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Abstract

We present a procedure for learning to ground
symbols from a sequence of stimuli consisting
of an arbitrarily complex noun phrase (e.g. “all
but one green square above both red circles.”)
and its designation in the visual scene. Our
distinctive approach combines: a) lazy few-
shot learning to relate open-class words like
green and above to their visual percepts;
and b) symbolic reasoning with closed-class
word categories like quantifiers and negation.
We use this combination to estimate new train-
ing examples for grounding symbols that oc-
cur within a noun phrase but aren’t designated
by that noun phase (e.g, red in the above ex-
ample), thereby potentially gaining data effi-
ciency. We evaluate the approach in a visual
reference resolution task, in which the learner
starts out unaware of concepts that are part of
the domain model and how they relate to visual
percepts.

1 Introduction

The subfield of robotics known as Interactive Task
Learning (ITL, see Laird et al. (2017) for a survey)
addresses scenarios where a robot must learn to
adapt its behaviour to novel and unforeseen ob-
jects, relations, and attributes that are introduced
into the environment after deployment. The ITL

agent learns its novel task via evidence from its
own actions and reactive guidance from a teacher.
This paper focuses on symbol grounding (Harnad,
1999) in the context of ITL (Matuszek, 2018): the
learner must use the teacher’s embodied natural
language utterance and its context to learn a map-
ping from natural language expressions to their
denotations, given the visual percepts.

There are two challenges in learning symbol
grounding models (grounders) in ITL. Firstly, in
contrast to many grounders (Ye et al., 2019; Datta
et al., 2019), ITL requires incremental learning:
knowledge is acquired piecemeal via an extended
interaction, and it must influence planning as and

when it occurs. Secondly, previous work limits the
teacher’s language to bare nouns (e.g., square) or
very short phrases (e.g., blue square, square above
circle) (Hristov et al., 2018, 2019). But there’s
evidence from Dale and Reiter (1995) that speak-
ers use complex referring expressions even when
simpler ones would successfully refer. Such lan-
guage creates the possibility that novel symbols—
neologisms—are introduced in a context where
their denotation is not designated by the teacher. In
this work we study the natural language of complex
referential expressions (REs) like “a blue square be-
hind both red circles” which teachers can use when
designating an object.

Our aim is for the learner to extract knowledge
that improves their domain representation and state
estimates—a necessary condition for successful
planning. Contemporary grounders miss learning
opportunities that complex REs afford: the RE ex-
ample above not only entails that its referents are
blue and square, but also that there exists two
objects that are both red and circle and that
they are above the designated objects, and every-
thing else in the domain is either not red or not a
circle (thanks to the meaning of both). Thus,
a complex RE and its designation can be used to
gather multiple (noisy) training exemplars (both
positive and negative) for several symbols at once,
even if they have not been designated.

In this work, we develop a method to integrate
knowledge from interactively gathered evidence in
the form of complex RE-designation pairs to aid
data acquisition for a (neural) few-shot grounder.
We explore the effect of such a method on data
efficiency and the overall grounder’s performance.
A major novel component to our procedure is that
we exploit the formal semantics of closed class
word categories (e.g., quantifiers and negation) to
boost the data efficiency of few-shot neural ground-
ing models. Our experiments show these symbolic
inductive biases are successful.
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2 Related Work

Symbol Grounding. Contemporary grounders
extensively utilize batch learning (e.g. Shridhar and
Hsu (2018)). Yet, ITL requires incremental learn-
ing because without it the teacher guidance can-
not influence the learner’s inferences about plans
as and when the advice is given. Further, many
grounders assume that the learner starts out with a
complete and accurate conceptualisation of the do-
main using pre-defined visual features and a known
vocabulary (Kennington et al., 2015; Kennington
and Schlangen, 2017; Wang et al., 2017). In ITL,
both of these assumptions are unrealistic; therefore
in this paper we explore models for which these
assumptions don’t apply. Finally, in contrast to all
prior grounders, we support incremental learning
when the training exemplars feature REs that are
linguistically complex: e.g., “two red circles that
aren’t to the right of both green squares".

Representation Learning. Models for jointly
learning a representation for vision and language
utilize either explicit alignment via bounding boxes
or instance segmentation (Lu et al., 2019; Chen
et al., 2020; Tan and Bansal, 2019; Kamath et al.,
2021; Yu et al., 2021), or a large-volume of weakly
labeled data in the form of image-caption pairs
(Radford et al., 2021). These models rely on of-
fline learning with large datasets. This work, on the
other hand, explores how to incrementally extract
knowledge from few-shot learning, using sequen-
tially observed evidence that includes neologisms.

Visual Questions Answering (VQA). This is a
task of answering free-form questions about an im-
age (Antol et al., 2015). VQA has reached impres-
sive performance in recent years (Fukui et al., 2016;
Li et al., 2020), yet VQA models struggle with out-
of distribution generalization for new types of ques-
tions, requiring multi-step reasoning, with analysis
revealing that they often rely on shortcuts (Jiang
and Bansal, 2019; Subramanian et al., 2019, 2020).
Grounded VQA models like (Yi et al., 2018) and
Bogin et al. (2021) tackle these shortcomings by
grounding parts of the question and then learning
to compose those parts via the question’s syntax
to compute the answer. They thus estimate deno-
tations of linguistic parts that are not denoted by
the answer to the question. These ‘compositional’
models help to achieve out-of-distribution general-
ization for novel questions. But they lack ITL’s re-
quirement for incremental learning: model training

relies on batch learning. Furthermore, while their
performance is impressive, error analysis shows
that it makes mistakes when language includes log-
ical concepts like quantifiers and negation (e.g. Bo-
gin et al. (2021) Figure 9 shows that the determiner
most incorrectly denotes an arbitrary subset of
entities). Our view is that there is little benefit in
trying to learn to ground logic concepts as they
are domain independent and can be interpreted us-
ing formal semantics. In our experiments, we are
testing the extent to which knowing and reasoning
with the logical meanings of these symbols helps
incremental grounding, and in particular estimating
denotations of symbols within an RE that are not
designated.

Grounded Language Acquisition. This task is
often realized as grounded grammar induction
from image-caption pairs (Shi et al., 2019; Zhao
and Titov, 2020), or as learning (neural) semantic
parsers from a reward signal (Williams, 1992) in
VQA (Mao et al., 2019; Yi et al., 2018) or in plan-
ning (Azaria et al., 2016; Wang et al., 2016, 2017;
Karamcheti et al., 2020). There, the main objective
is to learn to map natural language to logical forms,
which in turn get associated with visual percepts
during the learning process. This paper does not
aim to learn a semantic parser. Instead, we ob-
tain logical forms from an existing broad-coverage
grammar which is hard to engineer, but is robust on
lexical variation (Curran et al., 2007). Our focus
instead is on exploiting the logical consequences of
those logical forms during symbol grounding—i.e.,
our focus is to utilise the interpretation of logi-
cal forms, and in particular the truth functional
meanings of close-class words like quantifiers and
negation, to inform the learning of mappings from
(open-class) symbols like red to their denotations,
given the visual percepts.

Visual Reference Resolution. In previous exper-
iments, it is often assumed that there is a unique
referent in the visual scene for the given RE in the
test phase (Kazemzadeh et al., 2014; Whitney et al.,
2016). We aim to cope with situations where the
RE has multiple referents: identifying all the refer-
ents that satisfy an RE enables efficient planning,
because it affords free choice when executing cer-
tain commands—e.g., “move a square above both
red circles” when there is more than one square
affords choosing a control policy so that resources
are optimized.
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3 Background

3.1 Formal Semantics of Natural Language
Predicate logic with generalized quantifiers L (Bar-
wise and Cooper, 1981; van Benthem, 1984) is a
canonical meaning representation for natural lan-
guages. L-sentences φ are constructed recursively
from predicates P , terms T (i.e., variables V and
constantsC), logical connectivesO = {¬,∧,∨,→
} and quantifiers Q (see Table 1 column 1):

φ ::= p(t1, . . . , tn) ≡ p(tn)

|(¬φ)|(φ1 ∧ φ2)|(φ1 ∨ φ2)|(φ1 → φ2)

|(Qx(φ1, φ2))

where p is an n-place predicate, ti ∈ T are terms,
Q ∈ Q is a quantifier, and x ∈ V is a variable (in
Qx(φ1, φ2), φ1 is the restrictor and φ2 the body).
We also introduce λ-expressions of the form λx.φ,
where x ∈ V is free or absent in φ.

3.2 Model-theoretic Interpretation
L-sentences are interpreted using a domain model
M = (E, I) consisting of a set of entities E (uni-
verse of discourse), and an extension function I that
maps non-logical symbols P ∪ C to denotations
(tuples of entities). For convenience, we assume
I : C 7→ E is one-to-one. Variables are interpreted
via an assignment function g : V 7→ E.

The interpretation function J·KM,g specifies the
semantic value of well-formed expressions of L:

JaKM,g =

{
I(a) if a ∈ P ∪ C
g(a) if a ∈ V

Jp(tn)KM,g = 1 iff

(Jt1KM,g, . . . , JtnKM,g) ∈ JpKM,g

J¬φKM,g = 1 iff JφKM,g = 0

Jφ ∧ ψKM,g = 1 iff JφKM,g = 1 and JψKM,g = 1

Jφ ∨ ψKM,g = 1 iff JφKM,g = 1 or JψKM,g = 1

Jφ→ ψKM,g = 1 iff JφKM,g = 0 or JψKM,g = 1

Jλx.φKM,g = {e ∈ E : JφKM,g[x/e] = 1}
JQx(φ1, φ2)KM,g = Q(Jλ.xφ1KM,g, Jλ.xφ2KM,g)

where g[x/e] is just like g, except g[x/e](x) = e
and Q is a specific relation between the restrictor
Jλx.φ1KM,g and body Jλx.φ2KM,g, as defined in
Table 1 column 3. J·KM,g is directly related to
satisfiability for L-sentences:

M, g |= φ iff JφKM,g = 1

M |= φ iff JφKM = 1

where JφKM = 1 iff JφKM,g = 1 for all g.
Further, if x is the only free variable in φ, then
Jλx.φKM,g = Jλx.φKM,g′ for all g, g′; so without
a loss of generality, this is expressed as Jλx.φKM.1

If all variables in Qx(φ, ψ) are bound by quantifiers,
then this L-sentence is true iff Q is true for all g.

Some quantifiers, like “both”,2 are presuppo-
sition triggers: “exactly two blocks are blue” is
different from “both blocks are blue” in that the
latter is true only if there are exactly two individ-
uals that are blocks. We’ve adopted a Russellian
interpretation (Russell, 1917) of these in Table 1.

3.3 Logical Forms of Referential Expressions
We now define the logical forms of REs and their
interpretations with respect to a domain modelM.
Noun phrases like “a block” are represented as
〈_a_qx.block(x)〉. More generally, let 〈Qx.φ〉 be
the logical form of an RE, where Q ∈ Q and φ is an
L-sentence with x ∈ V being the only free variable
in φ. The referents 〈Qx.φ〉M of this logical form
with respect toM are computed as follows:

〈Qx.φ〉M = 〈Q〉π(M,φ,x) (1)

where π(M, φ, x) is an M-projection, giving a
new domain model M′ with entities E′ = E ∩
Jλ.xφKM and 〈Q〉M is a quantifier referent—a
quantifier-specific subset of the power set of E.
Table 1 column 4 gives the list of quantifier refer-
ents.

To illustrate, consider the domain model where:

E = {a, b, c, d, f}
I(cat) = {a, b} I(dog) = {c, d, f}
I(bit) = {(c, a), (c, b), (d, b), (f, a), (f, b)}

The RE “a dog that bit both cats” has logical form
〈_a_q x._both_q y(cat(y), dog(x) ∧ bit(x, y))〉.
By Equation 1, its referent is:

〈_a_q〉π(M,_both_q y(cat(y),dog(x)∧bit(x,y)),x)

The semantic value of the λ-expression formed
from this RE is a set of entities e ∈ E for
which the following quantifier condition is true:
both_q(R,B) where R = Jλy.cat(y)KM,g[x/e]

and B = Jλy.dog(x) ∧ bit(x, y))KM,g[x/e]. Only
c, f ∈ E satisfy this condition, defining a new
model M′ with EM′ = {c, f}; this leads to the
set of possible referents as {{c}, {f}}, given the
quantifier referent 〈_a_q〉M′

.
1This fact will be used when defining referents.
2This is not an English specific phenomena: Finnish

molempi has the same condition as both.
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quantifiers Q surface form condition Q(R,B) referent 〈Q〉M

_exactly_n_q exactly n |R ∩B| = n {A ⊆ E : |A| = n}
_at_most_n_q at most n |R ∩B| ≤ n {A ⊆ E : |A| ≤ n}
_at_least_n_q at least n |R ∩B| ≥ n {A ⊆ E : |A| ≥ n}
_a_q a/an |R ∩B| 6= n {A ⊆ E : |A| ≤ 1}
_every_q all/every |R ∩B| = |R| {A ⊆ E : |A| = |E|}
_the_n_q the n |R ∩B| = n) ∧ |R| = n {A ⊆ E : |A| = |E| ∧ (|E| = n)}
_both_q both |R ∩B| = 2) ∧ |R| = 2 {A ⊆ E : |A| = |E| ∧ |E| = 2}
_all_but_n_q all but n |R ∩B| = |R| − n {A ⊆ E : |A| = |E| − n ∧ |E| ≥ n}
_n_of_the_m_q n of the m |R ∩B| = n ∧ |R| = m {A ⊆ E : |A| = n ∧ |E| = m}

Table 1: Quantifiers (column 1), their surface forms (column 2), condition Q between the restrictor R and body
denotations B, used to compute a semantic value for L-sentences of the form Qx(φ, ψ) (column 3); and quantifier
referents 〈Q〉M used to compute references of the logical form of REs (column 4).

SEMANTIC PARSING 

a triangle above both squares.

REFERENTINTEGRATING  TEACHER'S FEEDACK 

DOMAIN  
MODEL

VISUAL SCENE

GROUNDER

FEATURE 

EXTRACTION 

BUILDING THE SUPPORT SET

 

LOGICAL FORM  OF REFERENTIAL EXPRESSION

REFERENTIAL EXPRESSION

 

REFERENCE RESOLUTION

 

INCREMENTAL DOMAIN-LEVEL LOGIC THEORY UPDATE

Figure 1: IGRE overview. In interaction, the learner observes an RE, which is parsed to logical form (§5.3.2) and
interpreted with respect of the extracted feature vectors for denotations (§5.3.1) to perform reference resolution
(§3.3) with respect to the estimated domain model M̂. In case of teacher feedback, RE and its designation is
observed. This is used to build the L-sentence that is added to ∆ to update beliefs about the underlying concept
vectors (§4.3.2), which in turn are used to update the support set (§3.3), used as parameters for the grounder (§4.1).
Elements in blue are pre-defined elements of IGRE while elements in red are learned through interaction.

4 Methodology

Below we present the procedure of interactive
grounding with referential expressions (IGRE). The
overall framework is given in Figure 1.

4.1 Grounder

Matching networks (Vinyals et al., 2016) are an ex-
tension of the k nearest-neighbour algorithm (Fix
and Hodges, 1989) and has been used as a fast few-
shot grounder in the ITL setting (Cano Santín et al.,
2020). For predicates Pn ⊆ P of the same arity
n, a grounder Θn is parameterized by a support
set Sn = {(xni ,yni )}Kn

i=1, consisting of Kn pairs of
feature vectors xni ∈ Rdn for denotations en ∈ En

and concept vectors yni ∈ [0, 1]|P
n|. In yn, the di-

mension z corresponds the predicate pz ∈ Pn and
its value is the probability that Jpz(en)KM,g = 1.
Concept vectors have a one-to-one correspondence
with the domain modelM.

Given a feature vector xn for a denotation en ∈
En, Θn predicts the concept vector ŷn, using the
following inference rule:

Θn(xn, Sn) =

k∑

i=1

αn(xni ,x
n;Sn)yni
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where αn is an attention kernel:

αn(xni ,x
n;Sn) =

exp (fn(xni ) · hn(xn))
∑k

j=1 exp (fn(xnj ) · hn(xn))

fn(xn) =
ReLU(wn · xn + bn)

||ReLU(wn · xn + bn)||2
hn(xn) =

ReLU(vn · xn + cn)

||ReLU(vn · xn + cn)||2
ReLU(a) = max (0, a)

with learnable parameters θn = {wn,vn, bn, cn},
and Sn is k = 3 nearest exemplars to xn from Sn:

Sn = {(xni ,yni ) ∈ Sn : xni ∈ V(k,xn,Sn)}

where V(k,xn,Sn) is a set of k nearest feature
vectors.

4.2 Batch Learning

Given Sn, one can estimate Θn either via batch
learning performed offline, or—when Sn is small—
in real time, as outlined by Cano Santín et al.
(2020). In our scenario, we learn in real time
by minimizing binary cross-entropy between the
ground-truth yn and predicted ŷn concept vectors:

L(yn, ŷn) = −
|Pn|∑

z=1

l(ynz , ŷ
n
z )

l(yni , ŷ
n
i ) = yni log(ŷni ) + (1− yni ) log(1− ŷni )

4.3 Incremental Learning

Sn gets augmented whenever the teacher provides
an RE–designation pair. This speech act provides
two types of information: certain information Cn
in the form of denotation-symbol-semantic value
triples (en, pz, y

n
z ), corresponding to symbols and

entities designated by the RE; and noisy infor-
mation N n, corresponding to denotation-symbol-
semantic value estimate triples (en, pz, ỹ

n
z ), which

are acquired from the symbols that are part of the
RE and its referent inferred via (uncertain) reason-
ing. E.g., the RE “a circle below a square.”, entails
that its designation e ∈ E is a circle and so
(e, circle, 1) is added to Cn. But it also entails
there exists an entity which is a square that is
not designated by the RE, but rather this entity is
in the below relation with the designated entity.
If the grounder is sufficiently confident about the
referent for square, then the corresponding triple
is added to N n.

4.3.1 Acquiring Observations and Symbols
When the learner first observes its visual scene—
and so the teacher has not expressed any con-
cepts, and so the learner is currently unaware of
all concepts—the noisy support set N n is popu-
lated with (en, pz, 0.5) (0.5 is a default semantic
value) for all en in the scene and for all known
n-place predicates. Whenever the teacher’s RE-
designation pair features a neologism p∗, then
this expansion to the learner’s vocabulary prompts
adding (en, p∗, 0.5) to N n for all en. During in-
teraction, each RE-designation pair uttered by the
teacher adds elements to Cn (for designated sym-
bols) and triggers updates to the N n elements for
all entities in the current visual scene, as we’ll now
describe.

4.3.2 Integrating the Teacher’s Feedback
N n elements are interactively updated using an in-
crementally built domain-level theory ∆, which is
the conjunction of L-sentences that are built from
the logical forms of the REs that the teacher has
uttered so far and their designations. To compute
the beliefs about semantic values, given ∆, we
model the semantic value of L-sentences of the
form p(tn), in which tn are all constants (ground
atom), as a random variable with Bernoulli’s dis-
tribution B. Thus a distribution over the possible
domain models can be estimated using (proposi-
tional) model counting MC (Valiant, 1979), which
maps each L-sentence to the number of domain
models satisfying it. In this way, the semantic value
of any proposition can be estimated as follows:

ỹnz =

{
MC(pz(en)∧∆)

MC(∆) if MC(∆) 6= 0

0.5 otherwise

MC can be computed exactly or approximately
(Samer and Szeider, 2010). In our experiments
we use the ADDMC (Dudek et al., 2020) weighted
model counter, with weights set to 0.5.

4.3.3 Building the Support Set
Concept vectors for Sn are built using information
in Cn and N n: namely each denotation en gets
associated with its feature vector xn, and the z-
dimension of y corresponding to predicate pz ∈
Pn is computed as follows:

ynz =





ynz if (en, pz, y
n
z ) ∈ Cn

ỹnz if (en, pz, ỹ
n
z ) ∈ N n ∧H[B(ỹnz )] ≤ τn

0.5 otherwise
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where H[P] is the entropy of the probability dis-
tribution P , and τn is the confidence threshold for
adding noisy exemplars: in our case, it’s set to 0.6
for predicates of all arities.

5 Experiments

5.1 Task: Visual Reference Resolution
To evaluate IGRE, we use a task of visual reference
resolution 3: given a visual scene (an image) with
localized entities (bounding boxes) and an RE, the
grounder must estimate all its referents, as defined
in §3.3. The model learns its task by observing
an image accompanied by a sequence of REs, with
each RE paired with its designation in the image.

We measure the performance of IGRE on the task
after each observed RE and its designation. Perfor-
mance is measured using the precision P, recall
R, and F1 score F1 on the test set between: 1) es-
timated vs. ground-truth domain models, formed
from the concept vectors (intrinsic evaluation) and
2) estimated vs. ground-truth referents for the RE

(extrinsic evaluation). These metrics are calculated
only for those symbols/concepts that the teacher
has mentioned so far (since the system is unaware
that the remaining concepts exist). To obtain reli-
able results, we repeat the experiment 10 times: i.e.,
10 different visual scenes, with a sequence of 5 dif-
ferent teacher utterances in each scene. We record
in §6 the average precision, recall and f-scores over
those 10 trials.

Perhaps unusually, this training and testing
regime uses very small data sets: that’s because
in ITL it is the initial portions of the learning curve
that matters. The learner must achieve decent per-
formance on its task via only a few teacher utter-
ances: human teachers won’t tolerate repeating the
same REs many times and so the learner lacks the
luxury of learning (and testing) symbol grounding
on large data sets.

5.2 Data: ShapeWorld
To generate training and test sets, we construct
ShapeWorld domain models (Kuhnle and Copes-
take, 2017), each consisting of 3-12 entities, syn-
thesized visual scenes X (64x64 pixels), and 5 REs.
Each domain model is describable using 7 shape
symbols S1 (square, circle, triangle,
pentagon, cross, ellipse, semicircle),
6 colour symbols C1 (red, green, blue,

3Code available at https://github.com/itl-ed/
igre

yellow, magenta, cyan) and 4 spatial rela-
tionships symbols R2 (left, right, above,
below).4 In scene synthesis, the image is cre-
ated from the domain model, with variation on the
hue of the colour category, variation on the size,
position, rotation, and distortion of the shapes, and
variation on the spatial positions of the entities re-
lated by each spatial term. Note that the colour cat-
egories are not mutually exclusive—e.g., there are
RGB values that count as both red and magenta.

To generate REs, we sample Dependency Min-
imal Recursion Semantics (DMRS) (Copestake,
2009) graph templates, processed using ACE (gen-
eration mode) 5 and the English Resource Grammar
(ERG) (Flickinger, 2000). Generated REs are evalu-
ated with respect to the domain model to guarantee
an existing referent. In total we generated 30 such
domain models for training and 10 for testing. The
data statistics for the training set is given in Table
2 for the general categories of symbols, where cer-
tain (Cn) means that the designation is denoted by
the symbol in the RE, and noisy (N n) means that
the symbol is a part of the RE but is not designated
by it. Note that the first argument to the spatial
relations R2 is always denoted by the designation
while its second argument is not. Note also there
is high variance in the frequencies among the in-
dividual symbols. For instance, blue occurs 27
and 28 times in certain vs. noisy positions respec-
tively, while triangle occurs 7 and 12 times
respectively.

Category Cn candidates N n candidates

C1 18.67 ± 5.39 19.83 ± 5.04
S1 14.67 ± 3.98 16.50 ± 5.32
R2 0 37.75 ± 6.75

Table 2: Average symbol counts per word for colours
(C1), shapes (S1), and spatial relationships (R2).

5.3 Implementation Details

5.3.1 Feature Extraction
To extract visual features for individuals in
the scene, we utilize bounding boxes b =
[xleft , xright , ytop , ybottom ]> for each entity e ∈
E in the visual scene by localizing them (crop-
ping) and extracting the visual features using a
pre-trained visual feature encoder (in our case,

4Entities are non-overlapping, thus we omit on/behind.
5http://sweaglesw.org/linguistics/ace/
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DenseNet161 (Huang et al., 2017)). Additionally,
for the feature vector, we add each entity’s bound-
ing box coordinates for spatial information, lost in
the localization process:

xn = Concat({[DenseNet161(X[bi]],bi)}ni=1)

5.3.2 Grammar-based Semantic Parsing
To parse REs to their logical forms, we use the En-
glish Resource Grammar (ERG) and ACE (parsing
mode) to produce a representation in minimal re-
cursion semantics (MRS) (Copestake et al., 1997),
which we then simplify via hand-written rules (e.g.,
removing event arguments from predicate symbols
corresponding to adjectives and prepositions). Un-
derspecification of the MRS was resolved using
UTOOL (Koller and Thater, 2005) and the final log-
ical form was selected based on the linear order
of scope-bearing elements (quantifiers and nega-
tion): e.g. for the RE “every circle above a square”,
_every_q outscopes _a_q.

5.3.3 Axioms for R2
For |E| entities, there are |E|2 denotations to con-
sider for each 2-place predicate—a larger search
space compared to |E| denotations for 1-place pred-
icates. Moreover, these predicates can only be ac-
quired from the noisy component N n because the
referent of the second argument to the relation is
always latent.

To aid the learning process for R2, whenever
a new symbol R ∈ R2 is observed, domain-
level axioms are added to ∆ for it, making it ir-
rreflexive: ∀x.¬R(x, x) (an entity cannot be in
a spatial relationship to itself) and asymmetric:
∀x, y.R(x, y) → ¬R(y, x) (reflecting the fact
that entities in spatial relations take different roles
(Miller and Johnson-Laird, 1976)). These axioms
reduce the number of possible denotations for R2
symbols from |E|2 to |E|

2

2 − |E|.

5.4 Baselines

To test the benefit of using noisy training exemplars
N n from the oblique symbols in the REs—in other
words, those symbols that are a part of the RE but
not designated by it—we implemented a HEAD

grounder baseline, which uses information only
from Cn. That HEAD uses only symbol-designation
pairs that are acquired when the symbol denotes
the referent (in our case, that’s the head noun in the
RE and its pre-head modifier, if it exists).

To test the the benefit of using the precise formal
semantic meanings of logical symbols (i.e., quan-
tifiers and negation), we implemented an EXIST

grounder baseline. This utilizes the information
from the symbols in the oblique positions, but it
does not utilize the precise symbolic interpreta-
tion of the logical symbols, instead simplifying the
logical form of the RE by replacing all quantifiers
with the existential _a_q and removing negation
(e.g., “every cross on the left of the one circle” is
equivalent to “a cross on the left of a circle”). This
baseline preserves the basic linguistic structure of
the formal semantic representation of the RE, but
not its truth-functional interpretation.

6 Results and Discussion

Figure 2 shows the evolution of the performance
of the IGRE grounder and the two baselines on the
test set, as it gets exposed to more information (i.e.,
RE-designation pairs) over time. In the intrinsic
evaluation (domain model prediction), there is no
significant difference between the three grounders
considered. Yet, for extrinsic evaluation (refer-
ence resolution), we observe that IGRE outperforms
the HEAD and EXISTS baselines over time (both a
steeper and a smoother curve). By the end of the
interaction, a t-test shows significant differences in
IGRE’s performance compared with both baselines
(p-value of 0.01).

Table 3 shows the best performance that each
grounder achieved over time. When analysing
their performance on particular categories, we ob-
serve that C1 and S1 are equally hard to learn for
grounders while R2 is easier.

We suspect that the reason why the three models
performed differently in extrinsic evaluation even
though they don’t with intrinsic evaluation is down
to the fact that IGRE uses its complete and accurate
knowledge of the meanings of closed class words
like quantifiers and negation at test time as well as
training time in the extrinsic evaluation, but not in
the intrinsic evaluation. The IGRE model can use
these meanings to constrain and correct error-prone
estimates of referents for open class words at test
time in the reference task (as well as using their
meanings to boost the training sets). For example,
the RE “both squares” implies there exist exactly
two squares; if the symbol grounding model has
an uncertain belief that there are more (or fewer)
squares than this, it will select the two most proba-
bly candidates (and infer that all other entities are
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Figure 2: Evolution of F1 scores for IGRE (ours), EXISTS, HEAD grounders over the course of interaction on
domain model prediction (left) and reference resolution (right)

C1 S1 R2 Reference

P R F1 P R F1 P R F1 P R F1
HEAD 0.17 0.54 0.25 0.16 0.52 0.23 0.16 0.50 0.25 0.14 0.04 0.06
EXISTS 0.15 0.49 0.21 0.16 0.48 0.22 0.33 1.00 0.49 0.21 0.06 0.10
IGRE 0.17 0.51 0.23 0.17 0.56 0.25 0.33 1.00 0.50 0.42 0.10 0.16

Table 3: Precision P, recall R, and the F1 score for symbols of different category: colour C1, shape S1, and
spatial relation R2 (intrinsic evaluation), as well as reference prediction (extrinsic evaluation). Reported metrics
are averaged across the words in each category and in turn averaged across the 10 different test visual scenes.

non-squares). These experiments suggest that this
sort of correction to confident but wrong estimates
of the denotations of open-class symbols happens
sufficiently often at test time in the reference task
to make a difference in this low-data regime we are
interested in, for addressing ITL tasks.

6.1 Error Analysis
The HEAD and EXISTS baselines never acquire neg-
ative exemplars: e.g., information that a particular
individual is not red. Figure 2 shows that this
severely impacts their performance, and error anal-
ysis showed that in some experiment runs it leads to
model-collapse, with all denotations predicted to be
in the extensions of all symbols. On the other hand,
IGRE is able to acquire and use negative examples
from the truth functional meanings of the logical
symbols, specifically from: (a) negation (“not”);
(b) the presupposition triggers“the N", “N of the
M”, and “all but N" where N , and M are num-
bers and “both"; and (c) the use of “every” when it
modifies the head noun.

7 Conclusions

In this work, we presented IGRE—a grounder that
supports incremental learning of the mapping from
symbols to visual features whenever the teacher
presents a linguistically complex RE and its desig-

nation(s) in the visual scene. The grounder starts
the learning process with no conceptualisation of
the domain model, and so the learner must revise
its hypothesis space of possible domain models as
and when the teacher introduces new and unfore-
seen concepts via neologisms. We showed how
exploiting the model-theoretic interpretation of the
formal semantic representations of REs, and in par-
ticular the truth conditions of ‘logical’ words like
quantifiers and negation, can inform the acquisi-
tion of noisy training exemplars that in turn guide
learning—IGRE reasons about the likely denota-
tions of symbols within an RE that aren’t desig-
nated by that RE, and when sufficiently confident it
exploits them to update its grounding model. We
showed that: 1) this grounding approach is more
data efficient then a model that omits such obser-
vations and reasoning, using only the designated
symbols; and 2) it is beneficial to exploit the log-
ical consequences of the logical symbols, to gain
even more data efficiency and training stability. In
both cases, there was much to be gained from such
reasoning because in contrast to the baselines, it
contributes to acquiring negative exemplars: in
other words, objects that get associated with not
being red, for example.
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7.1 Future Work

IGRE uses a single source of data augmentation by
acquiring noisy exemplars from symbols in oblique
positions. Further and parallel data gains may be
obtained by exploring semi-supervised learning
methods (Yarowsky, 1995; Delalleau et al., 2005).

In this work, converting L-sentences to conjunc-
tive normal form, which is an NP-hard problem,
was a computational bottleneck. Future work needs
to address this by either considering lifted inference
methods (e.g., den Broeck et al. (2011)) or defining
model counters that use L-sentences directly.

Finally, the purpose of IGRE is to aid ITL: i.e.,
the (incremental) updates to beliefs about sym-
bol grounding should enhance learning to solve
domain-level planning problems. Future work
needs to address this by using IGRE to learn plan-
ning tasks where the learner has the physical ability
to execute certain actions but starts out unaware of
domain concepts that define the goal and are criti-
cal to task success. The learner must not only use
IGRE to interpret the teacher’s feedback, but also
learn decision making strategies, both on what to
say (or ask) the teacher in their extended dialogue
and what actions to perform in the environment.
Furthermore, the static formal semantics that we
used here should be replaced with a dynamic se-
mantics (e.g., Groenendijk and Stokhof (1991); van
der Sandt (1992); Asher and Lascarides (2003)),
to account for how contextual salience influences
truth and reference in dialogue. Following Batra
et al. (2020), we plan to test the benefits of IGRE

within a system that learns to solve planning prob-
lems that focus on rearrangement tasks.
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