.53 0.62 0.68 0.55 0.50 0.54 0.58 0.36 0.18 0.31 0.47
kitchen 0.34 0.60 0.35 0.30 0.23 0.43 0.38 0.73 0.45 0.75 0.75 0.62 0.65 0.38 0.49 0.46 0.34 0.24 0.48 0.37 0.37 0.25 0.44 0.43 0.43 0.75 0.38 0.35 0.22 0.45
living room 0.52 0.57 0.56 0.25 0.20 0.32 0.47 0.47 0.54 0.36 0.36 0.39 0.43 0.51 0.45 0.51 0.27 0.27 0.41 0.36 0.45 0.44 0.49 0.47 0.38 0.54 0.47 0.19 0.30 0.34
office 0.68 0.56 0.64 0.35 0.44 0.56 0.64 0.75 0.67 0.26 0.58 0.45 0.48 0.49 0.53 0.27 0.28 0.47 0.50 0.70 0.55 0.59 0.55 0.25 0.72 0.54 0.61 0.58 0.37 0.36

Table 9: Distance Correlation calculated on the word frequencies of Google Ngram. (A gray cell indicates significant
at p < 0.1)
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(a) Cosine Score (b) FFN Classify Score

(c) Mask Object Score (d) Mask Room Score

Figure 2: Heatmap of source-object associations based on BERT-Large and the room dataset. The objects (sources)
on the y-axis are grouped by the room in which they are most likely to be located according to the NYU Depth V2
Dataset.
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(a) Cosine Score (b) FFN Classify Score

(c) Mask Object Score (d) Mask Verb Score s

Figure 4: Association heatmap of BERT-Large on the verb dataset. The objects (sources) on the y-axis are grouped
by the room in which they are most likely to be located according to the HowToKB Dataset.
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