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Abstract

How can we learn unified representations
for spoken utterances and their written text?
Learning similar representations for seman-
tically similar speech and text is important
for speech translation. To this end, we pro-
pose ConST, a cross-modal contrastive learn-
ing method for end-to-end speech-to-text trans-
lation. We evaluate ConST and a variety of
previous baselines on a popular benchmark
MuST-C. Experiments show that the proposed
ConST consistently outperforms the previous
methods, and achieves an average BLEU of
29.4. The analysis further verifies that ConST
indeed closes the representation gap of dif-
ferent modalities — its learned representation
improves the accuracy of cross-modal speech-
text retrieval from 4% to 88%. Code and
models are available at https://github.
com/ReneeYe/ConST.

1 Introduction

End-to-end speech-to-text translation (E2E ST) be-
comes important in many internet products and
real applications. An E2E ST system accepts au-
dio signals as the input and generates the target
translation using a single model. Compared with
the conventional cascade ST models, E2E ST mod-
els have achieved almost comparable (Bentivogli
et al., 2021) or even superior (Ansari et al., 2020;
Potapczyk and Przybysz, 2020; Xu et al., 2021)
performance.

The performance of an E2E ST model is still re-
stricted for languages with relatively small parallel
data, compared to text machine translation (MT).
Existing approaches for ST focus on using addi-
tional data from MT and automatic speech recog-
nition (ASR). This can be realized through pre-
training approaches (Zheng et al., 2021; Dong et al.,
2021b,a) or multi-task training frameworks (Tang
et al., 2021b; Ye et al., 2021; Han et al., 2021).

∗Partial work was done while at ByteDance.
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(b) Ideal
Figure 1: Illustration of representations for speech and
transcript text (projected to 2D). (a) representations
learned by existing models. Pairs of speech and text
representations are distant. (b) an ideal representation
that we expect, where different modalities with same
meaning should stay close to each other.

Different from the data perspective, this paper
investigates the bottleneck of E2E ST from the
neural representation perspective. We believe that
when the representation of audio input is similar to
its corresponding textual representation, it is easier
for information to transfer from MT to ST, thus
improving speech translation performance.

We analyze Transformer models for speech trans-
lation and observe a noticeable modality gap be-
tween encoder representations of speech and text
from existing ST models (as in Figure 1a. Sec. 6
has more details). An ideal representation should
satisfy: if the content of the speech and tran-
scription are similar, their encoded representations
should likewise be close to each other (as in Fig-
ure 1b). Nevertheless, how to learn unified and
aligned speech-text representations?

Inspired by the recent progress of contrastive
learning approaches in cross-lingual (Lample and
Conneau, 2019; Pan et al., 2021) and cross-modal
vision-and-language domains (Li et al., 2021; Zhou
et al., 2020; Dong et al., 2019), we designed a sim-
ple contrastive learning method for ST (ConST)
to learn the representations that meet the afore-
mentioned conditions explicitly. On the one hand,
our model inherits the advantages of the previous
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multi-task learning methods. On the other hand,
it reduces the gap between the representations of
speech and its corresponding transcription.

Our contributions are as follows.
• We develop ConST for speech translation, a

cross-modal contrastive learning method, on top
of the multi-task training framework.

• Our experiments on the MuST-C benchmark
show that ConST achieves an average BLEU
score of 29.4, outperforming the best previous
baselines.

• We demonstrate that ConST indeed learns simi-
lar representations for two modalities and better
retrieves text with speech input.

2 Related Work

End-to-end ST To alleviate the error propaga-
tion in the cascaded ST systems and to make the
deployment simpler, Bérard et al. (2016); Weiss
et al. (2017) proposed to use an end-to-end archi-
tecture to directly translate speech into text in an-
other language, without the intermediate transcrip-
tion. Kano et al. (2017); Berard et al. (2018); In-
aguma et al. (2020); Wang et al. (2020a); Zhao et al.
(2021a) implemented several off-the-shelf encoder-
decoder E2E-ST models, such as BiLSTM (Greff
et al., 2016) and Speech-Transformer (Dong et al.,
2018). However, training an end-to-end speech
translation model is difficult because we need to
design a cross-modal cross-language model, mean-
while, the speech-transcription-translation super-
vised data for speech translation is significantly
less than that of MT and ASR. Methods, like data
augmentation (Park et al., 2019; Pino et al., 2020;
Chen et al., 2021), pre-training (Weiss et al., 2017;
Berard et al., 2018; Bansal et al., 2019; Wang
et al., 2020b; Alinejad and Sarkar, 2020; Dong
et al., 2021a; Zheng et al., 2021), self-training (Pino
et al., 2020; Wang et al., 2021a), utilizing self-
supervised pre-trained audio representation (Wu
et al., 2020; Han et al., 2021; Ye et al., 2021; Wang
et al., 2021a), are proved to be effective. Mean-
while, some work has shown that the encoder-
decoder model with a single encoder cannot en-
code speech information well. For example, Dong
et al. (2021b) first proposed a second encoder to
further extract semantic information of the speech
sequence. Xu et al. (2021) proposed a stacked
acoustic-and-textual encoder and introduced large-
scale out-of-domain data. Also, multi-task frame-
works (Le et al., 2020; Tang et al., 2021b; Ye et al.,

2021) are widely applied to further enhance the ro-
bustness for ST. As a cross-modal task, some work
has noted the problem of the modality gap. (Han
et al., 2021) designed a fix-size semantic memory
module to bridge such a gap, from the neuroscience
perspective. However, we find that this approach
actually sacrifices the effect of MT. So in this pa-
per, we propose a simple yet effective contrastive
learning method to bridge the gap and to improve
ST performance.

Cross-modal grounding learning This paper at-
tempts to address the problem in speech translation
from the perspective of cross-speech-text repre-
sentation learning. We are also inspired by cross-
modal representation learning in the acoustic word
embedding (AWE) (Palaskar et al., 2019; Kam-
per et al., 2020; Hu et al., 2020) and the visual-
language pre-training (VLP) (Wu et al., 2019; Lu
et al., 2019; Chen et al., 2020b; Li et al., 2021)
tasks. These works usually focus on enhancing tex-
tual representations with acoustic or visual infor-
mation, in other words, grounding learning. In this
work, we consider the its dual form, i.e., grounding
speech representations using text.

Contrastive learning Our method is motivated
by the recent success in contrastive representa-
tion learning. The contrastive learning method
was first proposed to learn representations from
unlabeled datasets (hence the term, self-supervised
learning) by telling which data points are similar
or distinct, especially in the field of computer vi-
sion (Chopra et al., 2005; Gutmann and Hyvärinen,
2010; Schroff et al., 2015; Sohn, 2016; Oord et al.,
2018; Chen et al., 2020a; Grill et al., 2020). Khosla
et al. (2020) extended the self-supervised batch con-
trastive approach to the fully-supervised setting and
proposed a supervised contrastive learning method.
In speech processing, representative methods fo-
cused on speaker identification (Ravanelli and Ben-
gio, 2018), speech recognition (Schneider et al.,
2019), and audio representation learning (van den
Oord et al., 2018; Baevski et al., 2020). In the
NLP area, the contrastive framework is used for
sentence representation learning (Fang et al., 2020;
Shen et al., 2020; Gao et al., 2021; Wu et al., 2021;
Yan et al., 2021; Fu et al., 2022), machine transla-
tion (Pan et al., 2021), and summarization (Wang
et al., 2021b; Cao and Wang, 2021). Very recently,
contrastive learning is also applied to learning a uni-
fied representation of image and text (Dong et al.,
2019; Zhou et al., 2020; Li et al., 2021). Moti-
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Figure 2: Left: Model architecture of ConST. The gray shaded modules are the optional data augmentation opera-
tions introduced in Section 3.3. Right: An illustration of cross-modal contrastive learning.

vated by the contrastive learning frameworks in
cross-lingual and cross-modal topics, we introduce
a similar idea in speech translation.

3 The ConST Approach

An end-to-end speech translation model directly
translates audio sequence s = (s1, ..., s|s|) to
the text y = (y1, ..., y|y|) in the target language.
Speech translation corpus D = {(s,x,y)} pro-
vides transcript x = (x1, ..., x|x|) in the source
language, as well.

In this section, we present the overall speech
translation model and cross-modal contrastive
learning. We also provide several feasible strate-
gies to construct more positive and negative pairs
to enhance the contrastive learning.

3.1 Model Framework

We use the same model architecture as XSTNet (Ye
et al., 2021). Our model consists four sub-modules:
a speech encoder, a word embedding layer, a Trans-
former Encoder and a Transformer decoder (Fig-
ure 2). It is designed to take either speech or a
sentence as input, and to output either source tran-
script or target translation text. Such architecture
enables a universal framework for multiple tasks,
including ST, MT and ASR.

The speech encoder module (S-Enc) is designed
to extract low-level features for speech signals. It
contains Wav2vec2.0 (Baevski et al., 2020) and
two additional convolutional layers. The input is
raw waveform signal sampled at 16kHz. Each con-
volutional layer has a stride of 4 and d channels. In
total, it shrinks the time dimension by a factor of 4.

Denote a = S-Enc(s) as the audio representation
of the speech, |a| � |s|.

Parallel to the speech encoder is the word em-
beeding layer. It is the same as word embedding
for text translation.

Both the speech encoder and word embedding
layer are connect to Transformer encoder and then
passed to the Transformer decoder. The Trans-
former encoder and decoder are using the same
configuration as the original (Vaswani et al., 2017).
To explain, the Transformer encoder further ex-
tracts the high-level semantic hidden representation
of two modalities. The Transformer decoder gener-
ates the word sequences (transcription and transla-
tion) for ST, MT and ASR tasks. Since our model
has a complete Transformer encoder-decoder as
a sub-module, this makes it possible to pre-train
using large-scale extra MT parallel data.

Previous work has shown that multi-task learn-
ing on ST, MT and ASR improves translation per-
formance (Indurthi et al., 2020; Tang et al., 2021b;
Ye et al., 2021). Our training loss consists of the
following elements.

L = LST + LASR + LMT + λLCTR (1)

where

LST = −
∑

n

logP (yn|sn)

LASR = −
∑

n

logP (xn|sn)

LMT = −
∑

n

logP (yn|xn)
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The first three elements are cross-entropy losses
on <speech, target text>, <speech, source text>
and <source text, target text> pairs. These pairs
are built from the triplet ST data. We also intro-
duce a cross-modal contrastive loss term LCTR (see
Section 3.2 for details). It aims to bring the repre-
sentation between the speech and textual transcrip-
tion modalities closer (its effect will be analyzed in
detail in Section 6). λ is a tuned hyper-parameter
of the weighted contrastive loss term.

3.2 Cross-modal Contrastive Learning

As mentioned in the beginning, since we need to
produce similar representations for the speech and
transcript sharing the same semantic meanings, we
propose cross-modal contrastive learning method
to bring their representations closer together. The
main idea of cross-modal contrastive learning is
to introduce a loss that brings speech and its cor-
responding transcript (positive example) near to-
gether while pushing irrelevant ones (negative ex-
amples) far apart.

Given a positive example of such a speech-
transcript pair (s,x), we randomly pick a set of
N − 1 transcripts {x−i }N−1

i=1 from the same batch
as negative examples. For speech s and its tran-
script x, we first average them in terms of the time
dimension,

u = MeanPool(S-Enc(s)) (2)

v = MeanPool(Emb(x)) (3)

and apply the multi-class N-pair contrastive
loss (Sohn, 2016):

LCTR = −
∑

s,x

log
exp(sim(u, v)/τ)∑

xj∈A exp(sim(u, v(xj))/τ)

(4)
where A = {x} ∪ {x−i }N−1

i=1 , τ is the temperature
hyper-parameter, and sim is the cosine similarity
function sim(a, b) = a>b/‖a‖‖b‖. In the imple-
mentation, negative examples {x−i }N−1

i=1 are from
the same training batch of data (Figure 2(b)).

3.3 Mining Hard Examples for Contrastive
Learning

To further enhance the contrastive learning, we
introduce three strategies to mine additional hard
examples. These strategies are at input and rep-
resentation (gray shaded modules in Figure 2(a)).
Specific schematic illustrations of each operations
are shown in Figure 3.

Input-level 
Hard Examples Mining

Representation-level 
Hard Examples Mining

T

d

T

Sequence
Cut-off

Feature
Cut-off

S-Enc

𝑇×𝑑	Representation

(1) (2)

▁This ▁is ▁an ▁English ▁sentence .

▁This ▁is ▁is ▁an ▁English ▁English ▁sentence .

(b) Word repetition

(a) Span-Masked Augmentation

0.23s

(c) Cut-off

Figure 3: Schematic illustration of the hard examples
mining strategies. In the cut-off strategy, the gray
shaded grid represents the zero-out element.

Span-Masked Augmentation We mask consec-
utive segments of an original audio waveform se-
quence s to obtain a new modified speech s′. We
take s′ as an input to the model, and compute
the contrastive loss on its original corresponding
transcript. We randomly sample without replace-
ment all time steps in the original waveform of
the speech to be the starting indices with a prob-
ability p, and then we set the sub-sequence M
successive time steps to be blank. In the exper-
iment, we tried multiple configurations, and found
p = 0.25,M = 3600 the best, resulting in a
masked span of 0.225 second. Since the masked
speech fragment is very short, we consider the
masked speech and the original transcript to be
positive pairs, and the remaining transcripts in the
same batch to be negative pairs.
Word Repetition The word repetition strategy ran-
domly replicates some words (or sub-words) in the
original sentences, with two advantages for improv-
ing representation robustness. First, as the length
of the sentence is shorter than that of its audio
representation, randomly repeating the words in
the sentence is a simple yet useful technique to
increase the length. Second, repeating words does
not change the semantics and is suitable as an ex-
tra positive example of the corresponding speech.
Specifically, given sentence x, each sub-word to-
ken xi can be duplicated k more times, resulting
in the duplicated sentence x′, where k = 0, 1, 2, ...
and k ∼ Poisson(1). We regard x′ as the additional
positive example for the speech s and the samples
with the same operation in the same batch as the
negative examples.
Cut-off strategy Recent studies on natural lan-
guage understanding and generation have proved
cut-off strategy to be successful (Shen et al., 2020;
Yan et al., 2021). We analogize a similar idea to the
cut-off approach for speech representation. We en-
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tirely erase a slice of the T×d representation matrix
along each dimension and set the erased terms to 0.
Here, we present two variants: sequence cut-off ,
which erases some sequence dimension, and fea-
ture cut-off , which erases some feature dimension.
Note that there is a difference between cut-off and
dropout. Dropout randomly sets some elements to
0, while cut-off is a dimensional “block" dropout.
Similarly, we treat the cut-off audio representation
and the original transcribed sentence as positive
pairs, and the rest sentences in the same batch as
negative pairs.

4 Experiments

4.1 Experimental Setups

ST datasets We conduct experiments on
all the translation directions in MuST-C
dataset 1 (Di Gangi et al., 2019): English (En) to
German (De), Spanish (Es), French (Fr), Italian
(It), Dutch (Nl), Portuguese (Pt), Romanian (Ro)
and Russian (Ru). As one of the largest ST
benchmarks, MuST-C contains more than 385
hours of TED talks for each direction.
MT datasets We also introduce external WMT
datasets (Bojar et al., 2016) for En-De/Es/Fr/Ro/Ru
and OPUS100 datasets (Zhang et al., 2020) for En-
It/Nl/Pt directions, as the expanded setup.

Table 8 (in Appendix. A) lists the statistics of all
the datasets included.
Model Configurations The Wav2vec2.0 in the S-
Enc is only pre-trained on Librispeech (Panayotov
et al., 2015) speech without any downstream fine-
tuning2. Two layers of CNNs after the Wav2vec2.0
are set to kernel size 5, stride size 2 and hidden
size 512. The Transformer follows the base con-
figuration, with 6 layers of encoder and decoder,
hidden size d = 512, 8 attention heads, and 2048
FFN hidden states. We use pre-layer normalization
for stable training. The model with the above con-
figurations has a total of about 150M parameters.
Experiment Details We evaluate case-sensitive
detokenized BLEU using sacreBLEU3 (Post, 2018)
on MuST-C tst-COMMON set. In the analysis,
we also report the ChrF++ score 4 (Popović, 2017)

1We use v1.0. https://ict.fbk.eu/must-c/
2https://dl.fbaipublicfiles.com/

fairseq/wav2vec/wav2vec_small.pt
3https://github.com/mjpost/sacrebleu,

BLEU Signature: nrefs:1 | bs:1000 | seed:12345 | case:mixed
| eff:no | tok:13a | smooth:exp | version:2.0.0

4ChrF2++ Signature: nrefs:1 | bs:1000 | seed:12345 |
case:mixed | eff:yes | nc:6 | nw:2 | space:no | version:2.0.0

and the learning-based BLEURT score 5. We use
the raw 16-bit 16kHz mono-channel speech input.
We jointly tokenize the bilingual text using Sen-
tencePiece (Kudo and Richardson, 2018), with a
vocabulary size of 10k, which is the same as Ye
et al. (2021)’s setup. For the training loss, we set
contrastive temperature τ = 0.02 and weight of
contrastive term λ = 1.5 for German and Dutch,
and λ = 1.0 for the other languages.

Appendix B contains more detailed settings and
explanations for the baseline models in Table 1.
Appendix C shows the experiments on the choice
of the hyper-parameters.

4.2 Main Results

Comparison with end-to-end ST models Table 1
shows the main results. Since many existing works
regard “leveraging external data” to be one of their
model’s features, their strong performances are
largely predicated on the utilization of auxiliary
data, especially large-scale MT data. For a rela-
tively fair comparison, we investigate two cases:
(1) without external MT data and (2) with exter-
nal MT data. Without the external MT data, our
method already gains an average improvement of
0.5 BLEU over the previous best models. Also
when speech data is introduced for pre-training,
our method works better than others (Self-training,
W-Transf. and XSTNet). When extra MT data are
introduced, our method also outperforms SOTA by
an average of 0.6 BLEU. Among the benchmark
models, with the same goal of closing two modal-
ity gaps, Chimera (Han et al., 2021) constructed
an extra fixed-length shared semantic space. How-
ever, the shared memory with fixed size actually
compromises the MT performance, while our con-
trastive learning approach is more straightforward
and effective.
Comparison with cascaded ST systems We com-
pare our method with several cascade baselines,
where Ye et al. (2021) and Xu et al. (2021) provided
two strong cascade systems trained using MuST-
C and external ASR and MT data (LibriSpeech,
WMT, and Opensubtitles). From Table 2, we find
that as an end-to-end model, ConST can outper-
form these strong cascade models. In Appendix 7,
we provide a case study to show such improvement.

5https://github.com/google-research/
bleurt (Sellam et al., 2020). As recommended, the
checkpoint we use is BLEURT-20.
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Models External Data BLEU
Speech Text ASR MT De Es Fr It Nl Pt Ro Ru Avg.

w/o external MT data

Fairseq ST (Wang et al., 2020a) - - - - 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
NeurST (Zhao et al., 2021a) - - - - 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9
Espnet ST (Inaguma et al., 2020) - - - - 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.6 25.1
Dual Decoder (Le et al., 2020) - - - - 23.6 28.1 33.5 24.2 27.6 30.0 22.9 15.2 25.6
W-Transf. (Ye et al., 2021) X - - - 23.6 28.4 34.6 24.0 29.0 29.6 22.4 14.4 25.7
Speechformer (Papi et al., 2021) - - - - 23.6 28.5 - - 27.7 - - - -
LightweightAdaptor (Le et al., 2021) - - - - 24.7 28.7 35.0 25.0 28.8 31.1 23.8 16.4 26.6
Self-training (Pino et al., 2020) X - X - 25.2 - 34.5 - - - - - -
SATE (Xu et al., 2021) - - - - 25.2 - - - - - - - -
BiKD (Inaguma et al., 2021) - - - - 25.3 - 35.3 - - - - - -
Mutual-learning (Zhao et al., 2021b) - - - - - 28.7 36.3 - - - - - -
XSTNet (Ye et al., 2021) X - - - 25.5 29.6 36.0 25.5 30.0 31.3 25.1 16.9 27.5
ConST X - - - 25.7 30.4 36.8 26.3 30.6 32.0 24.8 17.3 28.0

w/ external MT data

MTL (Tang et al., 2021b) - - - X 23.9 28.6 33.1 - - - - - -
FAT-ST (Big) (Zheng et al., 2021) X X X X 25.5 30.8 - - 30.1 - - - -
JT-S-MT (Tang et al., 2021a) - - - X 26.8 31.0 37.4 - - - - - -
Chimera (Han et al., 2021) X - - X 27.1† 30.6 35.6 25.0 29.2 30.2 24.0 17.4 27.4
XSTNet (Ye et al., 2021) X - - X 27.1 30.8 38.0 26.4 31.2 32.4 25.7 18.5 28.8
SATE (Xu et al., 2021) - - X X 28.1† - - - - - - - -
STEMM (Fang et al., 2022) X - - X 28.7 31.0 37.4 25.8 30.5 31.7 24.5 17.8 28.4
TaskAware (Indurthi et al., 2021) - - X X 28.9 - - - - - - - -
STPT (Tang et al., 2022) X X X X - 33.1 39.7 - - - - - -
ConST X - - X 28.3 32.0 38.3 27.2 31.7 33.1 25.6 18.9 29.4

Table 1: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set. "Speech" denotes unlabeled
speech data. "Text" means unlabeled text data, e.g. Europarl V7 (Koehn et al., 2005), CC25 (Liu et al., 2020a). †
use external 40M OpenSubtitles (Lison and Tiedemann, 2016) MT data. Other models only use WMT data.

Models En-De En-Fr En-Ru

Cascaded
Espnet(Inaguma et al., 2020) 23.6 33.8 16.4
(Ye et al., 2021) 25.2 34.9 17.0
(Xu et al., 2021) 28.1 - -

End-to-end
ConST 28.3 38.3 18.9

Table 2: ConST versus the cascaded ST systems on
MuST-C En-De/Fr/Ru test sets. Ye et al. (2021) and
Xu et al. (2021) are two strong cascaded models.

5 Analysis

5.1 Is contrastive loss effective?

With the same model architecture and the same pre-
training + fine-tuning procedure, the main differ-
ence between ConST and XSTNet (Ye et al., 2021)
is whether we use the contrastive loss term during
the fine-tuning or not. Comparing the BLEU results
of w/o and w/ external MT data situations in Ta-
ble 1, we find that ConST further improves 0.5 and
0.6 BLEU scores in terms of eight translation direc-
tions on average, which proves the effectiveness of
the cross-modal contrastive learning. By gradually
removing each losses in Eq.( 1), Table 3 shows the
improvements bringing by the multi-task learning
and the contrastive learning. For En-De translation
direction, contrastive learning can bring an average

External MT
Config. without with

ConST 25.7 28.3
−LASR − LMT 24.6 27.0
−LASR − LMT − LCTR 23.6 26.3

Table 3: BLEU scores on MuST-C En-De
tst-COMMON set by removing individual losses.
We test the results under settings with and without the
introduction of external MT data.

improvement of 0.9 BLEU over the baseline mod-
els by only optimizing LST (corresponding to the
last row of the Table 3), and multi-task learning can
lead to a further improvement of about 1.2 BLEU
on top of that.

5.2 Which layer to contrast on?

An intriguing question is which representations
should be considered in the contrastive loss func-
tion. In the method part (Section 3.2), we use aver-
aged audio representation u for speech s (Eq.(2))
and averaged lexical embedding v for the transcript
x (Eq.(3)), denoted as low-level repr.. Whereas
inspired by a recent study in multilingual MT (Pan
et al., 2021), we also provide an alternative con-
trastive loss as a comparison, whose speech and
text features are average-pooled semantic repre-

5104



Representations BLEU ChrF++ BLEURT

low-level repr. 28.3* 53.2* 64.5
high-level repr. 27.5† 52.6† 63.6
w/o contrative loss 27.1 52.1 62.4

Table 4: BLEU, ChrF++ and BLEURT (%) on En-De
test set. Different representations are tested. *: ConST
is significantly better than the other two baselines (p <
0.01). †: the model is significantly better the baseline
model without contrastive loss (p < 0.05).

sentations derived from the Transformer encoder,
denoted as high-level repr..

Table 4 shows that contrastive learning using
the low-level representations (Line 1) is better
than using the high-level ones (Line 2). On the
other hand, although the performance of Line 2 is
relatively inferior, it still outperforms the multi-task
model without the contrastive loss (Line 3). The
detailed analysis of possible explanations will be
shown in Section 6.2.

5.3 Is contrastive loss better than other
losses?

Our goal for introducing the contrastive loss term
(denoted as CTR Loss) is to close the distance be-
tween speech and text representations. Whereas,
there are other options to achieve this goal, such as
L2 loss and CTC loss.
• L2 Loss: Without introducing any negative sam-

ples, L2 loss directly reduces the Euclidean dis-
tance between the representations of two modali-
ties by minimizing L = ‖u − v‖2. L2 loss can
be viewed as an implementation based on the
idea of knowledge distillation (Heo et al., 2019;
Dong et al., 2021b).

• CTC Loss: The connectionist temporal classifi-
cation (CTC) loss (Graves et al., 2006) is com-
monly used in speech-related tasks (Xu et al.,
2021; Dong et al., 2021b). Unlike contrastive
loss that cares about the representation, CTC
loss connects the two modalities by establishing
speech-text alignment and maximizing p(x|a) =∑

π∈Πs,a

∏T
t=1 pt(πt|a), where Πs,a is the set of

all valid alignments.
Compared to the other two ways of bridging the

modality gap, L2 and CTC loss, is the contrastive
loss term better? The answer is yes according to the
results in Table 5. Our explanation is that informa-
tion on the negative samples benefits the contrastive
loss, bringing the the distance between the speech
and its corresponding transcription closer while
pushing the distance to the irrelevant text farther.

Extra Loss BLEU ChrF++ BLEURT

CTR Loss 28.3* 53.2 64.5
CTC Loss 27.6† 53.0† 64.1
L2 Loss 27.3 52.4 63.0
- 27.1 52.1 62.4

Table 5: BLEU, ChrF++ and TER (%) on En-De test
set under different loss terms other than the basic multi-
task NLL loss. *: ConST is significantly (p < 0.01)
better than the other three alternatives. †: the improve-
ment from CTC loss over the baseline without extra
loss is significant (p < 0.01).
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* *

*

*
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Figure 4: The heat map visualization of the BLEU
scores on En-De test set, with 15 combinations of the
original contrastive loss (Original) and hard examples
mining methods – word repetition (Rep), span-masked
augmentation (SMA), sequence cut-off (SCut) and fea-
ture cut-off (FCut). * and ** mean the improvements
over the XSTNet baseline without contrastive loss are
statistically significant (*:p < 0.05, **:p < 0.01).

5.4 Analysis on the hard example mining
strategies

In Section 3.3, we proposed four methods to mine
the hard examples for contrastive learning, namely
span-masked augmentation (SMA), word repeti-
tion (Rep), sequence cut-off (SCut), and feature
cut-off (FCut). In this section, we study how effec-
tive these methods are, and to do so, we consider
the BLEU performances of their 15 combinations
(Figure 4). Note that “Original” means the original
contrastive loss in Eq.(4) without any additional
hard examples mining operation, and the diagonal
in the heat map represents only one strategy used.
For an easy and fair comparison, we set the weight
of the contrastive term to 1.0 uniformly. We have
the following observations.

All the hard examples mining methods are ef-
fective. All the BLEU scores in Figure 4 exceed
the strong multi-task model trained without con-
trastive learning (27.1). Among all the strategies,
the combination of the original and SCut reaches
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Figure 5: Bivariate KDE contour plot of the represen-
tation of speech and transcript in source language En-
glish. T-SNE is used to reduce into 2D. The blue lines
are the audio representations and the red dashed lines
stand for text. (a) for the vanilla multi-task framework
without any extra supervision. (b) for our proposed
ConST model. Sentences are from En-De test set.

the best result (28.3), and is better than the model
without any expanded operations (p < 0.01). Gen-
erally, to find the best model, we suggest adopting
multiple strategies and choosing the best check-
point on the dev-set.

The combinations of the hard examples min-
ing methods and the “original” have relatively
better performances. We argue that we need
the original positive and negative examples to
give more accurate representations (without any
dropout) for contrastive learning. On the contrary,
without the help of “original” loss, the performance
with both sequence cut-off and feature cut-off is
the worst in Figure 4, probably because too much
information is lost by superimposing the two.

6 Why does cross-modal contrastive
learning work? — Analysis on the
Modality Gap

As mentioned earlier, the existing multi-task train-
ing models cannot address the speech-text modality
gap. Does ConST reduce the representation gap
between speech and text?

6.1 Visualization of Representation

Does the speech-text modality gap exist without
explicitly bridging the two? Speech-text modality
gap means the discrepancy between the audio repre-
sentations and transcription sentence embeddings.
To visualize it, we plot the bivariate kernel den-
sity estimation (Parzen, 1962) (KDE) contour of
their dim-reduced features, where T-SNE (Van der
Maaten and Hinton, 2008) is used to reduce the
dimension into two (Figure 5). Ideally, if the rep-
resentations of speech and its corresponding tran-

script are similar, their KDEs will be similar, and
thus the contour lines will overlap as much as pos-
sible. However, Figure 5(a) is the KDE contour of
the multi-task framework without any explicit mod-
eling to bring two modalities together (Ye et al.,
2021). It shows that the representations are so dis-
similar that they are organically divided into two
clusters, i.e. speech-text modality gap exists.
Does ConST reduce the modality gap? As
shown in Figure 5(b), compared to the baseline
model without contrastive learning, ConST with
cross-modal contrastive learning is able to bring
representations of different modalities much closer.
This means that the audio representation contains
more linguistic information similar to that of the
textual transcription, which is more advantageous
for the downstream ST generation through the
shared Transformer encoder and decoder.

6.2 Cross-modal Retrieval

How good is the cross-modal representation
space learned from ConST? To answer this ques-
tion, we conduct a retrieval experiment, i.e. find-
ing the nearest (smallest cosine similarity) tran-
script based on the speech representation. We com-
pare ConST model with the baseline without cross-
modal contrastive learning and report the top-1 re-
trieval accuracy using (1) the low-level represen-
tations and (2) the high-level semantic representa-
tions, in Table 7.

When retrieving the text using low-level rep-
resentations, our method gains a substantial 79%
increase over the baseline. In addition, we find that
without explicit contrastive modeling, the baseline
can achieve retrieval accuracy of more than 94% ac-
cording to the semantic representations outputted
from the Transformer encoder. We believe that
such high accuracy is automatically learned from
the triple-supervised data itself under the multi-task
learning framework. With such a degree of cross-
modal alignment, if we construct the contrastive
loss with semantic representations, its gain to the
ST performance turns out to be limited, which
exactly corroborates the findings in Section 5.2 –
low-level representations are preferred in the cross-
modal contrastive learning.

7 Case Analysis

In this section, we use several cases that ConST
generates. We compare our model with the cas-
caded model and the previous end-to-end model,
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Models

CASE 1

Ref. src: Lights, sounds, solar panels, motors — everything should be accessible.
tgt: Lichter, Töne, Solarelemente, Motoren — alles sollte verfügbar sein.

Cascaded src: Lights sounds solar panels motors everything should be accessible.
tgt: Licht klingt Solarpaneele, Motoren; alles sollte zugänglich sein.

XSTNet tgt: Licht, Geräusche, Solarkollektoren, Motoren — alles sollte zugänglich sein.

ConST tgt: Licht, Geräusche, Solarpanele, Motoren, alles sollte zugänglich sein.

CASE 2

Ref.

src: Eight years ago when I was at the Media Lab, I started exploring this idea of how to put the power of
engineers in the hands of artists and designers.

tgt: Vor acht Jahren war ich am Media Lab und ich begann diese Idee zu erforschen, wie man die Macht der
Ingenieure in die Hand von Künstlern und Designern legen könnte.

Cascaded

src: Eight years ago when I was at the Media Lab, I started exploring this idea of how to put the power of
engineers in the hands of artists and designers.

tgt: Vor 8 Jahren, als ich im Media Lab war, begann ich, diese Idee zu erforschen, wie man die Macht der
Ingenieure in die Hände von Künstlern und Designern legte.

XSTNet tgt: Vor acht Jahren, als ich im Media Lab war, begann ich zu erforschen, wie man die Kraft der Ingenieure
in die Hände von Künstlern und Designern legt.

ConST tgt: Vor acht Jahren, als ich im Media Lab war, begann ich, diese Idee zu erforschen, wie man die Macht von
Ingenieuren in die Hände von Künstlern und Designern legt.

Table 6: En-De test cases that generated from the cascaded model, XSTNet (both provided by Ye et al. (2021)) and
our ConST model. The red underlined text indicates grammatically incorrect or inaccurate translations.

Representations CTR loss Acc.

low-level repr.
× 9.4
X 88.6

high-level repr.
× 94.7
X 95.0

Table 7: Cross-modal top-1 retrieval accuracy (%) on
En-De test set. Two different representations are used,
based on which, ConST achieves huge accuracy im-
provements.

XSTNet (Ye et al., 2021).
For this first case, the cascaded system fails to

give a right translation due to the mis-punctuation
issue (klingt is a verb), while the end-to-end model,
XSTNet and ConST translate correctly. For the sec-
ond case, the previous end-to-end XSTNet model
cannot accurately translate the phrase “started ex-
ploring this idea of”, which performs worse than
the cascaded one. Whereas ConST successfully
conveys the meaning of “this idea” , and translates
more accurately than XSTNet. We believe this im-
provement comes from the cross-modal contrastive
learning.

8 Conclusion

In this paper, we propose ConST, a simple yet ef-
fective contrastive learning framework bridging the
speech-text representation gap and facilitating the

ST with limited data. We also provide feasible hard
example mining methods to learn robust representa-
tions. The results on the MuST-C ST dataset prove
the effectiveness of the method.

9 Broader Impact

This work improves the performance of ST tasks on
public datasets by learning speech representations
that are more similar to text representations, but
the model is far from being achieved for industrial-
grade implementations. In real scenarios, for exam-
ple, the original voice is noisier and the distribution
of speech lengths is more complex than in the pub-
lic dataset, which cannot be handled by an end-to-
end model alone. The shortcoming of this model is
that it still needs a certain amount of labeled data
for training, especially <speech,transcription> to
learn better speech representation, and for the more
than 7, 000 languages and dialects in the world,
most of them do not have corresponding transla-
tions or even transcriptions, our method does not
work in untranscribed scenarios. In this paper, we
focus on the improvement brought by the better
speech representation on the ST task, and obtained
good results with hundreds of hours of speech data.
We hope that our work achieves better results using
more data (e.g. raw speech, raw text, ASR, MT
data) in the future.
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A Statistics of all datasets

ST (MuST-C) MT
En→ hours #sents name #sents

De 408 234K WMT16 4.6M
Es 504 270K WMT13 15.2M
Fr 492 292K WMT14 40.8M
It 465 258K OPUS100 1.0M
Nl 442 253K OPUS100 1.0M
Pt 385 211K OPUS100 1.0M
Ro 432 240K WMT16 0.6M
Ru 489 270K WMT16 2.5M

Table 8: Statistics of all datasets

B Experimental Details

Training and Implementation Details We use
Adam optimizer (β1 = 0.9, β2 = 0.98) with learn-
ing rate = 1e−4 and warmup 25k steps during the
ST training. We also implement the expanded set-
ting with the introduction of external WMT to train
the Transformer module. In the pre-training stage,
we set the learning rate = 7e−4 and warmup 4000
steps. For robust training, we set label smoothing to
0.1, and dropout rate to 0.1. The hyper-parameters
for different data augmentation methods are as fol-
lows: for masked audio span strategy, we set mask-
ing probability p = 0.25 and masking span length
M = 3600 frames; for both sequence and feature
cut-off, we set the cut-off dropout rate as 0.1. We
save the checkpoint with the best BLEU on dev-set
and average the last 10 checkpoints. For decoding,
we use a beam size of 10 and length penalty 0.7 for
German, 1.0 for French, and 0.4 for Russian. We
train the models in 8 Nvidia Tesla V100 GPUs for
each experiment. We use Fairseq (Ott et al., 2019)
as the code-base for our implementation.
Baseline Models In Table 1, we compared
our method with end-to-end baseline models
whose audio inputs are 80-channel log Mel-filter
bank, including: FairseqST (Wang et al., 2020a),
NeurST (Zhao et al., 2021a), Espnet ST (In-
aguma et al., 2020), Dual-decoder Transformer (Le
et al., 2020), SATE (Xu et al., 2021), Speech-
former (Papi et al., 2021), self training (Pino et al.,
2020) and mutual learning (Zhao et al., 2021b)
method, STAST (Liu et al., 2020b), bi-KD (In-
aguma et al., 2021), MLT method (Tang et al.,
2021b), Lightweight Adaptor (Le et al., 2021),
JT-S-MT (Tang et al., 2021a), FAT-ST (Zheng

et al., 2021), TaskAware (Indurthi et al., 2021),
and STPT (Tang et al., 2022). We also compare
our method to baseline models that have pretrained
Wav2vec2.0 as a module, including:
• W-Transf. (Ye et al., 2021): the model has the

same structure as ours, but is only trained on
<speech, translation> parallel data.

• Chimera-ST (Han et al., 2021): the model that
builds a shared semantic memory for both audio
and text modalities.

• XSTNet (Ye et al., 2021): the model has the
same structure as ours, and adopted a multi-task
fine-tuning strategy.

• STEMM (Fang et al., 2022): the model that
bridges the modality representation gap by mini-
mizing the Jensen–Shannon divergence between
the original speech representation and the mani-
fold mix-up representation.

C The Choice for Hyper-parameters

Influence of Temperature In the contrastive loss,
the temperature hyper-parameter is provided to con-
trol the smoothness of the distribution normalized
by softmax operation. A high temperature helps
to smooth the distribution, making it more difficult
for the model to distinguish between positive and
negative samples (corresponding to correct tran-
scriptions and other transcriptions in this work),
while the low temperature behaves just the opposite.
We choose several temperature hyper-parameters
ranging from 0.01 to 0.5, and Figure 6 shows their
BLEUs on the test and dev sets . We find that (1)
the choice of the temperature does not drastically
affect the final BLEU score, and (2) we recommend
that the temperature τ be set between 0.02 and 0.05
to ensure a relatively good ST performance. In the
experiment, we use τ = 0.02.
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Figure 6: En-De BLEU scores on tst-COMMON and
Dev set. the x-axis is the choices of different tempera-
ture τ in Eq.(4) varying from 0.01 to 0.5.
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Influence of Contrastive Loss Weight The total
loss we optimize, Eq.(1), is a linear combination of
the multi-task cross-entropy losses LMLT and the
contrastive term LCTR. To investigate how much
the contrastive terms affect BLEU, we fix its tem-
perature τ = 0.02, adjust the values of its loss
weight λ from 0.1 to 2.0, performed three experi-
ments for each value, and test the average BLEU on
En-De tst-COMMON set. Figure 7 depicts the per-
formances. First, all objective functions containing
LCTR, even if their weights λ take different values,
are apparently better than the baseline model with
LMLT only LCTR. Then, the best BLEU score is
achieved at loss weight λ = 1.5, corresponding
to the results in Table 1. And when analyzing the
effect of data augmentation strategies (Section 5.4),
since we need to consider the combination between
them, which is more complicated. Therefore, we
set the loss weight to 1.0 uniformly for simplicity.
In general, we recommend that the weight hyper-
parameter takes a value between 0.8 and 1.5.

0.0 0.1 0.2 0.5 0.8 1.0 1.5 2.0

Contrastive Loss Weight 
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28.3

27.6

tst-BLEU tst-BLEU, w/o CTR loss

Figure 7: En-De BLEU scores on tst-COMMON and
Dev sets. The x-axis is the weight of the contrastive
loss term λ in Eq.(1). Experiments are performed under
the fix temperature hyper-parameter τ = 0.02.

D Data Scale for Fine-tuning

The experiments in the main paper show that our
model can perform well by introducing external
MT data pre-training. Here, we simulate the sce-
nario with plenty of MT and speech data and lim-
ited ST triple-labeled data, and does ConST have
the ability of low-resource learning? In the ex-
periment, we reduce the labeled ST data to 1, 10,
and 100 hours, corresponding to sentence counts of
about 500, 5k, and 50k sentences. For a fair com-
parison, we use the same MT pre-trained Trans-
former module as in the main paper. We find
the contrastive loss particularly helpful when the
amount of speech data is extremely small, like only

1 hour of speech. Second, the multi-task training
strategy is also very effective in improving the ro-
bustness of the model performance. We also find
that by using easily accessible MT and speech pre-
training, our model could reach the previous base-
line results without pre-training using only 1/4 of
the original data, i.e. 100 hours of labeled ST data.
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Figure 8: En-De BLEU scores on tst-COMMON sets.
The horizontal axis is the amount of ST data (in hours
of speech).
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