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Abstract

This paper describes NAIST’s simultane-
ous speech translation systems developed for
IWSLT 2022 Evaluation Campaign. We partic-
ipated the speech-to-speech track for English-
to-German and English-to-Japanese. Our pri-
mary submissions were end-to-end systems us-
ing adaptive segmentation policies based on
Prefix Alignment.

1 Introduction

This paper describes NAIST’s submissions to
IWSLT 2022 (Anastasopoulos et al., 2022) Simul-
taneous Speech Translation track. We participated
the speech-to-speech track for English-to-German
(En-De) and English-to-Japanese (En-Ja) using
our end-to-end simultaneous machine translation
(SimulMT) systems.

SimulMT based on neural machine translation
(NMT) has achieved a large success in recent years.
There are two different SimulMT approaches de-
pending on the policy that determines READ (wait-
ing for speech input) and WRITE (writing text out-
put) actions: fixed and adaptive. Fixed policies are
usually implemented by simple rules (Dalvi et al.,
2018; Ma et al., 2019; Fukuda et al., 2021; Sen
et al., 2021). They are simple yet often effective,
but they sometimes make inappropriate decisions
due to large word order differences, pauses, and so
on. In contrast, adaptive policies decide READ or
WRITE actions flexibly taking current context into
account (Zheng et al., 2019a,b, 2020; Liu et al.,
2021). They can be more effective than fixed
policies in end-to-end speech-to-speech SimulMT
because it is difficult to define fixed policies for
speech input.

In our systems, we use Bilingual Prefix Align-
ment (Kano et al., 2022), which extracts alignment
between bilingual prefix pairs in the training time,
for prefix-to-prefix translation in SimulMT. The
Bilingual Prefix Alignment is applied to extract

Step 1 I

Step 2 I bought

Step 3 I bought a 

Step 4 I bought a pen 

0.9 > 0.5 私は

0.2 < 0.5

0.3 < 0.5

0.7 > 0.5 私はペンを買った

Read source 
words

Boundary
Prediction translation

Step 5 I bought a pen . 0.7 > 0.5 私はペンを買った。

Figure 1: A brief overview of our prefix-to-prefix trans-
lation process (Kano et al., 2022) from English to
Japanese. The threshold of boundary probability is 0.5
in this example. Underlined parts are the forced output
prefixes.

prefix pairs of source language speech and target
language translations. We also use the prefix pairs
to train a boundary prediction model for an adaptive
speech segmentation policy. Our system showed
some improvements against wait-k baselines on
the development data, in all the latency regimes in
both En-De and En-Ja.

2 Simultaneous Speech Translation based
on Bilingual Prefix Alignment

We developed simultaneous speech translation
(SimulST) based on offline speech translation (ST).
Our SimulST system translates an incrementally-
growing source language speech prefix into the tar-
get language. When the system detects a segment
boundary in source language speech, the latest seg-
ment is translated taking its input and translation
history into account. The ST model is basically the
same as an offline one, and we used it to translate
an input prefix speech segment from the beginning.
However, we constrained the translation prefix by
the results in the previous time step. The constraint
is implemented by a forced decoding with a given
translation prefix. Figure 1 shows an example of
whole translation process, but we input the speech
prefixes with fixed number of frames. Please refer
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to (Kano et al., 2022) for details of Bilingual Prefix
Alignment.

For this system, we need an ST model using an
ST corpus consisting of source language speech
segments and corresponding translations in the tar-
get language. We then fine-tune the offline ST
model with prefix pairs of source language speech
and target language translations obtained using
Bilingual Prefix Alignment. We also need a bound-
ary predictor to segment source language speech
adaptively as SimulMT policies. In this section, we
present how to extract prefix pairs (2.1) and build
the boundary predictor (2.2).

2.1 Extracting Prefix Pairs

Suppose we already have an offline ST model
trained using an ST corpus and are going to ex-
tract prefix pairs for a speech segment in the source
language (S). First, we extract the speech prefixes
with τ , 2τ , 3τ , ... frames. Then, for each speech
prefix Sprefix, we translate it into T̂prefix using the
offline ST model. Finally, we compare T̂prefix with
T̂offline, which is a translation of the entire speech
segment. If T̂prefix appears as a prefix of T̂offline,
we extact (Sprefix, T̂prefix) as a prefix pair. We
apply this process to all the source prefixes. Here,
we use a forced decoding with the previously ex-
tracted prefix T̂prefix to obtain latter prefix trans-
lations and update T̂offline to extract consistent
prefix translations. We may obtain the same tar-
get prefix with different source prefixes within a
given speech segment. We just extract the first ap-
pearance and ignore the rest with longer speech
prefixes in such cases. The procedure above some-
times extracts unbalanced prefix pairs, in which a
source language prefix does not fully match its tar-
get language speech counterpart. Such unbalanced
prefix pairs frequently appear between English and
Japanese and cause the degradation of the transla-
tion performance. We use a simple heuristic rule
to filter out them based on the length ratio between
source language speech and target language trans-
lation. We exclude prefix pairs in which the length
ratio lens/lent exceeds maxratio, where lens is
the length of Sprefix (in the number of frames)
and lent is the length of T̂prefix (in the number of
words).

2.2 Boundary Predictor

In inference, the SimulST system incrementally
reads source speech and predicts a segment bound-

ary in every τ frames.
To train the boundary predictor, we prepare pairs

of a speech prefix and the corresponding binary la-
bel sequence extracted from the training data. One
source language speech derives many speech pre-
fixes in τ , 2τ , 3τ , ... frames. Suppose we extracted
2τ - and 5τ -frame speech prefixes from the same
utterance, for example. We assign a label sequence
with τ 0s followed τ 1s to the 2τ -frame prefix,
which means we should predict a boundary in the
second τ frames but not in the first τ frames. For
the 5τ -frame prefix, we assign a label sequence
where the second and fifth τ -frame parts are filled
with 1s and the rest with 0s, consistently with the
2τ -frame prefix. In addition, we also extracted
speech prefixes where the last τ -frame part is not
a boundary. For example, the last τ -frame part of
the 3τ - and 4τ -frame speech prefixes is filled with
0s in this case. The boundary predictor is trained
using weighted cross-entropy loss normalized in
inverse proportional to the number of appearances
of each label.

During inference, the boundary predictor pre-
dicts a boundary in every τ frames as a binary
classification output. The prediction is made on
every frames in the τ -frame segment, so we obtain
τ binary classification outputs. If the proportion of
label 1 here is larger than or equals to λthre, the
predictor makes a decision of boundary, otherwise
non-boundary.

3 Primary System

We developed SimulST systems for two language
pairs: English-to-German (En-De) and English-
to-Japanese (En-Ja). We implemented both our
systems based on fairseq1 (Ott et al., 2019).

3.1 End-to-end Speech Translation

3.1.1 Data
We used MuST-C v2 (Di Gangi et al., 2019), a mul-
tilingual ST corpus extracted from TED talks subti-
tles. Each dataset consists of triplets of segmented
English speech, transcripts, and target language
translations. The En-De and En-Ja datasets con-
tained about 250k and 330k segments, respectively.
As acoustic features, we used 80-dimensional log
Mel filter bank (FBANK) with global-level cepstral
mean and variance normalization (CMVN) applied.

1https://github.com/
pytorch/fairseq/commit/
acf312418e4718996a103d67bd57516938137a7d
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We applied with Byte Pair Encoding (BPE) to split
the sentences into subwords using SentencePiece
(Kudo and Richardson, 2018), with a vocabulary
of 20,000 subwords shared across the source and
target languages.

3.1.2 Model

We used the Transformer implementation of fairseq
to build the models. We trained the ASR model
using the English speech-text pairs and then trained
the ST model using the ASR model for the param-
eter initialization. The architecture of ASR and ST
models were the same. The encoder consisted of
a 2D-convolution layer that reduces the sequence
length to a quarter, and 12 transformer encoder
layers. The decoder consisted of six transformer
decoder layers. We set the embedding dimensions
and the feed-forward dimensions to 256 and 2,048
and used four attention heads for both the encoder
and decoder. The model was trained using Adam
with an initial learning rate of 0.0005 with warmup
updates of 10,000. In the En-De ASR and ST mod-
els and the En-Ja ASR model, we performed the
dropout probability of 0.1 and set early stopping
patience to 16. In the En-Ja ST model, we set the
dropout probability of 0.2 and set early stopping
patience to 32.

The ST model training was in two steps. We
first trained the ST model using entire segment
pairs from the MuST-C. We then fine-tuned the
model using bilingual prefix pairs extracted using
Bilingual Prefix Alignment (2.1).

3.1.3 Evaluation

We evaluated the models with BLEU and Average
Lagging (AL) (Ma et al., 2019) using SimulEval
(Ma et al., 2020) on MuST-C v2 tst-COMMON.
For En-De, we evaluated on the best ST model
based on the dev set, and for En-Ja, we evaluated
on the checkpoint averaged ST model in last 10
epochs. Our proposed models were decoded with
beam search (beam size=10).

3.2 Implementation Details of the Proposed
Method

3.2.1 Data Extraction

We extracted training data for the ST model and the
boundary prediction model by using Bilingual Pre-
fix Alignment described in section 2. We set τ =
100 and tried maxratio = {None, 80, 40, 20}.

System BLEU AL
Offline 21.04 -
Baseline
wait-1 3.66 844.45
wait-5 11.49 1684.13
wait-17 18.80 3786.07
Proposed (λthre)
low (0.1)† 17.54 990.32
medium (0.47) 19.15 1859.56
high (0.68) 19.50 3896.67

Table 1: The main results of our systems on En-De tst-
COMMON. † uses T = 48 frames as an input unit.

System BLEU AL
Offline 11.6 -
Baseline
wait-7 4.76 2369.68
wait-17 8.46 3723.65
wait-27 9.55 4421.75
Proposed (λthre)
low (0.0) 9.26 2185.51
medium (0.36) 9.90 3946.02
high (0.4) 10.22 4733.65

Table 2: The main results of our systems on En-Ja tst-
COMMON. The FT model was the best model with data
filtering approach.

3.2.2 Boundary Predictor
We trained the boundary predictor using the ex-
tracted source language speech prefixes. The
boundary predictor consisted of a 2D-convolution
layer reducing the sequence length to τ/4 (25
frames), a unidirectional LSTM layer, and an
output linear layer that gives label probabilities
x̂n ∈ R2 at the n-th frame of the convolution layer.
We set the embedding dimensions and the hidden
state dimensions of the LSTM layer to 256 and 512.
The model was trained using Adam with an initial
learning rate of 0.0001, warmup updates of 4,000
and early stopping patience of 8. During inference,
we tried several values of voting threshold λthre

between 0.0 to 1.0 to adjust for latency and BLEU
tradeoffs.

4 Experiments

We conducted comparative experiments with wait-
k (Ma et al., 2019). For baseline wait-k, we tried k
ranging from 1 to 19 at two intervals for En-De and
5 to 31 at two intervals (excluding 29) for En-Ja.
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Metrics En-De En-Ja
Accuracy 0.678 0.679
Precision 0.646 0.480
Recall 0.490 0.009
F1 0.557 0.017

Table 3: The evaluation results of boundary predic-
tor models on prefix pairs of tst-COMMON dataset
in λthre = 0.5.

Following the default wait-k setting in fairseq, one
unit for k was set to 280 frames. For examples,
when k = 3, after reading 3 × 280 frames, the
model would WRITE and READ alternately.

4.1 Main Results
Table 1 shows the best results of the proposed and
baseline SimulMT systems in En-De with low (AL
≤ 1,000), medium (AL ≤ 2,000), and high (AL ≤
4,000) latency regimes. Table 2 shows the counter-
part in En-Ja with low (AL ≤ 2,500), medium (AL
≤ 4,000), and high (AL ≤ 5,000) latency regimes.
In both language pairs, our model outperformed the
baselines with all the latency regimes. In particular,
the proposed method showed a significant improve-
ment of more than 10 points in BLEU in En-De
with low latency regime. On the other hand, the
improvement for En-Ja was smaller than in En-De.
One possible reason was the performance differ-
ence of the boundary predictor, which depends on
the difference between source and target languages.
Table 3 shows the results of the boundary predic-
tor on prefix pairs of tst-COMMON dataset with
λthre = 0.5. For both language pairs, the accu-
racy was under 68%, suggesting the difficulty of
binary classification at the acoustic frame level. Es-
pecially, the recall of En-Ja boundary predictor was
extremely low, which means that its output predic-
tions were almost 0 (READ) in λthre = 0.5. The
small λthre value was required to output label 1
(WRITE) frequently on En-Ja, compared to En-De,
as shown in Tables 1 and 2.

4.2 Effectiveness of Fine-tuning
Figure 2 shows the results of wait-k baselines, a
model fine-tuned with bilingual prefix pairs (FT)
and a model without fine-tuning (w/o FT). Figure 3
shows the counterparts in En-Ja. In En-De, the fine-
tuned model worked better than the non fine-tuned
model in the range of AL ≤ 4,000. The perfor-
mance gap between proposed models and wait-k
models in the low latency ranges were larger than
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Figure 2: The BLEU and AL results of FT, w/o FT and
baseline in En-De. The two FT points in low latency
regime (AL≤1000) were evaluated in T = 48 frames
on λthre = {0.0, 0.1}.
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Figure 3: The BLEU and AL results of FT, w/o FT and
baseline in En-Ja. The FT model was fine-tuned with
non-filtered prefix pairs.

those in the high latency ranges. On the other hand,
the non-fine-tuned model worked better than the
fine-tuned model in the very large latency ranges
with AL > 4000. Both of them outperformed the
baseline wait-k models consistently in BLEU. The
fine-tuned model achieved higher BLEU scores
at the cost of the larger latency, compared to the
non-fine-tuned and wait-k models.

In En-Ja, the scores of the non-fine-tuned model
were better than those of wait-k baselines with all
the latency regimes. The performance improve-
ments of the non-fine-tuned model against wait-
k models in the low latency ranges were larger
than those in the high latency ranges. However,
the scores of the fine-tuned model were worse
than those of wait-k models and the non-fine-tuned
model almost everywhere. It suggests the failure
of appropriate fine-tuning in En-Ja.
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▁ 注文 を 取ったあと ▁ 隣 の ブー ス で カップルに会い ました▁彼女は自分の声をあまりにも軽蔑 しました...

300 f 400 f 500 f

𝑆!"#$%&	

𝑇$!"#$%& ▁ 注文
▁ 注文 を
▁ 注文 を 取ったあと ▁ 隣 の ブー ス で カップル

𝑇$'$$(%)#

She took our order,  and then went to the couple in the booth next to us,         and she                       lowered   her voice ... 

Figure 4: Examples of extracted prefix pairs on En-Ja containing unbalanced pairs whose target prefix is too short.

Filter (maxratio) # samples (% removed)
None 642,426 (0%)
80 583,986 (9.1%)
40 447,517 (30.3%)
20 161,309 (74.9%)

Table 4: The samples size of En-Ja prefix alignment
data filtered by maxratio. maxratio indicates ratio
between source speech frames size and target hypothesis
tokens length.

Offline (hyp/ref )
w/o FT 11.6 (0.885)
FT + Filter (maxratio)
None 6.0 (0.515)
80 6.4 (0.530)
40 8.0 (0.609)
20 10.9 (0.796)

Table 5: The En-Ja FT BLEU results on offline with
filtered prefix alignment data. hyp/ref indicates ratio
between hypothesis length and reference length.

4.2.1 Data Filtering for English-Japanese

In contrast to En-De, the fine-tuned model was in-
ferior to the non-fine-tuned and wait-k models in
En-Ja. We expected that under-translation would
degrade the performance because the fine-tuning
used prefix pairs of a long source language speech
prefix and a short target language text segment. It
would be due to differences in sentence structures
between English and Japanese. Since English and
German are subject-verb-object (SVO) languages,
the English prefix speech frames and the German
prefix tokens can be aligned without long-distance
reordering. For example, the pair dataset of English
frames and German tokens {English prefix frames,
German prefix tokens} would consist of {S, S},
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w/o FT
FT (None)
filter80
filter40
filter20

Figure 5: The En-Ja BLEU and AL results of w/o FT
models and FT models. The FT models were fine-tuned
with filtered prefix alignment data.

{SV, SV}, {SVO, SVO}. On the other hand, since
Japanese is a subject-object-verb (SOV) language,
the difference in sentence structures between them
causes the difficulty in aligning prefixes. For exam-
ple, the prefix pairs of English speech and Japanese
text {English prefix frames, Japanese prefix tokens}
would consist of {S, S}, {SV, S}, {SVO, SOV}.
Such an unbalanced pair like {SV, S} would make
the fine-tuned model prefer inappropriately short
outputs. Figure 4 shows examples of prefix pairs
extracted using Bilingual Prefix Alignment to fine-
tune the ST model. Bilingual Prefix Alignment ex-
tracted unbalanced pairs (Sprefix, T̂prefix) whose
target prefix is too short. For example, a source
speech prefix of 300 frames (about three seconds)
is paired with a target prefix of only two subwords,
which obviously does not match.

We applied simple data filtering described in
2.1 for En-Ja. Table 4 shows the prefix alignment
dataset with the filtering. The filtering can reduce
the unbalanced pairs of data that consists of long
source speech frames and short target tokens. It
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would alleviate the model to generate too short
sequences. Table 5 shows the results of the fine-
tuned model with the filtered prefix pairs. Table 5
shows the BLEU improvement from no filter set-
ting (None) to larger maxratio filter setting with
alleviating the gap between hypothesis length and
reference length (hyp/ref). Figure 5 shows the re-
sults of the fine-tuned (FT) models with filtered pre-
fix alignment dataset. FT (None) was worse than
the non-fine-tuned model in the latency ranges with
AL > 3500. The scores by the fine-tuned model us-
ing filtered data on maxratio = 80 (filter80) were
almost the same as FT (None) model’s. Decreas-
ing maxratio to 20 significantly improved BLEU
scores. It suggests selective use of the fine-tuning
data alleviated the under-translation problem for
distant language pairs.

5 Conclusions

In this paper, we described our SimulST systems in
English-to-German and English-to-Japanese. The
proposed method uses prefix alignment data to fine-
tune the offline ST model and train boundary pre-
dictor that judges when to READ and WRITE. Our
models achieved some improvements compared to
the wait-k baselines in every latency regime in both
English-to-German and English-to-Japanese.
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