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Abstract

The power and the potential of deep learning
models attract many researchers to design ad-
vanced and sophisticated architectures. Never-
theless, the progress is sometimes unreal due to
various possible reasons. In this work, through
an astonishing example we argue that more ef-
forts should be paid to ensure the progress in
developing a new deep learning method. For a
highly influential multi-label text classification
method XML-CNN, we show that the supe-
rior performance claimed in the original paper
was mainly due to some unbelievable coinci-
dences. We re-examine XML-CNN and make
a re-implementation which reveals some con-
tradictory findings to the claims in the original
paper. Our study suggests suitable baselines
for multi-label text classification tasks and con-
firms that the progress on a new architecture
cannot be confidently justified without a cau-
tious investigation.

1 Introduction

Deep learning has been a popular research topic in
NLP due to its superior performance. The intrin-
sic structure of deep learning allows researchers
to enhance the model performance by introducing
more complex network architectures. Neverthe-
less, the increasing complexity brings difficulties
to ensure the true architectural progress. For exam-
ple, Adhikari et al. (2019) have shown that LSTM
architectures with appropriate regularization are ei-
ther competitive or superior to more recent models.
As another example, Liu et al. (2021) report that
the lack of hyperparameter tuning in an influential
work (Mullenbach et al., 2018) makes the progress
of subsequent network developments questionable.
Complex architectures are more difficult to train,
involve more hyperparameters, and are riskier to
unintentional implementation. Because new archi-
tectures are usually modified from previous ones, a
questionable work may make the research progress
unclear. Therefore, re-examining or reproducing

influential architectures are now considered impor-
tant in the community.

In this work, we re-examine XML-CNN (Liu
et al., 2017), an influential work in extreme multi-
label text classification (XMTC), as a case study
to demonstrate the demands of inspecting exist-
ing architectures. XML-CNN has been viewed as
an essential baseline in subsequent works (Peng
et al., 2018; Prabhu et al., 2018; You et al., 2019;
Chang et al., 2020; Adhikari et al., 2019) with more
than hundreds of citations. XML-CNN roots from
Kim-CNN (Kim, 2014), a classical architecture
for multi-class text classification. The authors of
XML-CNN proposed several modifications from
Kim-CNN to accommodate the XMTC task and
empirically claim that all modifications bring sig-
nificant improvements.

Despite XML-CNN’s popularity, we identified
two serious implementation issues that make the
original claims uncertain. First, the authors intro-
duced dynamic max-pooling into XML-CNN, but
the implementation is actually far from the intended
formulation. Second, a bug in the experiment code
caused the dimensions of convolution operations
accidentally swapped. The two issues coinciden-
tally make XML-CNN competitive, leading the
authors to illusively claim superiority over Kim-
CNN and usefulness of dynamic max-pooling in
the original paper (Liu et al., 2017).

Our contribution can be summarized as follows.
• We point out, analyze, and correct the issues in

the authors’ XML-CNN implementation. Our
implementation is made public to help the com-
munity build future works on top of the correct
implementation

• We re-examine the claims about XML-CNN. Our
results demonstrate that the progress from Kim-
CNN to XML-CNN may not be as significant as
claimed in Liu et al. (2017), and again confirm
that careful attention is needed on ensuring true
architectural progress.
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• Our investigation suggests that instead of XML-
CNN, Kim-CNN or a simpler variant of XML-
CNN should be considered as a baseline in
XMTC tasks.
The paper is organized as follows: in Section 2,

we introduce Kim-CNN, XML-CNN, and their dif-
ferences. We conduct an investigation on XML-
CNN in Section 3. The investigation includes in-
spection of the authors’ code and our analysis on
why it coincidentally works. We then conduct a fair
and thorough comparison between Kim-CNN and
XML-CNN in Section 4. Finally, we conclude
this work in Section 5. Supplementary materi-
als and programs used for experiments are avail-
able at https://www.csie.ntu.edu.tw/
~cjlin/papers/xmlcnn/.

2 XML-CNN: CNN for Multi-Label Text
Classification

For multi-label text classification, each instance
is an n-word document that is associated with a
subset of L possible categories. The relationship
between the document and the categories can be
modeled by a convolutional neural network (CNN),
as pioneered for multi-class text classification by
Kim-CNN (Kim, 2014). The architecture was later
extended to XML-CNN (Liu et al., 2017) for multi-
label text classification. Here we introduce the
two architectures along with a focus on the key
modifications.

2.1 CNN for Text Classification
Kim-CNN (Kim, 2014) is the first work that applies
convolutional neural networks in text classification.
The architecture is illustrated in Fig. 1a. Kim-CNN
preprocesses a document by first encoding the i-th
word to a k-dimensional embedding vector xi ∈
Rk (Pennington et al., 2014). We denote an n-word
document by x1:n, where xi:j = [xi, . . . ,xj ]

> ∈
R(j−i+1)×k represents a sub-sequence from the i-th
to the j-th word in the document.

A convolutional operation applies a filter wi ∈
Rm×k to a sub-sequence of m words to produce a
new feature:

ci = f(wi · xi:i+m−1 + bi), (1)

where f is an activation function such as ReLU,
bi ∈ R is a bias term and the “·” operator means
the sum after component-wise products between
two matrices. The filter is applied to all m-word
sub-sequences in the document to form a feature

map c = [c1, . . . , cn−m+1] ∈ Rn−m+1. Suppose
Kim-CNN uses t filters and let c(1), . . . , c(t) be
the corresponding feature maps. A max-pooling
layer is then applied to summarize the features as
z =

[
max(c(1)), . . . ,max(c(t))

]
∈ Rt. Lastly, a

dropout layer and a fully-connected layer is used
to predict a score vector

s = W̃ (z � r) + b̃ ∈ RL, (2)

where � is the element-wise multiplication opera-
tor, W̃ ∈ RL×t, b̃ ∈ RL are learnable parameters
and each ri of r ∈ Rt is a dropout random variable
that follows a Bernoulli distribution.

Kim-CNN was originally proposed for multi-
class classification based on the cross-entropy loss

−
∑L

i=1
yi log pi, where pi =

esi
∑L

j=1 e
sj

(3)

is the estimated probability of the i-th class, si is
the i-th element of s that denotes the score of the
i-th class, and y ∈ {0, 1}L denotes the ground
truth of the instance. If the i-th label is associ-
ated with the document, then yi = 1; otherwise,
yi = 0. By the construction of pi in Eq. (3),

∑
i pi

is forced to be 1, which is natural for multi-class
classification. For multi-label classification, how-
ever, it is not clear whether requiring all pi’s to sum
to one would be too restrictive, given that there
can be multiple yi’s with yi = 1. Nevertheless,
the loss has been considered for some multi-label
works (Gong et al., 2014; Ghosh et al., 2015).

2.2 From CNN to XML-CNN

XML-CNN is a pioneering work that extends Kim-
CNN from multi-class text classification to XMTC.
The architecture of XML-CNN is illustrated in
Fig. 1b. It extends Kim-CNN with three modi-
fications:
• using a label-wise binary cross-entropy loss in-

stead of the cross-entropy loss in Eq. (3),
• adding an additional linear hidden layer with

dropout,
• introducing dynamic max-pooling (Chen et al.,

2015) to extract multiple features from each
CNN filter.
For the first modification, the authors noticed the

issue of the cross-entropy loss discussed in Sec-
tion 2.1. They then allow the model to flexibly
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Figure 1: Architectures of Kim-CNN and XML-CNN.

predict multiple positive labels by taking the inde-
pendent binary cross-entropy loss instead:

−
∑L

i=1
[yi log(σ(si)) + (1− yi) log(1− σ(si))] ,

(4)
where σ(s) = 1

1+e−s is the sigmoid function.
For the second modification, the additional linear

layer may help to reduce the number of parame-
ters, allowing the model to be stored in common
GPU devices when L is extremely large. Let h be
the number of elements in the added hidden layer.
XML-CNN reduces the number of parameters after
the CNN layer from t×L in the original Kim-CNN
to

t× h+ h× L (5)

when h is sufficiently small.
For the third modification, the authors applied

dynamic max-pooling (Chen et al., 2015) in XML-
CNN to capture multiple features from different
parts of the document. In contrast to the traditional
max-pooling, which calculates the maximum along
the whole sequence, dynamic max-pooling divides
the sequence into multiple pools and then collects
the maximum values within each pool to get some
fine-grained features. Given a filter map c ∈ Rn,1

the formulation with d pools is:

D(c)=
[
max{c1:n

d
}, . . . ,max{cn−n

d
+1:n}

]
∈Rd.

(6)
The output becomes

z =
[
D(c(1)), . . . , D(c(t))

]
∈ Rdt

instead of
[
max(c(1)), . . . ,max(c(t))

]
∈ Rt in

Kim-CNN.

2.3 Claims about XML-CNN

Liu et al. (2017) compared their proposed XML-
CNN with Kim-CNN by reporting P@K on six
datasets,2 as shown in Table 1. P@K calculates
for each document the percentage of correct predic-
tions (i.e., precision) among the top K predicted la-
bels and reports the average over all test documents.
Table 1 clearly indicates significant improvements
from Kim-CNN to XML-CNN on all datasets. To
examine the impact of each new component in
XML-CNN, the authors further conducted ablation
studies to make the following claims.

• Eq. (4) is more suitable than Eq. (3) for multi-
label classification problems.

• The additional linear layer improves both the
performance and the scalability.

• Dynamic max-pooling further improves the per-
formance significantly.

The impressive progress of XML-CNN makes it a
standard benchmark for XMTC (e.g., Peng et al.,
2018; Prabhu et al., 2018; You et al., 2019; Chang
et al., 2020; Adhikari et al., 2019). However, we
will show in this study that the progress may not
be as significant as the authors claimed. While the
first modification is included in our evaluation in
Section 4.2, our focus is on the other two modifica-
tions, which correspond to the differences between
XML-CNN and Kim-CNN-Eq.(4), the multi-label
version equipped with the binary cross-entropy loss
in Eq. (4). Subsequently, Kim-CNN-Eq.(4) will be
shorthanded Kim-CNN for simplicity.

1Though we use c ∈ Rn−m+1 earlier, we let c ∈ Rn here
for easier explanation.

2Due to the space limit, we leave their and our NDCG@K
results in the supplementary materials.
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RCV1 Amazon-670K
P@1 P@3 P@5 P@1 P@3 P@5

Kim-CNN-Eq.(3) 93.54 76.15 52.94 15.19 13.78 12.64
XML-CNN 96.86 81.11 56.07 35.39 31.93 29.32

EUR-Lex Wiki-30K
P@1 P@3 P@5 P@1 P@3 P@5

Kim-CNN-Eq.(3) 42.84 34.92 29.01 78.93 55.48 45.05
XML-CNN 76.38 62.81 51.41 84.06 73.96 64.11

Amazon-12K Wiki-500K
P@1 P@3 P@5 P@1 P@3 P@5

Kim-CNN-Eq.(3) 90.31 74.34 58.78 23.38 11.95 8.59
XML-CNN 95.06 79.86 63.91 59.85 39.28 29.81

Table 1: Results reported in Liu et al. (2017), where Kim-CNN-Eq.(3) indicates the setting to optimize Eq. (3)
rather than Eq. (4).

3 Investigation into XML-CNN

In this section, we point out a significant gap be-
tween the formulations in the XML-CNN paper
and the authors’ implementations. We first repro-
duce the results in Liu et al. (2017) to ensure what
the authors have done. We then confirm the re-
ported superiority of XML-CNN over Kim-CNN
is actually due to some coincidences.

3.1 The Challenges of Reproducing Liu et al.
(2017)

The authors have released their implementation of
XML-CNN on GitHub.3 They wrote the code in
Lasagne (Dieleman et al., 2015), an outdated deep
learning framework. To facilitate a thorough com-
parison, we implement a PyTorch-based program4

that is as close to the released Lasagne code as pos-
sible. Though their implementation is available, to
our surprise, reproducing XML-CNN results on the
same datasets is more challenging than expected.
We leave details of solving various challenges in
Appendix A. In particular, we find that some data
sets used in Liu et al. (2017) are no longer available,
so similar ones are considered; see data statistics
in Table 2.

We choose EUR-Lex for checking the repro-
ducibility due to the following reasons.
• The dataset is publicly available and from Tabel 2

it has the same statistics as in Liu et al. (2017).
• The improvement of XML-CNN is significant as

shown in Table 1.
• The size is relatively small but adequate.
The results of the authors and our implementations

3https://github.com/jimmy646/XML-CNN
4The implementation is based on LibMultiLabel (re-

leased under the MIT license): https://github.com/
ASUS-AICS/LibMultiLabel

k

n

m × k

(a) Normal CNN that follows
Eq. (1) to go along the words.

k

n

n
×

m

(b) CNN in the public code
of Liu et al. (2017) that goes
along the embedding dimen-
sion.

Figure 2: Two implementations of CNN.

are respectively shown in the second and the third
rows in Table 3. The difference between the two
implementation is even smaller than the difference
between XML-CNN’s paper numbers to its public
implementation. This justifies that our results are
close enough for reproducing the numbers. We con-
clude that the author’s result on EUR-Lex can be
reproduced, though many issues must be addressed
in the entire process.

3.2 Problematic Gap Between
Implementations and Formulations

Though we can reproduce the results reported in
Liu et al. (2017), in checking their programs, we
surprisingly found some significant gaps between
the implementation and the formulations in their
paper. The first one is that their implementation of
the convolutional operation is completely different
from Eq. (1). We illustrate the two CNNs in Fig. 2.
In the authors’ implementation, the convolution
operation sweeps along the embeddings rather than
the words, as shown in Fig. 2b. That is, it seems
the authors did not implement what they intended
to do.

Another problem is about the dynamic max-
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Dataset # training data # test data # labels
EUR-Lex 15,449 3,865 3,956
Wiki-30K→Wiki10-31K 12,959→ 14,146 5,992→ 6,616 29,947→ 30,938
Amazon-12K→ AmazonCat-13K 490,310→ 1,186,239 152,981→ 306,782 12,277→ 13,330
Amazon-670K 490,449 153,025 670,091
Wiki-500K→Wiki-500K 1,646,302→ 1,779,881 711,542→ 769,421 501,069→ 501,008

Table 2: The datasets used in Liu et al. (2017). Some are no longer available, so similar ones are considered in this
work and “→" indicates the difference.

Implementation Framework P@1 P@3 P@5
Results reported in Liu et al. (2017) 76.38 62.81 51.41

Public code by Liu et al. (2017)’s authors Lasagne 74.28 58.98 48.16
Our code mimicking the above PyTorch 75.50 60.47 49.38

Table 3: Reproducing results reported in Liu et al. (2017) on EUR-Lex by using the authors’ and our implementations.

pooling. The authors set the default pool size to 2
and stride to 1 in their public implementation:

[max{c1:2},max{c2:3}, . . .max{cn−1:n}] , (7)

which differs from Eq. (6) in that overlapped pools
are used. Further, given that the aim of max-
pooling is to extract information from each pool,
a size-two pool is unusually small. We do not
know why the authors implemented dynamic max-
pooling in this form, but we will show that this odd
implementation, together with the wrong convolu-
tion mentioned earlier, surprisingly works well.

To compare with these unusual settings, we gen-
erate another implementation of XML-CNN by
following Eq. (1) and Eq. (6). The details of our
implementation can be found in Appendix B. Ac-
cording to Liu et al. (2017), this version should be
what its authors intend to have. Table 4 shows the
results on EUR-Lex by various ways to implement
Kim-CNN and XML-CNN. Other settings (e.g., hy-
perparameters) are kept to be the same as those in
the authors’ implementation; see also Section 3.1
and supplementary materials.5 From Table 4, we
have the following observations.
• For each category (Kim-CNN or XML-CNN),

the last row indicates the setting described in the
original papers. If the CNN input is changed to
the wrong one, the results of both Kim-CNN and
XML-CNN become dramatically worse (rows
1 and 5). On the other hand, if the implemen-
tation of dynamic max-pooling follows Eq. (7)
rather than Eq. (6), the result of XML-CNN also
significantly deteriorates (row 4).
5As mentioned in Section 2.3, we note again that Kim-

CNN in all our experiments, unless specified, optimizes the
same loss in Eq. (4) as XML-CNN.

• However, if both inappropriate settings for CNN
and dynamic max-pooling are applied, the result-
ing procedure corresponds to the actual imple-
mentation by Liu et al. and works surprisingly
well (row 3). In contrast, without the help of
Eq. (7), Kim-CNN by the inappropriate CNN
implementation performs poorly. In such a situa-
tion, Kim-CNN’s scores are quite similar to the
results of Kim-CNN reported in Liu et al. (2017),
as shown in Table 1. So we presume that in Liu
et al. (2017), Kim-CNN was implemented with
the inappropriate CNN setting.

In sum, the implementation seems not what Liu
et al. intended to do in their paper. Thus, their con-
clusions based on the unintentional implementa-
tions may be questionable. In particular, in Table 4
Kim-CNN is competitive if an implementation fol-
lowing its original paper (Kim, 2014) is considered.

For better distinction in subsequent discussions,
we name the two XML-CNN implementations re-
spectively corresponding to Liu et al.’s paper and
public code as follows.
• XML-CNN-paper: XML-CNN following

Eq. (1) and Eq. (6).
• XML-CNN-impl: XML-CNN using CNNs

sweeping along embeddings and Eq. (7).

3.3 The Two Implementations of XML-CNN:
Analysis

We try to explain why XML-CNN-impl can achieve
competitive results. For the analysis, we first ar-
gue that conceptually, the unusual dynamic max-
pooling Eq. (7) is similar to not doing pooling. The
reason is because the small pool size = 2 implies
that at least half of c elements are retained. Then
we design an experiment to compare the combina-
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Method
CNN sweeping
direction

Dynamic
Max-pooling

P@1 P@3 P@5 Note

Kim-CNN embeddings N/A 45.38 34.02 27.72 Actual implementation of Liu
et al. (2017)

Kim-CNN words N/A 75.83 61.08 50.19 Procedure described in Kim
(2014)

XML-CNN embeddings Eq. (7) 75.96 60.56 49.23 XML-CNN-impl: actual imple-
mentation of Liu et al. (2017)

XML-CNN words Eq. (7) 58.09 45.19 37.06
XML-CNN embeddings Eq. (6) 63.03 48.31 39.32
XML-CNN words Eq. (6) 75.73 61.82 50.82 XML-CNN-paper: procedure de-

scribed in Liu et al. (2017)

Table 4: Results of different implementations of the convolutional layer and dynamic max-pooling for Kim-CNN
and XML-CNN. The standard CNN input should be k × n. Other settings are the same as those for the last two
rows of Table 3.

tions of the following settings.

• CNN sweeping direction: embeddings or words
• Pooling implementation: standard max-pooing

or no pooling

Table 5 shows the P@1 scores on predicting the
test set of EUR-Lex. We have the following obser-
vations.

• Results of the (embeddings, no pooling) setting
are similar to those of the (embeddings, Eq. (7))
setting in Table 4. This confirms our earlier ar-
gument that Eq. (7) is close to no pooling.

• If CNN sweeps along the words, the standard
max-pooling is significantly better than no pool-
ing. A possible explanation is that when CNN
sweeps along the words, some sub-sequence of
words are shown to be more important than oth-
ers. Then the standard max-pooling is helpful
to identify them. This situation is similar to that
in image classification, where max-pooling is ef-
fective to extract “sharp” features (Springenberg
et al., 2015).

• If CNN sweeps along the embeddings, an oppo-
site situation occurs. No pooling is much better
than standard max-pooling. Because all the em-
beddings can be considered equally useful, the
resulting features after convolutional operation
have similar importance. For such “smooth” fea-
tures, it is known in image classification that aver-
age pooling or no pooling are recommend (Sprin-
genberg et al., 2015). In other words, standard
max-pooling can extract little information in
such a case and may lead to worse performance.

In Section 3.4, we will present results to further

max{c} No pooling
words 74.67 53.61
embeddings 58.14 76.48

Table 5: P@1 of combinations of CNN sweeping di-
rections and pooling methods for implementing XML-
CNN. Note that the first column differs from the first
two rows in Table 4 because we now have a hidden
layer.

support the above analysis.

3.4 The Two Implementations of XML-CNN:
Performance Comparison

Table 6 shows a comprehensive comparison be-
tween XML-CNN-impl and XML-CNN-paper on
more datasets. In contrast to Table 4 where we fol-
low the hyperparameters used in Liu et al. (2017),
we tune the hyperparameters for both methods
in Table 6.6 We observe that XML-CNN-paper
outperforms XML-CNN-impl on EUR-Lex and
Wiki10-31K. Following the discussion in Sec-
tion 3.3, the reason may be that XML-CNN-impl
lacks the ability to learn position-agnostic features
when documents are long. Note that for EUR-Lex
and Wiki10-31K, the documents are truncated to
500 words because of the long document length.
On the other hand, XML-CNN-impl works com-
petitively on AmazonCat-13K and Amazon-670K.
Though the documents are also truncated to 500
words when needed, the average document lengths
of these two sets are less than 250.

In sum, XML-CNN-paper should be preferable
6Details of experimental settings and hyperparameter

search are in Section 4.1 and Appendix C.
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because of the more reasonable architecture and
better performance on long documents. Moreover,
XML-CNN can deal with variable sentence lengths,
while XML-CNN-impl cannot because the network
architecture depends on the sentence length. We
consider XML-CNN-paper as the setting for XML-
CNN in subsequent experiments.

4 The True Performance of XML-CNN

After showing the gap between the implementation
and the formulation in Liu et al. (2017), the true
performance of XML-CNN should be re-examined.
In this section, we conduct a comprehensive abla-
tion study for XML-CNN to investigate the claims
in the original paper. We then investigate more
deeply on dynamic max-pooling to determine its
usefulness for XMTC tasks. The results bring us
a similarly competitive but simpler baseline for
XMTC tasks.

4.1 Experimental Setup

We consider a random 80/20 split of the training
data to generate a training subset and a validation
subset for hyperparameter selection. We follow
Liu et al. (2017) to truncate the documents to 500
words, represent each word as a 300-dimensional
GloVe word embedding (Pennington et al., 2014)
and pad the sequences in each batch when needed.
The word embeddings are considered as trainable
parameters during training. We have carefully con-
ducted hyperparameter selection. The procedure
and other details are in Appendix C.

We follow Liu et al. (2017) to train the mod-
els with 50 epochs on the whole training set after
hyperparameter tuning and then evaluate the test
set. We evaluate each method on three datasets:
EUR-Lex, Wiki10-31K, and AmazonCat-13K. In
Section 4.2, we conduct the ablation study by in-
cluding one larger dataset: Amazon-670K. All of
them are in English. The datasets are obtained from
the repository of You et al. (2019) and we follow
Liu et al. (2017) to reduce the vocabulary set.7

4.2 Ablation Studies of XML-CNN

To understand how each component introduced in
Liu et al. (2017) really works, we conduct an abla-
tion study as what the authors have done. Specifi-
cally, the effects of using Eq. (4) as the loss, adding
a linear hidden layer, and introducing dynamic max-
pooling are checked. By the results shown in Ta-

7See details in Appendix A.4.

ble 7, we can re-examine what the authors have
claimed in Liu et al. (2017). To begin, from the
first and the second rows, the loss function Eq. (4)
indeed improves the scores 2%-6% on each dataset.
The results validate the claim that Eq. (4) is more
suitable for multi-label tasks than Eq. (3).

Next, while adding a hidden layer is claimed
to be beneficial in Liu et al. (2017), our results
show that the hidden layer is slightly harmful on
EUR-Lex and Wiki10-31K when the standard max-
pooling is applied; see rows 2 and 4 in Table 7. It
works when dynamic max-pooling is employed, but
the improvements are not significant. The authors
also claimed that the hidden layer could reduce the
number of parameters; see Eq. (5). This claim is
true when h is relatively small compared with the
number of convolutional features. However, we
noticed that larger h’s such as 512 and 1, 024 are
always preferable after hyperparameter tuning. In
these cases, the number of parameters may not be
reduced.

Lastly, we discuss the effect of dynamic max-
pooling. In the situation of not adding a hid-
den layer, dynamic max-pooling slightly improves
upon the standard max-pooling on most but not all
datasets. If a hidden layer is included in the archi-
tecture, dynamic max-pooling also gives moderate
improvements. However, dynamic max-pooling
may require more network parameters due to mul-
tiple pools. To check its usefulness, we investigate
more in Section 4.3.

4.3 Further Investigation on Dynamic
Max-Pooling

We conduct two experiments to understand whether
dynamic max-pooling always benefits XML-CNN.
The first experiment is a comparison between dif-
ferent numbers of pools. The second experiment
compares dynamic max-pooling with standard max-
pooling by using a similar total number of parame-
ters.8 The experiment results and more discussions
are in Appendix D.1 and Appendix D.2. The inves-
tigations tell us:
• Using too many pools may deteriorate the per-

formance.
• Under similar total numbers of parameters, stan-

dard max pooling is more preferable than dy-
namic max-pooling.
8For dynamic max-pooling, the output size t× d is propor-

tional to the pool size d. For standard max-pooling (d = 1),
we can enlarge the number of filters t to have a similar number
of parameters; see details in Appendix D.2.
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method EUR-Lex Wiki10-31K
P@1 P@3 P@5 P@1 P@3 P@5

XML-CNN-impl 77.39 62.32 51.28 83.98 70.03 60.18
XML-CNN-paper 78.94 65.77 54.15 84.70 71.80 61.03

AmazonCat-13K Amazon-670K
P@1 P@3 P@5 P@1 P@3 P@5

XML-CNN-impl 94.73 80.29 64.97 38.02 34.13 31.20
XML-CNN-paper 94.78 80.03 64.52 35.69 31.89 29.08

Table 6: Comparison between the two XML-CNN implementations. XML-CNN-impl is the actual implementation
of Liu et al. (2017). XML-CNN-paper is our implementation that follows Liu et al. (2017).

loss function hidden max-pooling EUR-Lex Wiki10-31K Notelayer
P@1 P@3 P@5 P@1 P@3 P@5

Eq. (3) N standard 72.78 59.84 49.94 80.70 64.83 55.43 Kim-CNN (Kim, 2014)
Eq. (4) N standard 80.93 66.38 55.34 82.78 68.07 57.63
Eq. (4) N dynamic 77.88 64.58 53.38 83.37 70.64 60.16
Eq. (4) Y standard 76.56 62.92 51.84 81.73 68.82 58.65
Eq. (4) Y dynamic 78.94 65.77 54.15 84.70 71.80 61.03 XML-CNN (Liu et al., 2017)

AmazonCat-13K Amazon-670K
P@1 P@3 P@5 P@1 P@3 P@5

Eq. (3) N standard 92.85 76.90 61.76 27.23 24.65 22.70 Kim-CNN (Kim, 2014)
Eq. (4) N standard 93.41 78.11 62.95 33.38 29.99 27.47
Eq. (4) N dynamic 93.65 78.56 63.41 34.61 30.91 28.25
Eq. (4) Y standard 94.73 79.64 63.94 33.86 30.27 27.69
Eq. (4) Y dynamic 94.78 80.03 64.52 35.69 31.89 29.08 XML-CNN (Liu et al., 2017)

Table 7: An ablation study of XML-CNN. For max-pooling, “standard” means the standard way of using the single
maximal value, while “dynamic” means to use Eq. (6).

4.4 What We May Claim about XML-CNN

We conclude our findings in this section as follows:

• Eq. (4) is indeed more suitable for multi-label
tasks than Eq. (3).

• For the hidden layer, there is a minor tradeoff
between the number of parameters and the per-
formance. A negative way to interpret this is that
introducing the hidden layer does not always
improve the performance. However, a positive
interpretation is that with a slight performance
loss, a hidden layer can effective reduce the num-
ber of parameters when the output size of the
pooling operation is large.

• Dynamic max-pooling is not as beneficial as in-
creasing the number of convolutional filters.

After our careful re-investigation, our suggestion
to future studies of XMTC is that instead of using
XML-CNN as a baseline, the following simpler
settings can be considered.

• If there is no memory concern, Kim-CNN is suit-
able for its similar performance to XML-CNN.

• Otherwise, a simplified version of XML-CNN
without dynamic max-pooling, namely Kim-

CNN with an additional hidden layer, is suffi-
ciently strong and space-efficient as the baseline.

5 Conclusion

This work aims to highlight the importance of val-
idating existing works. From the investigation of
XML-CNN, we learned that there are many pitfalls
when developing new architectures. We correct
the issues in the authors’ implementation, care-
fully re-examine the claims about XML-CNN and
recommend suitable baselines for future studies.
Though not proposing a new method, we hope this
work encourages the community to reproduce and
re-examine influential works. This may help the
community build future works on top of correct
materials.
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A The Challenges of Reproducing Liu
et al. (2017)

A.1 Dataset

The authors evaluated XML-CNN on six datasets
from the Extreme Multi-Label Repository.9 Unfor-
tunately, some of the datasets have been changed
on the repository to different number of data/labels
(with a similar name). Furthermore, for some
of them, the repository does not provide the raw-
text documents, making it hard to preprocess the
documents to the embedding needed for XML-
CNN. Fortunately, we find the repository of Atten-
tionXML.10 (You et al., 2019) where two datasets
(EUR-Lex and Amazon-670K) of raw text match
the statistics of the datasets in the XML-CNN work.
We then choose the smaller EUR-Lex as the first
attempt to reproduce XML-CNN faithfully.

A.2 Evaluation

The released code includes only the training but not
the validation/evaluation procedure. In the original
paper (Liu et al., 2017), it is mentioned that 25%
of training data is reserved as the validation set
for hyperparameter selection. However, the details
such as how to generate the validation set, which
metric was considered in validation, and whether
they re-trained the model with the whole training
set are not specified in the paper. Therefore, we
cannot exactly replicate the results in Table 1. We
ran the released code and observed that with only
75% of training data, the results are always worse
than ones reported in Liu et al. (2017). Thus, we
presume that in Liu et al. (2017), the authors re-
ported the results of models trained on the whole
training set by using the selected hyperparameters.

A.3 Lasagne vs PyTorch

As mentioned in Sec 3.1, we implement a PyTorch-
based program that is as close to the released
Lasagne code as possible. We fix the common
hyperparameters such as the number of filters and
the dropout rate as ones provided in the authors’
implementation. Then we train the whole train-
ing set and follow their setting to report the test
scores at the 50-th epoch. The results of their and
our implementations are respectively shown in the

9http://manikvarma.org/downloads/XC/
XMLRepository.html

10The repository is free for non-commercial use. https:
//github.com/yourh/AttentionXML

second and the third rows in Table 8. The minor dif-
ferences between the scores are possible because
ensuring everything to be the same from the be-
ginning to the end is tremendously difficult. For
example, optimizers implemented in Lasagne and
PyTorch are not entirely the same. What we have
confirmed is that for the network part, under the
same input, the two implementations generate ex-
actly the same output and loss values. Therefore,
we conclude that our implementation can be used
together with theirs in checking the reproducibility.
However, both are still worse than the results of
Liu et al. (2017) in the first row of Table 8. This
fact encouraged us to investigate more on the data
processing step done in Liu et al. (2017).

A.4 Vocabulary Set

In Liu et al. (2017), the authors compared XML-
CNN with some linear-based algorithms, which
use bag-of-word (BOW) features to deal with doc-
ument inputs. The BOW features usually only con-
sider vocabularies with higher frequency to reduce
the dimensionality. To fairly compare XML-CNN
with linear models, the authors removed vocab-
ularies which are not used in the BOW features.
While the Extreme Multi-Label Repository pro-
vides BOW features of EUR-Lex and we assume
that they were used in Liu et al. (2017), the vo-
cabulary set of the BOW features is not accessible
now. Fortunately, we obtained from the repository
owner the vocabulary set used in generating their
BOW features. The results of XML-CNN with the
reduced vocabulary set are shown in the fourth and
the fifth rows in Table 8. By using the reduced
vocabulary set, the results of both Lasagne and Py-
Torch implementations are improved to be closer
to the ones in Table 1. As a result, we conclude that
the authors’ result on EUR-Lex can be reproduced,
though many issues must be addressed in the entire
process.

B Implementation Details of Section 3.2

To implement Eq. (6), we follow Adhikari et al.
(2019) to use AdaptiveMaxPool1d11 and consider
4 pools, i.e., d = 4. Notice that Eq. (6) does not
handle the situation where the sequence length is
not divisible by d. Adaptive max-pooling solve the
problem by allowing some overlapping between

11https://pytorch.org/docs/stable/
generated/torch.nn.AdaptiveMaxPool1d.
html
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Implementation Framework Vocabulary set P@1 P@3 P@5
Results reported in Liu et al. (2017) 76.38 62.81 51.41

Public code by Liu et al. (2017)’s authors Lasagne All 72.08 56.32 46.20
Our code mimicking the above PyTorch All 74.05 59.61 48.24
Public code by Liu et al. (2017)’s authors Lasagne Reduced 74.28 58.98 48.16
Our code mimicking the above PyTorch Reduced 75.50 60.47 49.38

Table 8: Reproducing results reported in Liu et al. (2017) on EUR-Lex by using the authors’ and our implementations.

parameter range
learning rate {0.0001, 0.0003,

0.001, 0.003, 0.01}
# of filters {96, 192, 384, 768}
embedding dropout {0.2, 0.4, 0.6, 0.8}
# pools {2, 8}
hidden layer {256, 512, 1024}
hidden layer dropout {0.2, 0.4, 0.6, 0.8}

Table 9: The range of hyperparameters used for selec-
tion.

pools. Therefore, it generates exactly d outputs
from documents with varying lengths.

C Details of Experimental Setup

From the hyperparameter ranges listed in Table 9,
we apply Optuna (Akiba et al., 2019) to select the
best hyperparameters from 48 random trials. In
the validation procedure, we optimize P@1 for
EUR-Lex, AmazonCat-13K, and Amazon-670K,
and P@3 for Wiki10-31K. We do not optimize P@1
for Wiki10-31K because there is a dominant class
that is associated with about 80% of data. Each trial
is stopped if the validation metric does not improve
for 10 epochs or when it reaches 50 epochs.

In the original papers of Kim-CNN and XML-
CNN, both described the use of filters with different
window sizes in the convolutional layer. In Kim
(2014) and Liu et al. (2017), filter sizes 3, 4, 5 and
2, 4, 8 are respectively used. However, as shown in
Table 10, using multiple filter sizes does not have
a significant benefit compared with using a fixed
filter size 8. Furthermore, among single filter-size
settings, the filter size 8 is generally competitive,
so we use it in our ensuing investigation.

The experiments are conducted on Azure with
an Nvidia Tesla V100 GPU, taking <1, <1, 6, 20
GPU hours for one trial on EUR-Lex, Wiki10-31K,
AmazonCat-13K, and Amazon-670K respectively.

D Further Investigation on Dynamic
MaxPooling

D.1 Effect of the Number of Pools

In dynamic max-pooling, a crucial hyperparameter
is the number of pools d. Nevertheless, in the pub-
lic code of the XML-CNN work (Liu et al., 2017),
due to the unusual setting in Eq. (7), d is not a fixed
number but depends on the document length. Con-
sequently, discussion about the number of pools is
lacking in the original work.

In Table 11, we conduct a comparison by us-
ing d ∈ {1, 2, 8, 32, 64}. On all datasets, d = 2
and d = 8 have the best performance. Increasing
the number of pools to more than 8 not only leads
to worse results on some problems, but also costs
more memory and training time. Our results indi-
cate that while the goal of dynamic max-pooling is
to extract multiple features from each CNN filter,
using too many pools may deteriorate the perfor-
mance instead.

D.2 Investigation on Dynamic Max-Pooling by
Fixing the Number of Parameters

As discussed in Sec 4.2, we noticed that the num-
ber of parameters in XML-CNN increases along
with the number of pools in dynamic max-pooling.
Assume the number of filters is t and the number
of pools is d. In XML-CNN, the total number of
filters after the pooling layer is t× d, while Kim-
CNN still only has t filters. It is unclear whether the
improvement of dynamic max-pooling is caused
by the richer information from multiple pools or
simply the larger number of parameters. We in-
vestigate this issue by comparing XML-CNN with
different numbers of pools but ensuring the similar
number of parameters. From Table 12, we observe
that XML-CNN with 1 pool (i.e., without dynamic
max-pooling) outperforms XML-CNN with 2 or
8 pools. The result reveals that the architectural
modification of dynamic max-pooling may not be
that useful.

Though increasing the number of filter also in-
troduced more parameters in CNN, the number is
negligible compared to the number of parameters in
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method filter sizes EUR-Lex Wiki10-31K AmazonCat-13K
P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

Kim-CNN [2] 78.45 63.41 52.46 83.30 69.34 59.17 93.48 78.21 63.03
[4] 79.04 64.23 52.66 83.19 68.78 58.26 93.66 78.56 63.35
[8] 80.23 66.12 54.48 83.07 69.98 59.96 93.75 78.97 63.93
[2, 4, 8] 79.90 66.43 54.86 82.65 68.05 56.93 93.51 78.14 62.93

XML-CNN [2] 75.83 62.35 51.67 82.91 69.20 58.97 94.59 79.80 64.32
[4] 77.70 62.97 52.27 82.84 70.20 59.73 94.87 80.27 64.79
[8] 77.98 65.11 53.90 82.68 69.40 59.43 94.55 79.72 64.16
[2, 4, 8] 78.37 64.78 53.61 80.47 68.23 58.24 94.89 80.02 64.25

Table 10: P@K results of comparison between fixed filter size and multiple filter sizes.

# pools EUR-Lex Wiki10-31K AmazonCat-13K
P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

d = 1 76.40 62.78 51.88 80.89 67.89 58.17 94.73 79.64 63.95
d = 2 77.98 65.11 53.90 82.68 69.40 59.43 94.55 79.72 64.16
d = 8 76.79 63.28 52.10 84.19 71.55 61.14 94.79 80.04 64.49
d = 32 66.57 52.51 42.56 82.94 69.20 59.20 94.46 79.45 63.78
d = 64 68.28 54.14 44.19 83.01 69.91 59.13 94.29 79.00 63.27

Table 11: Effect of number of pools in dynamic max-pooling

the output layer, where the output size L is usually
extremely large.

E NDCG results

This section shows NDCG@K results reported by
Liu et al. (2017) and in our experiments. Table 13
shows NDCG@K results reported by Liu et al.
(2017). Table 14 shows NDCG@K results cor-
responding to Table 4. Table 15 shows NDCG@K
results of our ablation study (Table 7). The obser-
vations from NDCG@K results are similar to those
from P@K results.
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# of filters # of pools EUR-Lex Wiki10-31K AmazonCat-13K
P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

256 1 76.66 63.70 52.64 83.07 69.35 58.89 94.52 79.66 64.23
128 2 77.36 62.93 51.79 83.62 68.92 58.35 94.34 79.51 64.14

1024 1 78.37 65.65 54.42 83.42 70.66 60.50 94.90 80.29 64.79
128 8 75.91 62.12 51.33 84.11 69.94 59.22 94.30 79.50 64.13

Table 12: A comparison between different settings of XML-CNN with the same number of parameters.

RCV1 Amazon-670K
N@1 N@3 N@5 N@1 N@3 N@5

Kim-CNN-Eq.(3) 93.54 88.2 87.26 15.19 14.6 14.12
XML-CNN 96.88 92.63 92.22 35.39 33.74 32.64

EUR-Lex Wiki-30K
N@1 N@3 N@5 N@1 N@3 N@5

Kim-CNN-Eq.(3) 42.84 36.95 33.83 78.93 60.52 51.96
XML-CNN 76.38 66.28 60.32 84.06 76.35 68.94

Amazon-12K Wiki-500K
N@1 N@3 N@5 N@1 N@3 N@5

Kim-CNN-Eq.(3) 90.31 83.87 81.21 23.38 15.45 13.64
XML-CNN 95.06 89.48 87.06 59.85 48.67 46.12

Table 13: NDCG@K results reported in Liu et al. (2017), where Kim-CNN-Eq.(3) indicates the setting to optimize
Eq. (3) rather than Eq. (4).

Method
CNN sweeping
direction

Dynamic
Max-pooling

N@1 N@3 N@5 Note

Kim-CNN embeddings N/A 45.38 36.72 33.04 Actual implementation of Liu
et al. (2017)

Kim-CNN words N/A 75.83 64.75 58.93 Procedure described in Kim
(2014)

XML-CNN embeddings Eq. (7) 75.96 64.31 58.20 XML-CNN-impl: actual imple-
mentation of Liu et al. (2017)

XML-CNN words Eq. (7) 58.09 48.30 43.81
XML-CNN embeddings Eq. (6) 63.03 51.92 46.88
XML-CNN words Eq. (6) 75.73 65.31 59.54 XML-CNN-paper: procedure de-

scribed in Liu et al. (2017)

Table 14: NDCG results of different implementations of the convolutional layer and dynamic max-pooling for
Kim-CNN and XML-CNN.
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loss function hidden max-pooling EUR-Lex Wiki10-31K Notelayer
N@1 N@3 N@5 N@1 N@3 N@5

Eq. (3) N standard 72.78 63.12 58.03 80.70 68.40 60.95 Kim-CNN (Kim, 2014)
Eq. (4) N standard 80.93 70.07 64.42 82.78 71.48 63.39
Eq. (4) N dynamic 77.88 67.93 62.13 83.37 73.61 65.61
Eq. (4) Y standard 76.56 66.40 60.60 81.73 71.81 64.01
Eq. (4) Y dynamic 78.94 69.11 63.09 84.70 74.84 66.61 XML-CNN (Liu et al., 2017)

AmazonCat-13K Amazon-670K
N@1 N@3 N@5 N@1 N@3 N@5

Eq. (3) N standard 92.85 85.90 83.50 27.23 26.02 25.20 Kim-CNN (Kim, 2014)
Eq. (4) N standard 93.41 87.03 84.77 33.38 31.70 30.60
Eq. (4) N dynamic 93.65 87.41 85.22 34.61 32.69 31.49
Eq. (4) Y standard 94.73 88.68 86.20 33.86 32.03 30.88
Eq. (4) Y dynamic 94.78 88.99 86.72 35.69 33.72 32.45 XML-CNN (Liu et al., 2017)

Table 15: An ablation study of XML-CNN evaluated by NDCG@K. For max-pooling, “standard” means the
standard way of using the single maximal value, while “dynamic” means to use Eq. (6).
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