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Abstract

The ability to extrapolate, i.e., to make predic-
tions on sequences that are longer than those
presented as training examples, is a challeng-
ing problem for current deep learning mod-
els. Recent work shows that this limitation
persists in state-of-the-art Transformer-based
models. Most solutions to this problem use
specific architectures or training methods that
do not generalize to other tasks. We demon-
strate that large language models can succeed
in extrapolation without modifying their archi-
tecture or training procedure. Our experimental
results show that generating step-by-step ratio-
nales and introducing marker tokens are both
required for effective extrapolation. First, we
induce a language model to produce step-by-
step rationales before outputting the answer to
effectively communicate the task to the model.
However, as sequences become longer, we find
that current models struggle to keep track of
token positions. To address this issue, we inter-
leave output tokens with markup tokens that
act as explicit positional and counting sym-
bols. Our findings show how these two com-
plementary approaches enable remarkable se-
quence extrapolation and highlight a limitation
of current architectures to effectively generalize
without explicit surface form guidance. Code
available at https://github.com/MirelleB/
induced-rationales-markup-tokens

1 Introduction

The lack of compositional generalization of neu-
ral networks has been a long-standing limitation
known for decades (Fodor and Pylyshyn, 1988;
Schmidhuber, 1990; Marcus, 1998, 2018; Lake and
Baroni, 2018; Liška et al., 2018; Keysers et al.,
2019). This is often associated with their fail-
ure to extrapolate, i.e., the ability to work on se-
quences that are longer than those presented as
training examples. Modern architectures such as
the Transformer (Vaswani et al., 2017), which is
the core component of state-of-the-art NLP models,

GPT-3 Finetuned
on thousands of examples

"run around left thrice"

Answer: LEFT RUN 1 LEFT RUN 2 LEFT 
RUN 3 LEFT RUN 4 LEFT RUN 5 LEFT 
RUN 6 LEFT RUN 7 LEFT RUN 8 LEFT 
RUN 9 LEFT RUN 10 LEFT RUN 11

        (missing LEFT RUN 12)

Frozen GPT-3 

A few in-context examples with
explanations and markup tokens

+
"run around left thrice"

Explanation: "run around left" corresponds to 4 
LEFT RUN commands. Because of the word 
"thrice", "run around left thrice" results in 3 x 4 
= 12 LEFT RUN commands.
Answer: LEFT RUN 1 LEFT RUN 2 LEFT RUN 3 
LEFT RUN 4 LEFT RUN 5 LEFT RUN 6 LEFT RUN 
7 LEFT RUN 8 LEFT RUN 9 LEFT RUN 10 LEFT 
RUN 11 LEFT RUN 12

(a) (b)

Figure 1: Answers produced by a GPT-3 model on the
“length” split of the SCAN dataset when (a) fine-tuned
on thousands of examples vs (b) induced via a few in-
context examples to generate explanations and markup
tokens (in yellow).

perform poorly on this class of problems (Bhat-
tamishra et al., 2020; Nogueira et al., 2021; Wang
et al., 2021; Pal and Baral, 2021; Welleck et al.,
2021; Bogin et al., 2022; Finlayson et al., 2022;
Mittal et al., 2021). In Figure 1-(a), we illustrate
how recent large language models such as GPT-3
fail at this task, even when fine-tuned on thousands
of examples.

Architectures and training methods that tar-
get this specific problem are often developed
based on synthetic tasks whose creation rules are
known (Das et al., 1992; Li et al., 2019b; Russin
et al., 2019; Andreas, 2020; Liu et al., 2020a; Chen
et al., 2020; Herzig and Berant, 2021; Shaw et al.,
2021; Zhu et al., 2021). Thus, they resort to tech-
niques such as augmenting the training data or bias-
ing the model’s architecture to internally represent
these rules. However, improvements obtained on
one compositional generalization benchmark do
not transfer to others (Furrer et al., 2020), i.e., they
lose their ability to be used as competitive general-
purpose models in real tasks, as these can seldom
be solved with a small set of rules.

We study the behavior of Transformer models
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and demonstrate that this problem is not due to
an intrinsic limitation of their training algorithm.
We show that inducing autoregressive models to
rationalize before making a prediction (Wang et al.,
2022; Zelikman et al., 2022) is not enough to ex-
trapolate on long sequences: to solve it, we intro-
duce markup tokens (Nogueira et al., 2021; Kim
et al., 2021). The two general approaches together
allow the models to achieve remarkable extrapo-
lation generalization without requiring changes to
the model or architecture. These findings provide
evidence that general-purpose models have the abil-
ity to both improve their effectiveness and inter-
pretability at the same time. The need to markup
tokens also suggests there are fundamental issues
that need to be addressed in the Transformer archi-
tecture, particularly the need for better positional
representations. Thus, our study confirms and sup-
ports recent results from previous work that posi-
tional embeddings used in current state-of-the-art
Transformer models cannot precisely track of token
positions or perform precise counting (Liu et al.,
2020b; Thawani et al., 2021; Press et al., 2022).

2 Related Work

A long list of architectures and training methods
attempt to improve the extrapolation capabilities
of deep learning models. For instance, some are
specifically designed to solve only a handful of
tasks (Singh, 1992; Kaiser and Sutskever, 2015;
Kalchbrenner et al., 2015; Price et al., 2016; An-
dreas et al., 2016, 2017; Trask et al., 2018). Pre-
trained word embeddings find it difficult to extrap-
olate to unseen numbers in training (Wallace et al.,
2019). Alternatives to improving the extrapola-
tion ability of neural models include building neu-
ral models with a pre-training corpus of numeri-
cal text (Geva et al., 2020) or using scientific no-
tation to represent numbers (Zhang et al., 2020).
Likewise, better numerical and compositional skills
can be achieved by supplementing input texts with
pre-computed numerical calculations (Andor et al.,
2019) or explicitly assuming rules or mathematical
equations from natural language texts (Liu et al.,
2019; Li et al., 2019a; Zou and Lu, 2019a,b; Shi,
2020; Qiu et al., 2021). Many of these models are
capable of adding numbers larger than those seen
during training. In contrast, more general-purpose
architectures fail to extrapolate on numerical tasks
(Joulin and Mikolov, 2015; Dehghani et al., 2018;
Schlag et al., 2019).

Our work derives from recent findings that show
that inducing the model to generate explanations
in natural language leads to better performance in
a wide variety of tasks (Recchia, 2021; Fernandes
et al., 2022; Wang et al., 2022; Zelikman et al.,
2022; Nye et al., 2022; Katz et al., 2022; Zhou
et al., 2022; Khot et al., 2022). In particular, the
work proposed by (Zhou et al., 2022) achieves
state-of-the-art results in the extrapolation of tasks
involving symbolic manipulation, compositional
generalization and numerical reasoning. Tasks are
solved via few-shot learning applied to a large lan-
guage model (e.g. text-davinci-002) in two main
steps. The first step consists of reducing the ques-
tion into sub-questions, then, in the second phase, a
new interaction is made with the model, now solv-
ing sequentially the sub-questions generated in the
previous step.

The results shown in Zhou et al. (Zhou et al.,
2022) corroborate our intuition that explanations
alone are not enough to achieve extrapolations. By
inducing the model to generate explanations and
markup tokens, we provide evidence that compo-
sitional generalization can be achieved without
sacrificing the general applicability on other tasks,
which is often a feature that is lost with architec-
tural modifications.

However, a limitation of Zhou et al.’s and our
method is that both require a programmatic post-
processing step: Zhou et al. use a python script
to convert the model output (e.g., 3*["LEFT"]),
which is in python notation, into the expected for-
mat of the final answer (e.g., LEFT LEFT LEFT);
in our method, we programmatically remove the
markup tokens from the final answer. We argue
that the need to call an external script exposes a
limitation in the current Transformer architecture,
namely, that it cannot handle long sequences of
repeated tokens.

3 Methodology

In this section, we describe our proposed method
for inducing explanations and markup tokens us-
ing in-context learning with a few examples. We
first create a prompt ic||oc that concatenates in-
context training examples ic with a test exam-
ple oc. The ic examples consist of N triples
of “Instruction”, “Explanation” and “Output”, i.e.,
ic = {(i∗1, e∗1, o∗1), ..., (i∗N , e∗N , o∗N )}. The test ex-
ample oc is made of only the “Instruction” field.
When we feed ic||oc to a language model, it should
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Example 1: 
Instruction: add the numbers E 4 D 1 C 6 B 5 A 4 and D 1 C 8 B 5 A 3 

Explanation:
This first number goes until position E, whereas the second goes until position D. The first number is the longest, so we sum
digits in positions A, B, C, D, E. 

We sum the digits in position A, which are A 4 and A 3. That is 4 + 3, which equals to 7. Because 7 is less than or equal to 9,
this results in carry 0 and A 7. 

This carry 0 is summed with digits in position B, which are B 5 and B 5. That is 0 + 5 + 5, which equals to 10. Because 1 0 is
greater than 9, this results in carry 1 and B 0.

This carry 1 is summed with digits in position C, which are C 6 and C 8. That is 1 + 6 + 8, which equals to 15. Because 1 5 is
greater than 9, this results in carry 1 and C 5.

This carry 1 is summed with digits in position D, which are D 1 and D 1 .That is 1 + 1 + 1, which equals to 3. Because 3 is
less or equal than 9, this results in carry 0 and D 3.

This carry 0 is summed with digits in position E, which are E 4 and E 0. That is 0 + 4 + 0, which equals to 4. Because 4 is
less than or equal to 9, this results in carry 0 and E 4.
Output: E 4 D 3 C 5 B 0 A 7

(...)

Example 6: 
Instruction: add the numbers D7 C7 B8 A5 and D1 C7 B1 A7 

Input

Explanation:
This first number goes until position D, whereas the second goes until position D. Both numbers have equal length, so we
sum digits in positions A, B, C, D.

We sum the digits in position A, which are A 5 and A 7. That is 5 + 7, which equals to 12. Because 1 2 is greater than 9, this
results in carry 1 and A 2. 

This carry 1 is summed with digits in position B, which are B 8 and B 1. That is 1 + 8 + 1, which equals to 10. Because 1 0 is
greater than 9, this results in carry 1 and B 0. 

This carry 1 is summed with digits in position C, which are C 7 and C 7. That is 1 + 7 + 7, which equals to 15. Because 1 5 is
greater than 9, this results in carry 1 and C 5. 

This carry 1 is summed with digits in position D, which are D 7 and D 1. That is 1 + 7 + 1, which equals to 9. Because 9 is
less than or equal to 9, this results in carry 0 and D 9. 

Output: D 9 C 5 B 0 A 2

Model output

Figure 2: Example of a few-shot prompt and model com-
pletion for the addition task. First, a prompt composed
of in-context (ic) samples are given, which are formed
by {input, explanation, output} triplets concatenated
with an out-of-context (oc) test example that has only
the "instruction" field. The model then completes the
“explanation” and “output” fields from the test example
as a result.

generate the remaining “Explanation” and “Output”
fields for oc. Figure 2 illustrates the input prompt
given to the model and the (correct) output given
by the model.

We also interleave the tokens ic and oc with
markup tokens that help the model to precisely
identify the tokens in the input and output se-
quences (see Figure 1-(b) for an example). These
tokens support the model in three ways: 1) They act
as a form of working memory to indicate progress
being made. 2) They act as sub-prompt anchors to
inform the start of a known pattern. 3) They im-
plicitly model a stopping condition should a certain
amount of progress be reached. We programmati-
cally include these markups in each test input and
remove them from the output answers before com-
paring them with ground-truth ones.

Due to its few-shot nature, our method can be
adjusted for different tasks. Likewise, our approach
does not require any additional modifications to the
language model such as pretraining or changes to
the loss function.

4 Experimental Setup

We evaluate our method in two tasks that require
extrapolation: 1) the length split of the SCAN
data (Lake and Baroni, 2018) and 2) the addition
of two numbers. In all experiments, we used the
text-davinci-002 model, available via a paid
API provided by OpenAI. We report the accuracy
of the test set.

4.1 SCAN

The SCAN synthetic dataset translates simple navi-
gation commands into a sequence of actions (e.g.,
the input jump thrice results in the output JUMP
JUMP JUMP). These commands are generated from
the composition of a specific grammar, combining
“primitive” commands such as jump, walk, look,
run and turn; “modifiers” (left, right, around,
opposite); repetition symbols like twice/thrice;
“combiners” (and/after) that group two action se-
quences.

To construct the prompt, we generated nine in-
context training examples, each made of three parts:
an instruction, an explanation, and the desired out-
put. The “Instruction” is a sequence of commands
while the “Explanation” is a description, in natural
language detailing the steps to generate the output.
The “Output” corresponds to the expected answer
to the instruction. In addition, in the output field,
we inject markup tokens to delimit the end of a
repeating sequence or sub-instruction. Therefore,
to indicate each repetition of a given action, we
use positive integers and at the end of a sequence
of actions, we use the separator ||. For example,
for the input: jump twice and walk twice, we
generate the output JUMP 1 JUMP 2 || WALK 1
WALK 2.

The target outputs of training examples have up
to 22 actions. The test examples were drawn from
the “Length” split provided by the authors.* This
set has 3,920 examples whose target output varies
between 24 and 48 actions. The instruction (input)
of each test example is appended to the in-context
training examples and the model is prompted to
generate the “Explanation” and “Output” fields.
Thus, since training examples are shorter than test
ones, we are able to assess the compositional gener-
alization of the model while extrapolating to larger
unseen sequences. Due to the cost of using the
GPT-3 API (approximately 0.10 USD per example),

*https://github.com/brendenlake/SCAN
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Method Acc.

Specialized Architectures
Syntactic Attn. (Russin et al., 2019) 15.2
CGPS (Li et al., 2019b) 20.3
T5-base DUEL (Zhu et al., 2021) 45.0
LANE (Liu et al., 2020a) 100.0
NSSM (Chen et al., 2020) 100.0
SBSP (Herzig and Berant, 2021) 100.0
NQG (Shaw et al., 2021) 100.0
Synth (Nye et al., 2020) 100.0

General-purpose Architectures
T5-base (Furrer et al., 2020) 14.4
T5-Large (Furrer et al., 2020) 5.2
T5-3B (Furrer et al., 2020) 3.3
T5-11B (Furrer et al., 2020) 2.0
GPT-3 Ada - fine-tuned 13.9
GPT-3 Curie - fine-tuned 6.4
GPT-3 Davinci - fine-tuned 8.2
Least-to-Most (Zhou et al., 2022) 99.7
—
Ours (rationales only) 2.5
Ours (markups only) 22.5
Ours (rationales + markups, inverted prompt) 30.0
Ours (rationales + markups) 95.2

Table 1: Results on the “length” split of the SCAN
dataset.

we evaluated the model on 400 randomly sampled
examples from the test set.

4.2 Addition Task

Extrapolation abilities can also be tested with arith-
metic tasks. For this, we built a prompt for the ad-
dition operation, where we present five in-context
training examples with two numbers up to 5 digits
and ask the model to generate the explanation and
answer for a test set example made of numbers with
4 to 14 digits. We evaluate the model on 400 test
samples automatically generated by the “balanced
sampling” method from Nogueira et al. (Nogueira
et al., 2021), which ensures that the set will have a
roughly equal proportion of answers with d-digit
numbers, with d ∈ [4, 14].

We use a template similar to SCAN’s to feed the
in-context examples to the model. We manually
generate the explanations for the training examples
and inject markup tokens in the instructions and the
target output. In the expected output, these tokens
are used during the explanation steps. We illustrate
in Figure 2 an example of a prompt followed by a
completion of the model.
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Ours, rationale+markup
Ours, markup-only
Ours, rationale-only

Figure 3: Test set accuracy in the addition task vs num-
ber of digits in the ground-truth answer.

5 Results

In Table 1 we show the results for the length split of
the SCAN dataset. We see that specialized models
like LANE, NSSM, and SBSP solve the composi-
tional generalization proposed by SCAN, whereas
generic architectures such as T5 (Raffel et al., 2020)
or GPT-3 (Brown et al., 2020) fine-tuned on the task
have poor performance.

We also show results for GPT-3’s Ada (300M
parameters), Curie (6B parameters) and Davinci
(175B parameters) models fine-tuned on all 16,990
training examples of the SCAN dataset for 3
epochs. In these cases, we do not use in-context
examples, explanations, or markup tokens. Our
methodology of providing prompts with detailed
explanations was shown to be more effective than
finetuning on thousands of examples.

The same behavior is also observed in the ad-
dition task, as seen in Figure 3. Our approach
with explanations and markup tokens (rationale +
markup) shows that even with as few as 5 examples,
the model can perform the task of adding numbers
with more than 5 digits, reaching a performance of
around 60% in numbers with up to 14 digits and
an average accuracy of 73% considering all 400
examples in the test set.

We also investigated the performance of fine-
tuning a general-purpose model on this task. We
trained a T5-base with 100K samples on numbers
with 2 to 5 digits per 10 epochs without adding
explanations. We observe that the model reaches
100% accuracy with numbers of up to 5 digits, but
fails to add numbers with more than 6 digits.
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Instruction: look left thrice and run around left thrice

Markup-only

Output: LEFT LOOK 1 LEFT LOOK 2 LEFT LOOK 3 || LEFT RUN 1 LEFT RUN 2 LEFT RUN 3
LEFT RUN 4 LEFT RUN 5 LEFT RUN 6 LEFT RUN 7 LEFT RUN 8 LEFT RUN 9 LEFT RUN 10
LEFT RUN 11 LEFT RUN 12

Rationale-only

Explanation: Because of the word "and", the instruction can be divided in two sub-
instructions: 1) "look left thrice" and 2) "run around left thrice" 
1) "look left thrice" results in 3 LEFT LOOK commands.  
2) "run around left thrice" results in 3 x 4 = 12 LEFT RUN commands.

Output: LEFT LOOK LEFT LOOK LEFT LOOK LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT

Figure 4: Model output differences between the markup-
only and rationale-only approaches.

5.1 Ablation: Rationale-only vs. markup-only

We also investigate the impact of using explanation
and markup tokens in isolation. We compare two
scenarios: prompts without explanation (markups-
only) and without markup tokens (rationales-only).

In Table 1, we see that the rationale-only and
markup-only approaches have significantly lower
test accuracy, demonstrating that it is not enough to
explain how to solve the task, but it is also impor-
tant to inject markup tokens. We believe that these
tokens help the model generate repeated sequences
of tokens.

In Figure 4, we provide qualitative evidence of
this hypothesis: Without markup tokens, the model
correctly generates the explanation but fails to fin-
ish the action sequence, therefore entering a loop.

5.2 Ablation: Inverted prompt

We also experimented with reversing the order in
which the "explanations" and "outputs" fields are
presented to the model. Therefore we provide the
expected output first and then the explanation. The
idea of this experiment was to verify if the order
explanation followed by the output has an impact
on the generation of the answer. In Table 1 we
see that the performance drops from 95.2 to 30%
(rationales + markups - inverted prompt). This
empirical result agrees with the literature in terms
that the model possibly processes the explanation
before determining the final output.

6 Conclusion

In this work, we show how step-by-step ratio-
nales and positional markup tokens enable general-
purpose architectures to extrapolate to sequences
that are significantly longer than those provided
as training examples. Rationales before the an-
swer break down the problem into small exe-
cutable chunks and markup tokens track the work-
ing progress as the output is generated. Importantly,
we show how these methods are complementary
and, when used together, enable remarkable extrap-
olation results on two synthetic tasks.

However, we note the use of markup tokens as
a limitation of current models and subword tok-
enizers. Future models should be able to count
tokens and keep track of individual tokens in long
sequences without resorting to additional support-
ing tokens. As our qualitative analysis shows, most
failure cases are due to one or two tokens generated
incorrectly. We see the ability to automatically ver-
ify these errors, as proposed by Cobbe et al. (Cobbe
et al., 2021), as a promising direction to improve
the extrapolation capabilities of current models.
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