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Abstract
This paper describes the submission of our
end-to-end YiTrans speech translation system
for the IWSLT 2022 offline task, which trans-
lates from English audio to German, Chinese,
and Japanese. The YiTrans system is built on
large-scale pre-trained encoder-decoder mod-
els. More specifically, we first design a multi-
stage pre-training strategy to build a multi-
modality model with a large amount of labeled
and unlabeled data. We then fine-tune the cor-
responding components of the model for the
downstream speech translation tasks. More-
over, we make various efforts to improve per-
formance, such as data filtering, data augmen-
tation, speech segmentation, model ensemble,
and so on. Experimental results show that our
YiTrans system obtains a significant improve-
ment than the strong baseline on three trans-
lation directions, and it achieves +5.2 BLEU
improvements over last year’s optimal end-to-
end system on tst2021 English-German.

1 Introduction

In this paper, we describe our end-to-end speech
translation system YiTrans which participates in
the offline tracks of the IWSLT 2022 evaluation
campaign. We evaluate our systems from English
to German, Chinese and Japanese. We aim at ex-
ploring the pre-training methods for end-to-end
systems, and bridging the quality gap with the cas-
caded approaches.

As self-supervised learning has been shown ef-
fective in speech-to-text tasks (Baevski et al., 2020;
Hsu et al., 2021; Ao et al., 2021; Bapna et al.,
2021), our teams are interested in building a multi-
modality pre-trained model with self-supervised
approaches by leveraging large amounts of speech
and text data. Inspired by SpeechT5 (Ao et al.,
2021), we design a multi-stage unified-modal train-
ing strategy for pre-training both the encoder and
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decoder. Our final end-to-end ST systems are built
by fine-tuning the pre-trained models.

This paper also tries to improve the system per-
formance by exploring various techniques for the
related tasks. (1) To boost the performance with ad-
vanced speech segmentation (Anastasopoulos et al.,
2021), we apply the pyannote toolkit (Bredin et al.,
2020) and the merge algorithm from Inaguma et al.
(2021) to segment the audio. Particularly, to over-
come the long sentence problem in the dataset, we
design a new segment algorithm. (2) Dataset is the
key point for a ST system to perform well. Hence,
we conduct refined data filtering and large-scale
data augmentation (Jia et al., 2019). (3) We also
employ progressive learning, back translation and
multi-stage fine-tuning (Yang et al., 2021; Sennrich
et al., 2015; Wang et al., 2020b) when fine-tuning
our models. (4) Motivated by Tang et al. (2021a),
we utilize joint ST and MT fine-tuning for our end-
to-end ST models. (5) As comparison, we also
build the cascaded systems for all three language
pairs by fine-tuning ASR and MT models from
pre-trained models.

The rest of this paper is organized as follows.
In Section 2, we describe the data preparation, in-
cluding the data pre-processing, data augmentation,
and speech segmentation. Section 3 illustrates the
unified-modal pre-training methods, and our sys-
tems for all three tasks. We share the experimental
setting, results, and analyses in Section 4. Section
5 concludes the submission. We also present the
official test results (Anastasopoulos et al., 2022) of
our submitted system in Appendix A.

2 Data Preparation

2.1 Datasets

Our system is built under constraint conditions.
The training data can be divided into five categories:
unlabeled audio, monolingual text, ASR, MT, and
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ST corpora1.

Datasets # Utterances # Hours

Unlabeled Data
VoxPopuli 1224.9k 28708

Labeled ASR Data
MuST-C v1&v2 341.6k 616.9
ST-TED 171.1k 272.8
LibriSpeech 281.2k 961.1
CoVoST 288.4k 426.1
CommonVoice 1224.9k 1668.1
TEDLIUM v2&v3 361.2k 660.6
Europarl 34.3k 81.4
VoxPopuli ASR 177.0k 501.3

Labeled ST Data
en-de
MuST-C v2 249.8k 435.9
ST-TED 171.1k 272.8
CoVoST 288.4k 426.1
Europarl 32.6k 77.2
en-ja
MuST-C v2 328.4k 534.5
CoVoST 288.4k 426.1
en-zh
MuST-C v2 358.5k 586.8
CoVoST 288.4k 426.1

Table 1: English audio data statistics

Unlabeled Audio We utilize large-scale unla-
beled and labeled audio for pre-training. As shown
in Table 1, we pre-train our models by using around
28k hours of unlabeled audio data from VoxPop-
uli (Wang et al., 2021), and around 5.1k hours of
labeled ASR data, which will be introduced later.

Monolingual Text Monolingual text is used ei-
ther for pre-training or back-translation. We collect
data for English as well as three target languages
from WMT21 news translation task1, including
News Commentary2, Europarl v103, News crawl4,
and Common Crawl5. As Common Crawl contains
much noisier data, it is only used for ja and zh
to expand the collected data size to 500M. The
statistics are listed in Table 2.

1https://www.statmt.org/wmt21/translation-task.html
2http://data.statmt.org/news-commentary
3http://www.statmt.org/europarl/v10
4http://data.statmt.org/news-crawl
5http://data.statmt.org/ngrams

en de ja zh

Collected 341M 389M 500M 500M

Processed & filtered 50M 50M 50M 50M

Table 2: Monolingual text data statistics

ASR Corpus For training and evaluation of our
ASR models, we use MuST-C v1 (Di Gangi et al.,
2019), MuST-C v2 (Cattoni et al., 2021), ST-TED
(Niehues et al., 2018), LibriSpeech (Panayotov
et al., 2015), CoVoST 2 (Wang et al., 2020a), TED-
LIUM v2 (Rousseau et al., 2012), TED-LIUM
v3 (Hernandez et al., 2018), Europarl (Koehn,
2005), VoxPopuli ASR data, and Mozilla Com-
mon Voice (Ardila et al., 2019), which results in
around 5188.3hr labled ASR data as shown in Ta-
ble 1. For MuSTC-C and Europarl, we collected
the data from all language pairs and removed the
overlap audios according to the audio id.

Datasets en-de en-ja en-zh

In-domain
MuST-C v2 249.8k 328.4k 358.5k
TED 209.5k 223.1k 231.3k

Out-of-domain
CoVoST 288.4k 288.4k 288.4k
Europarl 32.6k - -
OpenSubtitles2018 18.7M 1.9M 10.0M
WMT21 93.3M 16.6M 61.0M
Sum (processed) 82.0M 13.8M 51.5M
Sum (filtered) 16.1M 3.6M 7.6M

Table 3: MT data statistics

MT Corpus Machine translation (MT) corpora
are used to translate the English transcription. For
training and evaluation of our MT models, we use
MuST-C v2 and TED corpus (Cettolo et al., 2012)
as in-domain data. We also use CoVoST 2, Eu-
roparl, OpenSubtitles2018 (Lison and Tiedemann,
2016) as well as all available paired data provided
by WMT21 as out-of-domain data. The statistics
are listed in Table 3.

ST Corpus The ST corpus we used includes the
MuST-C v2, ST-TED, CoVoST 2 and Europarl, as
listed in Table 1. MuST-C v2 and ST-TED are
treated as in-domain data. The ST corpus can be
greatly expanded by large-scale data augmentation,
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which will be introduced in the following Section.

2.2 Text Processing & Filtering

For monolingual and out-of-domain MT data, we
first process the text through the following steps:

(1) We clean up the data by removing sen-
tences that have non-printing characters, http tags
or words with length longer than 50 characters
(words are separated by space, for ja and zh the
threshold is 150). The processed text data is then
deduplicated.

(2) We use fast-text 6 (Joulin et al., 2016) to filter
out the sentences with invalid languages.

(3) For paired data, we use fast_align7 (Dyer
et al., 2013) to calculate the alignment quality,
which is evaluated by the percentage of aligned
words. We remove 20% of data with the lowest
alignment quality.

(4) We then use XenC8 (Rousseau, 2013) to
perform domain filtering. It computes the distinc-
tion of two n-gram language models, which are in-
domain and out-of-domain language models. The
amount of selected data is 50M for monolingual
text, and for paired text it depends on the XenC
scores. The results are listed in Table 2 and 3.

2.3 Post processing

We only do post-processing for en-ja systems as an
optional choice. It is because we noticed that for
en-ja there is few punctuations in the target side
of training data. To obtain translation results with
rich punctuation, which are more natural in the real
world, we train a punctuation model to post-process
the translated results. The model is initialized from
mBART50 (Tang et al., 2020) and trained to predict
sentences with proper punctuation. The training
data is collected from out-of-domain en-ja MT
data. We select the sentences with rich punctuation
in Japanese side.

2.4 Data Augmentation

The quality of end-to-end ST is often limited by a
paucity of training data, since it is difficult to col-
lect large parallel corpora of speech and translated
transcript pairs In this paper, we attempt to build a
large amount of synthetic data for ST and MT, sep-
arately. We will introduce the data augmentation
method in Section 3 in detail.

6https://github.com/facebookresearch/fastText
7https://github.com/clab/fastalign
8https://github.com/antho-rousseau/XenC

2.5 Speech Segmentation

Algorithm 1 Segment audios based on pyannote
toolkit
1: function SEGMENTAUDIO(x, Pon, Poff , Tdur)
2: L← V AD(x, Pon, Poff ) ▷ {a1, ..., an}
3: Lnew ← {}
4: for ai ∈ L do
5: if ai.length > Tdur then
6: if Pon < 0.95 or Poff < 0.95 then
7: Lnew ← Lnew∪ SEGMENTAUDIO(ai,

Pon + αon, Poff + αoff , Tdur)
8: else
9: Lnew ← Lnew∪ EQUALSEGMENT(ai)

10: end if
11: end if
12: end for
13: return Lnew

14: end function

Similar to the previous evaluation, this year’s
evaluation data are segmented using an automatic
tool, which does not ensure that segments are
proper sentences nor that they are aligned with
the translated text. In addition, there is an ap-
parent mismatch for segmentation between using
voice activity detection (VAD) and segmenting by
punctuations, where the latter is usually used for
segmenting the training data. These assign extra
importance to develop methods for proper segmen-
tation of the audio data, which was confirmed in
the previous year’s evaluation campaign, where
all top submissions used their own segmentation
algorithm (Anastasopoulos et al., 2021).

Therefore, we design a segmentation algo-
rithm based on a VAD model provided by pyan-
note.audio9 (Bredin et al., 2020), as illustrated in
Algorithm 1. We find that long segments are diffi-
cult for the model to decode and need to be further
segmented. More specifically, we firstly use the
VAD model pre-trained on AMI dataset (Carletta,
2007) to segment the audio. Two hyperparameters,
Pon and Poff , are set for the VAD model, which
are the onset speaker activation threshold and offset
speaker activation threshold, respectively. Then the
segments longer than Tdur are further segmented
by increasing Pon and Poff with αon and αoff if
Pon and Poff are smaller than 0.95. Otherwise, we
segment the audio into several parts with the same
length smaller than Tdur, as large activation thresh-
olds may lead to incorrect segmentation. In our
experiments, We use the default values of the pre-
trained model for Pon and Poff , which are 0.481

9https://huggingface.co/pyannote/voice-activity-
detection
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and 0.810. respectively. For segmenting long au-
dios, we set the Tdur to 43.75 seconds, αon to 0.1,
and αoff to 0.028.

Moreover, some short segments are generated
by the VAD model according to our observations,
which may be incomplete sentences and harm the
performance of our ST model. Merging the short
segments helps the ST model utilize the context in-
formation. So we follow the algorithm in (Inaguma
et al., 2021) to merge the short segments after the
segmentation.

3 End-to-End YiTrans ST System

Recent studies, such as SpeechT5 (Ao et al., 2021)
and SLAM (Bapna et al., 2021), have shown that
joint pre-training of speech and text can boost the
performance of spoken language processing tasks,
such as speech translation. This section will mainly
introduce the model architecture of our end-to-end
YiTrans system, and the proposed methods to pre-
train and fine-tune the models.

3.1 Model Architecture

Our evaluation system is based on an encoder-
decoder model with state-of-the-art Transformer
architecture. Figure 1 shows the framework of our
end-to-end speech translation model, which con-
sists of a speech encoder, text encoder, and text
decoder. We employ the relative positional encod-
ing (Shaw et al., 2018) for both the encoder and
decoder network.

The speech encoder network contains a con-
volutional feature encoder and a Transformer en-
coder. The convolutional feature encoder is a
convolutional network for extracting feature from
waveform, which has seven 512-channel layers
with kernel widths [10,3,3,3,3,2,2] and strides
[5,2,2,2,2,2,2]. The Transformer encoder has 24
layers with model dimension 1024, inner dimen-
sion 4096 and 16 attention heads. The text encoder
and decoder contain 12 layers and have a similar
architecture to the Transformer encoder, except that
the text decoder includes the cross-attention and
the masked self attention. We optionally add an
adaptor between the speech encoder and text en-
coder, which is three one-dimensional convolution
layers with stride 2.

3.2 Multi-Stage Unified-Modal Pre-Training

To leverage large amounts of speech and text data,
we firstly initialize the speech encoder with the

Speech Encoder

Text Encoder

Adaptor

Text Decoder

Optional
Stage 1

Stage 1

Stage 2

−, 𝐶2 , 𝐶3, −, −,… , 𝐶𝑇

𝑦1, 𝑀𝑎𝑠𝑘 ,… 𝑦𝑁 , 𝑒𝑛

Stage 2 𝑦1, 𝑦2 , 𝑦3 , … 𝑦𝑁 , 𝑒𝑛

𝑒𝑛 , 𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑁
𝑒𝑛 , 𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑁

𝐶1, 𝐶2 , 𝐶3 , … , 𝐶𝑁, 𝑐

𝑦1, 𝑦2 , 𝑦3 , … , 𝑦𝑁 , 𝑒𝑛

𝑦1, 𝑦2 , 𝑦3 , … , 𝑦𝑁 , 𝑑𝑒|𝑧ℎ|𝑗𝑎

Speech-to-code/text task

Text-to-text task

Stage 1

Stage 1

Stage 2

Stage 1
Stage 2

Stage 1

𝑦1, 𝑦2 , 𝑦3 , … , 𝑦𝑁 , 𝑒𝑛Stage 2

Figure 1: An illustration of the pre-training model.

HuBERT LARGE (Hsu et al., 2021) and the text
encoder and decoder with the mBART50 (Tang
et al., 2020). Then we design a multi-stage pre-
training strategy to boost the performance of ASR
and ST tasks.

In the first stage, we employ the speech to code
pre-training method following Speech2C (Ao et al.,
2022) to make full use of unlabeled speech data.
More specifically, We set two pre-training tasks for
the encoder-decoder pre-training using unlabeled
speech data with pseudo codes, which are acous-
tic units learned from an offline clustering model.
The encoder of Speech2C predicts the pseudo code
via masked language modeling (MLM) in encoder
output, like HuBERT model. In addition to MLM
loss, the decoder of Speech2C learns to reconstruct
pseudo codes auto-regressively, instead of gener-
ating real text transcription, both of which are dis-
crete representations and have some semantic in-
formation corresponding to the speech signal. For
the text data, the BART loss (Lewis et al., 2020)
and cross entropy loss are used for the monolingual
English data and MT data of three target languages,
respectively. Note that the text data is only used
for pre-training the text encoder and text decoder.
For the second stage, we use the ASR data and
the filtered MT data to continuously pre-train the
model.

3.3 Joint Fine-Tuning
After pre-training, all the pre-trained modules
(speech encoder, text encoder, text decoder and the
optional adaptor) are used for directly fine-tunig a
end-to-end ST model. We also make various efforts
to improve the final perfermance.

Joint ST and MT Fine-Tuning We train the ST
model along with an auxiliary text to text machine
translation (MT) task. We utilize two methods from
(Tang et al., 2021b) to enhance the performance of
the primary ST task. First, a cross-attentive regu-
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larization is introduced for the encoders. It mini-
mizes the L2 distance between two reconstructed
encoder output sequences and encourages the en-
coder outputs from different modalities to be closer
to each other. Second, online knowledge distilla-
tion learning is introduced for MTL in order to
enhance knowledge transfer from the MT to the ST
task.

Synthetic Data for ST To provide more paral-
lel audio-translation pairs, we translate the En-
glish side of the ASR data with our MT model.
Specifically, we translate all the transcriptions of
labeled ASR data listed in Table 1 to three target
languages. For en-de, we additionally generate
a certain amount of (about 8000 hours) cascaded
pseudo data from unlabeled VoxPopuli, by firstly
generating pseudo transcriptions with ASR model
and then translating them with MT model.

Multi-Stage Fine-Tuning Note that our ST data
is from various domains, including synthetic data
and out-of-domain data (e.g. CoVoST). To make
out ST model better adapted to the TED domain,
we adopt the multi-stage fine-tuning method ac-
cording to data category: At the first stage, we
fine-tune ST models with all ST data, including
synthetic and true data; Then at the second stage,
the ST models are continually fine-tuned with in-
domain data, i.e. Must-C and ST-TED.

3.4 Cascaded Speech Translation

To compare with our end-to-end YiTrans system,
we also build a cascaded system by fine-tuning
ASR and MT models from pre-trained models, and
these subsystems also has been used to construct
synthetic data for ST.

3.4.1 Automatic Speech Recognition
We fine-tune our ASR model with the following
strategies: (1) Synthetic Data for ASR. To make
the transcriptions contain the punctuations, we
train a punctuation model using the English text of
the MuST-C dataset, and add punctuations to the
transcriptions of the TEDLIUM and LibriSpeech
dataset with this model. We also use a model
trained on MuST-C dataset to synthesize data from
the Voxpopuli corpus. (2) Data Filtering. We find
that the ASR data contains some noise and the tran-
scription of some utterances are wrong. Therefore,
we also use a model trained on MuST-C dataset
to calculate the WER of each sentence, which is

used for filtering ASR data. (3) In-Domain Fine-
Tuning. To let the model fit the TED domain, we
train two models from the second stage of pre-
training. For the first one, we directly fine-tune the
model on the MuST-C dataset. For the second one,
we train the model with the TED-style datasets,
which include MuST-C, ST-TED, and TED-LIUM
corpus. We also filter the utterances that the WER
is larger than 50% for the second model.

3.4.2 Machine Translation
All of our MT models for the offline task are fine-
tuned from the big pre-trained mBART50 model,
with advanced techniques: (1) We inherit the idea
of Progressive Learning (Li et al., 2020) to train
the model from shallow to deep. Specifically,
our MT model has 24 encoders and 12 decoder
layers, where the top 12 encoder layers are ran-
domly initialized and the rest layers are initialized
from mBART50. (2) Back Translation. Follow-
ing previous experience in WMT evaluation cam-
paigns (Akhbardeh et al., 2021), we use the trained
{de,ja,zh}-en MT models to generate the English
side for the selected monolingual text from Ta-
ble 2. The MT models are also fine-tuned form
mBART50. All back-translated pairs and the true
paired data are combined for training. (3) Multi-
Stage Fine-Tuning. We also perform multi-stage
fine-tuning for MT models, where the model is
first fine-tuned with all (processed) MT data, then
is fine-tuned with in-domain data for a few steps.
There is also an optional stage between them,
which is fine-tuning with in-domain filtered data
(the last line in Table 3). (4) ASR Output Adapta-
tion. To alleviate the mismatch between the ASR
transcripts and the real text used for training MT
models, we add the synthetic in-domain data at the
in-domain fine-tuning stage. The synthetic data is
generated by replacing the English site text with
pseudo ASR labels.

4 Experiments & Results

4.1 Pre-Training Setup
All models are implemented in Fairseq 10 (Ott et al.,
2019). We pre-train two models depending on the
computational efficiency. The first has 24 speech
encoder layers, 12 text encoder layers and 12 de-
coder layers (denoted as PT48). The second has 12
encoder layers, an adaptor, 12 text encoder layers
and 12 decoder layers (denoted as PT36). The total

10https://github.com/pytorch/fairseq

162



number of parameters for the pre-trained model
is about 927M and 803M, respectively. The vo-
cabulary size is 250k, which is inherited from the
mBART50 model.

For the first stage, we pre-train our model on 64
A100 GPUs with a batch size of 37.5s samples per
GPU for speech and 1875 tokens per GPU for text
and set the update frequency to 3 for 100k steps.
We optimize the model with Adam (Kingma and
Ba, 2014) and set the learning rate to 3e-5, which is
warmed up for the first 8% of updates and linearly
decayed for the following updates. For the second
stage, we also use 64 A100 GPUs and train the
model for 300k with a batch size of 30s samples
per GPU for speech and 1500 tokens for text. The
learning rate set to 3e-5 is warmed up for the first
10% steps, held as a constant for the following 40%
steps, and is decayed linearly for the rest steps. We
add a language ID symbol for four languages at the
start of each sentence.

ID Model tst2019 tst2020
1 Hubert & mBART 30.72 31.58
2 + in-domain FT 30.62 33.07
3 PT36 + joint FT 20.10 (*) 20.12 (*)
4 + in-domain FT 30.01 32.65
5 PT48 30.56 33.26
6 + in-domain FT 30.98 33.48
7 + joint FT 30.65 33.16
8 + in-domain FT 31.02 33.46
9 + cascaded data 31.00 33.52
10 + in-domain FT 30.91 33.42
11 Ensemble (10, 6) 31.46 34.03
12 Ensemble (10, 8, 6) 31.49 33.84
13 Ensemble (10, 9, 8, 6) 31.47 33.95
14 Ensemble (10, 9, 8, 6, 2) 31.57 33.96
15 Ensemble (10, 9, 8, 6, 4, 2) 31.40 34.10

Table 4: BLEU results of e2e en-de models.

Model tst-common
1 Hubert & mBART 18.13
2 + in-domain FT 18.59
3 PT36 + joint FT 18.16
4 + in-domain FT 18.86
5 PT48 17.67
6 + in-domain FT 18.30
7 + joint FT 18.71
8 + in-domain FT 19.13
9 Ensemble (8, 6) 19.38

10 Ensemble (8, 6, 2) 19.48
11 Ensemble (8, 6, 4) 19.70
12 Ensemble (8, 6, 4, 2) 19.81

Table 5: BLEU results of e2e en-ja models.

4.2 End-to-End Speech Translation
Our e2e ST models are fine-tuned from various pre-
trained models. When fine-tuning with all ST data,
the learning rate is set to 5e-5 and then is decayed
linearly to zero within 200k training steps. And
when fine-tuning with in-domain data, the learning
rate is set to 1e-5 for 30k steps. All ST models are
fine-tuned on 8 A100 GPUs with a batch size of
about 30s per GPU and update frequency of 4.

Model tst-common
1 Hubert & mBART 28.69
2 + in-domain FT 28.71
3 PT36 28.62
4 + in-domain FT 28.61
5 PT48 29.07
6 + in-domain FT 29.26
7 + joint FT 28.51
8 + in-domain FT 29.14
9 Ensemble (8, 6) 29.38
10 Ensemble (8, 6, 4) 29.36
11 Ensemble (8, 6, 2) 29.48
12 Ensemble (8, 6, 4, 2) 29.53

Table 6: BLEU results of e2e en-zh models.

en-de We use tst2019 and tst2020 as validation
sets. We do not use tst-common as we find that
it has overlapped speech samples with ST-TED
training data. All BLEU results are computed at
paragraph level, as listed in Table 4. It is noticed
that almost all of the models get improved when
fine-tuned with in-domain data (in-domain FT).
What’s more, joint ST&MT fine-tuning (joint FT)
and adding cascaded pseudo ST data also help the
performance. While, Table 4 shows that PT36 fine-
tuned models get some unexpectedly bad results
without in-domain fine-tuning. After checking the
results we found that sometimes the model could
only be able to decode a small portion of a sample
especially when the sample is long. Finally, our
PT48 fine-tuned model achieves the best perfor-
mance, and ensemble decoding (Liu et al., 2018)
with different models continually brings improve-
ment. Our final submitted system is the last line of
Table 4.

en-ja We use tst-common as the validation
set, which has sentence-level translations so that
BLEUs are computed at the sentence level. The
results are listed in Table 5, where the BLEUs are
computed after tokenized by Mecab11. Cascaded
pseudo ST data is not performed due to the time ur-
gency. Similar phenomena could be observed in Ta-

11https://taku910.github.io/mecab/
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Model en-de en-ja/zh tst2019 tst2020tst-common tst-common

Fine-tune with TED-Style data 8.49 8.67 10.9 13.4
Fine-tune with MuST-C 8.55 8.70 10.9 13.6

ensemble 8.47 8.56 10.7 13.3

Table 7: WER results of ASR Systems.

ble 5, where in-domain fine-tuning, joint ST&MT
fine-tuning as well as model ensemble benefit the
translation performance. Again, our PT48 fine-
tuned model achieves the best performance. Our
submitted system are listed in the last line of Table
5.

en-zh The validation set is also tst-common and
sentence level BLEUs with character tokenizer are
reported in Table 6. We find that in-domain fine-
tuning and joint ST&MT fine-tuning are not as ef-
fective here as that in en-de and en-ja. That might
be due to the specific data property of en-zh, e.g.
all ST data is not mismatched very much with in-
domain data. Finally, PT48 fine-tuned models still
achieve the best performance and model ensemble
brings improvement. Our final submitted system
are listed in the last line of Table 6. Note that the
results in Table 6 are not post-processed, while in
our submitted results of tst2022, we post-process
the decoding results by correcting the punctuation
to Chinese style.

4.3 Cascade Speech Translation

Automatic Speech Recognition For the ASR
fine-tuning, we use the CTC and cross-entropy loss
to train the model (Watanabe et al., 2017). The loss
weights are are set to 0.5 for both of them. We fine-
tune the model on 8 A100 GPUs with the update
frequency 4 for 120k steps, and set the batch size
to around 30s samples per GPU. The learning rate
set to 3e-5 is scheduled with the same strategy as
the stage 2 of pre-training.

As shown in Table 10, we investigate the im-
pact of speech segmentation with the model fine-
tuned on MuST-C dataset. The pyannote toolkit
improve the performance significantly compared
to the given segmentation. The merge algorithm
from Inaguma et al. (2021) further decreases the
WER. We adjust two parameters of merge algo-
rithm, Mdur and Mint. Mdur means the maximum
duration after merging, and Mint is the minimum
interval of two segments that will be merged. The

experiments show that when Mdur and Mint are set
to 30s and 1s, respectively, the model achieves the
best performance. We then apply our Algorithm 1
to further segment the utterance longer than 43.75s,
and the final WERs are 10.9 for tst2019 set and
13.6 for tst2020 set. Table 7 shows the WER scores
of two ASR systems. We ensemble these two mod-
els and use the results for the cascade system.

Machine Translation For all three language
pairs, we fine-tune both base models (with 12 en-
coder layers) and deep models (with 24 encoder
layers) as described in Section 3.4.2. All models
are fine-tuned on 8 A100 or V100 GPUs with a
batch size of 2048 tokens per GPU, the update fre-
quency is 1. The learning rate is set to 1e-4 with
5k warming up steps, then it is linearly decayed to
zero in total 200k steps. In case of using additional
back-translated data, we set the total training step to
300k. For in-domain fine-tuning, we only change
the learning rate to 1e-5 and the total training step
to 30k.

The results of MT systems are shown in Table
8. All BLEUs are computed the same way as e2e
ST systems. Similar to e2e ST results, in-domain
fine-tuning (in-domain FT) benefits all MT models.
Progressive learning with deeper models also out-
performs their baselines for all languages (line 3
vs. line 1). While, data filtering is shown effective
for en-de but slightly negative for en-zh, which
might because we remain too little data for en-zh
to train such big models. It is also noticed that en-
ja gets un-normal improvement from filtered data
(indicated by *), we speculate data filtering might
allow us to collect too similar text to tst-common
to make the model overfit. Finally, back translation
is shown benefit to all languages (line 7), while for
en-de it falls slightly behind the best results, prob-
ably because of the amount of paired data already
sufficient.

Cascade Systems Cascade systems are built
upon ASR and MT systems. Table 9 shows the
cascade ST results when applying the MT model
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Method Model size MT en-de MT en-ja MT en-zh
tst-common tst-common tst-common

1 Baseline 12-12 35.82 19.58 28.52
2 + in-domain FT 12-12 37.01 20.21 30.10
3 Deep model 24-12 36.25 20.15 29.19
4 + data filtering 24-12 37.38 24.52 (*) 29.22
5 + in-domain FT 24-12 38.27 24.91 (*) 29.94
6 Back-translation 24-12 37.29 18.62 28.65
7 + in-domain FT 24-12 38.05 20.92 30.43

Table 8: BLEU results of MT systems. * indicates the results may be over-fitted on tst-common set.

ID Method Model size en-de en-ja en-zh
tst-common tst2019 tst2020 tst-common tst-common

1 Baseline 12-12 33.07 30.47 32.96 18.79 27.50
2 + in-domain FT 12-12 34.17 31.12 33.71 19.40 28.76
3 Deep model 24-12 33.29 30.67 33.14 19.00 27.81
4 + data filtering 24-12 34.65 31.34 33.85 22.77 (*) 27.99
5 + in-domain FT 24-12 35.42 31.63 34.29 23.45 (*) 28.65
6 Back-translation 24-12 34.54 31.10 33.57 17.61 27.44
7 + in-domain FT 24-12 35.40 31.72 34.16 19.94 29.12

Table 9: BLEU results of cascaded systems. * indicates the results may be over-fitted on tst-common set.

VAD Mdur(s) Mint(s) tst2019 tst2020

Given - - 26.2 27.3

pyannote

- - 15.7 16.3
20 1 11.2 14.5
25 0.5 12.4 15.0
25 1 11.0 14.4
25 1.5 11.6 14.3
30 0.5 12.4 14.9
30 1 10.9 14.0
30 1.5 11.1 14.3
35 1 11.4 14.0

Algo 1 30 1 10.9 13.6

Table 10: Comparison of segmentation ways and merge
algorithm for ASR in terms of WER score.

Ensembled Models tst-common tst2019 tst2020
en-de
MT #5; ST #10 36.44 31.90 34.60
MT #5,#7; ST #10 36.31 31.89 34.60
MT #5,#7,#4; ST #10 36.16 31.90 34.45
en-ja
*MT #5; ST #8 22.79 \ \
*MT #5,#4; ST #8 23.26 \ \
*MT #5,#4,#7; ST #8 22.97 \ \
MT #7; ST #8 20.02 \ \
MT #7,#2; ST #8 20.12 \ \
MT #7,#2,#3; ST #8 20.45 \ \
en-zh
MT #7; ST #6 29.38 \ \
MT #7,#2; ST #6 29.48 \ \
MT #7,#2,#5; ST #6 29.32 \ \

Table 11: BLEU results of cascaded systems. * indi-
cates the results may be over-fitted on tst-common set.

listed in Table 8 to our best ASR systems. It is
shown that better MT models always lead to better
ST results. To leverage the end-to-end ST models,
we also explore the ensemble of MT and end-to-end
ST models as shown in Table 11. For en-ja, since
the BLEU results of MT model #4 and #5 may
be over-fitted on tst-common set, we also choose
another three models for the ensemble.

5 Conclusion

In this paper we describe our End-to-End YiTrans
speech translation system for IWSLT 2022 offline
task. We explore building ST systems from large-
scale pre-trained models. Our proposed multi-
stage pre-training strategy allows the model to learn
multi-modality information from both labeled and
unlabeled data, which further improves the perfor-
mance of downstream end-to-end ST tasks. Our
systems are also built on several popular methods
such as data augmentation, joint fine-tuning, model
ensemble, and so on. Massive experiments demon-
strate the effectiveness of our system, and show
that the end-to-end YiTrans achieves comparable
performance with the strong cascade systems and
outperforms the last year’s best end-to-end system
by 5.2 BLEU in term of English-German tst2021
set.
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A Appendix

We present the official test results for our submit-
ted systems. For en-de, our end-to-end system
achieves comparable performance with the cascade
system, even the cascaded system is the ensemble
of end-to-end and cascaded models. We also out-
performs the best result of the last year by a great
margin, especially for end-to-end systems. For
en-zh, the gap between end-to-end and cascaded
systems is also small (less than 1 point). While
for en-ja cascaded systems performs better than
end-to-end systems, probably because the end-to-
end and cascaded models are complementary and
resulting in a better ensemble. Meanwhile, it is
noticed that adding punctuation for en-ja results is
beneficial for ref2 while harmful for ref1.

Model BLEU ref2 BLEU ref1 BLEU both

Cascaded 25.6 23.7 36.4

E2E YiTrans 25.7 23.6 36.5

Table 12: Official results of our submitted en-de ST
systems on tst2022.

Model BLEU ref2 BLEU ref1 BLEU both

Cascaded

IWSLT21 rank-1 24.6 20.3 34.0
The submission 28.1 23.2 39.0

End-to-end

IWSLT21 rank-1 22.6 18.3 31.0
Our YiTrans 27.8 23.1 38.8

Table 13: Official results of our submitted en-de ST
systems on tst2021.

Model BLEU ref2 BLEU ref1 BLEU both

Cascaded 34.7 35.0 42.9

E2E YiTrans 34.1 34.6 42.3

Table 14: Official results of our submitted en-zh ST
systems on tst2022.

Model BLEU ref2 BLEU ref1 BLEU both

Cascaded 18.7 20.2 31.3
+ punc 22.8 14.7 30.0

E2E YiTrans 18.0 19.1 29.8
+ punc 21.8 13.7 28.2

Table 15: Official results of our submitted en-ja ST
systems on tst2022.
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