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Abstract

We propose a novel framework ConceptX,
to analyze how latent concepts are encoded in
representations learned within pre-trained lan-
guage models. It uses clustering to discover the
encoded concepts and explains them by align-
ing with a large set of human-defined concepts.
Our analysis on seven transformer language
models reveal interesting insights: i) the la-
tent space within the learned representations
overlap with different linguistic concepts to a
varying degree, ii) the lower layers in the model
are dominated by lexical concepts (e.g., affixa-
tion), whereas the core-linguistic concepts (e.g.,
morphological or syntactic relations) are bet-
ter represented in the middle and higher layers,
iii) some encoded concepts are multi-faceted
and cannot be adequately explained using the
existing human-defined concepts.1

1 Introduction

Contextualized word representations learned in
deep neural network models (DDNs) capture rich
concepts making them ubiquitous for transfer learn-
ing towards downstream NLP. Despite their revolu-
tion, the blackbox nature of the deep NLP models
is a major bottle-neck for their large scale adapt-
ability. Understanding the inner dynamics of these
models is important to ensure fairness, robustness,
reliability and control.

A plethora of research has been carried out to
probe DNNs for the linguistic knowledge (e.g. mor-
phology, syntactic and semantic roles) captured
within the learned representations. A commonly
used framework to gauge how well linguistic infor-
mation can be extracted from these models is the
Probing Framework (Hupkes et al., 2018), where
they train an auxiliary classifier using representa-
tions as features to predict the property of inter-
est. The performance of the classifier reflects the

1The code is available at https://github.com/
hsajjad/ConceptX.

amount of knowledge learned within representa-
tions. To this end, the researchers have analyzed
what knowledge is learned within the representa-
tions through relevant extrinsic phenomenon vary-
ing from word morphology (Vylomova et al., 2016;
Belinkov et al., 2017a) to high level concepts such
as syntactic structure (Blevins et al., 2018; Marvin
and Linzen, 2018) and semantics (Qian et al., 2016;
Reif et al., 2019; Belinkov et al., 2017b) or more
generic properties (Adi et al., 2016; Rogers et al.,
2020).

In this work, we approach the representation
analysis from a different angle and present a novel
framework ConceptX. In contrast to relying on
the prediction capacity of the representations, we
analyze the latent concepts learned within these rep-
resentations and how knowledge is structured, us-
ing an unsupervised method. More specifically, we
question: i) do the representations encode knowl-
edge inline with linguistic properties such as word
morphology and semantics? ii) which properties
dominate the overall structure in these representa-
tions? iii) does the model learn any novel concepts
beyond linguistic properties? Answers to these
questions reveal how deep neural network models
structure language information to learn a task.

Our inspiration to use the term concept comes
from “concept based explanation” in computer
vision (Kim et al., 2018; Ghorbani et al., 2019;
Chen et al., 2020). Stock (2010) defined a concept
as “a class containing certain objects as elements,
where the objects have certain properties”. We
define an encoded concept as a cluster of context-
aware latent representations of words, where the
representations are encoder layer outputs.

Our framework clusters contextualized repre-
sentations using agglomerative hierarchical clus-
tering (Gowda and Krishna, 1978). The result-
ing clusters represent encoded concepts, captured
within the learned representations (Please see Fig-
ure 1 for illustration). We then use a novel align-
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Figure 1: ConceptX: i) Extract representations from trained model, ii) Cluster the representations to obtain encoded
concepts, iii) Align the concepts to human-defined concepts

ment function that measures the amount of over-
lap between encoded concepts and a range of pre-
defined categories (that we call as human-defined
concepts in this paper). We experimented with
affixes, casing, morphological, syntactic, seman-
tic, WordNet (Miller, 1995), and psycholinguistic
concepts (LIWC Pennebaker et al. (2001)). The
use of such a diverse set of human-defined con-
cepts enables us to cover various abstractions of
language. In Figure 3 we present a few examples
of human-defined concepts that were aligned with
the encoded concepts.

We carry out our study on seven pre-trained
transformer models such as BERT (Devlin et al.,
2019) and XLM-RoBERTa (Conneau et al., 2020),
with varying optimization functions, architectural
details and training data. Some notable findings
emerging from our analysis are as follows:

• Shallow concepts such as lexical ngrams or
suffixes are predominantly captured in the
lower layers of the network.

• WordNet and psycholinguistic-based concepts
(LIWC) are also learned in the lower layers.

• Middle and higher layers encode concepts that
capture core linguistic properties such as mor-
phology, semantics and syntax.

• Roughly 50% of the encoded concepts adhere
to our suite of human-defined linguistic con-
cepts.

• The models learn novel concepts that are
multi-faceted and cannot be adequately ex-
plained using the existing human-defined con-
cepts.

Our contributions in this paper are as follow: i) We
present ConceptX, a framework that interprets
encoded concepts in the learned representation by
measuring their alignment to the human-defined
concepts. ii) We provide a qualitative and quan-
titative evidence of how knowledge is structured
within deep NLP models with respect to a large
suite of human-defined concepts.

2 Related Work

Most of the work done on interpretability in deep
NLP addresses two questions in particular: (i)
what linguistic (and non-linguistic) knowledge is
learned within contextualized representations, Con-
cept Analysis and (ii) how this information is uti-
lized in the decision making process, Attribution
Analysis (Sajjad et al., 2021). The former thrives on
post-hoc decomposability, where we analyze repre-
sentations to uncover linguistic phenomenon that
are captured as the network is trained towards any
NLP task (Adi et al., 2016; Conneau et al., 2018;
Liu et al., 2019a; Tenney et al., 2019; Belinkov
et al., 2020) and the latter characterize the role of
model components and input features towards a
specific prediction (Linzen et al., 2016; Gulordava
et al., 2018; Marvin and Linzen, 2018). Our work
falls into the former category.

Previous studies have explored visualization
methods to analyze the learned representations
(Karpathy et al., 2015; Kádár et al., 2017), atten-
tion heads (Clark et al., 2019; Vig, 2019), language
compositionality (Li et al., 2016) etc. A more com-
monly used framework analyzes representations by
correlating parts of the neural network with linguis-
tic properties, by training a classifier to predict a
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feature of interest (Adi et al., 2016; Belinkov et al.,
2017a; Conneau et al., 2018). Several researchers
used probing classifiers for investigating the con-
textualized representations learned from a variety
of neural language models on a variety of character-
(Durrani et al., 2019), word- (Liu et al., 2019a) or
sub-sentence level (Tenney et al., 2019) linguistic
tasks. Rather than analyzing the representations as
a whole, several researchers also explored identify-
ing salient neurons within the model that capture
different properties (Dalvi et al., 2019a; Durrani
et al., 2020; Suau et al., 2020; Mu and Andreas,
2020) or are salient for the model irrespective of
the property (Bau et al., 2019; Wu et al., 2020).

Our work is inline with (Michael et al., 2020;
Dalvi et al., 2022), who analyzed latent concepts
learned in pre-trained models. Michael et al. (2020)
used a binary classification task to induce latent
concepts relevant to a task and showed the presence
of linguistically motivated and novel concepts in
the representation. However, different from them,
we analyze representations in an unsupervised fash-
ion. Dalvi et al. (2022) used human-in-the-loop to
analyze latent spaces in BERT. Our framework uses
human-defined concepts to automatically generate
explanations for the latent concepts. This enabled
us to scale our study to many transformer models.

In a similar work, Mamou et al. (2020) ap-
plied manifold analysis technique to understand
the amount of information stored about object cate-
gories per unit. Our approach does away from the
methodological limitations of probing framework
such as complexity of the probes, effect of random-
ness etc (Belinkov, 2021). However, it is important
to mention that the two frameworks are orthogonal
and complement each other.

3 Methodology

A vector representation in the neural network
model is composed of feature attributes of the in-
put words. We group the encoded vector repre-
sentations using a clustering approach discussed
below. The underlying clusters, that we term as
the encoded concepts, are then matched with the
human-defined concepts using an alignment func-
tion. Formally, consider a Neural Network (NN)
model M with L encoder layers {l1, l2, ...ll, ..., lL},
with H hidden nodes per layer. An input sentence
consisting of M words w1, w2, ...wi, ..., wM is fed
into a NN. For each input word i, we compute
the node output (after applying the activation func-

tions) ylh(wi) of every hidden node h ∈ {1, ...,H}
in each layer l, where −→y l(wi) is the vector rep-
resentation composing the outputs of all hidden
nodes in layer l for wi. Our goal is to cluster repre-
sentations −→y l, from a large training data to obtain
encoded concepts. We then align these with various
human-defined concepts to obtain an explanation
of them to build an understanding of how these
concepts are represented across the network.

3.1 Clustering

We use agglomerative hierarchical cluster-
ing (Gowda and Krishna, 1978), which we found
to be effective for this task. It assigns each word
to a separate cluster and then iteratively combines
them based on Ward’s minimum variance criterion
that minimizes intra-cluster variance. Distance
between two representations is calculated with
the squared Euclidean distance. The algorithm
terminates when the required K clusters (aka
encoded concepts) are formed, where K is a
hyperparameter. Each encoded concept represents
a latent relationship between the words present in
the cluster. Appendix C presents the algorithm.

3.2 Alignment

Now we define the alignment function between the
encoded and human-defined concepts. Consider
a human-defined concept as z, where a function
z(w) = z denotes that z is the human-defined
concept of word w. For example, parts-of-speech
is a human-defined concept and each tag such as
noun, verb etc. represents a class/label within the
concept, e.g. z(sea) = noun. Similarly, suffix
is a human-defined concept with various suffixes
representing a class, e.g. z(bigger) = er. A re-
verse function of z is a one-to-many function that
outputs a set of unique words with the given human-
defined concept, i.e., z−1(z) = {w1, w2, . . . , wJ},
like z−1(noun) = {sea, tree, . . . }, where J is
the total number of words with the human-defined
concept of z. Following this notation, an encoded
concept is indicated as c, where c(w) = c is a
function of applying encoded concept on w, and
its reverse function outputs a set of unique words
with the encoded concept of c, i.e., c−1(c) =
{w1, w2, . . . , wI}, where I is the set size.

To align the encoded concepts with the human-
defined concepts, we auto-annotate the input data
that we used to get the clusters, with the human-
defined concepts. We call our encoded concept (c)
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to be θ-aligned (Λθ) with a human-defined concept
(z) as follows:

Λθ(z, c) =

{
1, if

∑
w′∈z−1

∑
w∈c−1 δ(w,w′)
J ≥ θ

0, otherwise,

where Kronecker function δ(w,w′) is defined as

δ(w,w′) =
{
1, if w = w′

0, otherwise

We compute c and Λθ(z, c) for the encoder output
from each layer l of a neural network. To compute
a network-wise alignment, we simply average θ-
agreement over layers.

4 Experimental Setup

4.1 Dataset
We used a subset of WMT News 20182 (359M
tokens) dataset. We randomly selected 250k sen-
tences from the dataset (≈5M tokens) to train our
clustering model. We discarded words with a fre-
quency of less than 10 and selected maximum 10
occurrences of a word type.3 The final dataset con-
sists of 25k word types with 10 contexts per word.

4.2 Pre-trained Models
We carried out our analysis on various 12-layered
transformer models such as BERT-cased (BERT-
c, Devlin et al., 2019), BERT-uncased (BERT-uc),
RoBERTa (Liu et al., 2019b), XLNet (Yang et al.,
2019) and ALBERT (Lan et al., 2019). We also
analyzed multilingual models such as multilingual-
bert-cased (mBERT) and XLM-RoBERTa (XLM-
R, Conneau et al., 2020) where the embedding
space is shared across many languages. This choice
of models is motivated from interesting differences
in their architectural designs, training data settings
(cased vs. un-cased) and multilinguality.

4.3 Clustering and Alignment
We extract contextualized representation of words
by performing a forward pass over the network us-
ing the NeuroX toolkit (Dalvi et al., 2019b). We

2http://data.statmt.org/news-crawl/en/
3Our motivation to select a small subset of data and lim-

iting the number of tokens is as follows: clustering a large
number of high-dimensional vectors is computationally and
memory intensive, for example 200k vectors (of size 768 each)
require around 400GB of CPU memory. Applying transforma-
tions (e.g., PCA) to reduce dimensionality may result in loss
of information and therefore undesirable. We wanted to stay
true to the original embeddding space.

cluster representations in every layer into K groups.
To find an optimum value of K, we experimented
with the ELbow (Thorndike, 1953) and Silhou-
ette (Rousseeuw, 1987) methods. However, we
did not observe reliable results (see Appendix C).
Therefore, we empirically selected K = 1000
based on finding a decent balance between many
small clusters (over-clustering) and a few large clus-
ters (under-clustering). We found that our results
are not sensitive to this parameter and generalize
for different cluster settings (See Section 5.4). For
the alignment between encoded and human-defined
concepts, we use θ = 90% i.e., we consider an en-
coded concept and a human-defined concept to be
aligned, if they have at least 90% match.

4.4 Human-defined concepts

We experiment with the various Human-defined
concepts, which we categorize into four groups:

• Lexical Concepts: Ngrams, Affixes, Casing,
First and the Last Word (in a sentence)

• Morphology and Semantics: POS tags (Mar-
cus et al., 1993) and SEM tags (Abzianidze
et al., 2017)

• Syntactic: Chunking tags (Tjong Kim Sang
and Buchholz, 2000) and CCG super-tags
(Hockenmaier, 2006)

• Linguistic Ontologies: WordNet (Miller,
1995) and LIWC (Pennebaker et al., 2001)

At various places in this paper, we also refer to
Morphology, Semantics and Syntactic concepts as
core-linguistic concepts. We trained BERT-based
classifiers using gold-annotated training data and
standard splits for each core-linguistic concepts
and auto-labelled the selected news dataset using
these.4

5 Analysis

In this section, we analyze the encoded concepts
by aligning them with the human-defined concepts.

5.1 Overall Alignment

First we present to what extent the encoded con-
cepts in the entire network align with the human-
defined concepts. We compute the overall score
as the percentage of the aligned encoded concepts
to the human-defined concepts across layers us-
ing the function described in Section 3.2. We

4Please see Appendix B for details.
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BERT-c BERT-uc mBERT XLM-R RoBERTa ALBERT XLNet

Overall alignment 47.2% 50.4% 66.0% 72.4% 50.1% 51.6% 43.6%

Table 1: Coverage of human-defined concepts across all clusters of a given model

Figure 2: Average Alignment (%) between encoded
concepts and human-defined concepts

found an overall match of at least 43.6% in XL-
Net and at most 72.4% in XLM-R (See Table 1).
Interestingly, the multilingual models (mBERT and
XLM-R) found substantially higher match than the
monolingual models. The inclusion of multiple
languages during training causes the model to learn
more linguistic properties. Note that the extent of
alignment with the human-defined concept may not
necessarily correlate with its overall performance.
For example XLNet performs outperforms BERT
on the GLUE tasks, but aligns less with the human-
defined concepts compared to BERT in our results.
A similar observation was made by Belinkov et al.
(2020) who also found that the translation quality of
an NMT model may not correlate with the amount
of linguistic knowledge learned in the representa-
tion. Various factors such as: architectural design,
training data, objective function, initialization, etc,
play a role in training a pre-trained model. More
controlled experiments are needed to understand
the relationship of each factor on the performance
of the model and on the linguistic learning of the
model.

We further investigated per concept5 alignment

5The first word, last word and prefix concepts showed less
less than 1% alignment with the encoded concepts. We do not

to understand which human-defined concepts are
better represented within the encoded concepts.
Figure 2 presents the results.

Lexical Concepts Pre-trained models encode
varying amount of lexical concepts such as casing,
ngrams and suffixes. We found between 7-11% en-
coded concepts that align with the casing concept
(title case or upper case). We observed that most of
these encoded concepts consist of named entities,
which were grouped together based on semantics.

Comparing suffixes and ngrams While affixes
often have linguistic connotation (e.g., the prefix
anti negates the meaning of the stem and the suffix
ies is used for pluralization), the ngram units that
become part of the vocabulary as an artifact of
statistical segmentation (e.g., using BPE (Sennrich
et al., 2016) or Word-piece (Schuster and Nakajima,
2012)) often lack any linguistic meaning. However,
models learn to encode such information. We found
a match ranging from 1% (BERT-cased) up to 25%
(XLM-R) when comparing encoded concepts with
the suffix concept. A similar pattern is observed
in the case of the ngram concept (which is a super-
set of the suffix concept) where a staggering 48%
matches were found. Figure 6a shows an ngram
cluster found in layer 2 of BERT-c.6

Morphology and Semantics We found that the
encoded concepts based on word morphology
(POS) consistently showed a higher match across
all models in comparison to the other abstract con-
cepts, aligning a quarter of the encoded concepts
in the case of mBERT. The alignment with seman-
tic concepts is relatively lower, with at most 16%
match across models. This reflects that while the
models learn both linguistic properties, morpholog-
ical ontology is relatively preferred compared to
the semantic hierarchy.

Syntactic These concepts capture grammatical
orientation of a word, for example Chunking:B-NP
is a syntactic concept describing words in the be-
ginning of a noun phrase. CCG:PP/NP is a concept

present their results in the interest of space.
6Appendix A shows more examples of the ngram, suffix,

LIWC and WordNet clusters.
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(a) Ngram:ex (b) LIWC:religion (c) LIWC: Bio (d) WordNet:Motion

Figure 3: Examples of BERT-c encoded concepts aligned with the human-defined concepts

in CCG super tagging, describing words that takes
a noun phrase on the right and outputs a preposi-
tion phrase for example “[in[the US]]”. We found
relatively fewer matches, a maximum of 7% and
14% matching encoded concepts for Chunking and
CCG concepts respectively. The low matches for
syntactic concepts suggest that the models do not
encode the same syntactic hierarchy suggested by
these human-defined syntactic tasks.

Linguistic Ontologies Comparing the encoded
concepts with static linguistic ontologies, we found
WordNet concepts to be the second most aligned
concept (11-21%) with the human-defined con-
cepts. LIWC also shows a relatively higher align-
ment compared to the other human-defined con-
cepts in a few models (e.g., BERT-c). However,
this observation is not consistent across models and
we found a range between 5-16% matches. These
results present an interesting case where several
models prefer the distinction of lexical ontology
over abstract linguistic concepts such as morphol-
ogy. Figure 3 shows examples of encoded concepts
aligned with WordNet and LIWC. We see that these
concepts are built based on a semantic relationship
e.g., the clusters in Figure 3b, 3c and 3d group
words based on religious, facial anatomy, and spe-
cific motion-related vocabulary respectively.

Comparing Models The results of multilingual
models (mBERT, XLM-R) are intriguing given that
their encoded concepts are dominated by ngram-
based concepts and POS concepts, and their rela-
tively lesser alignment with the linguistic ontolo-
gies. On the contrary, several monolingual models
(BERT-c, ALBERT) showed a better match with
linguistic ontologies specially WordNet.

The higher number of matches to the ngram (and
suffix) concepts in the multilingual models is due to
the difference in subword segmentation. The sub-
word models in XLM-R and mBERT are optimized
for multiple languages, resulting in a vocabulary

consisting of a large number of small ngram units.
This causes the multilingual models to aggressively
segment the input sequence, compared to the mono-
lingual models7 and resulted in highly dominated
ngram-based encoded concepts, especially in the
lower layers. This may also explain the relatively
lower match that multilingual models exhibit to the
linguistic ontologies. We discuss this further in the
context of layer-wise analysis in Section 5.2.

Comparing BERT cased vs. uncased, interest-
ingly BERT-uc consistently showed higher matches
for the core-linguistic concepts (See Figure 2). We
speculate that in the absence of casing informa-
tion, BERT-uc is forced to learn more linguistic
concepts, whereas BERT-c leverages the explicit
casing information to capture more semantically
motivated concepts based on linguistic ontologies.

The higher matches in multilingual models in
comparison to the monolingual models, and BERT-
uncased in comparison to BERT-cased suggest that
the training complexity is one factor that plays a
role in a model’s ability to learn linguistic nuances.
For example, multilingual models need to optimize
many languages, which is a harder task compared
to learning one language. Similarly, the absence
of capitalization in training data makes the learn-
ing task relatively harder for BERT-uc compared to
BERT-c models, thus resulting in higher matches
for BERT-uc. We speculate that the harder the train-
ing task, the more language nuances are learned
by a model. Belinkov et al. (2020) made a similar
observation, where they showed that the linguistic
knowledge learned within the encoder-decoder rep-
resentations in NMT models correlates with com-
plexity of a language-pair involved in the task.

5.2 Layer-wise Alignment

Now we study the alignment of human-defined
concepts across layers to understand how concepts

7In our dataset, mBERT has 13% more words after sub-
word segmentation compared to BERT-c.
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Figure 4: Layer-wise concept alignment. Y-axis is the normalized number of aligned concepts. The number within
brackets of each human-defined concept, e.g. Casing (166), shows the maximum layer-wise match

evolve in the network. Figure 4 shows results for
selected models.8 The y-axis is the normalized
number of aligned concepts across layers.

Overall Trend We observed mostly consistent
patterns across models except for ALBERT, which
we will discuss later in this section. We found that
the shallow concepts (such as ngram and suffixes)
and the linguistic ontologies (LIWC and WORD-
NET) are better represented in the initial layers and
exhibit a downward trend in the higher layers of
the network. On the contrary the core linguistic
concepts (POS, Chunking, etc.) are better repre-

8See Figure 10 in the Appendix for complete results.

sented in the higher layers (layer 8-10). The last
layers do not show any consistently dominating
human-defined concepts considered in this work.
We can generalize on these trends and hypothesize
on how encoded concepts evolve in the network:
the initial layers of the pretrained models, group
words based on their lexical and semantic similar-
ities where the former is an artifact of subword
segmentation. With the inclusion of context and ab-
straction in the higher layers, these groups evolve
into linguistic manifolds. The encoded concepts
in the last layers are influenced by the objective
function and learn concepts relevant to the task.
Durrani et al. (2021) also made similar observation
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when analyzing linguistic concepts in pre-trained
models that are fine-tuned towards different GLUE
tasks.

Concept-wise Trend In the following, we dis-
cuss different concepts in detail. As we mentioned
earlier, the high presence of ngram and suffix con-
cepts in the lower layers is due to subword seg-
mentation. At the higher layers, the models start
encoding abstract concepts, therefore get better
alignment with the core linguistic concepts. Cas-
ing shows an exception to other lexical concepts
and has similar trend to POS and SEM. Upon in-
vestigating we observed that the words appearing
in these clusters have a hybrid connotation. For
example, more than 98% of the encoded concepts
that match with Casing are named entities, which
explains the trend. The syntactic concepts observe
peak in the higher-middle layers and a downward
trend towards the end. These findings resonate
with the earlier work on interpreting neural net-
work representations for BERT. For example Liu
et al. (2019a) also showed that probes trained with
layers 7-8 give the highest accuracy when trained
towards predicting the tasks of Chunking and CCG
tagging. Although here, we are targeting a slightly
different question i.e. how the latent concepts are
encoded within the representations and how they
evolve from input to output layers of the network.

We observed a downward trend in linguistic on-
tologies (WordNet, LIWC) as we go from lower
layers to higher layers as opposed to the core lin-
guistic concepts (POS, CCG, etc.). This is because
of the context independent nature of these concepts
as opposed to the core-linguistic concepts which
are annotated based on the context. The embed-
ding layer is non-contextualized, thus shows a high
match with linguistic ontologies. With the availabil-
ity of context in contextualized layers, the encoded
concepts evolve into context-aware groups, result-
ing in higher matches with core-linguistic concepts.

Comparing Models While the overall trend is
consistent among BERT-uc, mBERT and XLNet
(and other studied models – Figure 10 in Appendix),
the models somewhat differ in the last layers: see
the large drop in core-linguistic concepts such as
POS and Chunking for XLNet and mBERT in com-
parison to BERT. This suggests that BERT retains
much of the core-linguistic information at the last
layers. Durrani et al. (2020) observed a similar
pattern in their study, where they showed BERT to

retain linguistic information deeper in the model as
opposed to XLNet where it was more localized and
predominantly preserved earlier in the network.

While the overall layer-wise trends of multilin-
gual models look similar to some monolingual mod-
els (mBERT vs. XLNet in Fig 4b,c), the former’s
absolute layer-wise matches (numbers inside the
brackets in Figure 4 e.g. Casing (166)) are gener-
ally substantially higher than the monolingual coun-
terparts. For example, the POS and SEM matches
of mBERT are 38.9% and 30% respectively which
are 18% and 15% higher than BERT-uc. On the
contrary, the number of matches with linguistic
ontologies is often lower for multilingual models
(mBERT LIWC alignment of 65 vs. BERT-uc align-
ment of 186). We hypothesize that the variety of
training languages in terms of their morphological
and syntactic structure has caused the multilingual
models to learn more core-linguistic concepts in
order to optimize the training task. Although, the
knowledge captured within linguistic ontologies is
essential, it may not be as critical to the training of
the model as the linguistic concepts.

ALBERT showed a very different trend from
the other models. Note that ALBERT shares param-
eters across layers while the other models have sep-
arate parameters for every layer. This explains the
ALBERT results where we see relatively less varia-
tion across layers. More interestingly, the encoded
concepts in the last layers of ALBERT showed
presence of all human-defined concepts considered
here (see the relatively smaller drop of ALBERT
alignment curves in Figure 4).

5.3 Unaligned Concepts

In Table 1 we observed that at least 27.6% (in
XLM-R) and up to 56.4% (in XLNet) encoded
concepts did not align with the human-defined con-
cepts. What concepts do these unaligned clusters
contain? In an effort to answer this question, we
analyzed these clusters and observed that many of
them were compositional concepts that involves
more than one fine-grained categories of the human
defined concepts. Figure 5a shows an example of
the unaligned concept which partly aligns with a
semantic category (SEM:geopolitical entity) and a
morphological category (POS:adjective). Similarly,
Figure 5b is a verbs related to cognitive processes
and Figure 5c shows an unaligned cluster that is
composed of different verb forms (past, present
and gerunds). The alignment with multiple human-
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(a) SEM:GPE+POS:JJ (b) POS:VB*+LIWC:cogmech (c) POS:VB*

Figure 5: Examples of unaligned encoded concepts: (a) combination of geopolitical entities and their related
adjectives, (b,c) different forms of verb with specific semantics

defined concepts can be used to generate explana-
tions for these unaligned concepts. For example,
Figure 5a can be aligned as a mix of geopolitical en-
tities and adjectives. We also quantitatively verified
the number of unaligned encoded concepts that can
be explained using composition of different con-
cepts (See Appendix E: Table 9) and found that a
majority of the clusters can be explained using a
combination of three pre-defined concepts..

Moreover, note that encoded concepts are often
multifacet i.e., they represent more than one re-
lationship. For example, the encoded concept in
Figure 5c consists of different forms of verbs but at
the same time, these verbs are semantically similar.
The semantic relationship present here is not ade-
quately captured using the human-defined concepts
used in this work. These are the novel concepts that
require richer annotations or human-in-the-loop
setup to generate adequate explanations.

5.4 Generalization of Results
Do the results generalize over different dataset se-
lection and using different number of clusters? We
ran experiments using different split of the news
dataset for several models, and also performed
alignment using different values of K, the num-
ber of clusters. The results are consistent across
the board. Please see Appendix F for details.

6 Conclusion

We presented ConceptX, a novel framework for
analyzing the encoded concepts within deep NLP
models. Our method uses unsupervised clustering
to discover latent concepts within the contextual-
ized representations and then aligned these con-
cepts with a suite of human-defined concepts to
generate explanations for them. Our results illumi-
nate how DNNs structure language information. A
few notable findings are: i) lower layers capture

shallow linguistic concepts, ii) whereas the abstract
linguistic concepts such as morphology and seman-
tics are preserved higher in the network, iii) the
extent of alignment varies across different models
and different human-defined concepts, iv) we found
that novel explanations and an improved coverage
of concepts can be achieved via compositionality.

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hes-

sel Haagsma, Rik van Noord, Pierre Ludmann, Duc-
Duy Nguyen, and Johan Bos. 2017. The parallel
meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL ’17, pages 242–
247, Valencia, Spain.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,
and Yoav Goldberg. 2016. Fine-grained Analysis of
Sentence Embeddings Using Auxiliary Prediction
Tasks. arXiv preprint arXiv:1608.04207.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations.

Yonatan Belinkov. 2021. Probing classifiers:
Promises, shortcomings, and alternatives. CoRR,
abs/2102.12452.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017a. What do Neural
Machine Translation Models Learn about Morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL),
Vancouver. Association for Computational Linguis-
tics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2020. On the linguistic
representational power of neural machine translation
models. Computational Linguistics, 45(1):1–57.

3090

https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
http://arxiv.org/abs/2102.12452
http://arxiv.org/abs/2102.12452
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf


Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2017b. Eval-
uating Layers of Representation in Neural Machine
Translation on Part-of-Speech and Semantic Tagging
Tasks. In Proceedings of the 8th International Joint
Conference on Natural Language Processing (IJC-
NLP).

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018.
Deep RNNs encode soft hierarchical syntax. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 14–19, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Zhi Chen, Yijie Bei, and Cynthia Rudin. 2020. Con-
cept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772–782.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 8440–8451.
Association for Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL).

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, D. Anthony Bau, and James Glass. 2019a.
What is one grain of sand in the desert? analyzing in-
dividual neurons in deep nlp models. In Proceedings
of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI, Oral presentation).

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir Dur-
rani, Jia Xu, and Hassan Sajjad. 2022. Discovering
latent concepts learned in BERT. In International
Conference on Learning Representations.

Fahim Dalvi, Avery Nortonsmith, D. Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, and
James Glass. 2019b. Neurox: A toolkit for analyz-
ing individual neurons in neural networks. In AAAI
Conference on Artificial Intelligence (AAAI).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Yonatan Be-
linkov, and Preslav Nakov. 2019. One size does not
fit all: Comparing NMT representations of different
granularities. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1504–1516, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nadir Durrani, Hassan Sajjad, and Fahim Dalvi. 2021.
How transfer learning impacts linguistic knowledge
in deep NLP models? In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4947–4957, Online. Association for Computa-
tional Linguistics.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4865–4880, Online. Association for Computational
Linguistics.

Amirata Ghorbani, James Wexler, James Y Zou, and
Been Kim. 2019. Towards automatic concept-based
explanations. Advances in Neural Information Pro-
cessing Systems, 32:9277–9286.

K Chidananda Gowda and G Krishna. 1978. Agglomer-
ative clustering using the concept of mutual nearest
neighbourhood. Pattern recognition, 10(2):105–112.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1195–1205, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Julia Hockenmaier. 2006. Creating a CCGbank and a
wide-coverage CCG lexicon for German. In Proceed-
ings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, ACL ’06,
pages 505–512, Sydney, Australia.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

3091

https://doi.org/10.18653/v1/P18-2003
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://openreview.net/forum?id=POTMtpYI1xH
https://openreview.net/forum?id=POTMtpYI1xH
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/2021.findings-acl.438
https://doi.org/10.18653/v1/2021.findings-acl.438
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
http://arxiv.org/abs/1711.10203
http://arxiv.org/abs/1711.10203
http://arxiv.org/abs/1711.10203


Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie
Cai, James Wexler, Fernanda Viegas, et al. 2018. In-
terpretability beyond feature attribution: Quantitative
testing with concept activation vectors (tcav). In In-
ternational conference on machine learning, pages
2668–2677. PMLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. ArXiv:1909.11942.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 681–691, San Diego, California.
Association for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521– 535.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv:1907.11692.

Jonathan Mamou, Hang Le, Miguel Del Rio, Cory
Stephenson, Hanlin Tang, Yoon Kim, and Sueyeon
Chung. 2020. Emergence of separable manifolds
in deep language representations. In International
Conference on Machine Learning, pages 6713–6723.
PMLR.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Julian Michael, Jan A. Botha, and Ian Tenney. 2020.
Asking without telling: Exploring latent ontologies
in contextual representations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6792–6812,
Online. Association for Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Jesse Mu and Jacob Andreas. 2020. Compositional
explanations of neurons. CoRR, abs/2006.14032.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates,
71(2001):2001.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016.
Investigating Language Universal and Specific Prop-
erties in Word Embeddings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1478–1488, Berlin, Germany. Association for Com-
putational Linguistics.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
bert. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Peter Rousseeuw. 1987. Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
J. Comput. Appl. Math., 20(1):53–65.

Hassan Sajjad, Narine Kokhlikyan, Fahim Dalvi, and
Nadir Durrani. 2021. Fine-grained interpretation and
causation analysis in deep NLP models. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Tutorials,
pages 5–10, Online. Association for Computational
Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Wolfgang G Stock. 2010. Concepts and semantic rela-
tions in information science. Journal of the Ameri-
can Society for Information Science and Technology,
61(10):1951–1969.

3092

http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/2020.emnlp-main.552
https://doi.org/10.18653/v1/2020.emnlp-main.552
http://arxiv.org/abs/2006.14032
http://arxiv.org/abs/2006.14032
http://www.aclweb.org/anthology/P16-1140
http://www.aclweb.org/anthology/P16-1140
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.18653/v1/2021.naacl-tutorials.2
https://doi.org/10.18653/v1/2021.naacl-tutorials.2
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162


Xavier Suau, Luca Zappella, and Nicholas Apostoloff.
2020. Finding experts in transformer models. CoRR,
abs/2005.07647.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Robert L. Thorndike. 1953. Who belongs in the family.
Psychometrika, pages 267–276.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task chunking.
In Fourth Conference on Computational Natural Lan-
guage Learning and the Second Learning Language
in Logic Workshop.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42,
Florence, Italy. Association for Computational Lin-
guistics.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and Gho-
lamreza Haffari. 2016. Word Representation Models
for Morphologically Rich Languages in Neural Ma-
chine Translation. arXiv preprint arXiv:1606.04217.

John Wu, Hassan Belinkov, Yonatan Sajjad, Nadir Dur-
rani, Fahim Dalvi, and James Glass. 2020. Similarity
Analysis of Contextual Word Representation Mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL),
Seattle. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

3093

http://arxiv.org/abs/2005.07647
https://doi.org/10.18653/v1/P19-1452
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007


Appendix

A Human-defined concept labels

A.1 Lexical Concepts:

Ngrams, Affixes, Casing, First and the Last Word.

A.2 Morphology and Semantics:

POS tags: We used the Penn Treebank POS tags
discussed in (Marcus et al., 1993), which consists
of 36 POS tags and 12 other tags (i.e., punctuation
and currency symbols). In Table 2, we provide
POS tags and their description.

SEM tags: (Abzianidze et al., 2017) consists of
73 sem-tags grouped into 13 meta-tags. In Table
3, we provide a detailed information of the tagset,
and in Table 5, we provide fine and coarse tags
mapping.

A.3 Syntactic:

Chunking tags: For Chunking we used the tagset
discussed in (Tjong Kim Sang and Buchholz,
2000), which consists of 11 tags as follows: NP
(Noun phrase), VP (Verb phrase), PP (Prepositional
phrase), ADVP (Adverb phrase), SBAR (Subor-
dinate phrase), ADJP (Adjective phrase), PRT
(Particles), CONJP (Conjunction), INTJ (Interjec-
tion), LST (List marker), UCP (Unlike coordinate
phrase). For the annotation, chunks are represented
using IOB format, which results in 22 tags in the
dataset as reported in Table 4.

CCG super-tags Hockenmaier (2006) devel-
oped, CCGbank, a dataset with Combinatory Cat-
egorial Grammar (CCG) derivations and depen-
dency structures from the Penn Treebank. CCG is
a lexicalized grammar formalism, which is expres-
sive and efficiently parseable. It consists of 1272
tags.

A.4 Linguistic Ontologies:

WordNet: (Miller, 1995) consists of 26 lexico-
graphic senses for nouns, 2 for adjectives, and 1
for adverbs. Each of them represent a supersense
and a hierarchy can be formed from hypernym to
hyponym.

LIWC: Over the past few decades, Pennebaker
et al. (Pennebaker et al., 2001) have designed psy-
cholinguistic concepts using high frequency words.
These word categories are mostly used to study
gender, age, personality, and health to estimate the

# Tag Description

1 CC Coordinating conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential there
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP Proper noun, singular
15 NNPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PRP Personal pronoun
19 PRP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO to
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WRB Wh-adverb
37 # Pound sign
38 $ Dollar sign
39 . Sentence-final punctuation
40 , Comma
41 : Colon, semi-colon
42 ( Left bracket character
43 ) Right bracket character
44 " Straight double quote
45 ’ Left open single quote
46 " Left open double quote
47 ’ Right close single quote
48 " Right close double quote

Table 2: Penn Treebank POS tags.

correlation between these attributes and word us-
age. It is a knowledge-based system where words
are mapped different high level concepts.

B BERT-based Sequence Tagger

We trained a BERT-based sequence tagger to auto-
annotate our training data. We used standard splits
for training, development and test data for the 4
linguistic tasks (POS, SEM, Chunking and CCG
super tagging) that we used to carry out our analy-
sis on. The splits to preprocess the data are avail-
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ANA (anaphoric) MOD (modality)

PRO anaphoric & deictic pronouns: he, she, I, him NOT negation: not, no, neither, without
DEF definite: the, loIT, derDE NEC necessity: must, should, have to
HAS possessive pronoun: my, her POS possibility: might, could, perhaps, alleged, can
REF reflexive & reciprocal pron.: herself, each other DSC (discourse)
EMP emphasizing pronouns: himself SUB subordinate relations: that, while, because
ACT (speech act) COO coordinate relations: so, {,}, {;}, and
GRE greeting & parting: hi, bye APP appositional relations: {,}, which, {(}, —
ITJ interjections, exclamations: alas, ah BUT contrast: but, yet
HES hesitation: err NAM (named entity)
QUE interrogative: who, which, ? PER person: Axl Rose, Sherlock Holmes
ATT (attribute) GPE geo-political entity: Paris, Japan
QUC concrete quantity: two, six million, twice GPO geo-political origin: Parisian, French
QUV vague quantity: millions, many, enough GEO geographical location: Alps, Nile
COL colour: red, crimson, light blue, chestnut brown ORG organization: IKEA, EU
IST intersective: open, vegetarian, quickly ART artifact: iOS 7
SST subsective: skillful surgeon, tall kid HAP happening: Eurovision 2017
PRI privative: former, fake UOM unit of measurement: meter, $, %, degree Celsius
DEG degree: 2 meters tall, 20 years old CTC contact information: 112, info@mail.com
INT intensifier: very, much, too, rather URL URL: http://pmb.let.rug.nl
REL relation: in, on, ’s, of, after LIT literal use of names: his name is John
SCO score: 3-0, grade A NTH other names: table 1a, equation (1)
COM (comparative) EVE (events)
EQU equative: as tall as John, whales are mammals EXS untensed simple: to walk, is eaten, destruction
MOR comparative positive: better, more ENS present simple: we walk, he walks
LES comparative negative: less, worse EPS past simple: ate, went
TOP superlative positive: most, mostly EXG untensed progressive: is running
BOT superlative negative: worst, least EXT untensed perfect: has eaten
ORD ordinal: 1st, 3rd, third TNS (tense & aspect)
UNE (unnamed entity) NOW present tense: is skiing, do ski, has skied, now
CON concept: dog, person PST past tense: was baked, had gone, did go
ROL role: student, brother, prof., victim FUT future tense: will, shall
GRP group: John {,} Mary and Sam gathered, a group of people PRG progressive: has been being treated, aan hetNL
DXS (deixis) PFT perfect: has been going/done
DXP place deixis: here, this, above TIM (temporal entity)
DXT temporal deixis: just, later, tomorrow DAT full date: 27.04.2017, 27/04/17
DXD discourse deixis: latter, former, above DOM day of month: 27th December
LOG (logical) YOC year of century: 2017
ALT alternative & repetitions: another, different, again DOW day of week: Thursday
XCL exclusive: only, just MOY month of year: April
NIL empty semantics: {.}, to, of DEC decade: 80s, 1990s
DIS disjunction & exist. quantif.: a, some, any, or CLO clocktime: 8:45 pm, 10 o’clock, noon
IMP implication: if, when, unless
AND conjunction & univ. quantif.: every, and, who, any

Table 3: Semantic tags.

Task Train Dev Test Tags F1

POS 36557 1802 1963 48 96.69
SEM 36928 5301 10600 73 96.22
Chunking 8881 1843 2011 22 96.91
CCG 39101 1908 2404 1272 94.90

Table 4: Data statistics (number of sentences) on train-
ing, development and test sets using in the experiments
and the number of tags to be predicted

able through git repository9 released with Liu et al.
(2019a). See Table 4 for statistics and classifier
accuracy.

9https://github.com/nelson-liu/
contextual-repr-analysis
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C Clustering details

Algorithm 1 assigns each word to a separate clus-
ter and then iteratively combines them based on
Ward’s minimum variance criterion that minimizes
intra-cluster variance. Distance between two vec-
tor representations is calculated with the squared
Euclidean distance.

Algorithm 1 Clustering Procedure
Input: −→y l: word representation of words
Parameter: K: the total number of clus-
ters

1: for each word wi do
2: assign wi to cluster ci
3: end for
4: while number of clusters ̸= K do
5: for each cluster pair ci,ci′ do
6: di,i′ = inner-cluster difference of com-

bined cluster ci and ci′

7: end for
8: cj ,cj′ = cluster pair with minimum value of

d
9: merge clusters cj and cj′

10: end while

C.1 Selection of the number of Clusters

The Elbow curve did not show any optimum clus-
tering point, with the increase in number of clus-
ters the distortion score kept decreasing, resulting
in over-clustering (a large number of clusters con-
sisted of less than 5 words). The over-clustering
resulted in high but wrong alignment scores e.g.
consider a two word cluster having words “good”
and “great”. The cluster will have a successful
match with “adjective” since more than 90% of the
words in the cluster are adjectives. In this way, a lot
of small clusters will have a successful match with
many human-defined concepts and the resulting
alignment scores will be high. On the other hand,
Silhouette resulted in under-clustering, giving the
best score at number of clusters = 10. We handled
this empirically by trying several values for the
number of clusters i.e., 200 to 1600 with step size
200. We selected 1000 to find a good balance with
over and under clustering. We understand that this
may not be the best optimal point. We presented
the results of 600 and 1000 clusters to show that our
findings are not sensitive to the number of clusters
parameter.

D Coarse vs. Fine-grained Categories

D.1 Coarse vs. Fine-grained Categories

Our analysis of compositional concepts showed
that several fine-grained concepts could be com-
bined to explain an unaligned concept. For exam-
ple, by combining verb categories of POS to one
coarse verb category, we can align the encoded
concept present in Figure 5c. To probe this more
formally, we collapsed POS and SEM fine-grained
concepts into coarser categories (27 POS tags and
15 SEM tags). We then recomputed the alignment
with the encoded concepts. For most of the models,
the alignment doubled compared to the fine-grained
categorizes with at least 39% and at most 53% per-
cent match for POS. This reflects that in several
cases, models learn the coarse language hierarchy.
We further questioned how many encoded concepts
can be explained using coarse human-defined con-
cepts. Compared to Table 1, the matches increased
by at most 17 points in the case of BERT-uc. The
XLM-R showed the highest matching percentage
of 81%. The higher alignment suggests that most of
the encoded concepts learned by pre-trained mod-
els can be explained using human-defined concepts.
(See Appendix D for detailed results).

D.2 Corase POS and SEM labels

Tables 5 and 6 present results for our mapping
of fine-grained SEM and POS tags into coarser
categories.

Coarse Fine-grained

ACT QUE
ANA DEF, DST, EMP, HAS, PRO, REF
ATT INT, IST, QUA, REL, SCO
COM COM, LES, MOR, TOP
DSC APP, BUT, COO, SUB
DXS PRX
EVE EXG, EXS, EXT, EXV
LOG ALT, AND, DIS, EXC, EXN, IMP, NIL, RLI
MOD NEC, NOT, POS
NAM ART, GPE, HAP, LOC, NAT, ORG, PER, UOM
TIM DEC, DOM, DOW, MOY, TIM, YOC
TNS EFS, ENG, ENS, ENT, EPG, EPS,

EPT, ETG, ETV, FUT, NOW, PST
UNE CON, ROL
UNK UNK

Table 5: SEM: Coarse to Fine-grained mapping

D.3 Results

Table 7 presents the alignment results of using
coarse POS and SEM concepts. We observed that
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Coarse Fine-grained

Adjective JJ, JJR, JJS
Adverb RB, RBS, WRB, RBR
Conjunction CC
Determiner DT, WDT
Noun NN, NNS, NNP, NNPS
Number CD
Preposition IN, TO
Pronoun PRP, PRP$, WP, WP$
Verb VB, VBN, VBZ, VBG, VBP, VBD
No Changes $, -LRB-, #, FW, -RRB-, LS, POS, "", EX

SYM, „ :, RP, ., PDT, MD, UH,

Table 6: POS: Coarse to Fine-grained mapping

the alignment doubles in most of the cases which re-
flects that in several cases, models learn the coarse
language hierarchy. However, they do not strictly
adhere to fine-grained categories existed in human-
defined concepts. We further extend the alignment
of coarse POS and SEM categories to the overall
alignment with the human-defined concepts. Table
8 presents the results. We see a match of up to
81% in the case of XLM-R. The high alignment
suggests that many of the encoded concepts can be
explained using coarse human-defined concepts.

POS SEM
Fine Coarse Fine Coarse

BERT-cased 13% 42% 7% 15%
BERT-uncased 16% 43% 9% 18%
mBERT 26% 53% 16% 26%
XLM-RoBERTa 24% 47% 11% 21%
RoBERTa 18% 43% 10% 20%
ALBERT 17% 42% 9% 17%
XLNet 17% 39% 10% 18%

Table 7: Alignment of fine-grained human defined con-
cepts compared to coarse categories

E Compositional Coverage

Table 9 shows the amount of coverage we obtain
when aligning with the morphological concepts
when allowing 90% of the words in the cluster to
be from N concepts.

BERT-c BERT-uc mBERT XLM-R
Overall 61.5% 63.6% 77.7% 81.0%
alignment RoBERTa ALBERT XLNet

62.9% 64.0% 55.3%

Table 8: Coverage of human-defined concepts using
coarse POS and SEM labels across all clusters from a
given model

F Robustness of Methodology across
Datasets and Settings

Figure 8 shows the layer-wise patterns using 600
clusters instead of 1000 as used in the main paper.
We observe that the overall trends largely remain
the same.

To further demonstrate the robustness of our
method with respect to dataset, we sub-sampled
another dataset from the News corpus with a dif-
ferent vocabulary by selecting words that appear
between 2 to 10 times in the corpus. Note that
the selection of vocabulary is due to the memory
and computation limitations. Figure 9 shows the
results using this selection of data. Compared to
Figure 4, we can see that the overall patterns are
largely similar and confirms the robustness of our
findings. The slight difference in the patterns of
WordNet and LIWC are due to the large selection
of proper nouns in the second set of the data.

G Layer-wise results

Figure 10 present layer-wise results for all the un-
derstudied models.
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(a) (b) (c)

Figure 6: Example clusters: (a) ngram:ace, (b) POS:CD, (c) Chunking:B-VP + Suffix:ed

(a) (b) (c)

Figure 7: Example clusters: (a) LIWC:cause, (b) WORDNET:verb.cognition, (c) WORDNET:noun.artifact

Concepts BERT-c BERT-uc mBERT XLM-R RoBERTa ALBERT XLNet

1 13% 16% 26% 24% 18% 17% 17%
2 11% 12% 20% 23% 13% 13% 12%
3 14% 13% 14% 18% 11% 15% 9%
4 6% 6% 4% 4% 5% 5% 3%
5 2% 1% 1% 1% 2% 1% 1%
6 1% 0% 0% 0% 1% 1% 0%

Table 9: Percentage of alignment when an encoded concept is composed of N morphological concepts. As can be
seen, most concepts are composed of either 1, 2 or 3 morphological concepts, showing that several concepts learned
by these models are indeed compositional in nature.
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Figure 8: Layer-wise results using 600 clusters.
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Figure 9: Layer-wise results on a separately sampled dataset.
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Figure 10: Layer-wise results.
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