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Abstract
Interoperability is a necessity for the development of complex tasks that require the interconnection of several NLP services.
This article presents the approaches that were adopted in three scenarios to address their respective interoperability issues.
The first scenario describes the creation of a common REST API for a specific platform, the second scenario presents
the interconnection of several platforms via mapping of different representation formats and the third scenario shows the
complexities of interoperability through semantic schema mapping or automatic translation.

Keywords: Semantic Parsing, Semantic Mapping, NLP Platforms Interoperability

1 Introduction
For a long time, the development of NLP infrastruc-
tures or platforms that provide a larger number of
NLP services was not practically feasible. In recent
years this has changed with the appearance of new
technologies, especially containerisation and microser-
vices. The main advantage of these technologies is that
they enable individual development as well as easy de-
ployment and execution of NLP services, thus facilitat-
ing their re-use into one’s own computing system/en-
vironment. However, individual development of tools
especially when distributed among different organisa-
tions gives rise to interoperability (Rehm et al., 2020b)
issues, e. g., the services are developed without a com-
mon data model (exchange format), with different tech-
nologies and APIs (gRPC, REST) etc. In short, the ser-
vices cannot be easily combined. Achieving interoper-
ability becomes more complex the greater the number
of individual services involved.
For a further analysis of interoperability challenges en-
countered and potential methods of mitigation we look
at three scenarios of different complexity. From simple
to more challenging, these are:

• The first interoperability scenario is the situation
where the services to be developed use the same
format to carry out the processing and annotation
of texts. An example of this type of interoperabil-
ity is the European Language Grid (ELG), where a
specific API has been defined that must be used by
all the services that want to integrate into and be
interoperable within the ELG infrastructure (see
Section 2 for more details).

• In the second interoperability scenario we have
two different platforms in which the services
use different formats (regardless of the semantic
schemas). For example, one service might use

JSON as its input and output format, and another
service might use XML. Interoperability between
these two services (and possibly between the two
platforms) can be achieved through the transfor-
mation of one format into the other, for which
there are quite a few tools (SHACL1, XSLT2, etc.).

• In the third and most complex interoperability sce-
nario, two services, from the same platform or
from different platforms, use the same format as
input and output, but the semantic schema they
use is fundamentally different, i. e., the seman-
tic information text documents are annotated with
differs from one service to another. This differ-
ence not only implies that they can annotate dif-
ferent information, but even if they do annotate
the same information, for example, an entity such
as Berlin, one service uses an ENTITY tag and an-
other services uses the tag ENT (see Listing 1). In
addition, the different services can also use differ-
ent categorisations to classify such entities, i. e.,
one service annotates Berlin as CITY while the
other annotates it as LOCATION.

This article presents the work carried out so far to
address the three interoperability scenarios mentioned
above. The interoperability mechanisms developed in
the European Language Grid (ELG) platform3 to make
its heterogeneous and growing set of tools and services
compatible (common API specification) and intercon-
nectable (Python SDK) are described in Section 2.
The interoperability mechanisms implemented in the
QURATOR4 and SPEAKER5 projects (in addition to

1https://www.w3.org/TR/shacl/
2https://www.w3schools.com/xml/xsl intro.asp
3https://www.european-language-grid.eu
4https://qurator.ai
5https://www.speaker.fraunhofer.de

https://www.w3.org/TR/shacl/
https://www.w3schools.com/xml/xsl_intro.asp
https://www.european-language-grid.eu
https://qurator.ai
https://www.speaker.fraunhofer.de
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<?xml version="1.0" encoding="utf-8"?>
<text>
<Annotation_1>

I was living in <ENTITY class="CITY">
Berlin</ENTITY> last year

</Annotation_1>
<Annotation_2>

I was living in <ENT class="LOCATION">
Berlin</ENT> last year

</Annotation_2>
</text>

Listing 1: Example of annotations made by two
services using the same format and different semantic
schema

Lynx6) to mainly cover scenario 2, and minimally sce-
nario 3 (Workflow Manager) are presented in Section 3.
The proposed solution to solve scenario 3 as generi-
cally as possible is introduced in Section 4. Section 5
presents related work. Finally, Section 6 concludes the
article and sketches directions for future work.

2 Interoperability through common API
Specification (Scenario 1)

The European Language Grid (ELG) platform ad-
dresses interoperability by forcing the NLP services to
use a predefined format. This corresponds to the first
interoperability scenario described in Section 1.

2.1 Introduction to ELG
The ELG platform aims to offer multiple services that
will support and boost the Language Technologies (LT)
sector and activities in Europe, see Rehm et al. (2020a)
for a short overview and Rehm (2022) for an exhaustive
description that covers all the details.
Its primary goal is to provide a scalable system dedi-
cated to the distribution and deployment of Language
Resources and Technologies (LRT).7 ELG offers ac-
cess to thousands of commercial and non-commercial
LTs and ancillary data LRs for all European languages
and more. These include processing and generation
services, tools, applications for written and spoken
language, models, corpora, lexicons, ontologies, term
lists, computational grammars, etc. Moreover, re-
sources integrated in the ELG cloud infrastructure are
directly deployable and/or downloadable.
ELG aims to act as a living observatory of LT, consoli-
dating existing and legacy tools, services, LRs, and in-
formation about them, as well as newly emerging ones.

2.2 ELG Language Technology Services
Among the more than 12,000 resources available, at the
time of writing the ELG catalogue counts more than
800 functional services deployed in the ELG infrastruc-
ture. Figure 1 shows an overview of the ELG platform

6https://lynx-project.eu
7https://live.european-language-grid.eu/catalogue

architecture. An ELG service is a LT tool running in-
side the ELG Kubernetes cluster and takes the form of a
Docker image exposing an ELG-compatible endpoint.
An ELG service has to be compatible with the spec-
ifications (see Section 2.3) defined by the ELG team
which aim to facilitate the deployment of the services
but also standardise the LT tools. Currently, ELG sup-
ports the integration of tools/services that fall into one
of the following broad categories:

• Information Extraction (IE) & text analysis: Ser-
vices that take text input and produce standoff an-
notations over that text.

• Text-to-text: Services (most notably Machine
Translation, but also summarisation, anonymisa-
tion, etc.) that take text and return new text that is
derived from the input

• Text classification: Services that take text input
and classify it somehow (e. g., language identifi-
cation, “fake news” detection, etc.)

• Speech recognition: Services that accept audio
and return a text transcription

• Text-to-speech: Services that take text and return
audio

These broad categories cover the vast majority of NLP
tasks and the respective specification can be easily ex-
tended if required.

2.3 Internal LT Service API Specification
ELG services are accessible from outside the ELG clus-
ter via the LT execution server as shown in Figure 1.
The communication between the LT execution server
and each NLP/LT service is done using an internal ap-
plication programming interface called Internal LT Ser-
vice API. The respective specification details the API
that the LT tool containers need to implement in order
to be runnable as functional services within the ELG
infrastructure. It consists of three request messages
and four response messages that ELG functional ser-
vices have to use as input and output of the LT tool.
The three request messages are: Text request, Struc-
tured text request, and Audio request. The four re-
sponse messages are: Annotations response, Classifi-
cation response, Texts response, and Audio response.
These seven messages have been created having two
constraints in mind: being permissive to cover as many
NLP use cases as possible and being specific to force
similar message structures for similar services. They
are described in detail in the ELG documentation.8 Ta-
ble 1 shows the number of services per service category
presented in the previous section with, for each service
category, the request and response messages used.

8https://european-language-grid.readthedocs.io/en/
stable/all/A3 API/LTInternalAPI.html

https://lynx-project.eu
https://live.european-language-grid.eu/catalogue
https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTInternalAPI.html
https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTInternalAPI.html


120

Figure 1: Architecture of the European Language Grid (ELG)

No. of Request Response
Category Services Message Message

IE & text analysis 273 Text Annotations
Text-to-text 405 Text Texts
Text classification 31 Text Classification
Speech recognition 35 Audio Texts
Text-to-speech 23 Text Audio

Table 1: Number of ELG services per service category
with the request and response type of messages used

2.4 Calling ELG Services using the Python
SDK

The ELG Python SDK provides access to most ELG
functionalities through Python.9 Among its other func-
tionalities, the Python SDK enables users to call func-
tional services available in ELG.
The Service class of the Python SDK corresponds to
an ELG functional service, and can be initialised using
the identifier of the service. As users need to be authen-
ticated to use ELG services, a login step is necessary.
A service that is initialised in Python can be called eas-
ily. Listing 2 shows the code for calling a named entity
recogniser10. The Python SDK handles the creation of
the input message, the update of the identification to-
ken, the communication with the API exposed by the
LT execution server, etc.

2.5 Combining ELG Services
ELG provides access to a large variety of heteroge-
neous services from information extraction to text-to-
speech generation (see Section 2). However, thanks to

9https://gitlab.com/european-language-grid/platform/
python-client

10Cogito Discover Named Entity Recognizer, https://live.
european-language-grid.eu/catalogue/tool-service/17471

from elg import Service

# initialise LT service using its ID
lt = Service.from_id(17471)
# call LT service
result = lt("I was living in Berlin last

year.")
print(result) # print the Annotations

response message returned by the
service

Listing 2: Calling an ELG service using Python

the internal LT service API specification, all the ELG
services use the same message structures. Those speci-
fications facilitate the combination of services, i. e., al-
lows to determine if two services are compatible (can
run one after the other without conversion) and, if not,
it facilitates the required mapping. In the vast majority
of cases, text-to-speech services returning an audio re-
sponse can be used as input of a service accepting an
audio request. This is also true for the texts response
messages which can likely be converted into text re-
quest messages. The rare cases where the conversion
is not possible happen when one of the fields that ac-
cepts arbitrary content of the response message is not
empty. For the services returning an annotations or a
classification response, the output cannot easily be con-
verted into an input message for another service. These
services are often used last. For the ELG services, the
combination of the following categories is theoretically
feasible based on the type of messages used (see Ta-
ble 1): Text-to-text or Speech recognition with IE &
text analysis, Text classification, or Text-to-speech, and
Text-to-speech with Speech recognition.
The automatic conversion of an audio or a texts re-
sponse to respectively an audio or a text request is done

https://gitlab.com/european-language-grid/platform/python-client
https://gitlab.com/european-language-grid/platform/python-client
https://live.european-language-grid.eu/catalogue/tool-service/17471
https://live.european-language-grid.eu/catalogue/tool-service/17471
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from elg import Pipeline

# initialise the pipeline using LT
services IDs

pipeline = Pipeline.from_ids([9183,
4842])

# call the LT services
results = pipeline("I was living in

Berlin last year.")
print(results[-1]) # print the Audio

response message containing the
audio of the sentence translated in
German

Listing 3: Combining ELG services using the Python
SDK and the Pipeline class

using a logical mapping between the fields of each mes-
sage. For example, the content field of the texts re-
sponse is mapped to the content field of the text re-
quest. Again, this mapping is possible thanks to the
specifications defined by the ELG team. This mapping
is not perfect and only the conversion of certain types
of messages is possible.
The Python SDK introduced in Section 2.4 provides
a Pipeline class to make it easy for users to inter-
operate ELG services. Listing 3 shows how to use the
Pipeline class to run a machine translation service11

following by a text-to-speech service12. This pipeline
returns the German audio of an English sentence by
combining two services automatically.
More example combinations using the Pipeline
class of the Python SDK can be found in Annex A.

3 Intra-Platform Interoperability
through Format Mapping (Scenario 2)

As presented in the introduction, interoperability sce-
nario 2 occurs when two (or more) services (from
the same or different platforms) use different formats
(JSON, XML, RDF, etc.) for input and/or output of the
information processed/to be processed.
The distinctive feature of this scenario is that the num-
ber of formats is limited, which allows the manual im-
plementation of interoperability between all of them.
This means that format conversions are accomplished
through manually defined rules for each conversion
step. In the following, we present all the implemen-
tations made to achieve interoperability in this scenario
through a workflow manager (Moreno-Schneider et al.,
2020).

11HelsinkiNLP – OPUS-MT (eng-gmw): English-German
machine translation https://live.european-language-grid.eu/
catalogue/tool-service/9183

12MaryTTS – German male (dfki-pavoque-neutral-
hsmm) https://live.european-language-grid.eu/catalogue/
tool-service/4842

3.1 Supported Platforms
The first format considered for integration has been the
format used in the Lynx platform (Moreno-Schneider
et al., 2021), a domain-specific platform for the gener-
ation and use of a Legal Knowledge Graph used and
populated through various NLP services (Named En-
tity Recognition, Summarisation, Machine Translation,
etc.), which were integrated and combined through a
workflow manager developed in the project (based on
Camunda13). We decided to use the Lynx format as the
first one to be integrated into our workflow manager
for a simple reason: the Lynx project used an inter-
nal Linked Data information format also based on NIF
(Hellmann et al., 2013), which simplifies its integration
into our format.
The second format integrated is the one used in the
ELG platform (described in Section 2).
The third format is the one developed in the project
SPEAKER14, a platform for speech assistants for the
German language, so the interaction with the platform
is limited to short interactions (dialogues). The project
has developed an API that defines input and output
messages and their content, including internal services
that should not be consulted externally.

3.2 Format Mapping
There is a very large number of formats to represent
text (e. g., TXT, XML, JSON, RDF, etc.), which makes
it impossible to develop all potentially necessary con-
verters to cover all possible mappings between formats
(TXT→XML, TXT→XML, RDF→JSON, etc.); note,
though, that all of these different formats can poten-
tially include a sheer endless number of specific indi-
vidual approaches how to represent text.
To address this problem we decided to use an interme-
diate unified format, so that we do not need converters
for each format-pairs, but only for the format-pairs in-
cluding the intermediate unified format. We simplify
the necessary work to scale the interoperability solu-
tion in future scenarios with new or different formats.
Considering that we are processing text semantically,
the unified format we use not only allows easy han-
dling of semantic information, but has been specifi-
cally defined for this purpose, i. e., Resource Descrip-
tion Framework (RDF15). RDF is used in Linked Data
to represent semantic information, especially for on-
tologies and knowledge bases.
In order to better understand this conversion, we are
going to use an XML example document (shown in
Listing 4) annotated with two named entities (Berlin
and New York). This document is converted into an
RDF document containing exactly the same informa-
tion (shown in Listing 5).
In the example, we can see that URIs (Unified Re-
source Identifier) are assigned to each annotation, i. e.,

13https://camunda.com
14https://www.speaker.fraunhofer.de
15https://www.w3.org/RDF/

https://live.european-language-grid.eu/catalogue/tool-service/9183
https://live.european-language-grid.eu/catalogue/tool-service/9183
https://live.european-language-grid.eu/catalogue/tool-service/4842
https://live.european-language-grid.eu/catalogue/tool-service/4842
https://camunda.com
https://www.speaker.fraunhofer.de
https://www.w3.org/RDF/
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<?xml version="1.0"?>
<text>

I was living in <ENTITY class="
LOCATION">Berlin</ENTITY> last year,
but then I moved to <ENTITY class="

LOCATION">New York</ENTITY>.
</text>

Listing 4: Example XML document annotated with
semantic information (named entities)

piece of information (whole text, annotation, etc.). The
two named entities in the example are converted into
specific annotations, http://ex/#char=16,21 and http:
//ex/#char=54,61, which are completed with semantic
information (properties and values). This annotation
generation process has been manually defined for the
specific XML format.
Furthermore, crucially, in the RDF format there is a lot
more explicit information that was not directly present
in the XML version, such as beginIndex and endIndex.
This helps the inference of information in semantic sys-
tems, such as knowledge bases or graphs.

3.3 Workflow Manager
Our workflow manager is currently primarily used in
the scenario of digital content curation (Bourgonje et
al., 2017; Bourgonje et al., 2016) but its development
was started with regard to the legal domain (Moreno-
Schneider and Rehm, 2018; Rehm et al., 2019). One of
its main objectives is the management of containerised
tools, which need to interact with each other in a flex-
ible and efficient way, even if they have been designed
and developed independently. That forces the need for
interoperability mechanisms because the services use
different formats. Regarding the communication be-
tween components, for the moment, the workflow man-
ager allows the usage of REST API (Richardson et al.,
2013) and gRPC (Giretti, 2022) based services.
The workflow manager uses a unified intermediate for-
mat to represent information internally, and it uses RDF
together with NIF (Hellmann et al., 2013). Besides, the
different formats that are currently supported for trans-
lation in the workflow manager are:

• Lynx Document: This document has been
defined and implemented in the Lynx project
(Moreno-Schneider et al., 2021) based on Linked
Data and NIF (Hellmann et al., 2013) whose main
objective is the semantic representation of docu-
ments and information in the legal domain. This
document can be represented in any Linked Data
format, such as RDF, JSON-LD or XML.

• ELG API Specification: The specification made
in ELG has been described in Section 2.3. As
mentioned, messages in ELG use JSON format.

• SPEAKER API: The API defined in
SPEAKER is focused on virtual assistants

and not so much on actual language pro-
cessing, although part of the specification
can be adapted (DialogueRequest and
DialogueReponse). The messages in
SPEAKER are defined in the Protobuf (Varda,
2008) files using the gRPC protocol.

4 Semantic Interoperability between
NLP Services (Scenario 3)

The last scenario pursues the interoperability of NLP
services that use different semantic schemas. The term
semantic schema refers to the way information is anno-
tated in a document and to what semantic information
it is related, i. e., how it is represented in a document
that a word is a named entity and of what type.16

4.1 Semantic Interoperability Challenge
In scenario 1, we showed the possibility to perform a
semantic mapping between the ELG services that are
compatible (see Section 2.5). This is possible because
all ELG services use the same limited set of messages,
which is why we can define rules to map the fields of
two different messages. However, in the context pre-
sented in the second scenario where the services are
from different platforms, it is not possible to define
rules as there are theoretically as many rules as the
number of pairs of services because each service uses
its own semantic schema.
This issue also applies to some ELG services, be-
cause as explained in Section 2.3, the ELG messages
although based on a common format specification,
this specification does not enforce a specific semantic
schema for the annotations.
For example, the annotation types used in the
annotations field of the Annotations response mes-
sage17 can differ from one service to another, and we
find the same difference in the semantic schemas pre-
sented in Listing 1 where the two different annotation
types CITY or LOCATION are used to represent the
same entity.
Because of the various semantic schemas used by NLP
services, which also are not formally described or doc-
umented it is impossible to create universal rules to se-
mantically map messages from the same or different
platforms using a different semantic schema.

4.2 Manual Semantic Mapping
The first solution to this problem used by the work-
flow manager consists of manually creating mappings
for each pair of services. In practice, we create a corre-
spondence between the fields of the output of the first
service and the fields of the input of the second service.
This solution works only when the number of services

16In UIMA, the semantic schema is called a typesystem.
17https://european-language-grid.readthedocs.io/en/

stable/all/A3 API/LTInternalAPI.html#annotations-response

http://ex/#char=16,21
http://ex/#char=54,61
http://ex/#char=54,61
https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTInternalAPI.html#annotations-response
https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTInternalAPI.html#annotations-response
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1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

3 @prefix itsrdf: <http://www.w3.org/2005/11/its/rdf#> .

4 @prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#> .

5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

6 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos/> .

7 <http://ex/#char=0,62>

8 a nif:RFC5147String , nif:String , nif:Context ;

9 nif:beginIndex "0"ˆˆxsd:nonNegativeInteger ;

10 nif:endIndex "62"ˆˆxsd:nonNegativeInteger ;

11 nif:isString "I was living in Berlin last year, but then I moved to New York."ˆˆxsd:string .

12 <http://ex/#char=16,21>

13 a nif:RFC5147String , nif:String ;

14 nif:anchorOf "Berlin"ˆˆxsd:string ;

15 nif:beginIndex "16"ˆˆxsd:nonNegativeInteger ;

16 nif:endIndex "21"ˆˆxsd:nonNegativeInteger ;

17 nif:referenceContext <http://ex/#char=0,62> ;

18 itsrdf:taClassRef <http://dbpedia.org/ontology/Location> .

19 <http://ex/#char=54,61>

20 a nif:RFC5147String , nif:String ;

21 nif:anchorOf "New York\"ˆˆxsd:string ;

22 nif:beginIndex "54"ˆˆxsd:nonNegativeInteger ;

23 nif:endIndex "61"ˆˆxsd:nonNegativeInteger ;

24 itsrdf:taClassRef <http://dbpedia.org/ontology/Location> ;

25 nif:referenceContext <http://ex/#char=0,62> .

Listing 5: Example RDF document using semantic NIF annotations

is rather limited which is the case for scenario 2, for ex-
ample. However when the number of services is getting
bigger the manual solution is no longer viable.

4.3 Automatic Semantic Mapping
A second approach is to make use of recent advances
in machine learning and NLP to create a mapping for
each couple of services automatically. The idea is to
create the mapping rule once so that we do not have to
recreate it each time two services are combined to not
increase inference time. Here, we assume that the se-
mantic schemas of the services are known in advance.
This task can be called automatic semantic mapping
rule generation and consists of finding the mapping rule
between the semantic schemas of two NLP services.
This mapping rule could be used afterwards to interop-
erate the two services by converting the first service’s
semantic schema to the semantic schema of the second
service.
The mapping rule can take multiple formats like, for
example, a Python method that takes the message
from the first service as input and returns the same
message with a different semantic schema compatible
with the second service. We made preliminary experi-
ments with GPT-3 using the OpenAI playground18 with
the text-davinci-002 model. We tested various
prompts and parameters to see if it is possible to gen-
erate automatically a Python method that maps two se-
mantic schemas. Our preliminary results are promising
because in some of the experiments we have been able
to show that this is indeed possible. Listing 6 presents

18https://beta.openai.com/playground/

an example in which GPT-3 created a Python method
capable to convert a simple semantic schema into an-
other one. However, the model shows its limitations
when it comes to mapping complex semantic schemas
as shown in Listing 7. We performed these experiments
only to demonstrate that advanced NLP models can be
used to perform automatic semantic mapping rule gen-
eration and can potentially solve, or contribute to solv-
ing, the semantic interoperability challenge. We will
explore and evaluate various automatic mapping meth-
ods with larger experiments in future work.

5 Related Work
5.1 NLP Platforms Semantic Schemas
Beyond the platforms we used for our experiments,
there are more and more AI platforms offering NLP
services via APIs such as HuggingFace (Wolf et al.,
2020), Google Cloud Platform19 (GCP), or OpenAI20,
or via tools such as NLTK (Bird et al., 2009), Spacy21

or Stanza (Qi et al., 2020). We can divide these plat-
forms into two categories. First, those with a lim-
ited number of services like GCP, OpenAI, and Stanza
which only offer their services, and second the plat-
forms like HuggingFace and Spacy where there is a
wide variety of models and where it is possible to
add more. In both categories, the platforms have de-
fined one or more semantic schemas that the services
need to use. HuggingFace has, for example, the no-

19https://cloud.google.com/natural-language
20https://openai.com/api/
21https://spacy.io

https://beta.openai.com/playground/
https://cloud.google.com/natural-language
https://openai.com/api/
https://spacy.io
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"""
Python method that converts
[{"translation_text": "This is a plain

text sentence."}]
to
{"type":"text", "content":"This is a

plain text sentence."}
"""

def convert_to_text(translation_response
):
return {"type": "text", "content":
translation_response[0]["
translation_text"]}

Listing 6: Example Python method generated by GPT-
3 to convert a semantic schema into another. Only the
docstring (text in green) is provided and the Python
code is generated by the model. The generated Python
method is valid and correctly converts the first semantic
schema to the second one.

"""
Python method that converts
<?xml version="1.0" encoding="utf-8"?><

text>I was living in <ENTITY class="
LOCATION">Berlin</ENTITY> last year,
but then I moved to <ENTITY class="

LOCATION">New York</ENTITY>.</text>
to
{"response":{"type":"annotations","

annotations":{"Place":[{"start":16,"
end":22,"features":{"Lemma":"Berlin
"}},{"start":54,"end":62,"features
":{"Lemma":"New York"}}]}}}

"""

import json
import xml.etree.ElementTree as ET

def convert_xml_to_json(xml_string):
root = ET.fromstring(xml_string)
annotations = []
for child in root:

if child.tag == "text":
text = child.text

elif child.tag == "ENTITY":
annotations.append({"start":

child.attrib["start"], "end": child
.attrib["end"], "features": {"Lemma"
: child.text}})
return {"response": {"type": "
annotations", "annotations": {"Place
": annotations}, "text": text}}

Listing 7: Example Python method generated by GPT-
3 to convert a semantic schema into another. Only the
docstring (text in green) is provided and the Python
code is generated by the model. The generated Python
method is valid Python code but does not correctly
convert the XML string to the JSON one.

tion of pipeline (different from the Pipeline con-
cept presented in Section 2.5). There are 17 task-
specific pipelines and each of these pipelines uses its
own semantic schema and message formats. For each
pipeline, it is possible to use a multitude of services
(called models in the HuggingFace ecosystem) as long
as the service is compatible with the semantic scheme
of the pipeline. A similar mechanism exists for Spacy
which allows the use of different models as long as
they respect the conventions imposed by the platform.
All these platforms use a semantic approach similar to
ELG (Section 2) and each platform has its own com-
mon API. However, all these APIs use different se-
mantic schemas and there is no joint standard semantic
schema used by these NLP platforms.

5.2 Semantic Interoperability Strategies
We only found a few works on the interoperability
of NLP services. Rizzo and Troncy (2012) created a
framework which unifies ten NER and disambiguation
extraction tools by creating a common ontology. The
different semantic schemas are manually mapped to the
common ontology. Eckart de Castilho et al. (2019)
combine three text annotation repositories (PubAnno-
tation, LAPPS Grid, and INCEpTION) in order to cre-
ate one unique corpus. They show the challenges of the
interoperability of different annotation types.
We can also look at the interoperability of web services
in general. Nagarajan et al. (2006) and Nagarajan et al.
(2007), and Sheth et al. (2008) provide three similar
data interoperability strategies. Nagarajan et al. (2007)
explain the different types of heterogeneities that exist
in web services. The syntactic and semantic hetero-
geneities described in the paper correspond to a differ-
ence in the semantic schemas, and the structural and
model heterogeneities correspond to the format differ-
ence. The authors propose to use a pre-defined map-
ping to overcome these issues. Nagarajan et al. (2006)
and Sheth et al. (2008) propose two other methods, us-
ing WSDL-S22 or XSLT23 respectively to map the in-
put and output to a common ontology and vice versa.
These techniques are specific to web services but show
that rule-based mapping is generally used to perform
semantic interoperability.
We did not find any related work on automatic semantic
mapping solutions.

6 Conclusions and Future Work
We propose an approach to achieve semantic interop-
erability in NLP services in the most generic way pos-
sible. To reach this goal, three scenarios with distinct
interoperability needs are described, for which differ-
ent interoperability solutions have been created.

• For scenario 1, a single format has been defined
for all the services, so that they all use the same
format and are directly interconnectable.

22https://www.w3.org/Submission/WSDL-S/
23https://en.wikipedia.org/wiki/XSLT

https://www.w3.org/Submission/WSDL-S/
https://en.wikipedia.org/wiki/XSLT
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• In scenario 2, the NLP services use different for-
mats, so a manual mapping between formats has
been carried out. This mapping has been done
manually because the number of services is lim-
ited. This solution does not scale.

• Scenario 3 addresses the problem of semantic
mapping, that is, services use different semantic
schemas to represent information. Our first solu-
tion is to also use manually defined rules, but as
mentioned above, this is not scalable or general-
isable. Therefore, in this scenario we introduce
a novel approach: the automation of the mapping
process, i. e., automatic semantic mapping. This
method aims to achieve the automatic generation
of mapping or conversion rules between different
semantic formats without human intervention.

The first experiments with a language model (GPT-3)
are promising, but also show their limitations. In terms
of future work, we will focus mainly on the develop-
ment of methods that allow us to successfully imple-
ment this automatic mapping.
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Appendix
A ELG Python SDK: More Examples

from elg import Pipeline

pipeline = Pipeline.from_ids([9395,
9385])

results = pipeline(request_input="
audio.mp3", request_types=["audio
", "text"])

print(results[-1]) # Sentiment
Analysis response: {type='

annotations' features={'OVERALL':
'71.3'}}

Listing 8: Combining ELG services using the Python
SDK and Pipeline class. We combine an ASR service
and an English sentiment analysis service

from elg import Pipeline

pipeline = Pipeline.from_ids([9212,
18092])

results = pipeline(
LONG_ENGLISH_ARTICLE)

print(results[-1]) # summary of the
English article in Ukrainian

Listing 9: Combining ELG services using the Python
SDK and Pipeline class. We combine an English
summariser and a Ukrainian to English MT service

B Parameters (GPT-3 Experiments)

engine="text-davinci-002",
prompt="\"\"\"\nPython method that

converts\n[{\"translation_text\":
\"This is a plain text sentence

.\"}] \nto \n{\"type\":\"text\",
\"content\":\"This is a plain
text sentence.\"}\n\"\"\"\n\n",

temperature=0,
max_tokens=105,
top_p=0,
frequency_penalty=0,
presence_penalty=0

Listing 10: Parameters used in the OpenAI playground
for Listing 6

engine="text-davinci-002",
prompt="\"\"\"\nPython method that

converts\n<?xml version=\"1.0\"
encoding=\"utf-8\"?><text>I was
living in <ENTITY class=\"
LOCATION\">Berlin</ENTITY> last
year, but then I moved to <ENTITY
class=\"LOCATION\">New York</

ENTITY>.</text>\nto \n{\"response
\":{\"type\":\"annotations\",\"
annotations\":{\"Place\":[{\"
start\":16,\"end\":22,\"features
\":{\"Lemma\":\"Berlin\"}},{\"
start\":54,\"end\":62,\"features
\":{\"Lemma\":\"New York\"}}]}}}\
n\"\"\"\n\n",

temperature=0,
max_tokens=150,
top_p=0,
frequency_penalty=0,
presence_penalty=0

Listing 11: Parameters used in the OpenAI playground
for Listing 7
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