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Abstract

Counterfactual statements describe events that
did not or cannot take place unless some
conditions are satisfied. Existing counter-
factual detection (CFD) methods assume the
availability of manually labelled statements
for each language they consider, limiting the
broad applicability of CFD. In this paper,
we consider the problem of zero-shot cross-
lingual transfer learning for CFD. Specifically,
we propose a novel loss function based on the
clue phrase prediction for generalising a CFD
model trained on a source language to mul-
tiple target languages, without requiring any
human-labelled data. We obtain clue phrases
that express various language-specific lexi-
cal indicators of counterfactuality in the tar-
get language in an unsupervised manner us-
ing a neural alignment model. We evaluate our
method on the Amazon Multilingual Counter-
factual Dataset (AMCD) for English, German,
and Japanese languages in the zero-shot cross-
lingual transfer setup where no manual anno-
tations are used for the target language dur-
ing training. The best CFD model fine-tuned
on XLM-R improves the macro F1 score by
25% for German and 20% for Japanese target
languages compared to a model that is trained
only using English source language data.

1 Introduction

A counterfactual statement describes an event that
may not, did not, or cannot take place, and the sub-
sequent consequence(s) or alternative(s) did not
take place (Milmed, 1957). Counterfactual state-
ments can take the form – If p was true, then q
would be true (i.e. assertions whose antecedent
(p) and consequent (q) are known or assumed to
be false). Counterfactual detection (CFD) is an
important task in NLP, which has found broad
applications such as customer review analysis in
e-commerce (O’Neill et al., 2021), social media
analysis (Son et al., 2017) and automatic psycho-
logical assessment (Janocko et al., 2016). To fur-

ther explain the CFD task, consider the following
counterfactual statement extracted from a product
review: I wish the trouser had ruching so that it
could fit me well. This is considered a counterfac-
tual statement because it has the subjunctive mood
wished and the author of the review wishes that
the trouser had ruching, whereas it does not have
in reality. In this particular example, trouser had
ruching is the antecedent and it could fit me well is
the consequent. Ideally, for a user who is search-
ing for trousers with ruching we should not dis-
play this particular trouser because it does not have
rouching. By accurately detecting counterfactual
statements, we can prevent such irrelevant search
results.

Almost all prior work on CFD has been limited
to the English language (Yang et al., 2020; Son
et al., 2017; Ding et al., 2020; Fajcik et al., 2020;
Lu et al., 2020; Ojha et al., 2020; Yabloko, 2020)
with the notable exception of O’Neill et al. (2021),
who looked at German and Japanese counterfac-
tuals in addition to English. However, all existing
work on CFD require manually labelled language-
specific counterfactual statements for the target
language of choice. Extending CFD to differ-
ent target languages has been hindered so far by
two main challenges. First, manual annotation
of counterfactuality is a time consuming and a
costly task, which requires professional linguists
as shown by O’Neill et al. (2021). Moreover, such
expert annotators might not be available for all
languages we would like to perform CFD. Second,
counterfactual clues such as wished, would have
(in English) or fehlt, wenn es (in German) etc. are
highly language-specific, which makes it difficult
to transfer a model trained on a source language to
a different target language without neither labelled
counterfactual examples nor clue phrase lists.

To address the above-mentioned challenges, we
propose a zero-shot cross-lingual transfer learning
method for CFD that learns a CFD model for a tar-
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get language without using any labelled data for
that target language. Our proposed method con-
sists of two steps: (a) automatic clue phrase ex-
traction for the target language and (b) learning
a CFD classifier for the target language by pre-
dicting the clue phrases in the text. We use a
neural alignment model (Dou and Neubig, 2021)
to align machine-translated source language coun-
terfactual sentences to find clue phrases for the tar-
get language. We then use those automatically ex-
tracted target language clue phrases to induce se-
quential labels for the sentences in the target lan-
guage to train a CFD model. For this purpose, we
propose a novel training objective that consists of a
main task (i.e. predicting whether a given sentence
contains a counterfactual statement or not) and an
auxiliary task (i.e. predicting whether a given to-
ken in a sentence is a clue phrase or not). To the
best of our knowledge, we are the first to propose
a transfer learning method for cross-lingual CFD,
let alone in a zero-shot setting that does not require
neither counterfactual clues nor labelled training
instances for the target language.

Using the Amazon Multilingual Counterfactual
Detection dataset (AMCD) (O’Neill et al., 2021),
we evaluate the proposed method for its ability to
perform cross-lingual zero-shot transfer. Specif-
ically, we use token-embeddings obtained from
XLM-R (Conneau et al., 2019) and mBERT1 to
train CFD models for German and Japanese tar-
get languages using counterfact labelled sentences
for English source language and automatically ex-
tracted clue phrases for each target language. In
particular, no human counterfact annotations for
the target language are used during training. Our
proposed method establishes a new state-of-the-
art for zero-shot cross-lingual transfer with an im-
provement of 25% in macro-averaged F1 score for
German and that of 20% for Japanese. The Source
code implementation for the proposed method will
be publicly released upon paper acceptance.

2 Related Work

For training and evaluating CFD methods, a
dataset was annotated in the SemEval-2020 Task
5 (Yang et al., 2020) covering two subtasks. The
first subtask is to classify a given sentence as to
whether it expresses a counterfactual statement or
not, whereas in the second subtask the participat-

1https://github.com/google-research/
bert/blob/master/multilingual.md

ing teams must extract the antecedent and conse-
quent from a given counterfactual statement. Our
goal in this paper is close to the first subtask,
which can be modelled as a sentence-level binary
classification problem. Most of the high perform-
ing methods (Ding et al., 2020; Fajcik et al., 2020;
Lu et al., 2020; Ojha et al., 2020; Yabloko, 2020)
submitted to SemEval-2020 Task 5 use state-of-
the-art pretrained language models (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019; Yang
et al., 2019) to represent sentences. Traditional
machine learning methods, such as support vec-
tor machines and random forests were also used
but with less success (Ojha et al., 2020). How-
ever, none of these previously proposed methods
consider cross-lingual nor zero-shot CFD settings.
To achieve the best prediction quality, ensem-
ble strategies are employed. The top performing
systems use an ensemble of transformers (Ding
et al., 2020; Fajcik et al., 2020; Lu et al., 2020),
while others include Convolutional Neural Net-
works (CNNs) with Global Vectors (Pennington
et al., 2014) embeddings (Ojha et al., 2020). Var-
ious structures are used on top of transformers.
For example, Lu et al. (2020); Ojha et al. (2020)
use a CNN as the top layer, while Bai and Zhou
(2020) use a Bi-GRUs and Bi-LSTMs. Some other
proposed methods use additional modules, such as
constituency and dependency parsers in the lower
layers of the architectures (Yabloko, 2020).

O’Neill et al. (2021) created the AMCD coun-
terfactual dataset by annotating sentences selected
from Amazon product reviews. Unlike the Se-
mEval dataset, which covers only English coun-
terfactuals, AMCD covers Japanese and German
counterfactuals in addition to English. AMCD
is the only publicly available multilingual CFD
dataset. Therefore, we use AMCD to evaluate the
cross-lingual zero-shot CFD models we propose
in this paper. O’Neill et al. (2021) trained CFD
models using different approaches such as bag-
of-words representations of sentences as well as
by fine-tuning pre-trained masked language mod-
els for each language separately. They also con-
sidered a cross-lingual zero-shot setting where
they first machine translated the source (English)
dataset into each of the target languages (German
and Japanese), and train CFD models for those
target languages using the translated training in-
stances. However, the performance of this ap-
proach was significantly worse than that of the in-
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(a) Alignment-based clue phrase extraction.

(b) End-to-end pipeline for extracting clue phrases.

Figure 1: An example of extracting clue phrase can-
didates for Japanese target language from a pair of
sentences obtained by machine translating an English
source language sentence to Japanese. The alignment
model aligns the English clue phrase wished with the
Japanese termあれば(areba), which is then extracted
as a candidate Japanese clue phrase.

language baselines, which lead to their conclusion
“simply applying MT on test data is not an alter-
native to annotating counterfactual datasets from
scratch for a novel target language.” This high-
lights the difficulty of the cross-lingual zero-shot
transfer problem setting for CFD, which we con-
sider in this paper.

One approach to learn accurate multilingual
representations with less supervision in down-
stream tasks is the few-shot or zero-shot cross-
lingual transfer learning. Here, the goal is to
transfer a model trained in the source language
into the target language with minimal loss in per-
formance. Few-shot transfer learning assumes
the availability of a small number of labelled in-
stances in the target language, while the zero-shot
setting assumes none. Recently, Pfeiffer et al.
(2020) proposed MAD-X, a zero-shot and few-
shot language model transfer framework based
on the adaptor framework (Houlsby et al., 2019).
Moreover, XTREME (Hu et al., 2020), a multilin-
gual benchmark containing many tasks, reported
the translate-train performance, where a model
is trained on a machine-translated version of the
source language dataset into the target languages
as a baseline for zero-shot transfer learning. How-
ever, to the best of our knowledge, ours is the first-
ever model proposed for cross-lingual zero-shot
transfer for CFD.

3 Cross-lingual Zero-shot CFD

Let us denote a sentence x = w1, w2, . . . , w|x|
consisting of a sequence of |x| tokens wj . CFD
is considered as a binary classification task in
this paper, where the goal is to predict whether
a sentence x contains a counterfactual statement
(y(x) = 1) or otherwise (y(x) = 0), indi-
cated by the binary label y(x). In the cross-
lingual zero-shot CFD setting, we consider the
problem of transferring a CFD model trained on
a source language s to a different target lan-
guage t. For this purpose we assume the avail-
ability of a counterfactual-labelled dataset, Ds =

{(xs,i, y(xs,i))}|Ds|
i=1 for the source language and

an unlabelled dataset, Dt = {xt,i}|Dt|
i=1 , for the tar-

get language. Here, we use the notation xs,i to
indicate the i-th sentence in the source (for the tar-
get xt,i) language dataset and its associated coun-
terfactual label y(xs,i). The source language is as-
sumed to be a language for which it is relatively
easier to create a large annotated dataset because
it is easier to recruit annotators than for the target
language. Following prior work on cross-lingual
transfer (Hu et al., 2020; O’Neill et al., 2021), we
use a machine translation (MT) system to trans-
late the sentences in Ds into the target language
with the labels unchanged to create a machine-
translated version of Ds, denoted by Dmt.

Counterfactual statements are rare in natural
language sentences and Son et al. (2017) report
that only 1-2% of sentences contain counterfactual
statements in a random collection of sentences.
Therefore, randomly selecting sentences for anno-
tation purposes results in a waste of annotation re-
sources such as annotator time and cost, and will
only result in an imbalanced and low-coverage
datasets. To address this issue, prior work (Son
et al., 2017; O’Neill et al., 2021; Yang et al., 2020)
creating annotated datasets for counterfactuality
has used language-specific clue phrases that indi-
cate various expressions frequently used to indi-
cate the presence of a counterfactual to filter candi-
date sentences for annotation. We use such coun-
terfactual clue phrases as auxiliary training data
for cross-lingual transfer. Specifically, we require
that a CDF model can not only (a) predict whether
a given sentence x is a counterfactual or not (main
task), but also be able to (b) predict whether a
token w in x is a clue phrase or not (auxiliary
task). Unlike obtaining annotations for counter-
factual statements in the target language, it is rela-
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tively easier to obtain a list of counterfactual clue
phrases for the target language. More importantly,
as we show later in § 3.1, it is possible to auto-
matically extract an accurate set of target language
clue phrases, Vt, using Ds, Dmt and a set of clue
phrases for the source language, Vs.

The auxiliary task is motivated by prior work in
semi-supervised learning (Ando and Zhang, 2005)
and masked language modelling (Devlin et al.,
2019), where it has been shown that by predicting
tokens that are highly related (i.e. clue phrases) to
the downstream task (i.e. sentence-level counter-
factual detection) we can learn task-specific cor-
relations between tokens. In contrast to the main
task, which is modelled as a sentence-level binary
classification task, we model the auxiliary task as
a token-level sequence labelling task. However,
unlike for the main task, where we have at least
counterfactual labelled sentences from the source
language (i.e. Ds), we do not have any manually
annotated training data neither for the source nor
for the target languages for the auxiliary task. For
this reason, we automatically label training data
for the auxiliary task as follows. For the source
language, we assign a binary-valued token label
y(wj) for each token wj in each sentence xi in Ds,
where y(wj) = 1, if wj ∈ Vs and y(wj) = 0 oth-
erwise. For example, given a sentence “The bot-
tom fits fine, but I wished there was more ruching
like in the photo.” we label “wished”, correspond-
ing to a clue phrase in English as 1 and other to-
kens as 0. To generate training data for the tar-
get language we can use either sentences in Dt or
Dmt. We empirically compare the different com-
binations of training data later in §5.1.

Next, we describe the training objectives asso-
ciated with the main and auxiliary tasks. Let us
consider a multilingual masked language model
(MLM), h, with pretrained parameters θ that as-
signs a vector h(w, x; θ) to a word w in a sen-
tence x. We train a feed forward neural network f
with parameters ϕ and a sigmoid output unit such
that given the embedding x of a sentence x it pre-
dicts whether x is counterfactual (i.e. f(x;ϕ) =
1) or otherwise (i.e. f(x;ϕ) = 0). Different
methods can be used to create sentence embed-
dings from MLMs such as mean or max pool-
ing, attention-based weighting or by simply con-
sidering the embedding for the classification (i.e.
[CLS]) token (Devlin et al., 2019). In our prelim-
inary investigations we found that considering the

[CLS] token embedding as a sentence representa-
tion to produce the best cross-lingual CFD perfor-
mance despite its simplicity. However, we note
that our proposed method is independent of the
choice of the sentence encoder and can be com-
bined with more complex sentence encoder archi-
tectures. In the subsequent discussion we denote
x = h([CLS], x;θ). Given that our main task of
CFD is modelled as a binary classification task, the
negative log-likelihood (NLL) loss for this predic-
tion task can be written as in (1).

Lcfd(D) = −
∑

x∈D

[
(1− y(x))(log(f(x))− 1)

+ y(x) log(f(x))
]

(1)

For the auxiliary task, we train a feed forward
neural network, g(h(w, x);ψ), that takes in the
contextualised embedding h(w, x) of token w in
sentence x and returns 1, if w is a clue phrase or 0
otherwise. We compute the NLL loss for the clue
phrase prediction task as in (2).

Lcp(D) = −
∑

x∈D

|x|∑

j=1

[
(1− y(wj))(1− log(z))

+ y(wj) log(z)
]

(2)

z = g(h(wj , x);ψ)

Finally we add the losses for the main and auxil-
iary tasks to compute the total loss. Our zero-shot
transfer model uses Dmt on the main task (1) and
either of Dmt or Dt on the auxiliary task (2), i.e.
Lcfd(Dmt) + Lcp(Dt) or Lcfd(Dmt) + Lcp(Dmt)
where we have dropped the model parameters for
notational convenience. Further details on model
training are provided in §4.

3.1 Automatic Clue Phrase Extraction

In some target languages such as low-resource lan-
guages, it might be even challenging to obtain a
sufficiently large list of clue phrases covering var-
ious constructions used to express counterfactual-
ity because of the difficulties in recruiting annota-
tors. Moreover, in a true zero-shot spirit it is de-
sirable not to assume any human supervision for
the target language – neither for the main nor aux-
iliary tasks. Therefore, in this section, we propose
a method to automatically extract clue phrases for
the target language using the list of clue phrases
for the source language, Vs, counterfactual la-
belled dataset for the source language, Ds, and
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its machine translated version, Dmt. First, we
use Awesome Aligner (Dou and Neubig, 2021),
an off-the-shelf neural alignment model, and com-
pute the alignment between each sentence xs,i in
Ds and its translation xmt,i. Next, for a token ws

in xs,i, which is a clue phrase in the source lan-
guage (i.e. ws ∈ Vs), we find the list of target
language tokens, At(ws). aligned with ws in all
sentence pairs, ∀|Ds|

i=1 (xs,i, xmt,i). The candidate
clue phrases in At(ws) are further filtered follow-
ing three criteria as described below. The end-to-
end pipeline for target language clue phrase ex-
traction is illustrated in Figure 1b between English
(source) and Japanese (target) languages. To dif-
ferentiate from the human annotated clue phrases
(referred to as gold clue phrases here onwards), we
call the clue phrases extracted via this alignment
process as auto-generated clue phrases.

Criterion 1: Non-counterfactual Sentence Ex-
clusion: Note that clue phrases can be ambigu-
ous with regard to whether they express counter-
factuality or not. For example, the clue phrase
wish indicates a counterfactual statement in the
sentence I wish this shirt was available in red,
whereas it does not in My wish came true. Such
ambiguous occurrences of counterfactual clues are
likely to be aligned with non-counterfactual ex-
pressions in the target language. To reduce the
noise due to this ambiguity in the unsupervised
alignment process, we exclude non-counterfactual
sentences from Ds and Dmt during the alignment
process. In other words, we consider alignment
between only sentence pairs (xs,i, xmt,i) such that
y(xs,i) = 1.

Criterion 2: Shared Term Exclusion: If a par-
ticular term wt appears in candidate sets At(ws)
extracted for many distinct source language clue
phrases ws, it is likely that wt is not a clue phrase
but a high frequent functional word or a stop
word. Therefore, we remove candidates appear-
ing in more than one candidate set At(ws) from
target language clue phrase set.

Criterion 3: Majority Filtering: If a target lan-
guage token wt is aligned with the same source
language clue phrase ws in multiple sentence
pairs, (xs,i, xmt,i), it increases the reliability of wt

as a clue phrase in the target language. We use this
intuition to filter candidates, where for each source
language clue phrase we select only the most fre-
quently aligned target language token as a clue

EN DE JA

Train 807 / 7,193 3865 / 1735 525 / 5,075
Dev 73 / 593 325 / 141 46 / 420
Test 150 / 1,184 650 / 284 96 / 838

Table 1: The number of sentences in AMCD with pos-
itive/negative label are shown respectively.

phrase. We refer to this filtering criterion as the
majority filtering. In cases where there are mul-
tiple target language tokens with the same high-
est frequency of alignment with a specific source
language clue phrase, we select all such tokens as
target language clue phrases according to the ma-
jority filtering criterion.

4 Experimental Settings

Dataset: We use the AMCD dataset, which con-
tains counterfactual statements annotated from
Amazon product reviews for three languages:
English (EN), German (DE), and Japanese
(JA). We use the original published train-
ing/development/test splits2 in our experiments,
for which the number of sentences are shown in
Table 1. Throughout the experiments, we regard
EN as the source language and DE and JA as the
target languages. To create machine translated
versions (i.e. Dmt) of the EN dataset into the tar-
get languages, we use Amazon MT.3

Clue Phrase: The human annotated clue
phrases provided by AMCD are considered as
the gold clue phrases for each language. For the
automatic clue phrase extraction described in
§3.1, we use Awesome Aligner (Dou and Neubig,
2021) as the neural alignment model.

To evaluate the level of cross-lingual counter-
factual detection (XCFD) performance that can
be obtained by directly translating the source lan-
guage clue phrases to the target language, we cre-
ate a Clue Phrase Translation (CP Translation)
baseline. This baseline uses Google Translate 4

to translate individual clue phrases in the source
language to the target language without using any
contexts for those clue phrases.

Models and Hyperparameters: To obtain
token embeddings, we use two multilin-
gual language models in our experiments:

2https://github.com/amazon-research/
amazon-multilingual-counterfactual-dataset

3https://aws.amazon.com/translate/
4https://translate.google.com
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Model Lcfd Lcp DE JA

mBERT

Dt 90.3 [88.1, 92.2] 83.7 [79.7, 87.3]
Ds 28.4 [26.0, 30.9] 47.3 [46.7, 47.8]
Dmt 70.9 [67.9, 73.8] 67.3 [62.7, 71.7]
Dmt Dt 65.7 [62.6, 68.7] 68.6 [64.6, 72.4]
Dmt Dmt 73.0 [70.1, 75.9] 68.3 [64.0, 72.4]

XLM-R

Dt 89.3 [87.1, 91.4] 86.2 [82.4, 89.8]
Ds 45.1 [41.8, 48.3] 59.2 [53.8, 64.6]
Dmt 64.7 [61.7, 67.7] 81.1 [76.8, 84.9]
Dmt Dt 68.0 [65.1, 71.0] 82.9 [79.0, 86.6]
Dmt Dmt 70.3 [67.4, 73.3] 81.9 [77.6, 85.8]

Table 2: F1 scores on the test set of each target lan-
guage with 95% confidence intervals in the brackets.
The columns Lcfd and Lcp represent the dataset used
respectively for the main (1) and auxiliary tasks (2).
Models with blank Lcp are trained without the auxil-
iary task. The results of in-domain performance where
labelled data from the target language is used to train
a CDF model are shown in italics, the results with the
auxiliary task are in shown bold face, and the best zero-
shot result in each language is underlined.

mBERT (Devlin et al., 2019) and XLM-R
(large model) (Conneau et al., 2019). Both of
those models are transformer-based (Vaswani
et al., 2017), but mBERT has been pretrained
Wikipedia articles covering the 104 languages
with the largest Wikipedias. On the other
hand, XLM-R has been trained on 2.5TB of
filtered CommonCrawl data containing 100
languages. The initial weights are taken from
the bert-base-multilingual-cased and
xlm-roberta-large model checkpoints,
made available at the Huggingface transformers
model hub (Wolf et al., 2020). We use the Adam
optimizer (Kingma and Ba, 2014) with a batch
size of 128, an initial learning rate of 0.00001 and
train our CFD models for 5 epochs. As the eval-
uation metric, we report the macro-averaged F1
scores with 95% bootstrap estimated confidence
intervals (Efron and Tibshirani, 1994).5

5 Results

5.1 Zero-shot Transfer with Auxiliary Task

Table 2 shows our main results of zero-shot cross-
lingual transfer with the auxiliary task Lcp (2) to-
gether with the main task Lcfd (1). As an upper
bound on performance, we train a CFD model us-
ing labelled data for the target language Lcfd(Dt)

5https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.
bootstrap.html

Lcp Clue Phrase Type DE JA

Dt

Human 66.9 [64.0, 69.9] 79.0 [76.0, 83.7]
CP Translation 67.4 [64.4, 70.3] 79.0 [74.9, 82.7]
Alignment 64.9 [61.8, 68.0] 80.1 [75.9, 83.9]
Alignment1 66.0 [63.0, 69.0] 82.9 [79.0, 86.6]
Alignment2 62.9 [59.9, 66.0] 77.5 [73.4, 81.4]
Alignment3 68.0 [65.1, 71.0] 79.5 [75.4, 83.3]
Alignment1,2 58.5 [55.4, 61.7] 79.1 [74.6, 83.2]
Alignment2,3 65.5 [62.5, 68.5] 80.0 [75.7, 83.9]
Alignment1,2,3 63.4 [60.3, 66.5] 78.9 [74.7, 82.7]
Alignment1,3 65.8 [62.7, 68.9] 80.4 [76.3, 84.1]

Dmt

Human 70.3 [67.4, 73.3] 81.6 [77.4, 85.6]
CP Translation 64.2 [61.1, 67.2] 81.3 [77.1, 85.3]
Alignment 65.8 [62.9, 68.8] 81.6 [77.4, 85.5]
Alignment1 68.0 [65.0, 70.9] 79.5 [75.5, 83.4]
Alignment2 67.4 [64.4, 70.3] 81.7 [77.4, 85.6]
Alignment3 66.8 [63.7, 69.7] 81.9 [77.6, 85.8]
Alignment1,2 64.2 [61.1, 67.2] 78.2 [73.8, 82.2]
Alignment2,3 65.3 [62.3, 68.3] 75.7 [70.5, 80.5]
Alignment1,2,3 63.2 [60.1, 66.3] 78.4 [73.8, 82.4]
Alignment1,3 65.3 [62.3, 68.3] 79.6 [75.6, 83.3]

Table 3: F1 scores of XLM-R trained along different
clue phrase types. All the scores are evaluated on the
test set of each target language with 95% confidence
intervals shown in the brackets. The filtering criteria
used in each alignment approach is noted in its super-
script. The best results in each language and Lcp are in
bold face.

with mBERT and XLM-R separately. Recall that
in the zero-shot setting we consider in this pa-
per, we will not have access to such counterfac-
tual labelled sentences for the target language.
As a comparison, we report baselines, which are
models trained on the main task with the source
Lcfd(Ds) or the translation Lcfd(Dmt) without the
auxiliary task. We see that the best zero-shot
cross-lingual transfer results are obtained using
our proposed method for mBERT as well as XLM-
R for both DE and JA. Specifically, F-score for DE
improves from 70.9 to 73.0 in mBERT and for JA
it improves from 81.1 to 82.9 in XLM-R by adding
the auxiliary task to the main task on Dmt. This
supports our proposal to use clue phrase predic-
tion in the target language as an auxiliary task for
cross-lingual CFD.

From Table 2 we see that among the models
trained with the auxiliary tasks, XLM-R-based
models (Lcp ∈ {Dmt,Dt}) perform better for
JA than those obtained with mBERT, while the
best model for DE (Lcp = Dmt) is obtained us-
ing mBERT. In particular the best performance
for JA is obtained with XLM-R (82.9), which is
significantly better than the best performance for
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Lcp Clue Phrase Type DE JA

Dt

Human 63.7 [60.6, 66.8] 65.3 [61.6, 69.2]
CP Translation 61.9 [58.7, 65.0] 66.4 [62.4, 70.2]
Alignment 63.6 [60.5, 66.7] 64.7 [61.0, 68.6]
Alignment1 63.7 [60.5, 66.7] 61.9 [58.3, 65.5]
Alignment2 63.7 [60.6, 66.7] 68.6 [64.6, 72.4]
Alignment3 64.4 [61.3, 67.4] 66.4 [62.4, 70.3]
Alignment1,2 62.6 [59.5, 65.7] 68.6 [64.6, 72.4]
Alignment2,3 64.3 [61.2, 67.3] 66.1 [62.2, 69.9]
Alignment1,2,3 65.2 [62.1, 68.3] 65.4 [61.6, 69.3]
Alignment1,3 65.7 [62.6, 68.7] 67.6 [63.5, 71.5]

Dmt

Human 70.7 [67.8, 73.7] 68.3 [64.0, 72.4]
CP Translation 71.6 [68.7, 74.5] 68.3 [63.9, 72.4]
Alignment 70.8 [67.9, 73.8] 65.8 [61.1, 70.2]
Alignment1 70.8 [67.8, 73.7] 67.0 [62.3, 71.5]
Alignment2 70.0 [67.0, 73.0] 64.9 [60.1, 69.5]
Alignment3 72.7 [69.8, 75.6] 66.4 [61.9, 70.7]
Alignment1,2 71.7 [68.7, 74.6] 66.2 [61.6, 70.4]
Alignment2,3 72.5 [69.6, 75.4] 66.7 [62.1, 70.9]
Alignment1,2,3 73.0 [70.1, 75.9] 65.1 [60.4, 69.5]
Alignment1,3 72.4 [69.5, 75.3] 64.5 [59.8, 69.0]

Table 4: F1 scores of mBERT trained along different
clue phrase types. All the scores are evaluated on the
test set of each target language with 95% confidence
intervals shown in brackets. The filtering criteria used
in each alignment approach is noted in its superscript.
The best results in each language and Lcp are in bold
face.

JA obtained with mBERT (68.6). Although the
best performance for DE obtained with mBERT
(73.0) is better than that with XLM-R (70.3),
the performance difference between these two re-
sults are not statistically significant as evident
from the overlapping confidence intervals. Note
that compared to mBERT, which is trained on
Wikipedias for different languages, XLM-R is
trained on a much larger CommonCrawl corpus.
Moreover, JA Wikipedia (530M tokens) is sig-
nificantly smaller than that of DE (10297M to-
kens). Because mBERT tokenises CJK languages
into individual characters and uses a 110K shared
WordPiece vocabulary, the coverage of Japanese
(which has lower overlap of subtokens with other
languages) is less in mBERT. Therefore, XLM-
R is capable of learning better representations for
Japanese than mBERT, leading to better XCFD
performance for JA.

In terms of the datasets used for the auxiliary
task, the best model in DE uses the translation
Dmt, while that in JA uses the target corpus Dt for
both mBERT and XLM-R. In general, the trans-
lation from EN to JA is harder than that from EN
to DE as reported in Aiken (2019). Therefore, it

Model Lcfd Lcp DE JA

mBERT Dmt
Dt 63.9 [60.7, 66.9] 68.1 [64.1, 72.0]
Dmt 73.1 [70.2, 76.0] 67.3 [63.0, 71.4]

XLM-R Dmt
Dt 63.5 [60.5, 66.6] 79.7 [75.5, 83.4]
Dmt 68.8 [65.8, 71.6] 77.5 [73.5, 81.2]

Table 5: F1 scores of models trained on both of the
human annotated and the automatically extracted clue
phrase (the best clue phrase type shown in Table 2
is used). All the scores are evaluated on the test set
of each target language with 95% confidence intervals
shown in brackets.

is better to use Dt for the auxiliary task instead
of Dmt when the translation quality for the target
language is low such as from English to Japanese.
Considering that Dmt is already used for the main
task, by using Dt for the auxiliary task, which
provides additional information not available by
simply machine translating the sentences from the
source language, we can provide extra supervision
to the model.

5.2 Effect of Clue Phrase Choices

Table 3 and Table 4 show the results when using
respectively XLM-R and mBERT as the text en-
coders with different clue phrase types including
the human annotation, clue phrase translation, and
our proposed alignment-based method (see §4 for
detailed setting). The alignment-based method op-
tionally has the three criteria described in §3.1 for
filtering clue phrase candidates in the target lan-
guage: 1 (non-counterfactual sentence exclusion),
2 (shared term exclusion), and 3 (majority filter-
ing). We evaluate all possible combinations of fil-
tering methods with the Alignment method, indi-
cated by superscripts in Table 3. Alignment with-
out any superscripts correspond to applying none
of the candidate filtering criteria. Note that the re-
sults of XLM-R with the auxiliary task in Table 2
are the best results within each target language in
Table 3.

From Table 3, we see that our alignment-based
clue phrases can outperform manual clue phrases
in both of Lcp(Dt) and Lcp(Dmt) in JA, and
Lcp(Dt) in DE with the best configuration. Fur-
thermore, the best alignment-based clue phrases
are better than clue phrase translation, which is
still competitive compared to the human annotated
clue phrases. This shows that high quality clue
phrases can be automatically extracted using the
method described in § 3.1. We reemphasize that
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clue context

wäre (would be) dieses Produkt wäre toll, wenn... (This product would be great if ...)
wünschte (wished) ich wünschte dieses Produkt wäre ...(I wish this product was ...)
hätte (would have) hätte dieses Produkt ... (would this product ...)
könnte (could) dieses Produkt könnte besser sein, wenn es ... (this product could be better if it ...)

と思っていた (thought it was) Mサイズだと思っていた (thought it was M-size)
希望 (hope) プラスチック製の物を希望していた (hope it was made from plastic)
かもしれない(could) もう少し小さければ良かったかもしれない (could be better if it was smaller )
があれば(if it had) 蓋があれば良かった (if it had a lid)

Table 6: Automatically extracted clue phrases and their contexts for German (top) and Japanese (bottom) target
languages. English translations are shown in brackets.

it is beneficial to be able to automatically extract
clue phrases in zero-shot adaptation, because we
might not always be able to recruit human anno-
tators to manually compile clue phrase lists for all
the target languages we would like to adapt to.

Table 4 shows the level of performance the pro-
posed method would obtain if mBERT was used
as the text encoding model. We see that the
best performance for DE (73.0) is obtained by ap-
plying all filtering criteria, whereas with XLM-R
the best performance for DE (70.3) was obtained
with human-written clue phrases. However, as
explained previously in § 5.1, the differences be-
tween these two results are not statistically sig-
nificant. On the other hand, for JA we see that
mBERT results are consistently lower than the cor-
responding XLM-R results across all filtering set-
tings considered in Table 4 and Table 3. This com-
parison shows that the multilingual MLM used to
encode text is an important choice for the perfor-
mance of XCFD. However, this choice has been
largely overlooked in prior work. For example,
O’Neill et al. (2021) used only a single multilin-
gual MLM (i.e mBERT only) in their cross-lingual
evaluations. Although their reported best XCFD
results with mBERT for JA and DE is better than
those with our mBERT results, these results can-
not be directly compared because unlike our zero-
shot approach that does not use any labelled data
for the target language, O’Neill et al. (2021) pro-
posed a fully-supervised method where they use
all of the available labelled data for the target lan-
guage.

5.3 Combining Automatic Clue Phrase with
Human Annotated Clue Phrase

We study the effect of incorporating both types
of clue phrases (human annotated and automati-
cally extracted) in the training process for the aux-

iliary task in Table 5. Compared to the best per-
formances reported in Table 2 and Table 3 using
the automatically extracted clue phrases, we see
no further gains (in some cases even a drop) in
performances for the target languages when us-
ing human annotated clue phrases in addition to
the automatically extracted clue phrases in the
auxiliary task. This shows that automatically ex-
tracted clue phrases are of a higher quality than the
human-written clue phrases, and already capture
the counterfactual clues contained in the human-
written gold clue phrases. Some example clue
phrases automatically extracted by the method de-
scribed in § 3.1 are shown in Table 6 for German
and Japanese target languages. We see that infor-
mative clue phrases are extracted by the proposed
method for both of those target languages.

6 Conclusion

We studied zero-shot cross-lingual transfer learn-
ing for CFD and proposed a novel training ob-
jective that combines (a) token-level clue phrase
prediction in target language sentences and (b)
sentence-level counterfactuality prediction for
source language (and translated to target language)
sentences. Moreover, we proposed a method to au-
tomatically extract clue phrase for a given target
language, which obviates the need for manually
compiled clue phrases. Predicting clue phrases
as an auxiliary task improves cross-lingual trans-
fer from English source to German and Japanese
target languages, obtaining state-of-the-art perfor-
mances on AMCD.

7 Ethical Considerations

In this section, we discuss the ethical considera-
tions related to these contributions. With regard to
the dataset, we use the AMCD where the sentences
were selected from a publicly available Amazon
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product review dataset. We do not collect or re-
lease any additional product reviews not included
in the original AMCD as part of this paper. Al-
though the dataset is manually verified that the
sentences in the dataset do not contain any cus-
tomer sensitive information, product reviews can
contain socially biased opinions. However, we
do not apply any bias mitigation methods in this
paper, thus it is possible that the dataset biases
present (if any) in AMCD are also encoded in
the models we train in this paper. We use two
pretrained multilingual language models, mBERT
and XLM-RoBERTa, to obtain cross-lingual zero-
shot CFD models. Those pretrained language
models are known to be biased due to the curated
pretraining corpus from web (Bommasani et al.,
2020). Likewise for the dataset, we do not fil-
ter such social biases in the the language models.
Therefore, we recommend that further evaluations
to be performed before deploying the CFD models
we train in this paper in real-world NLP systems.
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