
Proceedings of the 1st Workshop on Mathematical Natural Language Processing (MathNLP), pages 17 - 24
December 8, 2022 ©2022 Association for Computational Linguistics

Induced Natural Language Rationales and Interleaved Markup Tokens
Enable Extrapolation in Large Language Models

Mirelle Bueno
University of Campinas

Carlos Gemmell
University of Glasgow

Jeffrey Dalton
University of Glasgow

Roberto Lotufo
University of Campinas

NeuralMind

Rodrigo Nogueira
University of Campinas

NeuralMind

Abstract

The ability to extrapolate, i.e., to make predic-
tions on sequences that are longer than those
presented as training examples, is a challeng-
ing problem for current deep learning mod-
els. Recent work shows that this limitation
persists in state-of-the-art Transformer-based
models. Most solutions to this problem use
specific architectures or training methods that
do not generalize to other tasks. We demon-
strate that large language models can succeed
in extrapolation without modifying their archi-
tecture or training procedure. Our experimental
results show that generating step-by-step ratio-
nales and introducing marker tokens are both
required for effective extrapolation. First, we
induce a language model to produce step-by-
step rationales before outputting the answer to
effectively communicate the task to the model.
However, as sequences become longer, we find
that current models struggle to keep track of
token positions. To address this issue, we inter-
leave output tokens with markup tokens that
act as explicit positional and counting sym-
bols. Our findings show how these two com-
plementary approaches enable remarkable se-
quence extrapolation and highlight a limitation
of current architectures to effectively generalize
without explicit surface form guidance. Code
available at https://github.com/MirelleB/
induced-rationales-markup-tokens

1 Introduction

The lack of compositional generalization of neu-
ral networks has been a long-standing limitation
known for decades (Fodor and Pylyshyn, 1988;
Schmidhuber, 1990; Marcus, 1998, 2018; Lake and
Baroni, 2018; Liška et al., 2018; Keysers et al.,
2019). This is often associated with their fail-
ure to extrapolate, i.e., the ability to work on se-
quences that are longer than those presented as
training examples. Modern architectures such as
the Transformer (Vaswani et al., 2017), which is
the core component of state-of-the-art NLP models,

GPT-3 Finetuned
on thousands of examples

"run around left thrice"

Answer: LEFT RUN 1 LEFT RUN 2 LEFT
RUN 3 LEFT RUN 4 LEFT RUN 5 LEFT
RUN 6 LEFT RUN 7 LEFT RUN 8 LEFT
RUN 9 LEFT RUN 10 LEFT RUN 11

 (missing LEFT RUN 12)

Frozen GPT-3

A few in-context examples with
explanations and markup tokens

+
"run around left thrice"

Explanation: "run around left" corresponds to 4
LEFT RUN commands. Because of the word
"thrice", "run around left thrice" results in 3 x 4
= 12 LEFT RUN commands.
Answer: LEFT RUN 1 LEFT RUN 2 LEFT RUN 3
LEFT RUN 4 LEFT RUN 5 LEFT RUN 6 LEFT RUN
7 LEFT RUN 8 LEFT RUN 9 LEFT RUN 10 LEFT
RUN 11 LEFT RUN 12

(a) (b)

Figure 1: Answers produced by a GPT-3 model on the
“length” split of the SCAN dataset when (a) fine-tuned
on thousands of examples vs (b) induced via a few in-
context examples to generate explanations and markup
tokens (in yellow).

perform poorly on this class of problems (Bhat-
tamishra et al., 2020; Nogueira et al., 2021; Wang
et al., 2021; Pal and Baral, 2021; Welleck et al.,
2021; Bogin et al., 2022; Finlayson et al., 2022;
Mittal et al., 2021). In Figure 1-(a), we illustrate
how recent large language models such as GPT-3
fail at this task, even when fine-tuned on thousands
of examples.

Architectures and training methods that tar-
get this specific problem are often developed
based on synthetic tasks whose creation rules are
known (Das et al., 1992; Li et al., 2019b; Russin
et al., 2019; Andreas, 2020; Liu et al., 2020a; Chen
et al., 2020; Herzig and Berant, 2021; Shaw et al.,
2021; Zhu et al., 2021). Thus, they resort to tech-
niques such as augmenting the training data or bias-
ing the model’s architecture to internally represent
these rules. However, improvements obtained on
one compositional generalization benchmark do
not transfer to others (Furrer et al., 2020), i.e., they
lose their ability to be used as competitive general-
purpose models in real tasks, as these can seldom
be solved with a small set of rules.

We study the behavior of Transformer models

17

https://github.com/MirelleB/induced-rationales-markup-tokens
https://github.com/MirelleB/induced-rationales-markup-tokens

and demonstrate that this problem is not due to
an intrinsic limitation of their training algorithm.
We show that inducing autoregressive models to
rationalize before making a prediction (Wang et al.,
2022; Zelikman et al., 2022) is not enough to ex-
trapolate on long sequences: to solve it, we intro-
duce markup tokens (Nogueira et al., 2021; Kim
et al., 2021). The two general approaches together
allow the models to achieve remarkable extrapo-
lation generalization without requiring changes to
the model or architecture. These findings provide
evidence that general-purpose models have the abil-
ity to both improve their effectiveness and inter-
pretability at the same time. The need to markup
tokens also suggests there are fundamental issues
that need to be addressed in the Transformer archi-
tecture, particularly the need for better positional
representations. Thus, our study confirms and sup-
ports recent results from previous work that posi-
tional embeddings used in current state-of-the-art
Transformer models cannot precisely track of token
positions or perform precise counting (Liu et al.,
2020b; Thawani et al., 2021; Press et al., 2022).

2 Related Work

A long list of architectures and training methods
attempt to improve the extrapolation capabilities
of deep learning models. For instance, some are
specifically designed to solve only a handful of
tasks (Singh, 1992; Kaiser and Sutskever, 2015;
Kalchbrenner et al., 2015; Price et al., 2016; An-
dreas et al., 2016, 2017; Trask et al., 2018). Pre-
trained word embeddings find it difficult to extrap-
olate to unseen numbers in training (Wallace et al.,
2019). Alternatives to improving the extrapola-
tion ability of neural models include building neu-
ral models with a pre-training corpus of numeri-
cal text (Geva et al., 2020) or using scientific no-
tation to represent numbers (Zhang et al., 2020).
Likewise, better numerical and compositional skills
can be achieved by supplementing input texts with
pre-computed numerical calculations (Andor et al.,
2019) or explicitly assuming rules or mathematical
equations from natural language texts (Liu et al.,
2019; Li et al., 2019a; Zou and Lu, 2019a,b; Shi,
2020; Qiu et al., 2021). Many of these models are
capable of adding numbers larger than those seen
during training. In contrast, more general-purpose
architectures fail to extrapolate on numerical tasks
(Joulin and Mikolov, 2015; Dehghani et al., 2018;
Schlag et al., 2019).

Our work derives from recent findings that show
that inducing the model to generate explanations
in natural language leads to better performance in
a wide variety of tasks (Recchia, 2021; Fernandes
et al., 2022; Wang et al., 2022; Zelikman et al.,
2022; Nye et al., 2022; Katz et al., 2022; Zhou
et al., 2022; Khot et al., 2022). In particular, the
work proposed by (Zhou et al., 2022) achieves
state-of-the-art results in the extrapolation of tasks
involving symbolic manipulation, compositional
generalization and numerical reasoning. Tasks are
solved via few-shot learning applied to a large lan-
guage model (e.g. text-davinci-002) in two main
steps. The first step consists of reducing the ques-
tion into sub-questions, then, in the second phase, a
new interaction is made with the model, now solv-
ing sequentially the sub-questions generated in the
previous step.

The results shown in Zhou et al. (Zhou et al.,
2022) corroborate our intuition that explanations
alone are not enough to achieve extrapolations. By
inducing the model to generate explanations and
markup tokens, we provide evidence that compo-
sitional generalization can be achieved without
sacrificing the general applicability on other tasks,
which is often a feature that is lost with architec-
tural modifications.

However, a limitation of Zhou et al.’s and our
method is that both require a programmatic post-
processing step: Zhou et al. use a python script
to convert the model output (e.g., 3*["LEFT"]),
which is in python notation, into the expected for-
mat of the final answer (e.g., LEFT LEFT LEFT);
in our method, we programmatically remove the
markup tokens from the final answer. We argue
that the need to call an external script exposes a
limitation in the current Transformer architecture,
namely, that it cannot handle long sequences of
repeated tokens.

3 Methodology

In this section, we describe our proposed method
for inducing explanations and markup tokens us-
ing in-context learning with a few examples. We
first create a prompt ic||oc that concatenates in-
context training examples ic with a test exam-
ple oc. The ic examples consist of N triples
of “Instruction”, “Explanation” and “Output”, i.e.,
ic = {(i∗1, e∗1, o∗1), ..., (i∗N , e∗N , o∗N)}. The test ex-
ample oc is made of only the “Instruction” field.
When we feed ic||oc to a language model, it should

18

Example 1:
Instruction: add the numbers E 4 D 1 C 6 B 5 A 4 and D 1 C 8 B 5 A 3

Explanation:
This first number goes until position E, whereas the second goes until position D. The first number is the longest, so we sum
digits in positions A, B, C, D, E.

We sum the digits in position A, which are A 4 and A 3. That is 4 + 3, which equals to 7. Because 7 is less than or equal to 9,
this results in carry 0 and A 7.

This carry 0 is summed with digits in position B, which are B 5 and B 5. That is 0 + 5 + 5, which equals to 10. Because 1 0 is
greater than 9, this results in carry 1 and B 0.

This carry 1 is summed with digits in position C, which are C 6 and C 8. That is 1 + 6 + 8, which equals to 15. Because 1 5 is
greater than 9, this results in carry 1 and C 5.

This carry 1 is summed with digits in position D, which are D 1 and D 1 .That is 1 + 1 + 1, which equals to 3. Because 3 is
less or equal than 9, this results in carry 0 and D 3.

This carry 0 is summed with digits in position E, which are E 4 and E 0. That is 0 + 4 + 0, which equals to 4. Because 4 is
less than or equal to 9, this results in carry 0 and E 4.
Output: E 4 D 3 C 5 B 0 A 7

(...)

Example 6:
Instruction: add the numbers D7 C7 B8 A5 and D1 C7 B1 A7

Input

Explanation:
This first number goes until position D, whereas the second goes until position D. Both numbers have equal length, so we
sum digits in positions A, B, C, D.

We sum the digits in position A, which are A 5 and A 7. That is 5 + 7, which equals to 12. Because 1 2 is greater than 9, this
results in carry 1 and A 2.

This carry 1 is summed with digits in position B, which are B 8 and B 1. That is 1 + 8 + 1, which equals to 10. Because 1 0 is
greater than 9, this results in carry 1 and B 0.

This carry 1 is summed with digits in position C, which are C 7 and C 7. That is 1 + 7 + 7, which equals to 15. Because 1 5 is
greater than 9, this results in carry 1 and C 5.

This carry 1 is summed with digits in position D, which are D 7 and D 1. That is 1 + 7 + 1, which equals to 9. Because 9 is
less than or equal to 9, this results in carry 0 and D 9.

Output: D 9 C 5 B 0 A 2

Model output

Figure 2: Example of a few-shot prompt and model com-
pletion for the addition task. First, a prompt composed
of in-context (ic) samples are given, which are formed
by {input, explanation, output} triplets concatenated
with an out-of-context (oc) test example that has only
the "instruction" field. The model then completes the
“explanation” and “output” fields from the test example
as a result.

generate the remaining “Explanation” and “Output”
fields for oc. Figure 2 illustrates the input prompt
given to the model and the (correct) output given
by the model.

We also interleave the tokens ic and oc with
markup tokens that help the model to precisely
identify the tokens in the input and output se-
quences (see Figure 1-(b) for an example). These
tokens support the model in three ways: 1) They act
as a form of working memory to indicate progress
being made. 2) They act as sub-prompt anchors to
inform the start of a known pattern. 3) They im-
plicitly model a stopping condition should a certain
amount of progress be reached. We programmati-
cally include these markups in each test input and
remove them from the output answers before com-
paring them with ground-truth ones.

Due to its few-shot nature, our method can be
adjusted for different tasks. Likewise, our approach
does not require any additional modifications to the
language model such as pretraining or changes to
the loss function.

4 Experimental Setup

We evaluate our method in two tasks that require
extrapolation: 1) the length split of the SCAN
data (Lake and Baroni, 2018) and 2) the addition
of two numbers. In all experiments, we used the
text-davinci-002 model, available via a paid
API provided by OpenAI. We report the accuracy
of the test set.

4.1 SCAN

The SCAN synthetic dataset translates simple navi-
gation commands into a sequence of actions (e.g.,
the input jump thrice results in the output JUMP
JUMP JUMP). These commands are generated from
the composition of a specific grammar, combining
“primitive” commands such as jump, walk, look,
run and turn; “modifiers” (left, right, around,
opposite); repetition symbols like twice/thrice;
“combiners” (and/after) that group two action se-
quences.

To construct the prompt, we generated nine in-
context training examples, each made of three parts:
an instruction, an explanation, and the desired out-
put. The “Instruction” is a sequence of commands
while the “Explanation” is a description, in natural
language detailing the steps to generate the output.
The “Output” corresponds to the expected answer
to the instruction. In addition, in the output field,
we inject markup tokens to delimit the end of a
repeating sequence or sub-instruction. Therefore,
to indicate each repetition of a given action, we
use positive integers and at the end of a sequence
of actions, we use the separator ||. For example,
for the input: jump twice and walk twice, we
generate the output JUMP 1 JUMP 2 || WALK 1
WALK 2.

The target outputs of training examples have up
to 22 actions. The test examples were drawn from
the “Length” split provided by the authors.* This
set has 3,920 examples whose target output varies
between 24 and 48 actions. The instruction (input)
of each test example is appended to the in-context
training examples and the model is prompted to
generate the “Explanation” and “Output” fields.
Thus, since training examples are shorter than test
ones, we are able to assess the compositional gener-
alization of the model while extrapolating to larger
unseen sequences. Due to the cost of using the
GPT-3 API (approximately 0.10 USD per example),

*https://github.com/brendenlake/SCAN

19

Method Acc.

Specialized Architectures
Syntactic Attn. (Russin et al., 2019) 15.2
CGPS (Li et al., 2019b) 20.3
T5-base DUEL (Zhu et al., 2021) 45.0
LANE (Liu et al., 2020a) 100.0
NSSM (Chen et al., 2020) 100.0
SBSP (Herzig and Berant, 2021) 100.0
NQG (Shaw et al., 2021) 100.0
Synth (Nye et al., 2020) 100.0

General-purpose Architectures
T5-base (Furrer et al., 2020) 14.4
T5-Large (Furrer et al., 2020) 5.2
T5-3B (Furrer et al., 2020) 3.3
T5-11B (Furrer et al., 2020) 2.0
GPT-3 Ada - fine-tuned 13.9
GPT-3 Curie - fine-tuned 6.4
GPT-3 Davinci - fine-tuned 8.2
Least-to-Most (Zhou et al., 2022) 99.7
—
Ours (rationales only) 2.5
Ours (markups only) 22.5
Ours (rationales + markups, inverted prompt) 30.0
Ours (rationales + markups) 95.2

Table 1: Results on the “length” split of the SCAN
dataset.

we evaluated the model on 400 randomly sampled
examples from the test set.

4.2 Addition Task

Extrapolation abilities can also be tested with arith-
metic tasks. For this, we built a prompt for the ad-
dition operation, where we present five in-context
training examples with two numbers up to 5 digits
and ask the model to generate the explanation and
answer for a test set example made of numbers with
4 to 14 digits. We evaluate the model on 400 test
samples automatically generated by the “balanced
sampling” method from Nogueira et al. (Nogueira
et al., 2021), which ensures that the set will have a
roughly equal proportion of answers with d-digit
numbers, with d ∈ [4, 14].

We use a template similar to SCAN’s to feed the
in-context examples to the model. We manually
generate the explanations for the training examples
and inject markup tokens in the instructions and the
target output. In the expected output, these tokens
are used during the explanation steps. We illustrate
in Figure 2 an example of a prompt followed by a
completion of the model.

4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

Digits in the ground-truth answer

Te
st

A
cu

rr
ac

y
(%

)

T5 + 100k examples
Ours, rationale+markup
Ours, markup-only
Ours, rationale-only

Figure 3: Test set accuracy in the addition task vs num-
ber of digits in the ground-truth answer.

5 Results

In Table 1 we show the results for the length split of
the SCAN dataset. We see that specialized models
like LANE, NSSM, and SBSP solve the composi-
tional generalization proposed by SCAN, whereas
generic architectures such as T5 (Raffel et al., 2020)
or GPT-3 (Brown et al., 2020) fine-tuned on the task
have poor performance.

We also show results for GPT-3’s Ada (300M
parameters), Curie (6B parameters) and Davinci
(175B parameters) models fine-tuned on all 16,990
training examples of the SCAN dataset for 3
epochs. In these cases, we do not use in-context
examples, explanations, or markup tokens. Our
methodology of providing prompts with detailed
explanations was shown to be more effective than
finetuning on thousands of examples.

The same behavior is also observed in the ad-
dition task, as seen in Figure 3. Our approach
with explanations and markup tokens (rationale +
markup) shows that even with as few as 5 examples,
the model can perform the task of adding numbers
with more than 5 digits, reaching a performance of
around 60% in numbers with up to 14 digits and
an average accuracy of 73% considering all 400
examples in the test set.

We also investigated the performance of fine-
tuning a general-purpose model on this task. We
trained a T5-base with 100K samples on numbers
with 2 to 5 digits per 10 epochs without adding
explanations. We observe that the model reaches
100% accuracy with numbers of up to 5 digits, but
fails to add numbers with more than 6 digits.

20

Instruction: look left thrice and run around left thrice

Markup-only

Output: LEFT LOOK 1 LEFT LOOK 2 LEFT LOOK 3 || LEFT RUN 1 LEFT RUN 2 LEFT RUN 3
LEFT RUN 4 LEFT RUN 5 LEFT RUN 6 LEFT RUN 7 LEFT RUN 8 LEFT RUN 9 LEFT RUN 10
LEFT RUN 11 LEFT RUN 12

Rationale-only

Explanation: Because of the word "and", the instruction can be divided in two sub-
instructions: 1) "look left thrice" and 2) "run around left thrice"
1) "look left thrice" results in 3 LEFT LOOK commands.
2) "run around left thrice" results in 3 x 4 = 12 LEFT RUN commands.

Output: LEFT LOOK LEFT LOOK LEFT LOOK LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT RUN
LEFT RUN LEFT RUN LEFT RUN LEFT RUN LEFT

Figure 4: Model output differences between the markup-
only and rationale-only approaches.

5.1 Ablation: Rationale-only vs. markup-only

We also investigate the impact of using explanation
and markup tokens in isolation. We compare two
scenarios: prompts without explanation (markups-
only) and without markup tokens (rationales-only).

In Table 1, we see that the rationale-only and
markup-only approaches have significantly lower
test accuracy, demonstrating that it is not enough to
explain how to solve the task, but it is also impor-
tant to inject markup tokens. We believe that these
tokens help the model generate repeated sequences
of tokens.

In Figure 4, we provide qualitative evidence of
this hypothesis: Without markup tokens, the model
correctly generates the explanation but fails to fin-
ish the action sequence, therefore entering a loop.

5.2 Ablation: Inverted prompt

We also experimented with reversing the order in
which the "explanations" and "outputs" fields are
presented to the model. Therefore we provide the
expected output first and then the explanation. The
idea of this experiment was to verify if the order
explanation followed by the output has an impact
on the generation of the answer. In Table 1 we
see that the performance drops from 95.2 to 30%
(rationales + markups - inverted prompt). This
empirical result agrees with the literature in terms
that the model possibly processes the explanation
before determining the final output.

6 Conclusion

In this work, we show how step-by-step ratio-
nales and positional markup tokens enable general-
purpose architectures to extrapolate to sequences
that are significantly longer than those provided
as training examples. Rationales before the an-
swer break down the problem into small exe-
cutable chunks and markup tokens track the work-
ing progress as the output is generated. Importantly,
we show how these methods are complementary
and, when used together, enable remarkable extrap-
olation results on two synthetic tasks.

However, we note the use of markup tokens as
a limitation of current models and subword tok-
enizers. Future models should be able to count
tokens and keep track of individual tokens in long
sequences without resorting to additional support-
ing tokens. As our qualitative analysis shows, most
failure cases are due to one or two tokens generated
incorrectly. We see the ability to automatically ver-
ify these errors, as proposed by Cobbe et al. (Cobbe
et al., 2021), as a promising direction to improve
the extrapolation capabilities of current models.

Acknowledgments

This research was partially funded by grants
2020/09753-5 and 2022/01640-2 from Fundação
de Amparo à Pesquisa do Estado de São Paulo
(FAPESP). This work is also supported by grant
EP/V025708/1 from the Engineering and Physical
Sciences Research Council. We also thank Google
Cloud for credits to support this work. R Lotufo
is partially supported by CNPq (The Brazilian Na-
tional Council for Scientific and Technological De-
velopment) under grant 310828/2018-0.

References
Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler.

2019. Giving BERT a calculator: Finding opera-
tions and arguments with reading comprehension. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5949–5954.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Jacob Andreas, Dan Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-

21

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676

icy sketches. In International Conference on Ma-
chine Learning, pages 166–175. PMLR.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Learning to compose neural net-
works for question answering. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1545–1554.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7096–7116.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make com-
positional generalization hard. arXiv preprint
arXiv:2201.05899.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,
and Denny Zhou. 2020. Compositional generaliza-
tion via neural-symbolic stack machines. Advances
in Neural Information Processing Systems, 33:1690–
1701.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Sreerupa Das, C. Giles, and Gordon Sun. 1992. Learn-
ing context-free grammars: Capabilities and limita-
tions of a recurrent neural network with an external
stack memory.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Universal
transformers. In International Conference on Learn-
ing Representations.

Patrick Fernandes, Marcos Treviso, Danish Pruthi, An-
dré FT Martins, and Graham Neubig. 2022. Learning
to scaffold: Optimizing model explanations for teach-
ing. arXiv preprint arXiv:2204.10810.

Matthew Finlayson, Kyle Richardson, Ashish Sabhar-
wal, and Peter Clark. 2022. What makes instruc-
tion learning hard? an investigation and a new chal-
lenge in a synthetic environment. arXiv preprint
arXiv:2204.09148.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. Advances in Neural Information Processing
Systems, 28:190–198.

Łukasz Kaiser and Ilya Sutskever. 2015. Neural GPUs
learn algorithms. arXiv preprint arXiv:1511.08228.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
2015. Grid long short-term memory. arXiv preprint
arXiv:1507.01526.

Uri Katz, Mor Geva, and Jonathan Berant. 2022. Infer-
ring implicit relations with language models. arXiv
preprint arXiv:2204.13778.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. In International Conference on
Learning Representations.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo
Kang, and Sung-Hyon Myaeng. 2021. Have you seen
that number? investigating extrapolation in question
answering models. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7031–7037.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873–2882. PMLR.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019a. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the

22

https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74

57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6162–6167.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest-
ness. 2019b. Compositional generalization for primi-
tive substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4293–4302, Hong Kong, China. Association
for Computational Linguistics.

Adam Liška, Germán Kruszewski, and Marco Baroni.
2018. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint
arXiv:1802.06467.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and
Dongmei Zhang. 2020a. Compositional generaliza-
tion by learning analytical expressions. Advances in
Neural Information Processing Systems, 33:11416–
11427.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379.

Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-
Jui Hsieh. 2020b. Learning to encode position for
transformer with continuous dynamical model. In In-
ternational Conference on Machine Learning, pages
6327–6335. PMLR.

Gary Marcus. 2018. Deep learning: A critical appraisal.
arXiv preprint arXiv:1801.00631.

Gary F Marcus. 1998. Rethinking eliminative connec-
tionism. Cognitive psychology, 37(3):243–282.

Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish,
Yoshua Bengio, and Guillaume Lajoie. 2021. Compo-
sitional attention: Disentangling search and retrieval.
CoRR, abs/2110.09419.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin.
2021. Investigating the limitations of transform-
ers with simple arithmetic tasks. arXiv preprint
arXiv:2102.13019.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2022. Show your work: Scratchpads for interme-
diate computation with language models. In Deep
Learning for Code Workshop.

Maxwell Nye, Armando Solar-Lezama, Josh Tenen-
baum, and Brenden M Lake. 2020. Learning compo-
sitional rules via neural program synthesis. Advances
in Neural Information Processing Systems, 33:10832–
10842.

Kuntal Kumar Pal and Chitta Baral. 2021. Investigating
numeracy learning ability of a text-to-text transfer
model. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 3095–3101.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Eric Price, Wojciech Zaremba, and Ilya Sutskever. 2016.
Extensions and limitations of the neural GPU. arXiv
preprint arXiv:1611.00736.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Paweł Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2021. Improving composi-
tional generalization with latent structure and data
augmentation. arXiv preprint arXiv:2112.07610.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Gabriel Recchia. 2021. Teaching autoregressive lan-
guage models complex tasks by demonstration.
arXiv preprint arXiv:2109.02102.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

Imanol Schlag, Paul Smolensky, Roland Fernandez,
Nebojsa Jojic, Jürgen Schmidhuber, and Jianfeng
Gao. 2019. Enhancing the transformer with explicit
relational encoding for math problem solving. arXiv
preprint arXiv:1910.06611.

Jürgen Schmidhuber. 1990. Towards compositional
learning in dynamic networks.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938.

Hongjie Shi. 2020. A sequence-to-sequence approach
for numerical slot-filling dialog systems. In Pro-
ceedings of the 21th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
272–277.

Satinder Pal Singh. 1992. Transfer of learning by com-
posing solutions of elemental sequential tasks. Ma-
chine learning, 8(3):323–339.

23

https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://arxiv.org/abs/2110.09419
https://arxiv.org/abs/2110.09419
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–656, Online. As-
sociation for Computational Linguistics.

Andrew Trask, Felix Hill, Scott E. Reed, Jack Rae, Chris
Dyer, and Phil Blunsom. 2018. Neural arithmetic
logic units. In Advances in Neural Information Pro-
cessing Systems, pages 8035–8044.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know
numbers? Probing numeracy in embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5310–5318.

Cunxiang Wang, Boyuan Zheng, Yuchen Niu, and Yue
Zhang. 2021. Exploring generalization ability of pre-
trained language models on arithmetic and logical
reasoning. In CCF International Conference on Nat-
ural Language Processing and Chinese Computing,
pages 758–769. Springer.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2021. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
arXiv preprint arXiv:2109.13986.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
2022. Star: Bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465.

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language
embeddings capture scales? In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 292–299.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Wang Zhu, Peter Shaw, Tal Linzen, and Fei Sha. 2021.
Learning to generalize compositionally by transfer-
ring across semantic parsing tasks. arXiv preprint
arXiv:2111.05013.

Yanyan Zou and Wei Lu. 2019a. Quantity tagger: A
latent-variable sequence labeling approach to solving
addition-subtraction word problems. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5246–5251.

Yanyan Zou and Wei Lu. 2019b. Text2Math: End-to-
end parsing text into math expressions. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5330–5340.

24

https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53

