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Introduction

Welcome to the 5th International Conference on Natural Language and Speech Processing (ICNLSP
2022), held online on December 16th, 17th 2022.

ICNLSP is the right choice to select as a forum for researchers, students, and also for industrials to
exchange ideas and discuss research and trends in the field of Natural Language Processing, and also to
publish their results in the field. As examples of companies present during the conference, we mention
here, Mercedes Benz (Germany), and Vail Systems company (USA), and Elm (KSA) and many others.

The program committee accepted 37 papers (long and short ones) which is around 40% of the received
submissions (from 31 countries). The accepted papers are of good quality thanks to the high-quality level
of the reviews done by the program committee members. All papers have been presented orally, that is
why the program was quite long. Various topics of NLP are discussed, as Semantics, language modelling,
text classification, speech recognition, information extraction, natural language understanding, etc.

As it is mentioned in the program of the conference, there are three keynotes. The first one was presented
by Prof. Eric Laporte from Gustave Eiffel University (France), who exposed his thoughts about hybrid
natural language processing in the deep learning era. The second one, dealing with an interesting and
challenging topic, was given by Dr. Ahmed Ali from Qatar Computing Research Institute (Qatar), entitled
“Multilingual and Code-Switching Speech Recognition”. The third talk was programmed to be presented
by Prof. Jan Niehues, from Karlsruhe Institute of Technology (Germany), and entitled “Plug-and-Play
Abilities for Neural Machine Translation”. We will be happy to make all the talks and presentations
available on the website of the conference.

We hope readers enjoy reading the content of the 5th ICNLSP proceedings. We would like also to invite
them to check the proceedings of the past versions of ICNLSP:

Mourad Abbas, Abed Alhakim Freihat, Proceedings of the Fourth International Conference on Natural
Language and Speech Processing (ICNLSP 2021), 12-13 November 2021, Association for Computational
Linguistics, https://aclanthology.org/2021.icnlsp-1

Mourad Abbas, Abed Alhakim Freihat, Proceedings of the 3rd International Conference on Natural Lan-
guage and Speech Processing (ICNLSP 2019), 12-13 September 2019, Association for Computational
Linguistics, https://aclanthology.org/volumes/W19-74/

Mourad Abbas, Proceedings of the 2nd International Conference on Natural Language and Speech Pro-
cessing (ICNLSP 2018), 25-26 April 2018, IEEE, https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=8374402

Mourad Abbas, Ahmed Abdelali, Proceedings of the 1st International Conference on Natural Language
and Speech Processing, Procedia Computer Science, 128, Elsevier. https://www.sciencedirect.
com/journal/procedia-computer-science/vol/128

We would like to express our gratitude to the organizing and the program committees for making this
event a success.

Mourad Abbas and Abed Alhakim Freihat
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Invited Talks

Hybrid natural language processing in the deep learning era
Prof. Eric Laporte, Gustave Eiffel University, France

In this talk, we examine critically the current wave of interest in pure deep learn-
ing for natural language processing. What can symbolic resources do for natural
language processing? Among other examples, we take into account the languages
with more restricted graphical delimitation than English. Then we discuss the fore-
seeable future of the synergy between machine learning and symbolic resources:
are the goals of formalisation, precision, reliability, adaptability within reach for
linguistic data?

Multilingual and Code-Switching Speech Recognition
Dr. Ahmed Ali, Qatar Computing Research Institute, Qatar

The prevalence of code-switching (CS) in spoken content has enforced automatic
speech recognition (ASR) systems to handle mixed input. Yet, designing a CS-
ASR has many challenges, mainly due to the data scarcity, grammatical structure
complexity and mismatch along with unbalanced language usage distribution. Our
CS will feature both intersentential (switching between-utterances) and intrasen-
tential (within utterances). The evaluation of the designed system and the analysis
of the phenomena will be driven based on real test cases, collected from real meet-
ings and interviews.

We show our results on investigating novel techniques to build practical large vocabulary continuous
speech recognition systems capable of dealing with both monolingual and code-switching spoken ut-
terances. We study data augmentation and state of the art modelling techniques to address the lack of
balanced transcribed CS data. Moreover, we investigate various challenges of evaluating code-switching
ASR output. Finally, we highlight our effort in understanding where/why CS happens in speech analysis
for system/human code-switching points.

Plug-and-Play Abilities for Neural Machine Translation
Prof Jan Niehues, Karlsruhe Institute of Technology, Germany

Advances in neural machine translation have led to impressive results and broad
areas of application. Using multitask learning, these models have even abilities to
process different input and generate a variety of output languages. However, this
progress is often backed by millions of training examples. In order to cover the
approximately 7000 languages in the words, it is essential to not only generalize
to unseen examples, but also to unseen tasks. Therefore, we need to recombine the
abilities of NMT systems to process and generate different languages in a plug-
and-play fashion.

In this presentation, we will investigate two use cases: translating zero-shot directions in multilingual
machine translation and end-to-end speech translation. First, we will dissect the challenges in the zero-
shot condition. Motivated by the findings, we will present several methods to promote the possibility
to combine the different abilities of an NMT system in order to perform unseen tasks. Finally, we will
discuss the effect of the presented ideas on multi-lingual machine translation and speech translation.
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Error correction and extraction in request dialogs

Stefan Constantin and Alex Waibel
Karlsruhe Institute of Technology

Institute for Anthropomatics and Robotics
{stefan.constantin|waibel}@kit.edu

Abstract
We propose a dialog system utility component
that gets the two last utterances of a user and
can detect whether the last utterance is an error
correction of the second last utterance. If yes,
it corrects the second last utterance according
to the error correction in the last utterance. In
addition, the proposed component outputs the
extracted pairs of reparandum and repair entity.
This component offers two advantages, learn-
ing the concept of corrections to avoid collect-
ing corrections for every new domain and ex-
tracting reparandum and repair pairs, which of-
fers the possibility to learn out of it.

For the error correction one sequence label-
ing and two sequence to sequence approaches
are presented. For the error correction detec-
tion these three error correction approaches
can also be used and in addition, we present
a sequence classification approach. One error
correction detection and one error correction
approach can be combined to a pipeline or the
error correction approaches can be trained and
used end-to-end to avoid two components. We
modified the EPIC-KITCHENS-100 dataset to
evaluate the approaches for correcting entity
phrases in request dialogs. For error correc-
tion detection and correction, we got an accu-
racy of 97.54 % on synthetic validation data
and an accuracy of 69.27 % on human-created
real-world test data.

1 Introduction

Errors and ambiguities are difficult to avoid in a
dialog. Corrections allow to recover from errors
and to disambiguate ambiguities. For example, a
household robot gets the request “Put the cleaned
spoons into the cutlery drawer”, but the robot does
not know which one of the drawers is the cutlery
drawer. It can choose one of the drawers and puts
the spoons there. If its choice is wrong, the user
must correct the robot, e. g. “No, into the drawer
right of the sink”. Alternatively, the robot can ask
which one of the drawers is the cutlery drawer. The

clarification response of the user, e. g. “It’s the
drawer right of the sink”, is also a correction be-
cause the response disambiguates the ambiguity.
Another type of correction occurs when the user
changes their mind, e. g. “I changed my mind, the
forks”, or when the system misunderstands the user
request (e. g. because of automatic speech recogni-
tion or natural language understanding errors).

All these correction types can be processed in
the same manner and therefore we propose a com-
ponent that gets a request and a correction and
outputs a corrected request. To get this corrected
request, the phrases in the correction phrase re-
place their corresponding phrases in the request. In
this work, we restrict on entity phrases like “drawer
right of the sink”. To replace other phrases like verb
phrases is out of scope for this work. The request
“Put the cleaned spoons into the cutlery drawer”
with its correction “No, into the drawer right of the
sink” is converted to “Put the cleaned spoons into
the drawer right of the sink”. Such a component
has two advantages compared to handling the cor-
rections in the actual dialog component. First, it
reduces the amount of required training data for the
actual dialog component because corrections will
not need to be learned if there is an open-domain
correction component. Second, this kind of correc-
tion component can be extended so that it outputs
the extracted pairs of reparandum and repair entity.
In our example there is one pair: “cutlery drawer”
and “drawer right of the sink”. These entity pairs
can be used, for example, for learning in a life-long
learning component of a dialog system to reduce
the need for correction in future dialogs, e. g. the
robot can learn which one of the drawers is the
cutlery drawer.

2 Related Work

Studies have been conducted in the area of interac-
tive repair dialog. In (Suhm et al., 1996) a multi-
modal approach is used. The user can highlight
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wrong phrases and respeak or spell the correct
phrase, or choose from alternatives in the n-best list
of the automatic speech recognition component, or
use handwriting to write the correct phrase. These
error strategies are improved in (Suhm and Waibel,
1997) by considering the context. In (Suhm et al.,
1999, 2001) the previous approaches are evaluated
in more detail in a dictation system with real users.
Different human strategies for error correction are
presented in (Gieselmann, 2006).

Sagawa et al. (2004) propose an error handling
component based on correction grammars. These
correction grammars have the advantage that they
can be used domain-independently. However, they
need a grammar based dialog system. An error
correction detection module and strategies to han-
dle the detected errors are proposed by Griol and
Molina (2016). The corrected request must be han-
dled by the Spoken Language Understanding com-
ponent. That means, for every domain the Spo-
ken Language Understanding component must be
adapted to the possible corrections. Kraljevski and
Hirschfeld (2017) propose a domain-independent
correction detection by checking the speech for
hyperarticulation. Other features than hyperarticu-
lation are not used.

In (Béchet and Favre, 2013), a system is pre-
sented that detects errors in automatic speech recog-
nition transcripts and asks the user for a correction.

There are also studies that research automatic
error correction without user interaction. In (Xie
et al., 2016) a character-based approach to correct
language errors is used. They used a character-
based approach to avoid out-of-vocabulary words
because of orthographic errors. In (Weng et al.,
2020), the authors used a multi-task setup to correct
the automatic speech recognition outputs and do
the natural language understanding.

The task of request correction presented in the
introduction is related to the task of disfluency re-
moval. In disfluency removal, there are the reparan-
dum (which entity should be replaced), the inter-
ruption point (where the correction begins), the
interregnum (which phrase is the signal phrase for
the correction), and the repair phrase (the correct
entity) (Shriberg, 1994).

In Figure 1, a disfluent utterance annotated with
this terminology is depicted.

spoon into the drawer︸ ︷︷ ︸
reparandum

︸︷︷︸
interruption pt.

uh︸︷︷︸
interregnum

sink︸︷︷︸
repair

Figure 1: disfluent utterance annotated with repair ter-
minology

A lot of work has been conducted for disfluency
removal (Cho et al., 2014; Dong et al., 2019; Wang
et al., 2016; Jamshid Lou et al., 2018). In all these
works, it is assumed that it is enough to delete
tokens of the disfluent utterance to get a fluent
utterance. A disfluent utterance with the copy and
delete labels is depicted in Figure 2.

spoons into the drawer uh sink
C C C D D C

Figure 2: disfluent utterance labeled with copy and
delete labels

However, in the task of corrections, long-
distance replacements can occur. That means, that
between the reparandum and the repair are words
that are important and must not be deleted. Such a
long-distance replacement is depicted in Figure 3.

spoon︸ ︷︷ ︸
reparandum

into the drawer ︸︷︷︸
interruption pt.

no︸︷︷︸
interregnum

forks︸︷︷︸
repair

Figure 3: request and correction phrase annotated with
repair terminology

3 Dataset

Our dataset is based on the annotations in natu-
ral language of the EPIC-KITCHENS-100 dataset
(Damen et al., 2020, 2022). The EPIC-KITCHENS-
100 dataset comprises 100 hours of recordings of
actions in a kitchen environment. An example an-
notation of such an action is “put pizza slice into
container” and the corresponding verb is “put-into”
and the corresponding entities are “slice:pizza” and
“container”. Annotations in this dataset have one
verb and zero to six entities. The verb, the cor-
responding verb class, the entities and the corre-
sponding entity classes are explicitly saved to ev-
ery annotation. The order of the entities and the
corresponding entity classes is the same as in the
annotation. If the verb has a preposition, the verb
is saved including its preposition. The words of the
entities are represented in a hierarchy. The most
general word of the hierarchy is left and the words
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are more specialized the further to the right of the
hierarchy. The words of each hierarchy are sep-
arated by a colon. There are 67 218 annotations
in the training and 9669 annotations in the valida-
tion dataset of the EPIC-KITCHENS-100 dataset.
There is no test dataset. Some annotations occur
multiple times, because different recordings of the
100 hours recordings have the same annotation. By
considering only the unique annotations, 15 968 an-
notations are in the training and 3835 annotations
are in the validation dataset.

For our dataset, we used only the annotations
that have one or two entities. We excluded the
annotations with no entities because we need at
least an entity that can be corrected. Annotations
including more than two entities amount only to
less than 1.15 % of all annotations and therefore
we decided to exclude them because of dataset
balancing reasons.

The verb classes of the EPIC-KITCHENS-100
datasets are imbalanced. To get a better balance in
the validation dataset, we removed annotations of
verb classes that occur very often from the valida-
tion dataset. We wanted a more balanced dataset
to evaluate whether the model gets along with very
different verb classes. We calculated the number
of desired remaining annotations of a verb class,
called r, by dividing the number of annotations,
called a, by 100, but we determined a minimal num-
ber of remaining annotations of verb classes: 2 for
one entity annotations (r = max(2, a/100)) and
4 for two entity annotations (r = max(4, a/100)).
In some cases, there are less than the desired re-
maining annotations of a verb class in the EPIC-
KITCHENS-100 dataset. We then used the pos-
sible number. We chose the values for minimal
examples to get a nearly balanced dataset: 142 an-
notations with one entity and 122 annotations with
two entities. To get the annotations of a verb class,
we chose the verbs occurring in a verb class equally
distributed. In total, we have 264 annotations in the
reduced validation dataset. The number of unique
annotations in respect to the verb class before and
after the reduction are depicted in Figure 4.

In the EPIC-KITCHENS-100 dataset, the train-
ing and validation datasets are similar: all 78 verb
classes of the validation dataset occur in the train-
ing dataset and 346 of the 372 first level word of the
entity hierarchies of the validation dataset occur in
the training dataset. Because of this, we decided to
reduce the training dataset to have more difference
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Figure 4: unique annotations in respect to the verb class
before and after the reduction of the EPIC-KITCHENS-
100 validation dataset

between them. We removed the verb classes of the
49 less frequent occurring verb classes (in total 98
verb classes are in the training dataset) from the
training dataset and removed all entities from the
training dataset when its first part was also in the
validation dataset. That means, if bowl:washing:up
was in the validation dataset, an annotation with
bowl:salad in the training dataset was removed. Af-
ter the reduction 4822 annotations were left in the
training dataset.

To use these annotations for training and evalu-
ating the error correction detection and correction
component, we had to add corrections to the anno-
tations. For the training and validation dataset, we
generated the corrections synthetically. There are
three options for the entitiy replacement: the first
entity should be replaced, the second entity should
be replaced, or both entities should be replaced. We
drew uniformly distributed which of these three op-
tions should be applied. If both entities should be
corrected, we drew uniformly distributed in which
order they should be corrected. For the training
and validation dataset, we had 8 and 6, respectively,
templates to introduce the correction phrase, fol-
lowed by the corrected entities. An entity could be
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replaced by an entity that occurs in an annotation
of the same verb class in the same position. An
example for one corrected entity is “Be so kind
and pick the oregano” for the request and “it’s the
chilli” for the correction and an example for two
corrected entities is “Could you put the tin in the
Cupboard?” for the request and “no the olives in
the Fridge” for the correction.

For the test dataset, we had nine human data
collectors who could freely write the corrections,
they only knew what entities should be replaced
with what other entities (but were allowed to use
synonyms for the other entities) and whether the
correction should be a correction to a wrong action
of the robot, a clarification, or a correction because
the user changed their mind (equally distributed).

We added 19 and 14 templates before the narra-
tion to increase the variety of the natural language
of the training and validation dataset, respectively.
In the EPIC-KITCHENS-100 dataset, the articles
of the entities are missing, therefore we added a
“the” before the entities. For the test dataset, we
used the narrations of our validation dataset and let
the same nine annotators that created the correc-
tions for our test dataset paraphrase them.

The test dataset is more challenging than the
validation dataset because it differs even more from
the training dataset. The nine data collectors were
told to use a large variety of natural language.

We used the 4822 annotations of the reduced
training dataset to generate with the different data
augmentations 52 357 request and correction pairs
for the error correction training dataset. The error
correction validation dataset has 264 request and
correction pairs and the error correction test dataset
has 960 request and correction pairs.

To train and evaluate the error correction detec-
tion, we need examples where the last utterance is
no correction. To achieve this, the second last and
the last utterance are made of all the requests of
the error correction data. The requests were shuf-
fled for the last utterance. This approach doubled
the number of examples to the correction exam-
ples, that means, we have 104 714 pairs in the error
correction detection and error correction training
dataset, 528 pairs in the error correction detection
and error correction validation dataset, and 1920
pairs in the error correction detection and error
correction test dataset.

The target for the error correction datasets is the
corrected request and the reparandum repair pairs

and the target for the error correction detection
and error correction dataset depends whether the
source has a request and correction pair or a request
and request pair. In the first case, there is an error
correction and the target is the same as in the error
correction datasets, in the second case, the target
is to copy both requests. There is a further dataset,
the error correction detection dataset. The sources
are the same as in the error correction detection and
error correction dataset but the target is the binary
value whether there is a correction or not.

We created the described datasets in different
forms for the different approaches. For the se-
quence labeling approach, we labeled the source
tokens with different labels, see Figure 5 and Sec-
tion 4 for an explanation of the labels.

For the sequence to sequence approach with gen-
erative token generation, we created source and
target pairs, see Figure 6. For the sequence to
sequence approach with generation by copying
source tokens, we added the order of copy oper-
ations. Additionally, the separator tokens that are
needed in the target will be inserted to the source,
see Figure 7.

would C
it C
be C
possible C
to C
wash C
the C
table R1
? C
| D
no D
the D
wok S1
instead D
of D
the D
table D
. D

Figure 5: sequence labeling data example

source file: Would it be possible to wash the table
? | no the Wok instead of the table .
target file: Would it be possible to wash the Wok ?
| table -> Wok

Figure 6: sequence to sequence with fixed vocabulary
data example
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source file: Would it be possible to wash the table
? | no the Wok instead of the table . - ->
target file: Would it be possible to wash the Wok ?
| table -> Wok
copy target file (considering the T5 prefix and the
T5 tokenization): 3 4 5 6 7 8 9 16 17 11 12 13 10
26 27 16 17 28

Figure 7: sequence to sequence with copy source token
approach data example

4 Models

For the error correction and extraction, we devel-
oped three different approaches. The first approach
is a sequence labeling approach, the second ap-
proach is a sequence to sequence approach where
the output tokens are sampled from a fixed vocab-
ulary, and the third approach is a sequence to se-
quence approach where output tokens are copied
from the source tokens.

For the sequence labeling approach, every word
is labeled with one of the following labels: C
(copy), D (delete), R1 (entity 1 potentially to be
replaced), R2 (entity 2 potentially to be replaced),
S1 (entity to replace entity 1), or S2 (entity to re-
place entity 2). For the correction target, the S1 and
S2 labeled entities are used to replace the R1 and
R2 labeled entities, respectively. For the extraction
target, the output is the pairs R1 and S1 as well as
R2 and S2 if there is a replacement available for
the first or second entity, respectively. In Figure 8,
an example request and correction pair is labeled
and both targets are given.

For the sequence labeling, we propose fine-
tuning the cased BERT large model (24 Trans-
former encoder blocks, hidden size of 1024, 16
self-attention heads, and 340 million parameters)
(Devlin et al., 2019).

For the sequence to sequence approach where
the output tokens are sampled from a fixed vocab-
ulary, we propose fine-tuning a T5 large model
(Raffel et al., 2020). The T5 model is a pre-trained
Transformer network (Vaswani et al., 2017) and the
T5 large model has the following properties: 24
Transformer encoder blocks, 24 Transformer de-
coder blocks, hidden size of 1024 (in- and output)
and 4096 (inner-layer), 16 self-attention heads, 737
million parameters.

The probability distribution over the fixed vocab-
ulary V can be calculated in the following way:

Pgenerate(V ) = softmax(decT ·Wgenerate)

where dec is the output of the Transformer decoder
and Wgenerate ∈ Rhidden size decoder×vocabulary size is a
learnable matrix.

We call this T5 model T5 generate.
In the corrected request there are only tokens

of the input sequence. To utilize this property, we
developed a pointer network model (Vinyals et al.,
2015) with the T5 large model that calculates which
input token has the highest probability to be copied
to the output sequence. This is our third approach.
The probability distribution over the input sequence
tokens V ′ can be calculated in the following way:

Pcopy(V
′) = softmax(decT · encT )

where dec is the output of the Transformer decoder
and enc ∈ Rsource input length×embedding size.

To utilize the knowledge of the pre-trained
model, we feed the source input token with the
highest probability into the encoder instead of the
position of the source input token. That means, that
in the generation stage the copy mechanism is only
used, otherwise it is like a normal T5 model. To
be able to output the separators, we add this to the
source, so that they can also be copied. We call this
modificated T5 model T5 copy.

To decide whether an utterance is a correction
for the previous request command, the described
three approaches can also be used. If all output
labels of the sequence labeling approach are C, no
error correction is detected, otherwise there is an
error correction. The sequence to sequence ap-
proaches detect an error correction if the source
and the target without the separators are not equal,
otherwise there is no error correction. In the T5
copy approach, the source for the comparison is the
original source and not the source with the inserted
separators.

In addition to these three approaches, a sequence
classification can also be used for the error correc-
tion detection. For the sequence classification, we
propose to fine-tune the cased BERT large model
(24 Transformer encoder blocks, hidden size of
1024, 16 self-attention heads, and 340 million pa-
rameters) (Devlin et al., 2019).

5 Implementation

We used the HuggingFace (Wolf et al., 2020) Py-
torch (Paszke et al., 2019) BERT and T5 models
for our implementations of the models described in
Section 4 and published our implementations and
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request || correction put the milk into the shelf no the soja milk into the left shelf
labels C R1 R1 R2 R2 R2 D S1 S1 S1 S2 S2 S2 S2
corrected request put the soja milk into the left shelf
pairs of reparandum
and repair entity

milk→ soja milk - into the shelf→ into the left shelf

Figure 8: error correction example

our models 1.

6 Evaluation

In this section, we will first evaluate the different
error correction detection component approaches
described in Section 4. After that, the error correc-
tion component approaches described in Section 4
are evaluated. Third, we will compare whether it
is better to separate the error correction detection
and error correction in separate components and
use a pipeline approach or whether an end-to-end
approach is better. For all evaluations, we used the
datasets described in Section 3.

We fine-tuned the sequence classification and
labeling approaches one epoch with the following
hyperparameters: AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate of 2 · 10−5,
batch size of 32 and maximum input length of 128.

The T5 generate and T5 copy models were fine-
tuned one epoch with the following hyperparame-
ters: Adam optimizer (Kingma and Ba, 2015) with
learning rate of 2.5 · 10−4, batch size of 24 and
a maximum input length of 12; in the embedding
layer, the first two encoder blocks were frozen.

The results of the error correction detection com-
ponents are depicted in Table 1. Accuracy means
how many examples were classified correctly, pre-
cision is how many of the positive classified ex-
amples are really positive, recall how many of the
positive examples are found by the component and
the F1-score is the harmonic mean of the preci-
sion and recall. We calculated the precision, recall
and F1-score for the case that detecting corrections
were the positive examples and for the case that de-
tecting no corrections were the positive examples
to get better insights in the quality of the differently
trained models. The sequence classification ap-
proach was trained with the error correction detec-
tion dataset and the other approaches were trained
with the error correction detection and error cor-

1https://github.com/msc42/
seq2seq-transformer https://github.com/
msc42/seq-labeling-and-classification

rection dataset. The best approach is the sequence
labeling approach (if all words have the copy label
C, it is no error correction, otherwise it is an error
correction). It has an accuracy of 100 % for the
validation and 88.49 % for the test dataset. The
recall for detecting no corrections is 99.90 % and
the precision 81.34 % (F1-score 89.67 %) in the test
dataset. That means, if there is no correction, the
component detects it in most of the cases and make
no unnecessary correction. This is a good prop-
erty, because it is better not detecting a correction
than correcting something which is already correct.
The error correction detection and error correction
component should improve the overall system and
not make it worse. Nevertheless, the results for
detecting corrections with a recall of 77.08 % and
a precision of 99.87 % (F1-score 87.01 %) in the
test dataset are good. In some cases where the
component fails, it is really difficult to detect the
correction like in “Kindly turn off the heat on the
oven | Please turn off the water tap on the oven”.
The classification approach has similar results to
the sequence labeling approach: 100 % accuracy
for the validation dataset and 87.86 % for the test
dataset. This approach also prefers detecting no
corrections over corrections. The T5 generate ap-
proach is worse. It has an accuracy of 98.67 % on
the validation dataset and an accuracy of 84.01 %
on the test dataset. The worst results are from the
T5 copy approach (71.78 % and 77.45 % validation
and test dataset accuracy, respectively).

The results of the error correction components
are depicted in Table 2. We evaluated the error
correction with the metric accuracy. The correc-
tion is correct if the predicted correction and the
reference correction are the same. The extraction
of the reparandum and repair pairs is correct if the
predicted pairs are equal to the reference pairs. The
order and entities that map to themselves are ig-
nored. Both are correct if the correction as well as
the extraction are correct. For this evaluation the
error correction datasets are used. On the valida-
tion dataset, the sequence labeling approach that
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detecting corrections detecting no corrections
dataset model accuracy precision recall F1-score precision recall F1-score
valid. classification 100 % 100 % 100 % 100 % 100 % 100 % 100 %
valid. seq. labeling 100 % 100 % 100 % 100 % 100 % 100 % 100 %
valid. T5 generate 98.67 % 98.13 % 99.24 % 98.68 % 99.23 % 98.11 % 98.67 %
valid. T5 copy 71.78 % 63.92 % 100 % 77.99 % 100 % 43.56 % 60.69 %
test classification 87.86 % 99.86 % 75.83 % 86.20 % 80.52 % 99.90 % 89.17 %
test seq. labeling 88.49 % 99.87 % 77.08 % 87.01 % 81.34 % 99.90 % 89.67 %
test T5 generate 84.01 % 96.58 % 70.52 % 81.52 % 76.78 % 97.50 % 85.91 %
test T5 copy 77.45 % 73.63 % 85.52 % 79.13 % 82.73 % 69.38 % 75.47 %

Table 1: evaluation results of the error correction detection, all models except the classification were trained on
the error correction detection and error correction dataset and the classification was trained on the error correction
detection dataset

validation dataset test dataset
model correction extraction both correction extraction both
seq. labeling 96.21 % 94.70 % 94.70 % 40.10 % 48.75 % 39.06 %
E2E seq. labeling 96.59 % 95.08 % 95.08 % 39.27 % 43.54 % 38.65 %
T5 generate 92.80 % 95.83 % 91.29 % 73.65 % 77.81 % 71.98 %
E2E T5 generate 96.21 % 95.08 % 94.70 % 37.40 % 38.75 % 36.25 %
T5 copy 50.38 % 87.12 % 50.00 % 50.52 % 62.19 % 47.92 %
E2E T5 copy 70.83 % 92.42 % 68.94 % 27.50 % 35.00 % 25.31 %

Table 2: evaluation results of the error correction (metric accuracy), the end-to-end (E2E) models were trained on
the error correction detection and error correction dataset and the other models were trained on the error correction
dataset

model(s) validation dataset test dataset
correction extraction both correction extraction both

detection and seq. labeling 96.21 % 94.70 % 94.70 % 34.27 % 36.88 % 33.54 %
detection and E2E seq. labeling 96.59 % 95.08 % 95.08 % 39.27 % 43.54 % 38.65 %
E2E seq. labeling 98.30 % 97.54 % 97.54 % 69.58 % 71.77 % 69.27 %
classification and T5 generate 92.80 % 95.83 % 91.29 % 56.98 % 60.21 % 56.04 %
classification and E2E T5 generate 96.21 % 95.08 % 94.70 % 36.67 % 38.23 % 35.73 %
E2E T5 generate 97.54 % 97.16 % 96.40 % 68.07 % 68.49 % 66.88 %
classification and T5 copy 50.38 % 87.12 % 50.00 % 36.98 % 46.88 % 35.21 %
classification and E2E T5 copy 70.83 % 92.42 % 68.94 % 26.67 % 34.38 % 24.79 %
E2E T5 copy 69.70 % 78.03 % 56.25 % 55.00 % 58.91 % 47.40 %

Table 3: evaluation results of the error correction detection and error correction (metric accuracy), the end-to-end
(E2E) models were trained on the error correction detection and error correction dataset and the other models were
trained on the error correction dataset, “and” means that the error correction detection was done by the best error
correction detection model (sequence labeling) and the error correction detection by the model mentioned after the
“and” if a correction was detected
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was trained on the error correction detection and
error correction datasets has the best overall accu-
racy (95.08 %). The accuracy for the correction is
96.59 % and for the extraction 95.08 %. On the test
dataset, the T5 generate approach that is trained on
the error correction dataset has the best accuracy
(71.98 %). In general, all approaches trained on
the error correction detection and error correction
dataset have a higher accuracy on the validation
dataset and all approaches trained on the error cor-
rection dataset have a higher accuracy on the test
dataset. The T5 copy extraction could be optimized
by bookkeeping the order of copy operations, stop-
ping after finishing the correction and use the book-
keeping to reconstruct the reparandum and repair
pairs. We relinquished this optimization because
the correction results were much worse and we did
not see any sense in further optimizations that will
only lead to minimal improvements.

The results of the error correction detection and
error correction components are depicted in Ta-
ble 3. We used the same metric accuracy as in the
error correction evaluation. For the error correc-
tion detection in the pipeline approach, we used the
best error correction detection model evaluated in
this section. It is the sequence labeling approach
where no correction is in the example if all labels
are C. After the error correction detection, the er-
ror correction will occur. We evaluated all three
approaches described in Section 4 in their version
trained on the error correction detection and error
correction dataset and their version trained on the
error correction dataset. In the end-to-end setting, a
component executes the error correction detection
and the error correction in one run. The results are
that the end-to-end approaches are better than the
pipeline approaches except for the end-to-end T5
copy approach for the validation dataset because
of its bad error correction detection results on the
validation dataset. The best approach is the end-to-
end sequence labeling approach with an accuracy
of 97.54 % on the validation and 69.27 % accuracy
on the test dataset. This approach also has the
best results in the error correction detection and
error correction of the end-to-end approaches and
therefore it is clear that it is the best approach for
the combined error correction detection and error
correction. However, the end-to-end T5 genera-
tor approach is not much worse with 96.40 % and
66.88 % validation and test accuracy, respectively.

The evaluation results show that the test dataset

is more challenging than the validation dataset. The
nine data collectors were able to introduce even
more variety of natural language than the validation
dataset has.

7 Conclusions and Further Work

The proposed error correction detection and error
correction component shows high potential. For
the validation dataset, we got very good results:
in 97.54 % of the cases, we could detect whether
there is a correction or not and if there is a cor-
rection, it outputs a correct corrected request and
could extract correctly the reparandum and repair
pairs. The results for the human-generated real-
world data with 69.27 % shows that the proposed
component is learning the concept of corrections
and can be developed to be used as an upstream
component to avoid the need for collecting data for
request corrections for every new domain. In addi-
tion, the extraction of the pairs of reparandum and
repair entity can be used for learning in a life-long
learning component of a dialog system to reduce
the need for correction in future dialogs.

In future work, the training dataset could be
extended to a bigger variety of natural language
which will enable the model to learn the concept
of corrections better and to get better results on
human-generated real-world data. The mentioned
life-long learning component could also be part
of future work and the classification of correction
types could improve the performance of such a life-
long learning component. To improve the accuracy,
architectures that have a better NER performance
than our used BERT model, like the architecture
proposed by (Baevski et al., 2019), could be used.
A further future research goal is to be able to cor-
rect all phrases and not only entity phrases.
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Abstract

The adoption of pre-trained language models
in task-oriented dialogue systems has resulted
in significant enhancements of their text gener-
ation abilities. However, these architectures are
slow to use because of the large number of train-
able parameters and can sometimes fail to gen-
erate diverse responses. To address these limi-
tations, we propose two models with auxiliary
tasks for response selection - (1) distinguishing
distractors from ground truth responses and (2)
distinguishing synthetic responses from ground
truth labels. They achieve state-of-the-art re-
sults on the MultiWOZ 2.1 dataset with com-
bined scores of 107.5 and 108.3 and outperform
a baseline with three times more parameters.
We publish reproducible code and checkpoints
and discuss the effects of applying auxiliary
tasks to T5-based architectures.

1 Introduction

Task-oriented dialogue (TOD) systems are devel-
oped to lead conversations with users and assist
them with the completion of various tasks. Un-
like traditional solutions which rely on natural lan-
guage understanding, state tracking, language gen-
eration, and other modules, end-to-end systems
utilize a single network for all required function-
ality (Young et al., 2013). The recent research in
the field has concentrated on leveraging language
models pre-trained on general-domain corpora (De-
vlin et al., 2018; Radford et al., 2019; Raffel et al.,
2020) to produce more robust architectures fine-
tuned specifically for TOD generation. This has
bridged the gap between production-ready modular-
ized pipelines and single-network models in terms
of accuracy and human-sounding results. However,
such architectures are big and computationally ex-
pensive; they are also prone to overfitting on the
final task and "forgetting" useful capabilities from
the pre-training phase (Greco et al., 2019; Kul-
hánek et al., 2021). Multiple studies (Section 2)

have demonstrated that learning related auxiliary
tasks can improve the generation performance of a
model while making it less affected by the overfit-
ting issue.

In this paper, we study the effects of learning
auxiliary response selection tasks together with an
architecture based on the T5 (Raffel et al., 2020)
text-to-text transformer. We use MTTOD (Lee,
2021), trained on the MultiWOZ 2.1 (Eric et al.,
2019) dataset, as a baseline and evaluate two main
approaches for response selection:

• Binary classifier to distinguish between en-
codings of ground truth responses and encod-
ings of distractor sentences sampled from the
dataset.

• Binary classifier to tell apart ground truth re-
sponses from decoder-generated sequences.

Reproducible code and model checkpoints
are available at https://github.com/
radi-cho/RSTOD.

2 Related Work

TOD sequence-to-sequence models usually gener-
ate a belief state based on the dialogue history and
then use the belief state (in addition to the previous
context) to generate a response (Lei et al., 2018).

Pre-trained Language Models such as BERT
(Devlin et al., 2018), GPT-2 (Radford et al., 2019),
and T5 (Raffel et al., 2020) significantly enhance
dialogue systems when they are fine-tuned for
sequence tasks. The first study to validate this
on GPT-2 is (Budzianowski and Vulić, 2019).
SOLOIST (Peng et al., 2020), UBAR (Yang et al.,
2021), and SimpleTOD (Hosseini-Asl et al., 2020)
further develop the end-to-end setting of the prob-
lem by considering database results and generated
responses during training. MinTL (Lin et al., 2020)
provides a minimalistic transfer learning dialogue
system with multiple backbones. TOD-BERT (Wu
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et al., 2020) utilizes a contrastive objective function
to mimic a response selection task. (Yang et al.,
2022) augments data by ignoring nonessential to-
kens and also adversarially filters “easy” samples
to enhance model robustness.

Auxiliary Learning - training additional tasks
which improve the performance of the primary text
generation task - is increasingly applied in TOD
systems. AuGPT (Kulhánek et al., 2021) demon-
strates that response selection tasks are helpful on
top of GPT-2. MTTOD (Lee, 2021) has a span se-
lection auxiliary task. GALAXY (He et al., 2022)
(with UniLM (Dong et al., 2019) as a backbone)
optimizes four objectives, one of which is a selec-
tion between ground truth responses and randomly
sampled responses. PPTOD (Su et al., 2022) is
also trained for multiple tasks in a plug-and-play
fashion (Dathathri et al., 2019).

3 Method

3.1 Dialogue System Baseline

As a baseline, we use the end-to-end system set-
ting introduced in (Lee, 2021) (Figure 1) with T5
encoder-decoder backbone. The encoder input con-
sists of a dialogue history concatenated with a user
utterance. A belief state decoder generates a se-
quence of a domain name, slot names, and slot
values. There is an option for querying a domain-
specific database based on the belief state to gen-
erate a DB state which is then used to condition a
final response decoder. The response output con-
tains a system action state - a sequence of a domain
name, action types and slots - and a system re-
sponse. Since the decoder works autoregressively1,
response generation is automatically conditioned
on the system action.

As shown in figure 1, MTTOD utilizes a classi-
fier as an auxiliary task for span matching, inspired
by recent dialogue state tracking approaches. La-
bels for this task are the extractive informable slots
defined in (Gao et al., 2020).

The loss to be jointly minimized is

L = αLbelief +β Lresp+γ Lspan (1)

where Lbelief and Lresp are negative log-
likelihood language modeling losses for the two
decoders and Lspan is a cross-entropy loss for the
span task. For compatibility with (Lee, 2021) the

1An autoregressive decoder uses information from previ-
ous time steps to generate the value at the current time step.

coefficients α, β and γ are set to 1.0, 1.0 and 0.5
respectively. Refer to section 5 for baseline bench-
marks.

3.2 Response Selection as an Auxiliary Task

Our study aims to evaluate the effects of using
response selection as an additional auxiliary task
for the presented T5-based dialogue system. We
propose two variants for such a task (Figure 2) and
modify the full objective to

L = αLbelief +β Lresp+γ Lspan+δLselect (2)

In our experiments δ is also set to 0.5.

3.2.1 Distinguishing distractor encodings

The first proposal for a response selection task in
our system is a binary classifier head - a linear
layer or a simple multilayer perceptron - distin-
guishing randomly sampled distractor responses
from ground truth responses. During training, the
dialogue context Ct at time step t (consisting of
history Ht and user utterance Ut) is concatenated
with both the ground truth labels Tt - forming a
sequence (Ct, Tt) - and a distractor response Dt

sampled from the dataset - forming a sequence
(Ct, Dt). Encodings for both sequences are gener-
ated by the already implemented T5 encoder and
are then fed to the response selection head. The
class label is 0 for (Ct, Dt) and 1 for (Ct, Tt). The
binary cross entropy loss to be minimized is defined
as

Lselect = − log p (l = 1 | Ct, Tt)

− log p (l = 0 | Ct, Dt)
(3)

p (l = 1 | Ct, Tt) =

sigmoid (ϕa(ϕE(Ct, Tt))) ∈ R1

p (l = 0 | Ct, Dt) =

1− sigmoid (ϕa(ϕE(Ct, Dt))) ∈ R1

(4)

where ϕE denotes the encoder and ϕa - the final
classifier.

Optimizing the auxiliary response selection task
affects the gradients of the encoder parameters. We
empirically prove that this is beneficial for the over-
all score improvements on multiple metrics.
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Belief
Decoder

<sos_belief> [restaurant] [food]

french <eos_belief>

<sos_action> [restaurant] [inform] offer booked

<eos_action> <sos_resp> you are all set . <eos_resp>

Response
Decoder

DB

Belief State System Action + Response

<sos_db> restaurant 

> 3 <eos_db>

DB State

T5 Encoder

<sos_user> ... <eos_user> <sos_belief> ... <eos_belief> <sos_db> ... <eos_db> <sos_action> ... <eos_action>

<sos_resp> ... <eos_resp>  <sos_user> Any french restaurant? <eos_user>

Dialogue History + User Utterance

Auxiliary classifier 
with span labels

O O food O time

Sequence      encodings

Span      labels

Figure 1: Dialogue generation architecture.

3.2.2 Distinguishing generated sequences
We also propose another independent auxiliary task
for response selection inspired by Generative Ad-
versarial Networks (Goodfellow et al., 2014). Its
goal is to distinguish between responses from the
transformer Rt and ground truth sequences Tt.

The baseline response decoder generates a se-
quence of token logits π1, π2, ..., πk, where πi is a
vector of unnormalized class outputs over a vocab-
ulary with size v. To obtain token ids we usually
apply

argmax
j

[log πij ], j ∈ [1, v − 1] (5)

for every πi. However, such a step is not differen-
tiable, and when subsequent layers are optimized,
transformer gradients won’t be affected, making
the auxiliary task useless. One way to overcome
the limitation is to re-encode the sequences as pre-
viously described in 3.2.1 and thus backpropagate
knowledge to the T5 encoder. Instead, we propose
a classifier that works with differentiably sampled
token representations and backpropagates knowl-
edge to the whole architecture during training.

We sample vocabulary class probabilities yi1,
yi2, ..., yiv for every token representation πi from
a Gumbel-Softmax distribution (Jang et al., 2016;
Maddison et al., 2016; Gumbel, 1954):

yij =
exp((log(πij) + gj)/τ)∑v
k=1 exp((log(πik) + gk)/τ)

(6)

where τ is a temperature, treated as a hyper-
parameter, and gj is a noise sample from a
Gumbel(0, 1) distribution which can be computed
by drawing a u ∼ Uniform(0, 1) and applying

g = − log(− log(u)) (7)

For consistency with ground truth response se-
quences which are represented with v-dimensional
one-hot vectors ŷi, we programmatically2 convert
the probabilities yi to one-hot vectors but compute
gradients with their continuous values.

2Refer to the hard flag in http://pytorch.
org/docs/stable/generated/torch.nn.
functional.gumbel_softmax
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Figure 2: Binary classification response generation tasks.

Finally, both y and ŷ are fed to the binary clas-
sifier ϕb and the loss to be minimized is computed
as

Lselect = − log p (l = 1 | ŷ)
− log p (l = 0 | y) (8)

p (l = 1 | ŷ) = sigmoid (ϕb(ŷ)) ∈ R1

p (l = 0 | y) = 1− sigmoid (ϕb(y)) ∈ R1
(9)

4 Experiments

4.1 Dataset
In our workflow, we use the large-scale TOD
dataset MultiWOZ 2.1 (Eric et al., 2019) for bench-
marks and comparisons with baselines. We follow
the preprocessing techniques from (Zhang et al.,
2020; Lee, 2021) to replace the specific slot values
with placeholders. Table 1 presents more in-depth
details and statistics on the contents of the dataset.

4.2 Training procedure
Train/development/test sets are generated with
80%/10%/10% of the samples. We optimize the
objectives from section 3 for 15 epochs and report
the results from the best performing checkpoint
on the development set. In our experiments, we
tested different learning rate schedule strategies
and found the best results to be achieved with a
constant learning rate initialized as 5× 10−4 with
liner warmup for the first 10% of the samples.

For variant 2 of our architecture, a scheduler
is used to linearly decrease the Gumbel-Softmax
temperature τ with each training iteration. The
optimal initial value for τ used to derive the results
in Table 2 is 4 and is gradually decreased to 0.8.

4.3 Evaluation Metrics
During inference, the response selection head is
not used and the model performs the same way
in terms of speed as the T5-small baseline. We
compute BLEU (Papineni et al., 2002), Inform and
Success metrics for both architecture variants. In-
form validates whether system entities are correct
and Success checks whether relevant information
is given for all user inquiries. A combined score is
derived as 0.5 × (Inform + Success) + BLEU which
is consistent with previous studies.

5 Results

5.1 MultiWOZ Benchmarks
Table 2 compares the calculated benchmarks for
the two proposed variants of our auxiliary task. As
a baseline, we present the results of MTTOD with
T5 base backbone, which has more than 360 mil-
lion trainable parameters. In contrast, our models,
which use T5 small as a backbone, have 102.2 and
105.5 million parameters but achieve higher overall
results with total scores of 107.4 and 108.3, respec-
tively.

6 Discussion

Response selection tasks similar to variant 1 of our
architecture have been previously applied in mod-
els for chit-chatting and question answering (Wolf
et al., 2019). For TOD systems such tasks are used
in architectures with GPT-2 (AuGPT) and UniLM
(GALAXY) backbones resulting in responses with
higher text-generation metrics. Our study is the
first to provide an in-depth analysis of whether a
T5-based model in a task-oriented setting would
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Table 1: MultiWOZ dataset statistics

Domain Train dialogues Dev dialogues Test dialogues

Police 245 0 0
Hospital 287 0 0
Attraction 127 11 12
Taxi 326 57 52
Train 282 30 33
Hotel 513 56 67
Restaurant 1199 50 62
Train + Attraction 883 148 163
Hotel + Attraction 437 55 50
Restaurant + Attraction 396 78 70
Restaurant + Train 875 157 155
Restaurant + Hotel 462 59 49
Hotel + Train 1077 149 144
Restaurant + Hotel + Taxi 454 41 42
Restaurant + Attraction + Taxi 431 53 59
Hotel +Attraction + Taxi 444 56 42

Total 8438 1000 1000

Table 2: Benchmark results on MultiWOZ 2.1

Model Backbone Selection task Parameters Inform Success BLEU Score

MTTOD* T5 base None 360.9 M 92.30 84.00 19.41 107.56
MTTOD* T5 small None 102.2 M 89.20 80.50 19.14 103.99
RSTOD (ours) T5 small After encoder 102.2 M 92.10 83.30 19.69 107.39
RSTOD (ours) T5 small Differentiable 105.5 M 93.50 84.70 19.24 108.34
* MTTOD benchmarks are reproduced using its public source code. A slight deviation from the results in (Lee, 2021) is

caused by a correction in the evaluation scripts as acknowledged on https://github.com/bepoetree/MTTOD.

benefit from selection tasks. The results we present
are consistent with related literature since we also
observe an increase in generation performance.

Most of the solutions relying on pre-trained lan-
guage models have big amounts of trainable param-
eters making them slow to train. In our study, we
use a modification of the baseline with T5-small
instead of T5-base, reducing the parameters more
than 3 times. In variant 1 the shared encoder is
responsible for processing more sequences than
the baseline - it is slower to train but identical in
terms of inference speed and amount of storage
space required for its weights. Variant 2 is com-
parable in terms of train-time and inference-time
speed to the baseline but is able to achieve a higher
overall score. It employs techniques for overcom-
ing backpropagation issues with the discrete token
representations of a generated response sequence3.

3Usually text is generated by picking the most likely tokens

7 Future Work

Directions for further research on the topic of TOD
systems include testing our proposals on bigger
backbone models to evaluate their effectiveness
against overfitting, experimenting with additional
auxiliary tasks for the current baseline, and intro-
ducing data augmentations. Also, whether our
classifier heads could be used during inference to
perform real-time response selection should be ex-
plored.

As a long-term development in the field, we con-
sider various possibilities for building production-
ready end-to-end dialogue systems by employing
reinforcement learning or semi-supervised learning
methods. More experimentally, a generative adver-
sarial network for creative text generation could

from a probability distribution over the token space. This is not
a differentiable operation and prevents gradient computations.
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also be tested.

8 Conclusion

In this paper, we propose two independent auxiliary
tasks for response selection on top of a TOD sys-
tem transformer baseline. Both tasks demonstrate
state-of-the-art results on multiple text generation
metrics despite having 3+ times less trainable pa-
rameters. The first variant involves a classifier,
distinguishing between distractor and ground truth
responses, which affects the transformer encoder
during training and achieves results consistent with
related literature. The second variant applies a
novel technique for the TOD problem and involves
a classifier, distinguishing between synthetic and
ground truth responses. We publish reproducible
code implementations of our proposals and present
potential directions for future research.
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Abstract
A multi-turn dialogue always follows a specific
topic thread, and topic shift at the discourse
level occurs naturally as the conversation pro-
gresses, necessitating the model’s ability to cap-
ture different topics and generate topic-aware
responses. Previous research has either pre-
dicted the topic first and then generated the
relevant response, or simply applied the atten-
tion mechanism to all topics, ignoring the joint
distribution of the topic prediction and response
generation models and resulting in uncontrol-
lable and unrelated responses. In this paper, we
propose a joint framework with a topic refine-
ment mechanism to learn these two tasks simul-
taneously. Specifically, we design a three-pass
iteration mechanism to generate a coarse re-
sponse first, then predict corresponding topics,
and finally generate a refined response condi-
tioned on predicted topics. Moreover, we utilize
GPT2DoubleHeads and BERT for the topic pre-
diction task respectively, aiming to investigate
the effects of joint learning and the understand-
ing ability of the GPT model. Experimental
results demonstrate that our proposed frame-
work achieves new state-of-the-art performance
at the response generation task and the great
potential understanding capability of the GPT
model.

1 Introduction

Natural Language Generation (NLG), is the task
of generating language that is coherent and under-
standable to humans, and has been applied to many
downstream tasks such as text summary (Zhang
et al., 2019a; Bar-Haim et al., 2020; Cho et al.,
2020; Huang et al., 2020; Gholipour Ghalandari
and Ifrim, 2020), machine translation (Li et al.,
2020; Baziotis et al., 2020; Cheng et al., 2020;
Zou et al., 2020), and dialogue response genera-
tion (Radford et al., 2019; Zhou et al., 2018b; Tuan
et al., 2019; Zhao et al., 2020; Liu et al., 2020a;
Wolf et al., 2019).

*These authors contributed equally to this work

Recent works in dialogue response genera-
tion usually formulate this task as a sequence-
to-sequence problem, leading to inconsistent, un-
controllable, and repetitive responses (Ram et al.,
2018). Furthermore, each dialogue has its specific
goal and each utterance of the dialogue may con-
tain multiple topics, regardless it is an open-domain
dialogue or task-oriented dialogue. As shown in left
part of Figure 1, the patient seeks medical advice
from a doctor and informs him of the attributes
and symptoms of the specific disease which form
the topics of the conversation. Also, some open-
domain dialogue systems have specific goals, such
as recommendations, education, etc. For example, a
conversational agent interacts with a user to recom-
mend some interesting movies (as shown in right
part of Figure 1). The entire content flow is guided
by the topic thread. These various conversational
scenarios propose more challenges for the current
multi-turn end-to-end dialogue system, necessitat-
ing the model’s capability to generate a more infor-
mative and topic-related response.

Many researchers propose different methods to
guide or control the generation of responses con-
ditioned on specific topics. Some representative
works consider incorporating topic information
into the sequence-to-sequence framework which
applies an attention mechanism to all topics (Xing
et al., 2017; Dziri et al., 2019). Other works cast
this task as a pipeline system, predict the keywords,
then capture the topic, and finally retrieve corre-
sponding response (Tang et al., 2019; Zhou et al.,
2020). Another line of work focuses on single-turn
topic-aware response generation conditioned on
previously given topics (Feng et al., 2018; Yang
et al., 2019; Huo et al., 2020). All these methods
fall short in two ways. Most of these approaches ei-
ther heavily rely on the non-autoregressive models
like BERT (Devlin et al., 2019) to predict topics or
utilize the attention mechanism on all pre-defined
topics which do not consider the effect of the histor-
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I have a bloated stomach sometimes with 
acid reflux and frequent ringing (Female, 17 
years old)
胃部胀气有时候会反酸经常性会发出鸣响
（女，17岁）

How long has this been going on exactly?
这种情况具体多长时间了？

One year.
一年

Any stomachaches, hiccups, etc.?
有没有腹疼、打嗝等？

Sometimes my stomach hurts but only a few 
times I burp.
有时候腹疼但就几次会打嗝。

How's the digestion these days?
这段时间消化怎么样。

Sometimes I feel indigestible.
有时候觉得不消化。

Well, this condition is caused by indigestion, 
and oral omeprazole plus morphine is 
recommended for treatment.
嗯，这种情况属于消化不良造成的，建议
口服奥美拉唑加吗丁啉治疗。

Medical Conversation Annotated entities

Symptom: bloating, 
acid reflux
症状: 胃胀, 反酸

Symptom: bellyache, 
hiccup
症状: 腹痛, 打嗝

Attribute: Duration
属性: 时长

Symptom: bellyache, 
hiccup
症状: 腹痛, 打嗝

Symptom: Indigestion 
症状: 消化不良

Symptom: Indigestion
Medicine: Omeprazole, 
Domperidone 
症状: 消化不良
药物: 奥美, 吗丁啉

(1).Bot : What are you up to?
(2).User : I'm looking at the photo album. I miss the old days.

…
(6).User : That's true. I want to be a kid again. By the way, are there 
any movies about childhood? Although I can't go back, it's good to 
look at other people's childhood memories.
(7).Bot : How about Father-son? I recommend it to you. I once saw it 
on TV by chance. It is very impressive and wonderful.
(8).User : I just saw this movie, it's really good, the documentary style 
of this movie takes the childhood memories assaulting me, ha ha, I 
have some nostalgia for those childhood toys, I really miss them.
(9).Bot : Well, toys are children's friends, children's childhood without 
toys will be incomplete.
(10).User : Yeah, recommend me a movie about children's childhood.
(11).Bot : I recommend The Naked Childhood, which is a peaceful 
film, telling the story of border children step-by-step. Just see it.

…

ConversationTopic ThreadUser Profile

toys

children

User Interaction History

miss

childhood

greeting

Review for Father-son: Very 
impressive, I once saw it on TV by 
chance.

Film Watching Record

Review for The Naked Childhood: 
A peaceful film telling the story 
step-by-step.

Reviews on Website

Candidates Conversation

• I often miss childhood.
• I desire love.
• I like nuptial tuberdes.
• I want to be lucky.
• I am happy now.
• I have a desire for success.

…

…

…

Reviews
Retrieval Human Annotation

Keywords: childhood, love, 
nuptial tuberdes, …

Figure 1: Left: MedDG Dataset Right: TG-ReDial Dataset. Adapted from (Liu et al., 2020a) and (Liu et al., 2020b) respectively.

ical topic path of multi-turn conversations. Besides
that, these works do not model the joint distribu-
tion of attribute model p(a|x) and unconditional
language model p(x), which is proved effective
and powerful (Dathathri et al., 2019).

In this paper, we formulate this problem as a
topic-aware dialogue response generation task, aim-
ing to generate informative and topic-related re-
sponses that can engage the users. More specifi-
cally, we design a three-stage iteration mechanism
for the topic-aware response generation task. We
generate the coarse response given historical di-
alogue context and previous topics first, then we
require the model to explicitly predict correspond-
ing topics, and then we concatenate the generated
coarse response at the first step and the predicted
topics at the second step as input to generate a final
refined topic-related response. Thus, the model is
forced to learn a joint distribution of topics and
related responses by optimizing for these three ob-
jectives simultaneously.

• We formulate a traditional response genera-
tion problem as a topic-aware generation prob-
lem and propose a joint framework that can
learn topic prediction and dialogue response
generation simultaneously.

• We design a topic refine mechanism to con-
trol the generation of dialogue response. Our
ablation study confirms it can help to generate
more informative and topic-related responses,
leading to better performance.

• We evaluate our model on two different
datasets which consist of two application sce-
narios: medical auto-diagnosis and conversa-
tional recommendation, and we achieve new
state-of-the-art performance on both datasets
and demonstrate that joint distribution and

topic refinement is effective but the under-
standing ability of GPT2 still needs to be im-
proved.

2 Problem Definition

Given a dialogue d = {u1, u2, u3, ..., un},
a corresponding speaker role path sr =
{s1, s2, s3, ..., sn} and its corresponding topic path
tp = {tw1, tw2, tw3, ..., twn} where s ∈ R,
tw ∈ T . R and T are pre-defined speaker sets
and topic sets. An utterance at ith time step can
be expressed by (ui, si, twi) which represents the
sentence, the speaker, and the topics included in
this sentence. twi consists of multiple topics or
zero topic and each topic is expressed by sev-
eral words. The problem then can be defined as:
given a ith historical dialogue context, speaker role
and topic path, dn−1

i = {u1i , ..., un−1
i }, srn−1

i =
{s1i , ..., sn−1

i }, tpn−1
i = {tw1

i , ..., tw
n−1
i }, find the

next topic and generate related responses.

y∗ = argmax
θ

p(rn, twn|dn−1, tpn−1, srn−1)

(1)
where rn and twn stand for the response and

corresponding topics at turn n respectively,. User
profile information p = {p1, p2, ..., pk} is often
provided as additional input, which consists of k
sentences to express personal information such as
interest. Thus, the objective changes accordingly:

y∗ = argmax
θ

p(rn, twn|dn−1, tpn−1, srn−1, p)

(2)
Different from other methods, we divide the

whole problem into three sub-problems (see the
section below). Our objective can be formulated as
the following joint distribution:
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y∗ = argmax
θ

p(rn1 |dn−1, srn−1, tpn−1)

p(twn|dn−1, srn−1, tpn−1)

p(rn2 |dn−1, srn−1, tpn−1, (rn1 , tw
n))

(3)

where p(rn1 |dn−1, srn−1, tpn−1) generate
the relatively abbreviated response first, then
p(twn|dn−1, srn−1, tpn−1) predict the corre-
sponding topics at turn n, and finally, the model
refines the abbreviated response rn1 by maximizing
p(rn2 |dn−1, srn−1, tpn−1, (rn1 , tw

n)) with the first
response rn1 and corresponding predicted topics
twn as additional input, which leads to more
informative and topic-related response rt2.

3 Model

Our model can be divided into three different parts:
1) Stage-One: Response Generation and 2) Topic
Prediction; and 3) Stage-Two: Topic Refinement,
which corresponds (a), (b), (c) shown in Figure 2
respectively. More details can be checked in the
following subsections 3.1, 3.2, and 3.3.

3.1 Stage-One: Response Generation
We formulate the response generation problem us-
ing conditional language models e.g. GPT (Rad-
ford et al., 2019). Given many dialogues D =
{d1, d2, d3, ..., dm}, ith dialogue d contains ser-
val training samples (rn, twn|dn−1, srn−1, tpn−1)
from different turn n, our objective here is to build
a statistical model parameterized by θ to maximize
pθ(r

n|dn−1, tpn−1, srn−1). Since here we use au-
toregressive language models to take account of
the sequential structure of the response, we need
to decompose the joint probability of rn using the
chain rule as follows:

pθ(r
n|dn−1, tpn−1, srn−1) =

T∏

t=1

pθ(r
n
t |I) (4)

where I stands for (rn<t, d
n−1, tpn−1, srn−1)

and rn<t represents all tokens before t at turn n.
The objective of stage one is performed by maxi-
mizing the loglikelihood (MLE) of the conditional
probabilities in (4) over the entire training dataset:

Lone = −
|D|∑

m=1

|d|∑

n=1

T∑

t=1

logpθ(r
m,n
t |rm,n

<t ,Hm)

(5)

where rtm,n is tth token of nth resposne of
mth dialogue in training dataset, Hm represents
(dm,n, tpm,n, srm,n) before current response.

3.2 Topic Prediction

Given the historical Hm ofmth dialogue 1, we need
not only to generate a suitable response but also to
predict the correct topic. Some prior works solve
this problem by predicting the topic first and then
generating the response (Liu et al., 2020a; Zhou
et al., 2020). In this section, different from these
works, we propose a framework to jointly learn
this task with dialogue response generation task
as shown in Figure 2. There are two methods to
predict the corresponding topics: (1) BERT-Based
Prediction, and (2) GPT-Based Prediction.

3.2.1 BERT-Based Prediction.

Consistent with previous work in text classification
(Chen et al., 2019a), we utilize the embedding h1 of
first token [CLS] from BERT (Devlin et al., 2019)
to predict the topics, followed by a softmax layer.

f(x) = softmax(Wh1 + b) (6)

3.2.2 GPT-Based Prediction.

We adapt GPT2DoubleHeads model (Wolf et al.,
2020) to perform the prediction followed (Wolf
et al., 2019), since there are two heads: language
modeling head and the classification head in the
model while the latter one can be used to classify
the input dialogue information. Besides that, the
shared parameters of GPT may benefit both topic
prediction and response generation tasks.

It is noted that there are two types of classifi-
cation in topic prediction task: multi-class clas-
sification and multi-label classification, owing to
the unique characteristic and differences of two
datasets: MedDG (Liu et al., 2020a) and TG-
ReDial (Liu et al., 2020b). For a multi-class clas-
sification problem, the global optimization can be
reached by minimizing cross-entropy loss defined
as follow:

Ltopic = −
K∑

c=1

yclog(pc|Hm) (7)

For a multi-label classification problem, it is
usually formulated as a sequence of binary decision
problems which are optimized by:

1It is noted that we do not use rn<t as input information
here.
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Figure 2: TopicRefine: Joint Framework of Our Proposed Model, which consists of three different modules (a) Stage-One:
Response Generation (b) Topic Prediction (c) Stage-Two: Topic Refinement. The (b) module can be implemented by two
methods: BERT and GPT, we utilize Stage-One (GPT) and Stage-Two (GPT) to represent the framework with GPT as the
backbone for all three modules (orange dashed line), and Stage-Two (BERT) to replace GPT with BERT for (b) module (blue
dashed line) in later experiment section.

Ltopic = −
K∑

c=1

yclog(pc|Hm)+(1−yc)log(pc|Hm)

(8)

3.3 Stage-Two: Topic Refinement
To generate a more informative and topic-related
response, we introduce the topicRefine mechanism
that refines the generated response condition on the
predicted topic 2, as shown in Figure 2 (c).

The refine decoder receives the first generated
response rn1 from the stage-one module and the
predicted topic twn from the Topic Prediction
module as input and outputs a refined response
rn2 . More specifically, we utilize < topic >
to indicate the position of topics, so the input
can be represented as {[CLS], w1

r , w
2
r , ..., w

n
r , <

topic >,w1
t , w

2
t , ..., w

n
t , < topic >} where rn1 =

[w1
r , w

2
r , ..., w

n
r ], tw

n = [w1
t , w

2
t , ..., w

n
t ]. The

learning objective is formulated as:

Lrefine = −∑|D|
m=1

∑|d|
n=1

∑T
t=1 logpθ(r

m,n
t |rm,n

<t ,Hm, tw
n)

(9)
where Eq 9 is similar with Eq 5 except the intro-

duced topic information twn here. The parameters
are shared by all three modules unless we state
otherwise.

2If there are k topics predicted by module b, then we simply
concatenate all of them together

3.4 Training Objective

The learning objective of our model is the sum
of three parts, jointly trained using the “teacher-
forcing" algorithm. During training, we feed the
ground-truth response only in stage-one and stage-
two and minimize the following objective.

Lmodel = Lone + Ltopic + Lrefine (10)

At test time, we choose the predicted word by
y∗ = argmaxyp(y|x) at each time step, and we
use greedy search to generate both the response
and refined response.

4 Experiment

In this section, we will introduce datasets and base-
lines first, and then presents implementation details
and evaluation metrics of our proposed framework.

4.1 Datasets

MedDG (Liu et al., 2020a) A large-scale high-
quality medical dialogue dataset that contains 12
types of common diseases, more than 17k conver-
sation, and 160 different topics consisting of symp-
toms and attributes. Noted the topic-prediction task
here is a multi-label classification problem.
TG-ReDial (Zhou et al., 2020) consists of 10000
two-party dialogues between the user and a rec-
ommender in the movie domain which explicitly
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incorporates topic paths to enforce natural semantic
transitions towards recommendation scenario. For
topic-prediction task here, it is a multi-class classi-
fication problem. The details of these two datasets
can be found in Table 1.

Dataset MedDG TG-ReDial
Task Domain Task-oriented Recommendation
Language Chinese Chinese
Classification Type Multi-Label Multi-Class
Dialogue Domain Medical Movie
♯ Dialogues 17864 10000
♯ Utterances 385951 129392
♯ Topics 160 2571

Table 1: Statistics of Two Datasets

4.2 Baselines

Seq2Seq. (Sutskever et al., 2014) is a classical
attention-based sequence-to-sequence model which
builds on top of vanilla RNN encoder and decoder.
HRED. (Serban et al., 2016) extends the tradi-
tional RNN encoder by stacking two RNNs in a
hierarchical way: one at the word level and one
at the utterance level. It is frequently used as a
dialogue encoder.
GPT2. (Radford et al., 2019) is a strong baseline
for response generation task which demonstrates
powerful performance in many related works. It
is noted all three methods mentioned above can
utilize topic information as additional input which
concatenates with utterance in the dialogue. We use
Seq2Seq-Topic, HRED-Topic and GPT-Topic to
represent these methods respectively.
Redial (Li et al., 2018) is proposed especially for
conversational recommendation systems by utiliz-
ing an auto-encoder for the recommendation.
KBRD (Chen et al., 2019b) stands for Knowledge-
Based Recommendaer Dialog System, which com-
bines the advantages of recommendation system
and dialogue generation system.
Transformer (Vaswani et al., 2017) applies a
Transformer-based encoder-decoder framework to
generate proper responses.
TG-RG (Zhou et al., 2020) is current state-of-the-
art method comes with the release of dataset. It
predicts the topic first and then generates the re-
sponse.

4.3 Variants of Our Framework

GPT2DH. The method removes the refinement
stage from our framework and jointly trains the

response generation and topic prediction tasks
(i.e. a and b module in Figure 2) based on the
GPT2DoubleHeads model. In this way, the train-
ing objective changes to Lmodel = Lone + Ltopic

without Lrefine. We called this method GPT2DH
to represent GPT2DoubleHeads (Wolf et al., 2020)
which have two heads for classification and genera-
tion respectively.

Stage-One (GPT) and Stage-Two (GPT). As
shown in Figure 2, this variant represents
all three components are implemented by
GPT2DoubleHeads model, while Stage-One
(GPT) represents the first generated response rn1
and Stage-Two (GPT) represents the refined re-
sponse rn2 in Equation (3).

Stage-Two (BERT). We replace GPT with BERT
only for (b) module in Figure 2. The variant is
designed for poor understanding capability of GPT
model which leads to noisy predicted topic.

4.4 Implementation Details

We use the same settings for these two datasets.
The learning rate is set as 1.5e-4, repetition penalty
as 1.0, batch size as 4, warmup steps as 2000, ex-
cept max context length as 500, max decode length
as 50, epochs as 20 for TG-ReDial, max context
length as 600, max decode length as 100, epochs
as 10 for MedDG. We use ADAMW (Loshchilov and
Hutter, 2019) to train the model. We emphasize that
the role path information is missing in the test data
of MedDG. Thus we only use dialogue and topic
information in the experiment to keep consistent
with test data. It is important to note that our meth-
ods do not pre-train on any other big corpus, we
just load the parameters provided by (Wolf et al.,
2020) and directly fine-tune on the target dataset.

4.5 Evaluation Metrics

For the sake of fair comparison, we adopt the same
evaluation metrics as the original two papers (Liu
et al., 2020a) and (Zhou et al., 2020). For MedDG,
we report BLEU-1, BLEU-4, and Topic-F1 for
response generation task, and Precision, Recall,
and F1 score for the topic prediction task. For
TG-ReDial, we calculate BLEU-1, BLEU2, and
BLEU3 for generation and Hit@1, Hit@3, Hit@5
for prediction. It is noted that Topic-F1 requires
the topic words appears exactly in the generated
response at MedDG dataset.

23



5 Result and Analysis

In this section, we evaluated the proposed Topi-
cRefine framework at two datasets MedDG and
TG-ReDial respectively. And then we further in-
vestigate the effects of different response lengths
and provide an analysis of human evaluation for
dialogue response generation task. At the last, we
also investigate the understanding capability of the
GPT model in these two datasets.

5.1 Main Result

Model BLEU-1 BLEU-4 Topic-F1 Avg
Seq2Seq 26.12 14.21 12.63 17.65
Seq2Seq-Topic 35.24 19.20 16.73 23.72
HRED 31.56 17.28 12.18 20.34
HRED-Topic 38.66 21.19 16.58 25.48
GPT2 29.35 14.47 9.17 17.66
GPT2-Topic 30.87 16.56 17.08 21.50
Stage-Two (GPT) 45.12 27.49 5.40 26.00
Stage-Two (BERT) 44.49 24.62 17.94 29.02
Stage-One (GPT) 43.86 24.62 11.36 26.61
GPT2DH 43.93 24.35 11.91 26.73

Table 2: Dialogue response generation at MedDG
dataset. It is notes that “-Topic" methods use the ground
truth topic information in the dataset.

Model BLEU-1 BLEU-2 BLEU-3
Redial 0.177 0.028 0.006
KBRD 0.223 0.028 0.009
Transformer 0.283 0.068 0.033
GPT2-Topic 0.278 0.064 0.031
TG-RG 0.282 0.067 0.033
Stage-Two (GPT) 0.293 0.085 0.042
Stage-Two (BERT) 0.294 0.086 0.043
Stage-One (GPT) 0.284 0.082 0.041
GPT2DH 0.288 0.086 0.041

Table 3: Recommendation Response Generation at TG-
ReDial dataset. It is notes that “-Topic" methods use the
ground truth topic information in the dataset.

Table 2 and Table 3 demonstrates the perfor-
mance of baselines and our proposed framework
in both MedDG and TG-ReDial dataset respec-
tively. Our topicRefine framework outperforms the
previous state-of-the-art models at both datasets
(i.e. GPT2-Topic model at MedDG and TG-RG
model at TG-ReDial). More specifically, Stage-
Two (GPT) reaches better BLEU score and Stage-
Two (BERT) achieves higher Topic-F1 score at
MedDG, owing to the existence of noisy topic in
former method. Consistent with MedDG dataset,

our method gets better performance no matter in
Stage-Two (GPT) or Stage-Two (BERT) as shown
in Table 3. BLEU-1, BLEU-2, and BLEU-3 all
have been improved by different degrees. Another
interesting finding is that when explicitly concate-
nating topic words with dialogue utterances, the
GPT-Topic model achieves a higher topic-f1 score,
whereas the Stage-Two (GPT) model achieves a
lower topic-f1 score, indicating the effectiveness
of simply concatenating topic words and the noisy
prediction results by GPT.

5.2 Ablation Study

To further investigate the effectiveness of our pro-
posed framework, we add some variants of our
proposed framework (i.e. Stage-One (GPT) and
GPT2DH) as ablation study. As shown in Ta-
ble 2 and Table 3, Stage-One (GPT) and GPT2DH
achieve comparable results. On the one hand,
compared with previous state-of-the-art models,
GPT2DH demonstrate more powerful capability
which shows the effectiveness of joint learning
by incorporating topic prediction. Besides, any
Stage-Two model reaches higher BLEU scores than
GPT2DH which demonstrate the effectiveness of
refine mechanism (i.e. Lrefine). On the other hand,
Stage-Two (GPT) outperforms Stage-One (GPT)
in BLEU score (45.12 vs 43.86) but Topic-F1 score
(5.40 vs 11.36). We argue that the model tends to
generate more topic-related words instead of a spe-
cific topic word in the response. This is reasonable
since the model is optimized to generate a more
informative and topic-related response rather than
a specific word.

5.3 Effects of Response Length

To evaluate the impact of different ground-truth
response length, we compare the average BLEU
score between our model and previous state-of-the-
art model (i.e. GPT2-Topic and TG-RG) in MedDG
and TG-ReDial respectively. As shown in Figure 3
and Figure 4, our model reaches better performance
when the length of golden response is greater than
20 (occupies about 47.6% and 81.9% of test set
respectively). As the golden length increases, our
improvements also get boosted, which is more ob-
vious at TG-ReDial dataset.

5.4 Generated Sample

Table ?? (See Appendix due to page limit) given
some generated response at both datasets. To sum-
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Figure 3: Average BLEU score of MedDG for different
golden length
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Figure 4: Average BLEU score of TG-ReDial for differ-
ent golden length

marize, our generated result has the following fea-
tures:

• For MedDG, since we drop the information of
the speaker role path during training and the
dialogue between the doctor and the patient is
not alternate, some generated responses may
represent the perspective of the patient.

• For TG-ReDial, there are some meaningless
repeated characters in the result of Stage-One.
For example, “。" and “这个电" (this movie)
appears twice in response generated by Stage-
One. Stage-Two can alleviate this problem by
incorporating topic refinement.

• Our Stage-Two model can generate more in-
formative responses conditioned on given top-
ics. Taking the sample of TG-ReDial in Ta-
ble ?? as an example. For the topic of “mem-
ories", the response of ground truth is just a
rhetorical question, while the response of our
model not only grasps this topic but also rec-
ommends one specific movie name related to
this topic, which suggests that our model is
able to ground multi-turn dialogue generation

Model
MedDG TG-ReDial
I F I F

Human 6.99 6.28 7.40 7.28
Baseline 6.18 5.51 6.20 5.69
One 6.32 4.81 6.62 5.66
Two 6.57 6.13 7.30 6.42

Table 4: The result of human evaluation. I and F repre-
sent Information and Fluency respectively. The baseline
represents previous sota model GPT2-Topic and TG-RG
in MedDG and TG-ReDial dataset respectively. One
represents Stage-One (GPT) and Two represents Stage-
Two (GPT)

to some specific topics and tends to be more
informative with respect to context.

5.5 Human Evaluation

To perform human evaluation, we randomly select
50 examples from the outputs of the previous sota
model, and our Stage-One (GPT) and State-Two
(GPT) method. The annotators are required to as-
sign two scores for each sentence according to two
criteria: (1) information and (2) fluency, ranging
from 0 to 10. information measures which sentence
contains more information (e.g. less repetition).
Fluency measures which sentence is more proper
as a response to a given dialogue context. The eval-
uation results are calculated by averaging these two
scores of all sentences.

Table 4 demonstrates the result of human eval-
uation. Generally, the score at TG-ReDial dataset
is relatively higher than score in MedDG dataset.
We attribute this to the MedDG dataset necessitates
more expert knowledge and contains many termi-
nologies. Besides that, there is still a large gap
between generated response and human response,
especially at fluency criteria. In detail, the Stage-
One (GPT) performs better than baseline models at
information but worse at fluency. Stage-Two (GPT)
model gets better scores in both information and
fluency criteria than Stage-One (GPT) model and
baseline.

5.6 Understanding of GPT Model

Model P R F1
BERT 14.48 32.95 20.13
Stage-Two (GPT) 22.22 11.16 14.88

Table 5: Result of topic prediction task (multi-label clas-
sification) at MedDG dataset
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Model Hit@1 Hit@3 Hit@5
BERT 0.7651 0.8023 0.8189
Stage-Two (GPT) 0.5640 0.7931 0.8122

Table 6: Result of topic prediction task (multi-class clas-
sification) at TG-ReDial dataset

Table 5 and Table 6 demonstrate the performance
of topic prediction task at MedDG and TG-ReDial
datasets respectively. It is obvious that BERT (De-
vlin et al., 2019) demonstrates more strong under-
standing ability than GPT (Wolf et al., 2020) model.
However, the comparable performance of Hit@3
and Hit@5 between BERT and GPT in Table 6
clearly demonstrates the latter’s high understanding
potential. The unlocking of potential necessitates a
more meticulously designed algorithm or architec-
ture (Dathathri et al., 2019; Liu et al., 2021).

6 Related Work

6.1 Topic-aware Dialogue System

Data-driven, knowledge-grounded dialogue system
(Zhou et al., 2018b; Tuan et al., 2019; Zhao et al.,
2020) attracts much attention due to the release of
large pre-trained language models such as GPT2
(Radford et al., 2019) and DialoGPT (Zhang et al.,
2019b). According to different types of knowledge,
previous works can be clustered into the following
categories: (1) attributes (Zhou et al., 2018a; Zhang
et al., 2018a; Xu et al., 2019) (2) persona (Li et al.,
2016; Zheng et al., 2019; Wu et al., 2020a; Zhang
et al., 2018b) (3) external knowledge graph such as
commonsense knowledge (Tuan et al., 2019; Yang
et al., 2019; Moon et al., 2019).

Most of previous works for topic-aware dialogue
system (Xing et al., 2017; Dziri et al., 2019; Yang
et al., 2019; Huo et al., 2020) utilize attention mech-
anism on all topics at the decode stage to bias
the generation probability. (Tang et al., 2019) pro-
poses a structured approach that introduces coarse-
grained keywords to control the intended content
of system responses and (Xu et al., 2020) proposes
Topic-Aware Dual-attention Matching (TADAM)
Network to select suitable response but all of their
systems are retrieval-based.

6.2 Refine Mechanism

Refine mechanism has been proved to be a effective
and compelling technique in both natural language
understanding and generation tasks (Zhang et al.,
2019a; Wu et al., 2020b; Song et al., 2021). For

natural language understanding, (Wu et al., 2020b)
design a novel two-pass iteration mechanism to
handle the uncoordinated slots problem caused by
conditional independence of non-autoregressive
model, in which the model utilizes B-label out-
put from first phase as input at second phase. For
natural language generation, (Zhang et al., 2019a)
use refine mechanism to generate refined summary
which firstly applies BERT as decoder. Recently, a
novel BERT-over-BERT (BoB) model is proposed
to solve response generation task and consistency
understanding simultaneously (Song et al., 2021).
In this paper, we utilize topicRefine framwork to
build a topic-aware multi-turn end-to-end dialogue
system, aiming to generate informative and topic-
related dialogue response.

7 Conclusion and Future Work

In this paper, we propose a joint framework with
a topic refinement mechanism to solve the topic-
aware multi-turn end-to-end dialogue generation
problem based on the auto-regressive language
model – GPT2 (Wolf et al., 2020). More specif-
ically, we design a three-pass mechanism to jointly
learn topic prediction and dialogue response gener-
ation tasks, aiming to generate an informative and
topic-related response to engage users. Compre-
hensive experiments demonstrate that our method
outperforms previous state-of-the-art models on
both MedDG (Liu et al., 2020a) and TG-ReDial
(Liu et al., 2020b) datasets, which verifies that the
effectiveness of joint learning and refinement mech-
anism. We will investigate more refined techniques
in our future work.
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Abstract

Few-shot slot tagging is an emerging re-
search topic in Natural Language Understand-
ing (NLU). Conventional few-shot approaches
use all the data from the source domains with-
out considering inter-domain relations and im-
plicitly assume each sample in the domain con-
tributes equally. However, our experiments
show that transferring knowledge from dissim-
ilar domains will introduce extra noises that
decrease the performance of models. We pro-
pose an effective similarity-based method to
select data from the source domains to tackle
this problem. In addition, we propose a Shared-
Private Network (SP-Net) for the few-shot slot
tagging task. The words from the same class
would have some shared features. We extract
those shared features from the limited anno-
tated data on the target domain and merge
them as the label embedding to help us pre-
dict other unlabelled data on the target domain.
The experiment shows that our method out-
performs the state-of-the-art approaches with
fewer source data. The result also proves that
some training data from dissimilar sources are
redundant and even negative for the adaptation.

1 Introduction

Slot tagging (Tur and De Mori, 2011), one of the
crucial problems in Natural Language Understand-
ing (NLU), aims to recognize pre-defined semantic
slots from sentences and usually is regarded as a
sequence labeling problem (Sarikaya et al., 2016).
For example, given the sentence “Book a ticket to
London", the word “London" should be recognized
as the slot “CITY" by the NLU model.

Currently, most of the methods for the slot tag-
ging task have a notorious limitation in that they
require a lot of annotated data. However, there are
almost infinite long tail domains in the real scenar-
ios (Zhu et al., 2014) so it is nearly impossible to

*These authors contributed equally to this work.
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Figure 1: The difference between training with (a) all
data and (b) data selection. The dashed line represents
the distance among different domains in the parameter
space with the centroid (Φ). With data selection, we
remove the dissimilar domains D4 and D5 from training
and the centroid will be closer to the target domain D′.

annotate sufficient data for each domain. Therefore,
few-shot learning methods (Ravi and Larochelle,
2016) have received attention as they can transfer
the knowledge learned from the existing domains
to new domains quickly with limited data.

Current works (Yoon et al., 2019; Liu et al.,
2020; Wang et al., 2021) proposed various methods
to improve the performance of slot tagging few-
shot learning, but most of them focus on “how" to
transfer rather than “what" should be transferred.
The knowledge from the not-relevant source do-
main is hard to help the model identify the slots in
the new domain. Further, such kind of knowledge
is redundant and sometimes could be regarded as
noises that even deteriorate the performance (Wang
et al., 2019; Meftah et al., 2021). We observe this
phenomenon and prove the existence of the neg-
ative transfer in the experiment. To this end, we
propose a similarity-based method to evaluate the
inter-domain relation and indicate which domains
should be selected for training. Specifically, we
calculate three different similarities, including tar-
get vocabulary covered (TVC), TF-IDF similarity
(TIS), and label overlap (LO) between domains,
and combine them with different weights. The
combined similarity function selects data from both
corpus level and label level, which is more com-
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prehensive. In this way, the dissimilar sources will
be rejected, and the initial parameters of the model
will be naturally more closed to the local optimum
of the target domain. A high-level intuition of the
difference between training with all data and train-
ing with data selection is shown in Figure 1.

After selecting pertinent data, we also propose a
solution about “how" to transfer knowledge for a
few-shot slot tagging task. Specifically, we build
a Shared-Private Network to capture stable label
representations under the few-shot setting. Many
works (Hou et al., 2020; Zhu et al., 2020; Liu
et al., 2020) try to enhance the accuracy of slot
identification from the label representation engi-
neering. They assign each label with a semantic
vector (Snell et al., 2017; Hou et al., 2020; Zhu
et al., 2020; Yoon et al., 2019) rather than a sim-
ple one-hot encoding. However, the quality of the
label representations highly depends on the vol-
ume of the training samples and suffers from the
unstable problem under the few-shot setting due
to the extremely biased data distribution. Hence,
we propose the Shared-Private Network separate
the shared and private features from the limited
samples. The words with the same label share com-
mon information. They are extracted and saved
as shared features. Other parts are regarded as de-
tailed information related to the words and will be
saved as private features. After filtering the detailed
information out, the label representation generated
according to the shared features will be more ro-
bust against the annotation shortage problems in
the few-shot setting.

The contributions of this work are as follows:
• We propose a similarity-based method to mea-

sure the relation among domains to guide data
selection and to avoid negative knowledge
transfer in few-shot learning.

• We propose the Shared-Private Network to
extract more stable label representation with
limited annotations.

• We prove the existence of negative transfer
via experiments and give explanations about
this phenomenon via visualization.

2 Related Work

Convention studies in slot tagging mainly focus
on proposing and utilizing deep neural networks
to recognize the semantic slots in given contexts
(Shi et al., 2016; Kim et al., 2017). However, most
of these models need a large amount of annotated

data which is scarce in the real world, especially
for those minority domains. Recent works (Bapna
et al., 2017; Shah et al., 2019; Rastogi et al., 2019;
Liu et al., 2020) propose several few-shot learning
methods for slot tagging and developed domain-
specific model with limited annotated data. It is
worth noting that, due to the lack of annotation on
the target domain, both approaches paid attention to
label representation engineering rather than using
conventional one-hot encoding directly. But build-
ing label representation with limited annotations is
still a challenge. To stabilize the effectiveness of
label representation, we proposed a Shared-Private
network to learn representation from shared infor-
mation of words.

Besides that, negative transfer that transferring
knowledge from the source can have a negative im-
pact on the target has been founded in many tasks
(Wang et al., 2019; Chen et al., 2019; Gui et al.,
2018). Because of this phenomenon, recent meth-
ods for relation analysis between source and target
domains have been proposed. Gururangan et al.
(2020) use vocabulary overlap as the similarity be-
tween two datasets and emphasize the significant
impact of domain-adaptive for pre-training. Dai
et al. (2019) study different similarity methods, in-
cluding target vocabulary covered (TVC), language
model perplexity (PPL), and word vector variance
(WVV) to select data for pre-training tasks. How-
ever, a single similarity function does not work well
in the few-shot setting. Different similarity meth-
ods always give diverse data selection strategies
and are hardly consistent. To this end, we propose
a comprehensive indicator that combines three sim-
ilarity functions to guide the data selection in the
few-shot setting.

3 Problem Definition

We follow the same task definition as Hou et al.
(2020). Given a sentence x = (x1, x2, · · · , xn) as a
sequence of words, slot tagging task aims to assign
the corresponding label series y = (y1, y2, · · · , yn)
to indicate which classes the words should belong
to. A domain D = {(x(i), y(i))}ND

i=1 is a set of
(x, y) pairs that from same scenario and ND is the
number of sentences in domain D.

In few-shot setting, models are trained from
source domain {D1,D2, · · ·} and are applied to
the target domain {D′

1,D′
2, · · ·} which are new to

the models. It is worth note that there are only few
labeled samples, which make up the support set

31



S = {(x(i), y(i))}NS
i=1, in each target domain D′

j .
For each unique N labels (N-way) in support set
S, there are K annotated samples (K-shot). Be-
sides that, the samples in the target domain D′

j are
unlabeled.

Thus, few-shot slot tagging task is defined as
follows: given a K-shot support set S and a query
sentence x = (x1, x2, · · · , xn), determine the cor-
responding labels sequence y∗:

y∗ = (y∗1, y
∗
2, · · · , y∗n) = argmax

y
p(y|x,S) (1)

4 Data Selection

In this section, we first show the existence of neg-
ative knowledge transfer among domains. The
phenomenon demonstrates the necessity of data
selection. Then introduce our similarity-based data
selection strategy that can be used to avoid nega-
tive knowledge transfer to improve performance in
few-shot slot tagging.

4.1 Negative Knowledge Transfer

Due to negative knowledge transfer, some knowl-
edge the model learned before is useless and may
affect the judgment of the model on the new do-
mains, which will degrade the performance. In the
preliminary study, we train the model with all dif-
ferent combinations of source domains and record
their performance. The relation between the num-
ber of source domains and their corresponding per-
formance is shown in Figure 2. Overall, with more
training domains, the performance would be bet-
ter. However, comparing the maximum values, it
is evident that training with three source domains
outperforms training with 4. This phenomenon
indicates that more source domains may even de-
crease the performance and proves the existence of
negative knowledge transfer. It also inspires us that
the model will achieve a better result with proper
data selection.

4.2 Selection Strategy

An indicator is needed to select data or source do-
mains before training to avoid negative knowledge
transfer. Given a group of data from source domain
and the data of target domain, the indicator should
output a score that can reflect how fit are these
source data for transferring knowledge to the target.
Ideally, the indicator score behaves linearly with
the performance so that a higher indicator score can
lead to better performance. In this way, the group

Figure 2: The relationship between performance (y-
axis), specifically the F1 score, and the number of source
domains (x-axis).

of source data with the highest indicator score can
be selected as the best choice for training.

The data that can be leveraged includes the
source domains {D1, · · · ,DM} with sufficient la-
bels, the support set Sj with labels in the target
domain D′

j , and the query set Qj without labels.
Notice that the data in the support set Sj is much
less than the query set Qj . Considering the at-
tributes mentioned above and the data we can use,
we investigate three similarity functions as indica-
tors for data selection.

Target Vocabulary Covered (TVC) is a signifi-
cant corpus level feature that represents the overlap
of vocabulary between source domain(s) and a tar-
get domain and is defined as:

TVC(Di,D′
j) =

∣∣∣VDi ∩ VD′
j

∣∣∣
∣∣∣VD′

j

∣∣∣
(2)

where VDi and VD′
j

are the vocabularies (sets of
unique tokens) of the source domain Di and the
target domain D′

j respectively and | · | is the norm
operation that indicates the size of the set. Intu-
itively, if most of words in the target domain have
already appeared in the sources, the word embed-
dings should have been well trained so that im-
proves the performance.

TF-IDF Similarity (TIS) is another corpus level
feature (Bao et al., 2020). We treat each domain as
a document and calculate their tf-idf features
(Salton and Buckley, 1988; Wu et al., 2008). Co-
sine similarity is used to evaluate the correlation
between the sources and the target. Compared with
TVC, TIS assigns each word a weight according
to the term frequency and inverse document fre-
quency, which takes fine-grained corpus feature
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into account. The details are shown below:

tfi,j =
nij∑
k nk,j

(3)

where nij is the times of word ti appeared in do-
main Dj .

idfi = lg

(
M

|{j : ti ∈ Dj}Mj=1|

)
(4)

where M is the total number of domains. And the
tf-idf feature is the product of tf and idf:

tf-idfj = tfi,j · idfi (5)

tf-idfj can be regarded as the word distribution
feature of the domain j, and cosine similarity is
used to evaluate the correlation between the two
domains:

TIS(Di,Dj) =
tfidfDi · tfidfDj

||tfidfDi ||2 · ||tfidfDj ||2
(6)

where || · ||2 is the Euclidean norm.
Label Overlap (LO) is a label level feature that

represents the overlap of labels between source
domains and the target domain. Although labels
are scarce in the target domain under the few-shot
setting, the types of labels are not. Every label on
the target domain at least appeared K times (K-
shot) in the support set S and therefore, the types
of the labels are complete. Hence, label overlap is
also a good choice as a data selection indicator:

LO(Yi, Yj) =
|Yi ∩ Yj |

|Yj |
(7)

where Yi and Yj stand for the unique label set of
the source domain Di and the target domain D′

j ,
respectively.

Each similarity function only focus on a single
aspect, i.e. the corpus level information or the label
level. Therefore, it is inevitable to introduce bias
when we select data with them. Naturally, we come
up with a strategy that combines all three similarity
scores as the indicator to give a more stable guid-
ance for data selection. Assume that one of the
combinations, i.e. Cθ1,θ2,θ3(TVCi,TISi,LOi) =
θ1TVCi + θ2TISi + θ3LOi, is linear with the per-
formance, our goal is to find the best value of
θ1, θ2, and θ3. For a better reading experience,
Cθ1,θ2,θ3(TVCi,TISi,LOi) is abbreviated to Ci.

Algorithm 1 Training with combination of source
domains
Require: Set of source domains {D1, · · · ,DM}; Target do-

main D′; Model F ;
1: for 1 ≤ i ≤M do
2: all_combination =

combination({D1, · · · ,DM}, i)
// Select i domain(s) from M for training.

3: for 1 ≤ j ≤ |all_combination| − 1 do
4: combination = all_combination[j]

// e.g. combination = [D1,D3]
5: Dtraining ←Merge(combination)

6: TVC = TV C(Dtraining,D′)

7: TIS = TIS(Dtraining,D′)

8: LO = LO(Dtraining,D′)

9: train
(
F(Dtraining)

)
until Loss converge

10: p̂i = eval((F(D′))
11: end for
12: end for

Following the least squares method (Merriman,
1877), we design the objective function as follows:

argmin
θ1,θ2,θ3,w,b

1
NE

∑NE
i=1 ∥[wCi + b]− p̂i∥2

s.t. w > 0, b ≥ 0
(8)

where w and b are the weight and bias of the linear
function to simulate the linear relation between the
indicator score and the performance. NE is the
number of the experiments, and p̂i is the actual
performance of the experiment i. TVCi, TISi, and
LOi are the TVC score, TIS score, and LO score
between the source domains and the target domain
in the experiment i.

To solve the problem in equation (8), we design
a scheme to generate samples with the combination
of source domains. We pre-define the number of
source domains and enumerate all combinations.
The three similarity scores between the combina-
tion of source domains and target domains will be
calculated and recorded. Then we train the model
with the combination and record the final perfor-
mance on the target domain. In this way, we get
sufficient tuples (TVC,TIS,LO, p) to figure out
the optimum θ1, θ2, and θ3 (see Algorithm 1).

With sufficient samples, we fit them with the
linear function in equation ( 8) and optimize w,
b, θ1, θ2, and θ3 via SGD (Curry, 1944). Due to
the data distribution bias of different domains, we
finally assign different wj and bj for each target
domain D′

j to acquire a better linear relation. For
the combination weights θ1, θ2, and θ3, we keep
same for different target domains. Further, we still
have the following points to declare:
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• The parameters w and b are learnable but un-
necessary for data selection. They are not
a part of the indicator and are only used to
observe the linear relation between the combi-
nation similarity scores and the corresponding
performance.

• Due to the cross-validation setting in the real
dataset (e.g., SNIPS), to avoid data leakage
of the target domain, we obtain θ1, θ2, and θ3
according to the validation domain for each
target. The combination from the validation
domain still works well on the target and can
prove the generality of this strategy.

• Although training with a combination of
source domains is time-consuming, it can be
adapted to different domains once the opti-
mum combination weights have been found.

After that, we can select domains according to
the optimum w∗, b∗, θ∗1, θ∗2, and θ∗3. The domains
which can achieve a higher combined similarity
score may lead to better performance, and this can
be formulated as:

argmax
i

w∗ (θ∗1TVCi + θ∗2TISi + θ∗3LOi) + b∗

(9)
And due to w > 0, equation ( 9) is equivalent to:

argmax
i

θ∗1TVCi + θ∗2TISi + θ∗3LOi (10)

In this way, the domain specific w and b are elimi-
nated.

5 Shared-Private Network

Based on the Prototypical Network (Snell et al.,
2017), we propose the Shared-Private Network (SP-
Net) to gain more representative label embeddings.
The workflow is divided into two stages: SP-Net
extracts label embeddings for each class from the
support set in the first stage. SP-Net predicts each
query sentence in the second stage according to the
label embeddings extracted from stage one. Fig-
ure 3 illustrates this process.

(a) Encode Firstly, sentences are encoded into
word embeddings via BERT (Devlin et al., 2019).
Given a sentence x = (x1, x2, · · · , xn) as a se-
quence of words, BERT will generate their cor-
responding contextual word embeddings E =
(E1, E2, · · · , En), where Ei ∈ Rh. h is the hid-
den size of the word embedings.

(b) Extract shared features Although words
are different, there is common information among

words from the same class. Intuitively, the same
class words always appear in a similar context with
similar syntax. And in some cases, they can even be
replaced with each other without any grammatical
mistakes. For example, even though we replace the
phrase “Hong Kong" with “New York" in Figure 3,
the sentence still makes sense. Common informa-
tion can help us generate scalable label embeddings
that can represent most of the words in a class. The
shared layer in the framework is designed for this.
In this work, we implement the shared layer with a
residual linear function, and the shared feature of a
word is calculated as follows:

Es
i = Ei + RELU(EiWs + bs) (11)

where Ws ∈ Rh×h and bs ∈ Rh are the weight and
bias of the shared layer, respectively. RELU is the
rectified linear unit function (Maas et al., 2013).

(c) Extract private features Besides the shared
information, each word still has its specific infor-
mation. Recalling the phrase replacing case men-
tioned in Figure 3, although the sentence is without
any grammatical mistakes after phrase replacing,
the meaning has been changed. This is due to the
private information carried by the word. The pri-
vate information is ineffective and can be harmful
to label embeddings as they lack generality. Less
private information can lead to a better quality of
label embeddings, and therefore, the private layer
is designed to extract private information from the
word embeddings. The private layer is also im-
plemented with a residual linear function, and the
private feature of a word is calculated as follows:

Ep
i = Ei + RELU(EiWp + bp) (12)

where Wp ∈ Rh×h and bp ∈ Rh is the weight and
bias of the private layer, respectively. So far, the
shared layer and private layer are symmetrical and
share the same design.

(d) orthogonality constrain To ensure the
shared features and private features are separated
completely, we introduce the following constraints:

• The shared features of the words in the same
class should be close to each other.

• The private features of words should be di-
verse even though they belong to the same
class.

• The shared and private features of a word
should not overlap.

For the first requirement, Chen et al. (2020) pro-
posed using contrastive loss that can make the same
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BERT

[CLS] Show me the flights to New York on Next Monday

[CLS] Book a ticket from Hong Kong to London tomorrow night

Shared Layer

(d)

Private Layer

(e)

TimeCity

[CLS] I'd like to make a reserva-
tion to Boston next week

BERT

Shared Layer

S

(a) (a)

(b)(c) (c) (b)

(f)

(b)

Query Set

Support Set

stage (i) stage (ii)

Figure 3: This is the workflow of SP-Net. In this case, the support set contains 2 sentences, and the query set contains
1. The details of processes (a) encode, (b) extract shared features, (c) extract private features, (d) orthogonality
constrain, (e) extract label embeddings, and (f) predict are introduced in the main body.

samples close and different samples far apart. The
similarity between samples are defined as follows:

sim(Es
i , E

s
j ) =

Es⊤
i Es

j

∥Es
i ∥∥Es

j∥
(13)

The loss in the first requirement is defined as:

L1 = E
c


− log

∑
{i;yi=c}

∑
{j;yj=c}

esim(Es
i ,E

s
j )/τ

∑
{i;i∈S}

∑
{j;j∈S}

esim(Es
i ,E

s
j )/τ




(14)
where τ is the temperature parameter and c is the
class. The numerator is the sum of the similar-
ity scores whose class is c. The denominator is
the sum of all the similarity scores. Specifically,
embeddings in the same class present a high simi-
larity score and the numerator is large, and the loss
decreases.

For the second requirement, according to the co-
variance of two variables, we define the divergence
between two embeddings as:

D(Ep
i , E

p
j ) = (Ep

i − Ep)T (Ep
j − Ep) (15)

where Ep is the mean vector of all private embed-
dings in the set. The loss in the second requirement
is:

L2 = − 1

|S|2
∑

i∈S

∑

j∈S
logD(Ep

i , E
p
j ) (16)

where |S| is the size of the support set, i.e., the
number of words. Higher divergence among the
private embeddings will lead to lower loss. We also

implement L2-norm to restrain the increase of the
parameters.

The third requirement refines the shared features
further. We introduce the orthogonality constraints
(Liu et al., 2017) to force the shared embedding
independent of the private embedding:

L3 =
1

|S|
∑

i∈S

∥∥∥Es⊤
i Ep

i

∥∥∥
2

(17)

where ∥ · ∥2 is the Euclidean norm.
(e) Extract label embeddings Label embed-

dings are extracted from shared embeddings for
each class. We take the mean vector of the shared
embeddings which belong to class c as the label
embedding:

Ec =
1

|{yi = c}|
∑

{yi=c}
Es

i (18)

where Ec is the label embedding of the class c.
(f) Predict We calculate the similarity between

shared embeddings of the query sentence with the
label embeddings. We provide various options, and
here we take cosine similarity as an example:

pci =
Es⊤

i Ec

∥Es∥∥Ec∥ (19)

where pci is the similarity between word i with
class c and can also be regarded as the confidence
that the word belongs to this class. The class with
the highest similarity will be considered as the pre-
diction for the word. We take the binary cross-
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Model We Mu Pl Bo Se Re Cr Avg.

1-shot
SimBERT 36.10 37.08 35.11 68.09 41.61 42.82 23.91 40.67
TransferBERT 55.82 38.01 45.65 31.63 21.96 41.79 38.53 39.06
L-TapNet+CDT+PWE (Hou et al., 2020) 71.53 60.56 66.27 84.54 76.27 70.79 62.89 70.41
L-ProtoNet+CDT+VPB (Zhu et al., 2020) 73.12 57.86 69.01 82.49 75.11 73.34 70.46 71.63
BERT-ProtoNet 60.01 43.33 52.42 44.37 47.86 50.91 39.04 45.65
SP-Net 70.67 59.27 69.58 82.80 76.92 72.49 74.63 72.34
SP-Net + Domain Selection 76.07 64.29 71.10 84.19 81.63 73.66 76.41 75.34 (+3.71)

5-shot
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
TransferBERT 59.41 42.00 46.07 20.74 28.20 67.75 58.61 46.11
L-TapNet+CDT+PWE(Hou et al., 2020) 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01
L-ProtoNet+CDT+VPB(Zhu et al., 2020) 82.93 69.62 80.86 91.19 86.58 81.97 76.02 81.31
BERT-ProtoNet 68.98 59.31 62.42 81.35 78.91 67.57 71.69 70.03
SP-Net 83.92 69.37 79.47 89.43 87.95 77.75 80.31 81.17
SP-Net + Domain Selection 84.03 71.09 82.01 92.13 89.44 80.71 80.88 82.90 (+1.59)

Table 1: F1 scores of few-shot slot tagging on SNIPS dataset.

Model 1-shot 5-shot
News Wiki Social Mixed Avg. News Wiki Social Mixed Avg.

SimBERT 19.22 6.91 5.18 13.99 11.32 32.01 10.63 8.20 21.14 18.00
TransferBERT 4.75 0.57 2.71 3.46 2.87 15.36 3.62 11.08 35.49 16.39
L-TapNet+CDT+PWE 44.30 12.04 20.80 15.17 23.08 45.35 11.65 23.30 20.95 25.31
L-ProtoNet+CDT+VPB 43.47 10.95 28.43 33.14 29.00 56.30 18.57 35.42 44.71 38.75
SP-Net 43.95 13.02 27.77 34.05 29.70 57.70 18.62 36.41 44.97 39.42
SP-Net Domain Selection 43.95 13.02 27.77 34.05 29.70 (+0.70) 57.70 21.11 36.41 44.97 40.05 (+1.30)

Table 2: F1 scores of few-shot slot tagging on NER dataset. The performance improvements of SP-Net Domain
Selection compared to all baselines are significant (validated by Student’s t-test with p-value < 0.01).

entropy loss to measure the error in each class:

L4 =
1

|Q|

|Q|∑

i

C∑

c

yi log p
c
i +(1− yi) log (1− pci )

(20)
whereC is the number of unique labels in the query
set and |Q| is the number of words in the query set.

Finally, we combine the L1, L2, L3, and L4 with
different weights as the cost function:

L = αL1 + βL2 + γL3 + δL4 (21)

where α, β, γ, and δ are hyperparameters deter-
mined by the experiments.

6 Experiments

6.1 Dataset

We evaluate the proposed method following the
same experiment setting provided by Hou et al.
(2020) on SNIPS (Coucke et al., 2018) and NER
dataset (Zhu et al., 2020). SNIPS contains seven
domains, including Weather (We), Music (Mu),
PlayList (Pl), Book (Bo), Search Screen (Se),
Restaurant (Re), and Creative Work (Cr), and the
sentences in SNIPS are annotated with token-level
BIO labels for slot tagging. Each domain will be

tested in turn following the cross-validation strat-
egy. Five domains are used for training and one for
evaluation in each turn. In each domain, the data
are split into 100 episodes (Ren et al., 2018). For
the sake of fair peer comparison, the selection of
evaluation domain and episodes construct are kept
the same with Hou et al. (2020). The NER dataset
contains four domains: News, Wiki, Social, and
Mixed. In addition, because the number of domains
in the NER dataset is too short, we randomly split
domains into pieces and select those pieces via the
combined similarity function. More training details
can be found in the appendix.

6.2 Baselines

SimBERT assigns a label to the word according
to cosine similarity of word embedding of a fixed
BERT.
TransferBERT directly transfers the knowledge
from the source domain to the target domain by
parameter sharing.
L-TapNet+CDT+PWE (Hou et al., 2020) com-
bines with the label name representation and a spe-
cial CRF framework.
L-ProtoNet+CDT+VPB (Zhu et al., 2020) utilizes
the powerful distance function VPB to boost the
performance of the model.
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BERT-ProtoNet is the model proposed in this
work which is without the Shared-Private layer.
This model is used for ablation study.
SP-Net is the Shared-Private Network proposed in
this work.
SP-Net + Domain Selection is also SP-Net, but
it is trained with the selected data according to the
data selection strategy we proposed.

6.3 Main Results

Table 1 shows the results of 1-shot and 5-shot on
the SNIPS dataset. Generally speaking, the SP-
Net achieves the best performance on the 1-shot
setting and comparable performance on the 5-shot
setting (0.14% adrift of SOTA). The data selection
strategy dramatically enhances the performance on
both the 1-shot and 5-shot settings. With the data
selection, the performance of SP-Net is far beyond
other baselines.

The result on the NER dataset also proves the
effectiveness of our method (See Table 2). It is
noticed that, due to the short of the data, combined
similarity select all data on most domains except
Wiki of 5-shot task. Therefore the result of SP-
Origin and SP-Domain Selection are nearly the
same.

support sample

true center

inferred center

distance

bias

Figure 4: This is diagram shows the automatic correc-
tion of distribution bias when the number of supports
increased. The circles are samples in the support set
and triangles are the inferred center, as well as label
embedding, according to the supports. Stars are the true
center of classes.

The effect of the Shared-Private Network is more
remarkable if the number of support samples is less.
The SP-Net outperforms all baseline in the 1-shot
setting, but in 5-shot, it achieves comparable per-
formance. The shared-private Network essentially
corrects the bias between the label embedding and
the center of the class. The bias will be more se-
vere if the support is less. With the increase in the
number of supports, bias could be suppressed to
some extent (see Figure 4). Some other methods,
like label description (Hou et al., 2020), can also
correct such kind of bias if enough supports are
given. But when the supports are highly scarce,
Shared-Private Network performs the best.

6.4 Analysis
We further visualize the relation between the per-
formance with the similarity function and compare
combined similarity with TVC in Figure 5. We
firstly sample some combinations of source do-
mains and train the model. Then we calculate their
similarity with the target domain and record per-
formance. From the left part of Figure 5, the per-
formance generally positively correlates with TVC.
However, its precision is poor, so that cannot be
used as an indicator. Points around the green line
have similar TVC scores, but the performance is
quite diverse, i.e., the green points’ are from 20%
to 70%. A similar conclusion can be drawn from
the horizontal direction: blue points around the
blue line have identical performance, but their TVC
scores are 36% to 87%. Therefore, data selection
with TVC suffers severe performance fluctuation.
By comparison, there is an apparent positive linear
correlation between combined similarity and per-
formance in the target domain (See the right part
of Figure 5).
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Figure 5: The relation between performance (y-axis)
and the similarity function (x-axis). Different target
domains are in different colors.

More analysis of (1) the comparison between the
combination similarity function with its component
TVC, TIS, and LO, and (2) inter-domain relations
are shown in the appendix.

7 Conclusions and Future Work

In this paper, we prove the existence of negative
knowledge transfer in few-shot learning and pro-
pose a similarity-based method to select pertinent
data before training. We propose a Shared-Private
Network (SP-Net) for the few-shot slot tagging
task. We prove the effectiveness and advantages
of both the data selection method and SP-Net with
experiments. In the future, we will investigate the
relations among domains and improve our data se-
lection method to select episodes or samples rather
than domains.
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Abstract
To investigate the role of linguistic knowl-
edge in data augmentation (DA) for Natu-
ral Language Processing (NLP), we designed
two adapted DA programs and applied them
to LCQMC (a Large-scale Chinese Question
Matching Corpus) for a binary Chinese ques-
tion matching classification task. The two DA
programs produce augmented texts by five sim-
ple text editing operations (or DA techniques),
largely irrespective of language generation
rules, but one is enhanced with a pre-trained
n-gram language model to fuse it with prior
linguistic knowledge. We then trained four neu-
ral network models (BOW, CNN, LSTM, and
GRU) and a pre-trained model (ERNIE-Gram)
on the LCQMC’s train sets of varying size as
well as the related augmented train sets pro-
duced by the two DA programs. The results
show that there are no significant performance
differences between the models trained on the
two types of augmented train sets, both when
the five DA techniques are applied together or
separately. Moreover, due to the inability of
the five DA techniques to make strictly para-
phrastic augmented texts, the results indicate
the need of sufficient amounts of training ex-
amples for the classification models trained on
them to mediate the negative impact of false
matching augmented text pairs and improve per-
formance, a limitation of random text editing
perturbations used as a DA approach. Similar
results were also obtained for English.

1 Introduction
Data augmentation (DA) is a common solution to the
problems of limited and imbalanced data. It works by
generating novel and label-preserving data from the ex-
isting data (Xie et al., 2020), which would otherwise
be unavailable or expensive to collect. Owing to the in-
creasing popularity of supervised deep learning models
that demand large-scale labeled data as well as more
studies on understudied/under-resourced language and
text domains, the Natural Language Processing (NLP)
community has seen a growing interest in DA in re-
cent years (Feng et al., 2021; Liu et al., 2020; Shorten

et al., 2021). However, unlike image and speech, whose
physical features can be relatively easily manipulated
without deviating from the original labels, text aug-
mentation poses a bigger challenge. This is simply
because there is no easy and automatic way to para-
phrase a randomly given piece of text while preserv-
ing its linguistic integrity and, above all, meaning. As
such, while there are well established and widely ap-
plied DA techniques as well as frameworks in image and
speech recognition research1 with noteworthy success
(Iwana and Uchida, 2021; Park et al., 2019; Shorten and
Khoshgoftaar, 2019), DA for NLP as a whole remains
underexplored (Feng et al., 2021).

The main purpose of this paper is to investigate a fun-
damental question we found unanswered to the best of
our knowledge: the role of linguistic knowledge in DA
for NLP; in particular, whether more linguistic knowl-
edge leads to a better DA approach. By a better DA
approach, we mean one that can lead to superior trained
models’ performance on a given NLP task. Intuitively,
with more linguistic knowledge instilled, a DA approach
is expected to augment text of higher-quality or more
grammatical and thus to be presumably better. We be-
lieve a deeper understanding of what counts as a better
DA approach and the role of linguistic knowledge will
trigger more in-depth experiments and discussions and
advance this research area to the next stage. Eventually,
these efforts will turn into potential great benefits, both
academically and commercially, helping train robust
NLP models with small data.

To conduct our research, we present two DA pro-
grams and train five supervised classification models on
the augmented train sets for a binary Chinese question
matching classification task. For simplicity and inter-
pretability concerns, the DA programs used in this study
are adapted from the Easy Data Augmentation (EDA)
program (Wei and Zou, 2019), which augments text by
four naïve text editing operations, largely irrespective of
language generation rules. The only difference between
the two adapted programs is whether they have a pre-
trained statistical n-gram language model (LM) to select
the most linguistically likely outputs, an effective mech-

1Although there is certain overlap between speech recogni-
tion and NLP, they are two independent fields with divergent
concerns and specializations (Manning and Schütze, 1999).
Typically, NLP is about text processing only.
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anism to fuse a program with probabilistic linguistic
knowledge. We choose n-gram LM over neural LMs be-
cause it is more efficient to train, and most importantly,
more interpretable for its straightforward frequency-
based approach. As the EDA approach has shown suc-
cess (Wei and Zou, 2019) in various sentiment-related
and sentence type classification tasks with small datasets
(e.g., mostly around 10k examples), we choose LCQMC
(a Large-scale Chinese Question Matching Corpus) com-
piled by Liu et al. (2018) to compare the goodness of
the two adapted programs, a large labeled corpus with
over 260k examples. Since our corpus is much larger
and the question matching task involves comparing a
pair of text, instead of one, for label prediction, it is a
more reliable way to test the capacity and generalizabil-
ity of a DA approach. In principle, if a DA approach
can work well for the question matching task, it should
also show promise for those simpler and related NLP
tasks, as question matching, or text matching, is one of
the most basic tasks for NLP.

The contributions of this paper are threefold. First,
we present the first study on the role of linguistic knowl-
edge in DA for NLP with a special focus on the effects
of probabilistic linguistic knowledge on a DA approach
or technique. Second, we propose two DA programs
adapted from the EDA program. Although the adapted
programs are for augmenting Chinese, several changes
we made, including a new DA technique and the added
n-gram LM, can be universal for tailoring the EDA pro-
gram to other languages. Third, we also fill the research
gaps in two understudied areas: DA for question match-
ing classification task and DA for Chinese NLP.

The code, data, and results for this study are avail-
able at https://github.com/jaaack-wang/
linguistic-knowledge-in-DA-for-NLP.

2 Related Works

Thus far, various DA techniques has been employed in
NLP research, such as thesaurus-based (Zhang et al.,
2015) and embedding-based (Wang and Yang, 2015)
word replacement, random text-editing perturbation
(Wei and Zou, 2019), rule-specific generation (Asai and
Hajishirzi, 2020; Kang et al., 2018), back translation
(Sennrich et al., 2016; Singh et al., 2019), and neural-
model-based predictive text transformation (Hou et al.,
2018; Kobayashi, 2018; Kurata et al., 2016) etc. Most
of these studies find slight but stable performance gains
for training models with augmented data for given NLP
tasks, such as text classification, question answering,
machine translation, for a common reason that the aug-
mented data introduces noise to the original train set
and prevents the trained models from overfitting, which
improves the models’ generalizability on the test set.

As the NLP community is more engaged in exploring
the usefulness of DA for specific NLP tasks, we have
not been able to find any focused studies from the exist-
ing literature related to the subject matter of this study,
i.e., the role of linguistic knowledge in DA for NLP.

However, some indirect evidence seems to be affirma-
tive. For example, Kobayashi (2018) trained a recurrent
neural network (RNN) LM, which replaces words with
paradigmatic relations predicted by the RNN LM to
generate new examples. Since this approach ignores the
semantic association between the replaced words and
the corresponding labels, he also constrained the LM to
predict words more compatible with the given labels by
probability. By so doing, he found about 0.2% overall
improvements in accuracy for 5 sentiment-related and
one question type classification tasks. According to the
results reported by Kang et al. (2018), we also find that
while not consistently, a sequence to sequence (seq2seq)
DA model blended with a few hand-crafted rules in-
creases more test set accuracy than the base seq2seq
DA model when certain ratios of two textual inference
datasets were augmented. However, since these neural
DA models already encode and learn implicit linguistic
knowledge through complex representation learning, it
is not possible to fully recognize the effects of those
added linguistic knowledge, either implicit or explicit,
in them.

Relevant to our hypothesis on what counts as a better
DA approach, we can find strong supports by thinking
in reverse. That is, although text augmentation helps in-
crease the size of the training texts, which then improves
the performance of the trained models through regular-
ization, it is still incomparable to the human-produced-
and-annotated training texts of a same size, which by
default we assume to be superior in quality as well as
more diverse. For example, in Wei and Zou (2019), they
augmented the original training examples by a factor of
9, giving them 5,000 training examples when 500 were
given. Although the augmented train set shows average
3% performance gains in accuracy on the test set for 5
classification tasks, compared to that without augmenta-
tion, this is still significantly lower than the average 10%
performance improvements when the models are trained
on 5,000 of the original training examples2. Therefore,
we expect that coupled with a n-gram LM, the adapted
EDA program that utilizes random text-editing perturba-
tions, will augment higher-quality text, and thus achieve
better trained models’ performance.

3 Experimental Setup
3.1 LCQMC
LCQMC contains over 260k question pairs, extracted
from BaiduKnows, a Quora-like online Q&A platform.
Each question pair is manually annotated by three exter-
nal professional annotators with a label, 1 or 0, to repre-
sent whether a question pair matches or not in terms of
the expressed intents. As judgements vary from person

2Wei and Zou (2019) claims that with the augmented texts,
their classification models achieve higher average accuracy
using only 50% of the train set than when the models are
trained on the entire train set without augmentation. This
is misleading since the performance of their models starts
plateauing when the models see 20% of the train set.
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Dataset Total Pairs Matched Mismatched
Train 238,766 138,574 100,192
Dev 8,802 4,402 4,400
Test 12,500 6,250 6,250

Table 1: The basic statistics of LCQMC data sets.

to person and the interpretation of some question pairs
is bound to contexts, there are about 15% annotation in-
consistency and 20% annotation uncertainty (Liu et al.,
2018). In this study, we keep the original separation of
the train set, the development set, and the test set as is
in LCQMC, whose basic statistics are shown in Table 1.

3.2 Two adapted DA programs
The base DA program developed in this study is adapted
from the EDA program3 (Wei and Zou, 2019) and the
control DA program is the base program combined with
a pre-trained statistical n-gram LM (refer to the next sec-
tion). We name these two programs as the REDA pro-
gram and the REDA+NG program respectively, where
REDA stands for Revised Easy Data Augmentation.

Like the EDA program, the REDA program also has
four text editing operations, i.e., Synonym Replacement
(SR), Random Swap (RS), Random Insertion (RI), and
Random Deletion (RD). Their functions are as follows:
SR works by randomly replacing synonyms for eligi-
ble words based on a given dictionary, while RS works
by randomly swapping word pairs. RI inserts random
synonyms, if any, instead of random words, to avoid un-
controlled label change. In contrast, RD deletes words
at random. We used jieba4, a popular Chinese text seg-
mentation tool, to tokenize Chinese text throughout this
research.

To further diversify the augmented texts, we also cre-
ated a new text editing operation called Random Mix
(RM), which randomly selects 2-4 of the other four op-
erations to produce novel texts. Besides, a few major
changes were also made to fix few bugs we found on the
EDA program and to better serve our needs of augment-
ing Chinese and conducting this research, including:

1. We rewrote the entire program to ensure that there
are no duplicates in the augmented texts, includ-
ing one for the original text. Duplicates can occur
when there are no synonyms to replace (SR) or
insert (RS) for words in the original texts, or when
the same words are replaced or swapped back dur-
ing SR and RS operations.

2. The REDA program does not preprocess the input
text by removing punctuations or by introducing
stop words. We did not find this type of preprocess-
ing helpful and necessary in general or makes sense
for the basic idea of random text editing behind the
EDA program.

3https://github.com/jasonwei20/eda_
nlp/tree/master/code.

4https://github.com/fxsjy/jieba.

3. Instead of using WordNet for SR, we compiled a
preprocessed Chinese synonym dictionary leverag-
ing multiple reputational sources5, including Chi-
nese Open Wordnet6. Moreover, unlike the EDA
program, the REDA program only replaces one
word at a given position at a time, instead of re-
placing all its occurrences, which we see as extra
edits.

The REDA+NG program inherits the base REDA
program but additionally utilizes the n-gram LM pre-
trained to select the most likely augmented text(s) for
each text editing operation from a variety of possible
outputs. We have open-sourced two separate versions of
code for these two DA programs, but during this study,
we always combined them together in one working pro-
cedure so that the augmented texts outputted by these
two programs are selected from the same pool. The
implementation of this combination is also available at
the open-sourced GitHub repository.

3.3 N-gram LM
To train the n-gram LM, we first compiled an indepen-
dent corpus of BaiduKnows Q&A texts based on an
existing project found on GitHub, which scrapes over 9
million question-answer pairs from BaiduKnows plat-
form7. This compiled corpus contains over 654 million
words (or over 1.1 billion Chinese characters). Then,
the relative frequency of unigram, bigram, trigram, and
4-gram for this corpus was calculated based on words
and line by line with the results saved in four separate
json dictionaries as the pre-trained parameters. When
counting these n-grams, we added two special tokens,
<START> and <END>, in the beginning and end of each
line, to keep track of their tendency to stay ahead or at
the end of a line. For efficiency concerns, we adjusted
the relative frequency for the unigrams simply by assign-
ing unseen vocabulary the same frequency with those
one-off unigrams and employed stupid backoff without
discounting unseen non-unigrams (Brants et al., 2007).
Finally, the n-gram LM takes the relative frequency of
the n-grams as an estimation to their true probability of
occurrence and calculates the maximum log probabil-
ity of input text based on the chain rule of probability
(Jurafsky and Martin, 2009) as follows:

logP (NG1 : NGn) = log

n∏

i=1

P (NGi) =

n∑

i=1

logP (NGi)

where NG represents n-gram that is automatically gener-
ated by our n-gram LM. The n-gram starts with 4-gram,
if any, and keeps backing off into low-order n-gram
combination, if a higher-order n-gram is not available
in the pre-made json dictionaries.

5https://github.com/jaaack-wang/
Chinese-Synonyms.

6http://compling.hss.ntu.edu.sg/cow/.
7https://github.com/liuhuanyong/

MiningZhiDaoQACorpus.
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3.4 Classification models

We chose four neural network (NN) models and one
transformer-based pre-trained model as the classifi-
cation models. The NN models include the Bag of
Words (BOW) model, the Convolutional Neural Net-
work (CNN) model, and two RNN models: Long Short-
Term Memory (LSTM) and Gated Recurrent Units
(GRU). BOW model is a conventional technique to
represent a text by summing up the embeddings of its
words, and the similarity between texts is then often
measured by Euclidean distance or cosine distance of
the texts’ embeddings. Since Kim (2014), CNN has
been proven to be effective in various text classification
tasks, including text pairing (Severyn and Moschitti,
2015). LSTM and GRU are two popular sequence mod-
els that consider word orders and have also been ap-
plied to semantic similarity tasks (Tai et al., 2015; Tien
et al., 2019), which we think may be especially useful
for distinguishing the augmented texts from the natural
texts, and more importantly, distinguishing the casu-
ally augmented texts by the REDA program from the
conditionally augmented texts by the REDA+NG pro-
gram in terms of the test set performance. Finally, the
pre-trained model ERNIE-Gram (Xiao et al., 2020) was
also chosen for its state-of-the-art performance on the
LCQMC dataset.

The models were constructed using Baidu’s deep
learning framework Paddle8 and its NLP software Pad-
dleNLP9.

4 Results

4.1 Quality of the augmented texts

To evaluate the quality of the augmented texts generated
by the REDA and REDA+NG programs, we designed
three simple experiments to check their ability to restore
to natural texts when modified texts or a pseudo syn-
onym dictionary were given for three basic text editing
operations, i.e., SR, RS, and RD. We skipped RI and
RM because inserting random synonyms is generally
not the natural way of language use however (un)natural
the input text is and the text quality resulting from RM
can be inferred from the other basic operations directly.

The experiments went as follows. For SR, we de-
signed a pseudo synonym dictionary made up of 3855
one-word-four-synonym pairs, where every word is
mapped to four pseudo synonyms, one being the word
itself and the rest non-synonym random words. All the
words in the dictionary are those whose frequencies
rank between the 1000th and the 10000th place in the
unigram dictionary complied for the n-gram LM. For
RS and RD, we randomly reordered the natural texts
and added random words sampled from the texts respec-
tively before RS and RD were performed. 10,000 pieces

8https://github.com/PaddlePaddle/
Paddle

9https://github.com/PaddlePaddle/
PaddleNLP

One Edit Two Edits Three Edits
SR REDA 22% 6% 2%

+N-gram 88% 79% 64%
RS REDA 9% 4% 4%

+N-gram 69% 41% 34%
RD REDA 16% 5% 2%

+N-gram 39% 22% 15%

Table 2: The average accuracy scores of the two DA
programs in three text restoration tasks based on differ-
ent number of edits. SR: Synonym Replacement; RS:
Random Swap; RD: Random Deletion. Best perfor-
mance given a DA technique is highlighted in bold.

of texts were randomly sampled from the LCQMC’s
train set for 5 times for every comparison we made. The
average accuracy scores are reported in Table 2.

As can be seen, while both programs’ performance de-
clines as the number of edits increase, the REDA+NG

program always outperform the REDA program in
restoring to the natural texts. In fact, for the REDA
program, restoring the modified texts to the original
ones is a matter of chance equal to the inverse of the
number of possible outputs available. However, the
REDA+NG program augments texts of maximum like-
lihood, which tends to be closer to the natural texts
expected. This is also true when natural texts are given
as inputs. For example, through manual inspections,
we found the REDA+NG program does much better
in selecting the appropriate synonyms according to the
linguistic contexts, which is a problem for the REDA
program due to the ubiquitous existence of polysemy.
By measuring the bigram overlap rate and edit distances
of output texts randomly swapped twice from the natu-
ral texts, we found that the average overlap rate for the
REDA program is much lower (i.e., 0.29 versus 0.77)
and the average edit distances are much larger (i.e., 3.0
versus 1.4) than the REDA+NG program, meaning
the latter preserves more collocational features of the
natural texts and thus augments higher-quality texts.

Nevertheless, the REDA+NG program is also not
free of considerable text quality decrease when more
text edits are performed. This is largely due to the
drastic increase of possible output texts as well as the
more likely semantic shift of the original texts with large
proportion of the input texts changed. Therefore, to
conduct our research, the number of text edits performed
is set proportional to the number of words of the input
texts, so that a large quality difference of the augmented
texts by the two programs can be maintained. More
concretely, in the study, we set the SR and SR rate at 0.2
and the RI and the RD rate at 0.1 and applied Python
rounding rules10. RM will only randomly select two
of the other four text editing operations with one text
edit each for every input text to make the study more
controlled.

10When an even number ends with “.5”, it will be rounded
down; otherwise, rounded up.
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LCQMC 5,000 10,000 50,000 100,000 238,766
REDA 66,267 132,513 563,228 929,176 2,218,512

+N-gram 64,358 128,649 544,583 893,779 2,133,163

Table 3: The train set size for the corresponding REDA and REDA+NG augmented train sets.

Models 5k 10k 50k 100k Full Set Average
BOW 59.4% 60.4% 65.4% 67.8% 73.8% 65.4%
+REDA 58.1% 60.9% 68.2% 72.2% 76.4% 67.2%
+REDA+NG 58.8% 59.6% 68.1% 71.2% 76.0% 66.7%
CNN 59.3% 63.4% 67.2% 69.0% 72.9% 66.4%
+REDA 59.8% 62.6% 66.8% 69.8% 74.9% 66.8%
+REDA+NG 60.3% 62.0% 67.9% 69.1% 74.0% 66.7%
LSTM 60.0% 62.1% 66.2% 69.6% 74.8% 66.5%
+REDA 58.9% 61.5% 67.7% 71.8% 76.4% 67.3%
+REDA+NG 57.7% 60.9% 67.7% 71.7% 75.9% 66.8%
GRU 59.8% 61.9% 68.1% 70.3% 76.8% 67.4%
+REDA 58.7% 61.3% 68.7% 72.7% 76.8% 67.6%
+REDA+NG 58.8% 60.0% 67.8% 72.5% 76.6% 67.1%
ERINE-Gram 78.7% 81.7% 85.9% 87.1% 87.4% 84.2%
+REDA 77.5% 80.3% 84.1% 85.0% 85.7% 82.5%
+REDA+NG 78.6% 80.1% 83.8% 84.6% 85.8% 82.6%
Average 63.5% 65.9% 70.6% 72.8% 77.1% 70.0%
+REDA 62.6% 65.3% 71.1% 74.3% 78.0% 70.3%
+REDA+NG 62.8% 64.5% 71.1% 73.8% 77.7% 70.0%

Table 4: Test set accuracy of the five classification models trained on the three types of train sets of varying size.
Best performance given a train set size (of original training examples) is highlighted in bold.

4.2 Effects of the two DA programs
We trained the five classification models in Baidu Ma-
chine Learning (BML) CodeLab on its AI Studio11 with
Tesla V100 GPU and 32GB RAM. The models were
trained with 64 mini batches, a fixed 5e-4 learning rate
(5e-5 for ERNIE-Gram model), and constantly 3 epochs.
We used Adaptive Moment Estimation (Adam) opti-
mizer and cross entropy loss function. We kept the
original development set for validation purposes.

The following training sizes were experimented: 5k,
10k, 50k, 100k, and full size, approximately equal to
2%, 4%, 21%, 42%, and 100% of the LCQMC’s train
set respectively. When the train set size is 5k and 10k,
we augmented two new texts for SR and RS, and one
new text for RI, RD, and RM, because the last three
text editing operations show smaller differences for the
REDA and REDA+NG programs in terms of text qual-
ity (refer to the last section), which we want to hold
as large as possible for the sake of this research. That
translates into maximum 7 new texts for every text and
up to 14 new texts for every text pair due to deduplica-
tion. Every augmented text was crossed paired with the
other text that was a pair to the text being augmented
with the original label kept for the newly made text
pair. To make the training more manageable, we only
augmented 5 new texts for every text with one output
for every text editing operation, meaning a maximum
tenfold increase in size when the associated train set
size is 50k and more. The corresponding augmented
train set size is given in Table 3.

11https://aistudio.baidu.com/aistudio/
index

The accuracy scores as well as the average preci-
sion, recall, and F1 scores on the test set are presented
in Table 4 and Table 5, respectively. Contrary to our
expectation, we do not find that the REDA+NG aug-
mented train sets lead to better test set performance
than the REDA augmented train sets, when it comes
to the four metrics used in this study. According to
the pairwise Mann-Whitney U tests we ran, there is
no statistically significant difference across the four
metrics among each type of models trained on the two
types of augmented train sets, as the p-values were con-
stantly far greater than .05. Although the former pro-
gram does produce higher-quality augmented texts from
a linguistic perspective as discussed above, evidence
shows that models trained on the REDA augmented
train sets outperform those trained on the REDA+NG

augmented train sets by an average 0.3% both in the ac-
curacy and F1 scores. As can be seen from Table 4, the
REDA+NG-led models only outperform the REDA-
led ones in terms of the test set accuracy when the
train set size is 5k for four models except the LSTM
model and when the ERNIE-Gram models were fine-
tuned on the full augmented train sets. Moreover, for any
classification model trained on the REDA augmented
train sets, in most cases, it achieves a slightly better
score for the four metrics than the model trained on the
REDA+NG augmented counterparts. It follows that
the role of probabilistic linguistic knowledge instilled in
the REDA+NG program is overall minimal and some-
times harmful to DA applied to the binary question
matching task.

Also noticeable from Table 4 is that 50k training ex-
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Models Baseline REDA REDA+NG

Precision Recall F1 Precision Recall F1 Precision Recall F1
BOW 61.5% 82.5% 70.4% 63.3% 81.7% 71.3% 62.9% 81.8% 71.1%
CNN 62.8% 80.5% 70.5% 63.6% 78.1% 70.0% 63.8% 76.2% 69.3%
LSTM 62.5% 82.7% 71.2% 63.4% 81.4% 71.3% 63.0% 82.1% 71.3%
GRU 63.4% 82.4% 71.7% 63.8% 81.9% 71.7% 63.3% 81.7% 71.4%
ERINE-Gram 78.0% 95.8% 85.9% 75.8% 95.9% 84.6% 76.0% 95.3% 84.6%
Average 65.6% 84.8% 73.9% 66.0% 83.8% 73.8% 65.8% 83.4% 73.5%

Table 5: Average test set precision, recall, and F1 scores for the five classification models trained on the three types
of train sets. Best performance given a metric (precision, recall, or F1) is highlighted in bold.

amples appear to be the threshold where the two DA
programs start bringing gains to the related test set ac-
curacy scores compared to the baselines, except for the
finetuned ERNIE-Gram models. However, as shown
in Table 5, there is also a gap in the recall scores in
favor of the baseline models, which may be attributed
to the false matching text pairs produced by the two DA
programs due to the inability of the underlying text edit-
ing operations to make strictly paraphrastic augmented
texts. But these noisy augmented texts in return enable
the classification models to generalize better on those
matching text pairs judged to be non-matching by the
baseline models, as indicated by the average larger preci-
sion scores. In addition, the advantage of the pre-trained
model over the traditional NN models is significant: the
ERNIE-Gram models, finetuned on all the three types of
train sets, show about 12% to 17% average gains across
the four metrics in relation to the other four trained
models. This shows the promise of applying transfer
learning to DA for NLP, which may be worth further
studying in the future.

4.3 Ablation study: each DA technique

To gain a more nuanced understanding of the role of
linguistic knowledge in each one of the DA techniques
performed by the two DA programs, we conducted an
ablation study where we trained models on train sets
augmented by only one DA technique. That means, for
a train set of given size randomly sampled from the
LCQMC’s train set, there are five types of correspond-
ing augmented train sets. Our analyses are based on
comparing the average test set performance of the five
models trained on the three types of train sets for the
five augmentation scenarios. We also excluded ERNIE-
Gram models, which are revealed to be distinct from the
rest models across the four metrics in the last section, to
see if there is a noticeable difference.

As the training sizes are shown to have an effect on
whether the DA-led models outperform the baseline
models, to further validate that, we chose 11 training
sizes for this ablation study, namely, 5k, 10k, 25k, 50k,
75k, 100k, 125k, 150k, 175k, 200k, and full set, roughly
equal to 2%, 4%, 10%, 21%, 31%, 42%, 52%, 63%,
73%, 84%, and 100% of the LCQMC’s train set respec-
tively. The basic hyperparameters are same with the
previous section. However, to make the training more
manageable, we only trained 2 epochs when the base-

line training size is 50k or 100k and 1 epoch when the
baseline training size is over 100k for the three types of
train sets. Since it is evident from Table 4 that a larger
training size under the same condition always leads to
a higher test set performance, spending extra time in
training a total of 605 models12 with fixed 3 epochs
may thus not be worthwhile to re-verify. Moreover, we
only augmented 2 texts per text per DA technique when
the baseline training size is no less than 50k and 1 text
when otherwise, with the cross pairing applied, similar
to what we did in the previous section. Please refer to
the Appendix for more details.

Figure 1 shows the average test set accuracy scores of
the five classification models trained on the three types
of train sets under different text editing conditions and
across different training sizes. In line with the previous
finding, the effect of probabilistic linguistic knowledge
on each one of the five DA techniques is minimal and
of no statistically significant difference, both individu-
ally and on average. Although with certain text editing
operations, such as RS, RI, and RM, there exist several
points in which there is a relatively large difference in
the accuracy scores between the two DA-led models,
these differences fluctuate along the x-axis and even-
tually get reduced to be negligible when the average
performance are concerned. This basic pattern remains
true when we plotted the average test set performance
based on any one of the four metrics with or without the
ERNIE-Gram models.

Also related to the previous finding is that there does
exist a threshold where the DA-led models outperform
the baseline models in the test set accuracy scores,
which appears to be the 100k training size or so, in-
stead of 50k as in Table 4. The discrepancy may be
explained by the different epoch numbers (e.g., 2 vs 3
for 50k) and possibly more importantly the separation
of the DA techniques, which, however, are beyond the
scope of this study. We also examined plots based on the
other three metrics with or without the ERNIE-Gram
models to explore the cause of such phenomenon. Fig-
ures 2 and 3 present the average test set precision and

12Since there are 11 training sizes and 5 classification mod-
els, that translates into 55 models for the baseline train sets.
As there are 5 DA techniques applied in 2 different ways (with
or without n-gram LM), that translates into 550 (55 * 5 * 2)
models for the augmented train sets. Hence, we have 605
models to train in total.

45



Figure 1: Average test set accuracy scores of the three models
under different conditions (i.e., text editing type, training data
size) for the two types of LCQMC’s train sets. The sixth plot
averages the statistics of the previous five plots.

recall scores of the five classification models trained on
the three types of train sets respectively. As can be seen,
there is no general trend in which the baseline models
surpass the DA-led counterparts in the test set recall
scores, but a similar pattern that resembles that of Fig-
ure 1 also exists in Figure 2. That means, the increase
in the precision scores, after certain amounts of training
examples are trained, are the main driver that makes the
baseline models outperformed by the DA-led ones in
terms of test set accuracy scores as well as the F1 scores,
which are not shown here to save space. Moreover, this
conclusion also largely holds when the ERNIE-Gram
models are excluded.

Figure 2: Average test set precision scores of the five classifi-
cation models.

Figure 3: Average test set recall scores of the five classification
models.

5 Discussions and Conclusions
In this study, we examined the effects of linguistic
knowledge on DA for a binary Chinese question match-
ing task. We proposed two DA programs, i.e., the REDA

and REDA+NG programs, that augment text by five
random text editing operations (or DA techniques), with
the REDA+NG program combined with a n-gram LM
to fuse it with probabilistic linguistic knowledge. Sur-
prisingly, we found that the REDA+NG-led classifica-
tion models did not surpass the REDA-led counterparts
in the test set performance (i.e., accuracy, precision, re-
call, and F1 scores), which is also true when the five DA
techniques in the two programs are applied and com-
pared separately. In other words, our study indicates
strongly that instilling more linguistic knowledge into a
DA approach or technique does not necessarily make it
a better one when it comes to training a better question
matching classifier for Chinese, although doing so may
make the augmented texts higher quality from a pure
linguistic point of view.

However, since the two DA-led models achieve very
close scores in the four metrics with trivial advantages
for the REDA-led models, it is not possible for us to
explain why adding probabilistic linguistic knowledge
as a constrain does not make a meaningful difference,
positive or negative. A possible explanation might be
that as the five deep learning models compare a pair
of texts in vector space and the way how word em-
beddings encode linguistic knowledge is different from
humans, performing simple text editing operations in
two different ways (i.e., random, conditional) on a text
may result in different meanings for humans, but that
for machines nevertheless is less distinguishable in the
high dimension of vector space. Moreover, as we only
used probabilistic linguistic knowledge as a filter to se-
lect augmented texts closer to human language use, the
inherent inability of the underlying text editing opera-
tions made by the two DA programs to produce strictly
paraphrastic augmented texts means the two types of
augmented texts are to a considerable extent compara-
ble in that they are mostly not the paraphrases to the
original texts being augmented. However, such interpre-
tation cannot explain why the REDA-led models often
outperform the REDA+NG-led ones by a slight but
consistent margin.

Unlike Wei and Zou (2019) who show general suc-
cess of their EDA program in bring performance gains
for several sentiment-related and text type classification
tasks across train sets of varying sizes, we only found
such gains when the classification models were trained
with sufficient amounts of training examples. As we
expected in the beginning, question matching presents
a more difficult and fundamental classification task be-
cause it involves comparing a pair of texts, instead of
a single text, to predict the label for the given text pair.
This nature makes question matching, or text match-
ing in general, inherently much more sensitive to and
subject to some tiny semantic changes caused by text
augmentation. To further validate this hypothesis, we
adjusted the two REDA programs and ran a post hoc
experiment similar to Section 4.2 for English using the

46



Models 10k 50k 100k 150k Full Set (260k) Average
BOW 64.4% 69.9% 72.1% 74.2% 77.7% 71.7%
+REDA 62.5% 68.5% 71.6% 74.8% 78.0% 71.1%
+REDA+NG 62.9% 69.4% 74.0% 75.5% 78.2% 72.0%
CNN 66.1% 71.1% 72.6% 73.4% 75.9% 71.8%
+REDA 63.7% 69.9% 72.7% 75.3% 77.6% 71.8%
+REDA+NG 63.5% 69.3% 72.7% 74.7% 77.7% 71.6%
LSTM 65.7% 71.6% 72.9% 75.0% 77.9% 72.6%
+REDA 64.0% 69.8% 72.5% 75.1% 78.1% 71.9%
+REDA+NG 64.9% 70.3% 72.7% 75.0% 78.1% 72.2%
GRU 67.2% 71.0% 74.3% 74.7% 77.4% 72.9%
+REDA 63.3% 70.0% 72.8% 74.8% 78.1% 71.8%
+REDA+NG 64.0% 70.2% 73.8% 75.7% 78.9% 72.5%
Average 65.9% 70.9% 73.0% 74.3% 77.2% 72.3%
+REDA 63.4% 69.6% 72.4% 75.0% 78.0% 71.7%
+REDA+NG 63.8% 69.8% 73.3% 75.2% 78.2% 72.1%

Table 6: Test set accuracy of four classification models trained on the three types of train sets of QQQD with
varying sizes. Due to cost concerns, we did not finetune a pre-trained model, such as BERT, this time.

Models Baseline REDA REDA+NG

Precision Recall F1 Precision Recall F1 Precision Recall F1
BOW 70.9% 73.5% 72.1% 69.2% 76.1% 72.5% 71.1% 74.4% 72.7%
CNN 70.5% 75.4% 72.8% 70.7% 76.0% 73.1% 70.2% 76.5% 73.1%
LSTM 70.5% 78.2% 74.1% 70.5% 75.4% 72.8% 71.4% 74.1% 72.7%
GRU 71.8% 75.5% 73.5% 69.8% 76.9% 73.2% 71.6% 74.5% 73.0%
Average 70.9% 75.6% 73.1% 70.1% 76.1% 72.9% 71.1% 74.9% 73.9%

Table 7: Average test set precision, recall, and F1 scores for the four classification models trained on the three types
of train sets of QQQD.

Quora Question Pairs Dataset (QQQD)13, from which
we created three label-balanced data sets of comparable
sizes to the LCQMC counterparts. The average test set
accuracy scores in Table 6 clearly show that models
trained on the augmented train sets also need to see
ample original training examples (near 150k or above)
to stably outperform the baseline models, although the
threshold is higher here. Therefore, for random text
editing DA approach to work for question matching,
there is a need of sufficient training examples to enable
the trained models to mediate the negative impact of the
false matching augmented text pairs resulting from ran-
dom text editing perturbations and turn it into a means of
regularization that improves the models’ generalizabil-
ity. This is a general limitation of random text editing
perturbations applied as a DA approach.

Lastly, comparing the results from these two exper-
iments, or between Table 4 and Table 6, and between
Table 5 and Table 7, we can see that the discussions
and conclusions drawn from the LCQMC experiment
mostly apply for the QQQD experiment as well, since
the obtained data shares similar patterns. Besides the
threshold difference noted above, which may be dataset
specific, a noteworthy difference is that REDA+NG-
led models slightly but consistently outperformed the
REDA-led counterparts of test set accuracy and preci-
sion, although there is also no statistically significant
difference and the average F1 scores are same. This fact

13https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

again demonstrates the difficulty of fully accounting for
modern deep learning experiments, but it also strongly
confirms the negligible role of probabilistic linguistic
knowledge in text augmentation.

6 Limitations and future studies
Although we are highly confident that observations
made in this study are reliable, we were nevertheless
unable to experiment with different initializations of
the two REDA programs and different configurations
of the classification models, constrained by available
resources. Moreover, systematically and fairly evaluat-
ing a DA approach for NLP is uneasy or even unknown.
The current study only illustrates a tip of the iceberg.

In light of the limitations above, future studies may
carry out similar experiments with differing setups, dif-
ferent NLP tasks, or even distinct methods of fusing a
DA approach or technique with linguistic knowledge.
Because of the simplicity and low cost of the five DA
techniques employed in this study, it may also be impor-
tant to re-examine the effectiveness and limitations of
these random text editing operations for assorted NLP
tasks. This may then give us some useful insights into
building cheap and (highly) universal DA techniques
for NLP, which is currently lacking in the field.
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Appendix
A. Size of augmented train sets for the ablation
experiment
Table 8 contains the size of the train sets for the ablation
experiment on LCQMC. Please note that, for simplicity,
240k is used to refer to the full size of LCQMC, which is
238,766 to be exact. Also, due to deduplication, differ-
ent text editing operations may result in augmented train
sets with non-trivial difference in size, as discernible in
Table 8.

B. Average test set performance for the ablation
experiment
Figure 4, 5, and 6 show the average test set performance
(accuracy, precision, and recall, respectively) of the
four classification models, excluding the ERNIE-Gram
model. It is clear that the observations made in the
section 4.3 still hold.

C. Size of QQQD-related data sets
We created three label-balanced data sets based on
QQQD’s original train set since the test set is made
unlabeled for online competition. The size of the cre-
ated train, development, and test sets is 260k, 20k, and
18,526, respectively. Table 9 shows the size of aug-
mented train sets for QQQD.

Size SR RS RI RD RM
5k 24,402 24,758 16,733 16,780 24,859

10k 48,807 49,575 33,090 33,208 49,652
25k 122,358 124,040 83,329 83,592 124,237
50k 244,577 248,074 166,839 167,296 248,539
75k 220,843 223,497 162,563 162,972 224,026

100k 294,516 297,987 216,540 217,012 298,620
125k 368,078 372,536 270,957 271,552 373,266
150k 441,643 446,941 325,027 325,738 447,838
175k 515,229 521,484 379,352 380,214 522,535
200k 588,901 595,977 433,521 434,469 597,084
240k 703,077 711,631 517,492 518,664 712,852

Table 8: Size of the augmented train sets for the ablation
experiment on LCQMC.

Size REDA +N-gram
10k 148,341 141,604
50k 543,066 512,176
100k 1,086,063 1,023,777
150k 1,629,178 1,536,285
260k 2,823,733 2,662,639

Table 9: Size of the augmented train sets for QQQD.

Figure 4: Average test set accuracy scores of the four classifi-
cation models excluding ERNIE-Gram.

Figure 5: Average test set precision scores of the four classifi-
cation models excluding ERNIE-Gram.

Figure 6: Average test set precision scores of the four classifi-
cation models excluding ERNIE-Gram.
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Abstract

Known vulnerabilities in software are solved
through security patches; thus, applying such
patches as soon as they are released is crucial
to protect from cyber-attacks. The diffusion
of open source software allowed to inspect the
patches to understand whether they are security
related or not. In this paper, we propose some
solutions based on state-of-the-art deep learn-
ing technologies for Natural Language Process-
ing for security patches detection. In the exper-
iments, we benchmarked our solutions on two
data sets for Java security patches detection.
Our models showed promising results, outper-
forming all the others we used for comparison.
Interestingly, we achieved better results train-
ing the classifiers from scratch than fine tuning
existing models.

1 Introduction

The use of Open Source Software (OSS) has be-
come a common practice in proprietary projects,
especially thanks to the speed up in software pro-
duction and the costs reduction (Vaughan-Nichols,
2015). However, this practice comes with the risk
of introducing vulnerabilities in private code-bases.
In this context, we introduce the concept of security
patches: a security patch is a special type of code
patch, which is a set of changes to be applied to
some software to update, fix, or improve it. These
security patches are designed to solve code vulner-
abilities that causes the exposure to cyber-attacks.

The aforementioned code vulnerabilities have
been categorised using different notations. The
most famous are the Common Vulnerabilities and
Exposures (CVE) and the Common Weakness Enu-
meration (CWE); both provide a description of the
vulnerabilities discovered and the second one is
organised hierarchically. Moreover, there exists
data bases containing a list of vulnerable commits

(changes to the software code base) like the Na-
tional Vulnerability Database (NVD) and the Soft-
ware Assurance Reference Dataset (SARD), which
offer an helpful reference to understand these vul-
nerabilities. They contain examples of vulnerable
code paired with the non-vulnerable counterpart,
thus providing test cases for software production.

In this work we focus on OSS projects in Java
maintained on GitHub. On this platform, a commit
represent an update to the code base and is com-
posed of two parts: commit message (a short de-
scription in natural language of the updated piece(s)
of code) and patch (sometimes called code changes,
it consists of one or more hunks). Hunks are the
differences between the old version and the new
version of source code files. These hunks are usu-
ally surrounded by context lines of the original
untouched source code and marked with line num-
bers. Deleted rows are marked with an initial -,
while the added rows start with a +.

Usually, in the process of software development,
the software maintainers are overwhelmed by the
number of patches released in their dependencies,
which can refer to one of those OSS projects. Since
applying patches requires extra work and down-
time, it is important to prioritise security patches.
In this sense, we propose a method based on Nat-
ural Language Processing (NLP) technologies to
analyse the code modified in the patch, focusing
on the semantics expressed in the code, to detect
security patches, and thus allow to prioritise them.

We organise this paper as follows: in Section 2
we present the related research works for code anal-
ysis and classification, in Section 3 we presents
the data sets we used as benchmarks in the experi-
ments, in Section 4 we provide an overview of the
models we considered and how we used them to
tackle the detection task, in Section 5 we present
the experimental approach we followed and the re-
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sults we obtained, and in Section 6 we provide final
remarks and propose possible future extensions.

2 Related work

NLP is the area of Artificial Intelligence (AI) fo-
cused on the analysis and synthesis of human lan-
guage. Recently, the introduction of Deep Learn-
ing-based techniques in this area has pushed signif-
icantly forward the state-of-the-art on many prob-
lems. In particular, the development of Deep Prob-
abilistic Language Models based on the Trans-
former Architecture (Vaswani et al., 2017) like
GPT (Brown et al., 2020), BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020) seems to have
enabled an impressive step forward. These models
for sequence analysis are pre-trained on large text
data sets doing simple tasks like next token/word
prediction and can be fine-tuned for any problem,
yielding impressive results due to the informative
hidden representations learnt during pre-training.

These same models and techniques used for nat-
ural language, can be also applied for artificial lan-
guages, such as programming languages. In fact,
according to the Naturalness Hypothesis (Hindle
et al., 2016; Allamanis et al., 2018), we can treat
source code in the same way of a document writ-
ten in plain natural language. As a result, deep
learning models for sequence and graph processing
have been actively used to process code, includ-
ing vulnerability classification (Otter et al., 2018;
Semasaba et al., 2020; Wu, 2021).

The application of deep learning techniques to
source code analysis evolved similarly to natural
language. Early solution tackled the problem of
extracting a distributed continuous representation
of code pieces similarly to early works for NLP
based on embeddings (i.e., vector semantic repre-
sentations).

Initially, word embedding models for NLP used
static and shallow embedding matrices to project
words into compact and dense representations
(Mikolov et al., 2013a,b; Pennington et al., 2014;
Bojanowski et al., 2017). Such word representa-
tions can be further combined to obtain semantic
vectors representing sentences (Pagliardini et al.,
2018; Arora et al., 2017; Zhelezniak et al., 2019;
Muffo et al., 2021, 2022) or even entire documents
(Le and Mikolov, 2014; Chen, 2017; Hosseini et al.,
2022).

Following these approaches, Code2Vec (Alon
et al., 2019) was developed to extract distributed

representations of the tokens in a piece of code.
However, Code2Vec exploits more complex struc-
tures than vanilla word emebedding models, like
Abstract Syntax Trees (AST), to compute the vector
representations.

More recently, models for contextual representa-
tion from sequence analysis have emerged: Code-
BERT (Feng et al., 2020) , for instance, employs the
BERT auto-encoder to carry out source code and
natural language analysis, serving as impressive
feature extraction model that can be used on many
downstream tasks, including vulnerability detec-
tion. There are also pre-trained models trained di-
rectly for patch analysis, like CommitBERT (Jung,
2021), however their accessibility is still limited.

Besides feature extraction for code analysis,
many works focused also on specific tasks. In the
context of security patch detection/classification,
many solution work on C/C++ data sets (due to
to higher data availability) and employ multiple
sub-models to break down the input analysis.

In the case of SPI (Zhou et al., 2022) and
PatchRNN (Wang et al., 2021), both models
use multiple Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks fed
using Word2Vec embeddings trained on C code
tokens. SPI uses two LSTMs to extract features
respectively from the added and deleted lines of
code in a patch and it further enhance the input
with the commit message to carry out the classifi-
cation. PatchRNN uses a twin LSTM solution to
analyse the code before and after the patch with the
information from the commit message to classify
the patch. Both models encode the commit mes-
sage using standard embedding techniques, namely
Word2Vec, and use a mixture of experts to combine
the results of code analysis with that of the commit
messages. Differently, CC2Vec (Hoang et al., 2020)
processes only the code changes and exploits the
hierarchical structure of a patch (divided into token,
line, and hunk) thorough a Hierarchical Attention
Network (HAN). It analyses with two separate net-
works added and deleted lines and the post-process
together the extracted feature vectors. This last
approach was employed also for the classification
of C language patches to identify the stable ones.

Concerning Java-specific solutions for security
patches classification, Commit2Vec (Lozoya et al.,
2021) represent the closest work to the one we ap-
resent in this paper. However, the data set used
by Commit2Vec is only partially available, making
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impossible a direct comparison with our work. The
Commit2Vec model is based on Code2Vec embed-
dings: it encodes the AST of previous and current
versions code (with respect to the patch), then an at-
tention layer further processes the embedded code
differences to perform the classification.

All the aforementioned works use binary classes
division to categorise the security patches, while we
are also interested in macro-classes identification.

Recent results showed that handcrafted features
and a Random Forest classifier (Breiman, 2001)
are sufficient to obtain reasonable performances on
a set of ten macro-classes derived by the original
CVE labels (Wang et al., 2020).

3 Data

To the end of this work, we focused only on Java se-
curity patches. In particular, we used three separate
data sets: the first two are private data collections,
while the latter is publicly available and was cu-
rated by Ponta et al. (2019).

We merged the first two data sets into one com-
prising 123 000 samples (i.e., code patches, with
1157 being related to security issues). Samples
from the former data set use a binary labelling sys-
tem, while those from the latter used both CVE and
CWE notations. After merging, labels were uni-
formed to the binary system with the two classes be-
ing security and non-security. The training set was
composed of 933 and 918 samples (respectively
for the two classes) and the test set was composed
of 224 and 239 samples (respectively for the two
classes). To cope with the unbalance in the data set
we undersampled the non-security class.

The third data set (Ponta et al., 2019) is com-
posed of 1175 security patches labelled with the
CVE notation. Due to the high number of different
classes, that would have prevented effectively train-
ing a classifier, we first converted the CVE notation
to CWE (yielding 605 different classes instances)
and then we clustered manually the resulting labels
down to five:

Improper management of resources patches to
solve vulnerabilities connected to resources
and variables (e.g., buffer overflow).

Cryptography features patches to solve vulnera-
bilities connected to data security and infor-
mation leakage.

Authentication errors patches to solve vulnera-

bilities connected to access control, authenti-
cation, and user sessions.

Other all the security patches that don’t fall under
the previous categories (e.g., channel errors).

Non-security complementary class to the security
patches (e.g., bug fixes, new features, etc.).
Samples from this class were taken randomly
from the first two data sets.

Pre-processing steps of all data sets consisted in:

• the extraction of added and deleted lines from
the patches;

• replacement of comments, strings, and num-
bers with as many special tokens;

• splitting of function and variable names (we
used the most common naming conventions
like snake case, camel case, and kebab case);

• deletion of special characters and stopwords
(with the exception of java specific ones).

We divided code tokens on spaces and lowercased
to all non-special tokens.

4 Methodology

In the following, we describe how we encoded the
input sequence representing the code to analyse
and the neural network models we considered to
carry out the classification task. We distinguished
between baseline models, used to get an idea of the
performances achievable on the considered data
sets, and advanced models, which exploit more
complex architectures to obtain the best results.

4.1 Embedding
As happens for natural language, we converted the
sequence of tokens written in Java into a continu-
ous vector representation compatible with neural
networks. For this task we considered different
embedding models:

Uninitialised embeddings we employed 32-
dimensional randomly initialised embeddings
we trained with the overall models.

Word2Vec we trained a 100-dimensional embed-
ding model on the code contained in the pri-
vate data sets.

Code2Vec we resorted to a pre-trained model with
128-dimensional embeddings.
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Tests showed that uninitialised embeddings yield
a better representations for our task. This is also
supported by the results we report in Section 5:
uninitialised models achieve the best scores.

4.2 Baseline models
We considered two baseline classification models:

XGBoost (Chen and Guestrin, 2016) we trained
this model on handcrafted features, similar
to those used by Wang et al. (2020), and we
employed a count encoder for the patch.

LSTM we employed this baseline similarly to the
work on Commit2Vec, we employed this base-
line; however, we fed it with the added and
deleted lines concatenated with a special sep-
arator token.

4.3 Advanced models
As premised, a part from the baselines, we con-
sidered more complex models. For many of them
we considered a base version and the patch ver-
sion, were the internal model is replicated to anal-
yse separately added and deleted lines as in the
work on PatchRNN. We leveraged both pre-trained
models coming from previous works or generic
uninitialised models:

PatchRNN inspired by the original work, we used
twin recurrent networks to encode separately
added and deleted lines. We used Gated Re-
current Units (GRU) (Cho et al., 2014) with
64 hidden units to build this model.

HAN as for the PatchRNN, we took inspiration
from the HAN used in CC2Vec, and imple-
mented a three layer version of it (respectively
for word, hunk and file level). In each layer
we used GRUs, with 64 hidden units, and at-
tention was computed on top of it. During the
hyperparameters search, we fixed the number
of files to two and hunks to three for the sake
of parallelisation.

CodeBERT we employed a pre-trained trans-
former trained on source code as it is common
practice nowadays in NLP tasks. The input
structure is the same of the LSTM baseline.
We used both the original pre-trained model
and a variant available via the Transfomers
library (Wolf et al., 2020) (alternative model
link). Additionally, for this model we tested
both fine-tuning and simple transfer learning.

PatchCodeBERT we used the pre-trained Code-
BERT to build a twin version of it, replicating
the initial model and feeding one with the
added lines and one with the deleted lines.

Transformer we considered an uninitialised
Transformer encoder with bi-directional atten-
tion (as BERT), thus re-proposing a smaller
version of CodeBERT.

PatchTransformer similarly to what we did with
the Transformer and CodeBERT, we used a
smaller uninitialised version of PatchCode-
BERT that we trained from scratch.

Since many of the models we considered use
separate encoders for added and deleted lines in
the patches, we developed a merging layer working
on the intermediate hidden vectors. The proposed
layer, similarly to the one employed by CC2Vec,
concatenates the two vectors, their product, their
difference, and their cosine and euclidean distances.
The resulting vector is passed through a final classi-
fication layer. The remaining models directly apply
the final projection on the hidden representation.

5 Experiments and results

Table 1: Results on the private data sets.

Method F1

Validation Test

XGBoost 0.692± 0.033 0.695
LSTM 0.823± 0.008 0.829

PatchRNN 0.696± 0.007 0.635
HAN 0.787± 0.007 0.777
CodeBERT 0.767± 0.019 0.764
PatchCodeBERT 0.731± 0.023 0.728
Transformer 0.841± 0.014 0.870
PatchTranformer 0.831± 0.014 0.827

Table 2: Results on the data set by Ponta et al. (2019).

Method macro F1

Validation Test

LSTM 0.661± 0.054 0.607
Transformer 0.667± 0.033 0.635
PatchTranformer 0.643± 0.020 0.601
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We divided the experiments following the data
sets division. First, we trained multiple models
on the private data sets with the binary labelling
system. We selected the best models from the first
step for training on the third data set with the five
macro-categories. To assess the goodness of the
results we measured the F1-score achieved by the
classifiers on the test and validation sets. The F1-
score on the third data set is computed applying
macro averaging among the macro-categories. Re-
sults on validation sets are reported as avg. ± std
because we applied 3-fold cross validation.

We reported the results on the private data sets
in Table 1. The transformer based solutions clearly
outperformed the other models we considered. In
this case we employed a 2 layers Transformer net-
work with 32 hidden units, 4 attention heads, and
a maximum of 768 tokens in the input sequence.
Interestingly Transformer, LSTM, and PatchTrans-
former models, which achieved the best results,
didn’t undergo any pre-training, indicating that fine-
tuning may be counterproductive in some cases.

We reported the results on the third data set in
Table 2. Here we considered only the three best
methods from the first experiment. The results
confirmed those of the private data sets: the Trans-
former model performed better than all the other
considered solutions. In this case we increased
the hidden units size of the Transformer to 128.
The drop in the F1-score with respect to the previ-
ous experiment was expected since we moved to a
multi-class problem where the issue of unbalance
has most probably harmed the performances.

6 Conclusion

In this paper we evaluated different approaches for
security patches detection in Java OSS using NLP
technologies. Despite the general improvements in
many NLP tasks due to the use of pre-trained mod-
els, in our experiments we found that uninitialised
models yield better results than fine-tuned ones;
this is most probably due to the insufficient pres-
ence of Java code in the pre-training of the consid-
ered models. Differently from previous works, we
also noticed that using separate sub-models yields
worse performances than using a single model.

In the future we are willing to work on two com-
plementary directions. On one side we are inter-
ested in exploring other pre-trained models to re-
fine, either sequential or graph ones. On the other
side we are interested in working on larger data

sets; thus exploiting C/C++ resources can be use-
ful to produce improved models than can be then
transferred to under-resourced languages like Java.
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Abstract

Natural Language-to-Query systems translate a
natural language question into a formal query
language such as SQL. Typically the transla-
tion results in a set of candidate query state-
ments due to the ambiguity of natural language.
Hence, an important aspect of NL-to-Query sys-
tems is to rank the query statements so that the
most relevant query is ranked on top. We pro-
pose a novel approach to significantly improve
the query ranking and thus the accuracy of such
systems. First, we use existing methods to trans-
late the natural language question (NLin) into
k query statements and rank them. Then we
translate each of the k query statements back
into a natural language question (NLgen) and
use the semantic similarity between the origi-
nal question NLin and each of the k generated
questions NLgen to re-rank the output. Our
experiments on two standard datasets, OTTA
and Spider, show that this technique improves
even strong state-of-the-art NL-to-Query sys-
tems by up to 9 percentage points. A detailed
error analysis shows that our method correctly
down-ranks queries with missing relations and
wrong query types. While this work is focused
on NL-to-Query, our method could be applied
to any other semantic parsing problems as long
as a text generation method is available.

1 Introduction

NL-to-Query describes the task of translating nat-
ural language questions to meaningful representa-
tions, such as logical forms, executable code, or
structured query languages like SQL. The appli-
cation of neural networks and the introduction of
larger datasets (Yin and Neubig, 2017; Yu et al.,
2018; Brunner and Stockinger, 2021) has increased
performance, but the task is far from solved.

Re-ranking of candidate query statements allows
introducing additional information in the process
(Yin and Neubig, 2019). For a given natural lan-
guage question (NLin), neural networks keep a

Figure 1: Example illustrates how semantic similarity
is used to extract the correct hypothesis. NL_In is
the input question, Gold SQL is the gold SQL query,
HypSQL_1 and HypSQL_2 are generated by an NL-to-
Query system (with confidence scores), and NL_Gen1
and NL_Gen2 are back-translated from the HypSQL
statements, with scores by a similarity system. See text
for further details.

beam search and produce k candidate query state-
ments (QS). Our analysis shows that an oracle
selecting the correct query among the top-scoring
15 candidates would improve the performance of
publicly available systems by up to 10 accuracy
points on the Spider benchmark (Yu et al., 2018).

Inspired by the success of back-translation in
machine translation (Sennrich et al., 2016), we pro-
pose to re-rank the candidate queries according to
the semantic similarity between the original ques-
tion NLin and the k synthetic questions NLgen

obtained via back-translating each of the k candi-
date queries into natural language. Figure 2 depicts
the pipeline of our proposed system.

Figure 1 shows an example from the Spider
dataset. For the question "How many different
addresses do the students currently live?". The
highest-ranked query according to the beam search
ranking is HypSQL_1 with a confidence score of
0.999. However, this query returns the perma-
nent addresses, which does not refer to the correct
attribute, which would be the current addresses.
In the example, the second hypothesis (i.e., Hyp-
SQL_2) has a much lower confidence of 0.003
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Figure 2: Pipeline of our system. NLin = original natu-
ral language, QS = query statement, NLgen = generated
natural language.

although it fits the input question perfectly. On
the other hand, the semantic similarity score be-
tween NLin and the generated questions NLgen

shows a different picture: The back-translation of
the correct hypothesis, i.e., NLgen2, has a higher
semantic similarity (0.82) than the back-translation
of the incorrect hypothesis (0.54). Hence, semantic
similarity would help to identify the correct query.
This paper makes the following contributions:

• We present a novel method to improve NL-to-
Query systems using re-ranking according to
Query-to-NL back-translation and semantic
similarity.

• We showcase improvements in two datasets
using three systems, around 5 − 9 points in
OTTA (Deriu et al., 2020) and 2 − 3 points
in Spider (Yu et al., 2018).

• The error analysis shows that our method
down-ranks hypotheses with missing relations
or with incorrect query types.

2 Related Work

NL-to-Query (also referred to as Natural Lan-
guage to Databases NLIDB) describes the task
of translating natural language questions into
structured queries (e.g., SQL). Most current ap-
proaches are based on sequence-to-sequence archi-
tectures (Yin and Neubig, 2017; Dong and Lapata,
2018; Suhr et al., 2018; Deriu et al., 2020), where
the encoder is a recurrent neural network that gener-
ates a hidden representation of the natural language
question, and the decoder is a recurrent neural net-
work that generates the query. Alternatively, some
approaches combine symbolic reasoning with in-
formation retrieval techniques (Sen et al., 2020).
For a more in-depth treatment, we refer the reader
to Affolter et al. (2019) and Odzcan et al. (2020).

In this work, we focus on the translation from
natural language questions to database queries,

where most recent approaches were proposed in
the context of the text-to-SQL Spider dataset (Yu
et al., 2018)1. Instead of working directly on SQL,
some authors propose to use simpler and more gen-
eral abstract syntax trees. For instance, Deriu et al.
(2020) propose to use so-called Operation Trees,
which we also used for this work.
Hypothesis Re-ranking is the task of creating an
alternative ranking of k candidate solutions for a
given task. The k candidates are usually the out-
put of a beam search. In our case, the candidates
are queries for the given natural language question.
However, the problem of hypothesis re-ranking
arises in many different generation tasks, not only
NL-to-Query. For instance, Dušek and Jurcicek
(2016) train a re-ranking network to score the gen-
erated hypotheses of their natural language gener-
ation model. Alternatively, (Deriu and Cieliebak,
2018; Agarwal et al., 2018) trained classifiers to
predict the correctness of the hypotheses produced
by their natural language generation system and
select the hypothesis with the highest correctness
score. Most of these approaches are developed in
the field of natural language generation from struc-
tured data. For code generation, Yin and Neubig
(2019) perform re-ranking by reconstructing the
original utterance for the generated code. They use
the reconstruction error as a measure for re-ranking.
We are not aware of prior research on using tex-
tual semantic similarity to re-rank hypotheses in
the field of NL-to-Query or Semantic Parsing in
general.
Semantic Textual Similarity assesses to what de-
gree two chunks of text are similar, usually on
a 0-5 scale, which ranges from unrelated (0) to
semantically equivalent (5) (Agirre et al., 2013).
The advent of transformer-based models such as
RoBERTa (Liu et al., 2019) has improved automat-
ically assessing semantic textual similarity. Re-
cently (Kane et al., 2020) introduced NUBIA (NeU-
ral Based Interchangeability Assessor for Text Gen-
eration). It extracts features from RoBERTa and
GPT-2 (Radford et al., 2019) and fine-tunes a fully
connected neural network to output a score between
0 and 1, indicating how interchangeable two in-
put sentences are. Throughout this work, we will
use NUBIA to automatically score the similarity
between a natural question (NLin) and a back-
translated question (NLgen).
Query-to-NL has the goal of translating a struc-

1https://yale-lily.github.io/spider
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tured query into natural language and to provide a
lay user with an explanation of the meaning of the
query. A simple approach is to define production
rules applied to the nodes of the abstract syntax
tree (AST) of the query. Systems based on this
idea have been developed for SQL (Koutrika et al.,
2010), SPARQL (Ngonga Ngomo et al., 2013), Op-
eration Trees (von Däniken, 2021), and queries
expressed in lambda calculus (Wang et al., 2015).
There are also systems based on neural networks
such as (Xu et al., 2018). In this work, we leverage
one of those systems to post-process the output of
an NL-to-Query system. Others have also used
query explanations to incorporate corrective feed-
back from the user in the NL-to-Query workflow
(Elgohary et al., 2020; Labutov et al., 2018; Yao
et al., 2019, 2020).

3 Method: Similarity for Re-ranking

The proposed method works in three steps (see also
Figure 2): first, the NL-to-Query system translates
the natural language inputNLin into a set of k can-
didate query statementsQS - called our hypotheses.
This is achieved by applying beam search during
the decoding stage of a recurrent neural network.
In the second step, each of the k hypotheses QS
is translated back into natural language NLgen us-
ing a Query-to-NL system. In the last step, each
of the k back-translations NLgen is compared to
the original input using an off-the-shelf semantic
textual similarity algorithm. We use the semantic
similarity score to rank the hypotheses. For each
NLin, the top-scoring hypothesis is returned as the
answer of the system.

3.1 Ranking Hypotheses based on Semantic
Textual Similarity

Let NLin be the user input (i.e., the natural lan-
guage question ) and H = {QS1, ..., QSk} be the
set of k hypotheses, i.e. candidate query statements
QSi, that are the output of the NL-to-Query system.
In most cases, this set is the result of applying beam
search for decoding. However, other approaches
result in a set of hypotheses, for instance an ensem-
ble of different NL-to-Query systems. In this work,
we focus only on beam search-based hypothesis
sets. Thus, each of the hypotheses has a confidence
score ci, which is used to rank the set of hypotheses,
i.e., the candidate queries. We refer to this ranking
as Confidence.

In a second step, each of the hypotheses QSi

is back-translated into a natural language question
NLi

gen using a Query-to-NL engine. Thus, we
end up with a set of back-translated hypotheses
HQ = {NL1

gen, ..., NL
k
gen}.

In a third step, we compute for each back-
translated hypothesis the semantic textual simi-
larity score with the user input NLin, i.e., si =
SemSim(NLin, NL

i
gen). The set of hypotheses

can be ranked according to the semantic similarity
scores. We refer to this ranking as Semantic.

3.2 Weighting Strategies

Since the two rankings, Confidence and Semantic
may disagree on the top hypothesis in some cases
(as we have shown in the example in Figure 1), we
combine the two scores ci and si into a new rank-
ing. For this, we propose the following weighting
strategies:
Equal Weighting. The naive strategy is based on
simply multiplying the two scores, that is mequal

i =
ci ∗ si, and we rank the set of hypotheses accord-
ing to mequal

i . We refer to this ranking as Equal
Weighting.
Calibrated Weighting. Since the confidence
scores and the semantic similarity scores have dif-
ferent distributions, the influence of each score in
the Equal Weighting is not equal. For instance, in
some cases, the influence of ci is stronger than si
and vice-versa. To counteract this effect, we de-
cided to calibrate both scores before multiplying.
A calibrated score should reflect the proportion of
correct hypotheses selected, e.g., when a calibrated
system assigns a score of 0.8 to a hypothesis, this
hypothesis will be correct in 80% of the cases.

We use Platt Scaling (Platt, 2000) to calibrate
both scores. This works by training a logistic re-
gression model on the outputs of a model to trans-
form these outputs into probability distributions.
More precisely, for the confidence scores and the
semantic scores respectively, a logistic regression
model is trained. For this, we have to set aside
a few hypotheses (more details later on). For the
confidence calibration, a logistic regression model
is trained on a set of pairs of confidence score
and a label that indicates if the query is correct,
i.e., D = {(ci, Iicorr}. Analogously, we train a
logistic regression model for the semantic simi-
larity score si. Thus, the calibrated scores can
be interpreted as the probability of the query be-
ing correct, i.e., ccalibi = Pr(Iicorr = 1|ci) and
scalibi = Pr(Iicorr = 1|si). We call the score after
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calibration ccalibi and scalibi and the resulting mixed
score mcalib

i = ccalibi ∗scalibi . The resulting ranking
is called Calibrated Weighting.
Learned Weighting. A natural extension of the
calibration idea is to train a logistic regression
on both scores at the same time, instead of inde-
pendently. That is, we train a logistic regression
model on pairs of confidence and semantic-scores2,
i.e., D = {((ci, si), Iicorr}. This way, the model
can learn the mixed proportions directly. Thus,
mlearned

i = Pr(Iicorr = 1|ci, si). For this, we
again have to set aside a few hypotheses. We use
the predicted probabilities from the logistic regres-
sion model to rank hypotheses and call the resulting
ranking Learned Weighting.
Threshold Weighting. We observed that the confi-
dence scores ci are high in most cases in which the
Confidence ranking yields a correct query. In many
cases where the Confidence ranking yields wrong
queries, the confidence scores are low. However,
the Semantic scores tend to be higher. Thus, we
propose the following strategy: If the maximum
confidence score of the hypotheses set is above a
threshold, we use the Confidence ranking, other-
wise, we use the Semantic ranking. We refer to this
ranking as Threshold Weighting. The threshold is
calculated by first determining the 90th percentile
over the confidence scores of all training hypothe-
ses and then finding the lowest confidence of a
correct hypothesis that lies above that.
Upper Bounds. To determine the theoretical upper
bounds of our approach, we introduce two oracles.
The first oracle selects the correct hypothesis from
the candidates if there is one. The second oracle
selects the correct hypothesis between the two top-
ranked hypotheses by Confidence or Semantic if
there is one. The first oracle determines the poten-
tial of re-ranking in general (we refer to it as Ora-
cle). The second oracle determines the maximum
contribution that the semantic similarity could do
to Confidence (we refer to it as Oracle-Sem).

4 Experimental Setup

In this section, we describe the experimental setup,
the datasets, the NL-to-Query models, the Query-
to-NL model, and the semantic textual similarity
model.

2Using more features, e.g., the length of the generated
query or mequal

i did not yield any improvements.

4.1 Datasets
We analyzed our approach on two different datasets
used as benchmarks for evaluating NL-to-Query
systems: Spider (Yu et al., 2018) and OTTA (De-
riu et al., 2020). Both datasets contain complex
queries and cover large amounts of attributes of
the databases. Spider contains around 10K queries
against 200 different databases. The dataset is used
to study NL-to-SQL translations. OTTA contains
around 3.8K queries over 5 databases. OTTA is
used to study translations from NL-to-OT (Oper-
ation Trees) which are similar to abstract syntax
trees (AST), i.e., an intermediate query language
can be translated to other query languages such as
SQL or SPARQL. OTTA contains more complex
queries with longer join paths than Spider. From
the OTTA corpus, we used only queries against the
databases Moviedata and Chinook since they con-
tain the largest amounts of queries. Details about
the queries used for each dataset are given below.

4.2 NL-to-Query Models
We applied publicly available machine learning
models trained for the datasets, which produce
queries with filter values in the WHERE-clauses
as otherwise there would be placeholder tokens
in the back-translations. For all models, we use
a beam size3 of k = 15. For the OTTA corpus,
we used the pre-trained GrammarNet by (Deriu
et al., 2020). The output of GrammarNet is a set
of Operation Tree (OT) hypotheses, which repre-
sent the query. OTs can be translated to SQL and
executed on an SQL database. For each of the two
domains in OTTA (i.e., Moviedata and Chinook),
we use a specifically trained GrammarNet. We re-
fer to these models as GrammarNet-Moviedata and
GrammarNet-Chinook. For the Spider dataset, we
apply two strong NL-to-SQL systems that are pub-
licly available. The first system is BridgeV2 (Lin
et al., 2020), which returns a set of hypothesis SQL
queries from a beam search decoder. We refer to
this model as Spider-BridgeV2 4. The second sys-
tem is ValueNet by Brunner and Stockinger (2021),
which also returns a set of SQL hypotheses from
a beam search decoder5. We refer to this model as

3In preliminary experiments, we noted that using a larger
beam size does not impact the scores significantly.

4We chose these systems for their strong performance,
code availability and quality of code.

5The API provided by the authors included confidence
scores based on the sum per-token-confidence instead of aver-
age. We approximated the average by dividing the provided
score by the number of characters in the SQL hypothesis.
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Spider-ValueNet.

4.3 Query-to-NL Model
For back-translating queries to natural language,
we use the Operation Tree-to-Text (OT3) system
kindly made available by von Däniken (2021). It
translates OTs into natural language questions in a
rule-based manner, which ensures that most OTs
are translated correctly, i.e., no nodes are left out or
added during translation. OT3 is domain-agnostic,
which allows it to be easily adapted to a new do-
main by just defining domain-specific metadata,
i.e., the canonical names of the tables, attributes
and types. The main advantage of OT3 is the ability
to express relationships naturally, which results in
more fluent back-translations. There are currently
some limitations with the state-of-the-art Query-
to-NL models, which do not handle more complex
constructs 6 well. Thus, we perform the evaluation
only on the queries that are handled by OT3. More
details can be found in Appendix A.

4.4 Semantic Textual Similarity Model
In order to compute textual semantic similarity
between two questions, i.e., between NLin and
NLgen, we apply NUBIA (Kane et al., 2020), a
pre-trained model that scores a pair of sentences
based on their interchangeability. We use NUBIA7

out-of-the-box without any fine-tuning.

4.5 Mixed Strategies
For the Calibrated Weighting, the Learned Weight-
ing, and the Threshold Weighting rankings, labeled
data points are needed for setting up the mixed
strategy. The samples are used to train the logis-
tic regression models for the Calibrated Weighting
and the Learned Weighting. We use the implemen-
tation provided by scikit-learn (Pedregosa et al.,
2011) with balanced class weights and all other pa-
rameters as default. For the Threshold Weighting,
these samples are used to determine the threshold
for when to select the Confidence ranking or the
Semantic ranking. We use k-fold cross-validation
with k8 chosen such that there are 20 samples in
each fold9 for training the strategies for each split.
We report accuracies averaged over the k test splits
for all strategies.

6E.g., GroupBy, SetOperations, or Nested Quieries
7https://github.com/wl-research/nubia
8Concretely, k = 22 for Spider, k = 11 for Moviedata,

and k = 12 for Chinook.
9This results in 20 ∗ 15 = 300 data points for training the

logistic regression models.

5 Results

As explained in the previous section, we evaluate
the effectiveness of our approach over two different
datasets consisting of 22 databases using three dif-
ferent systems, as shown in Table 1. We evaluate
the systems using the component equality proposed
by Yu et al. (2018). We can see that for all datasets
one of our re-ranking approaches outperforms the
baseline without re-ranking up to 9%. We will now
analyze our re-ranking approaches in more detail.
Semantic Re-ranking. In all cases, except for
Chinook, the Semantic-based re-ranking performs
worse than the baseline system ranking (Confi-
dence), showing that our method alone has not
enough information to select the correct hypothe-
sis.
Mixed Re-ranking (i.e. Equal, Calibrated,
Learned, Threshold). On the contrary, the com-
bination of the Confidence and Similarity scores
improves over Confidence alone in all mixed strate-
gies (with a minor exception for Threshold for Val-
ueNet in Spider). The improvement ranges from
2−3% on Spider to 5−9% on OTTA. These results
show that our method injects new information and
improves over the base systems. In all cases, the
simple Equal Weighting performs well, making it a
great default mixed strategy. The results or other
mixed strategies are better in some cases, although
the best mixed strategy varies in each column. For
instance, for Spider-Bridge the Threshold Weight-
ing strategy works best, yielding an improvement
of 2.56 points in accuracy.
Oracle. The difference between Confidence and
Oracle, i.e. the optimal re-ranking, lies at around
18% for both OTTA subcorpus and 8 − 10% for
Spider, depending on the system. The differences
in margins between Spider and OTTA can be ex-
plained by the fact that the Spider-based models
achieve higher Confidence accuracies, which de-
creases the margin for improvement.
Oracle-Sem. The difference between the best
mixed strategy and Oracle-Sem is around 3 points.
Thus, there is a potential improvement of around 3
points left for all systems using semantic similarity.
However, the difference between the Oracle-Sem
score and the Oracle score differs between the Spi-
der-based systems and the OTTA-based systems.
While the difference in the Spider-based systems is
between 3 to 4 points, the difference for the OTTA-
based systems is between 6 to 7 points.
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Dataset
System

OTTA-Chin.
GrammarNet

OTTA-Movie
GrammarNet

Spider
Bridge

Spider
ValueNet

Confidence 42.89 52.24 71.46 74.31
Semantic 48.16 (+5.27) 45.25 (−6.99) 62.70 (−8.76) 68.01 (−6.30)
Equal 51.84 (+8.95) 59.23 (+6.99) 73.03 (+1.57) 76.83 (+2.52)
Calibrated 51.44 (+8.55) 59.60 (+7.36) 73.78 (+2.32) 77.22 (+2.91)
Learned 51.48 (+8.59) 59.44 (+7.20) 73.93 (+2.47) 77.09 (+2.78)
Threshold 46.90 (+4.01) 54.71 (+2.47) 74.05 (+2.59) 71.30 (−3.01)
Oracle-Sem 54.94 (+12.05) 62.38 (+10.14) 77.30 (+5.84) 80.35 (+6.04)
Oracle 61.32 (+18.43) 69.98 (+17.74) 81.12 (+9.66) 83.12 (+8.81)

Table 1: Accuracy of our approach for translating NL questions to OTs and SQL, respectively, using three different
systems and two different datasets. The deltas with respect to the Confidence ranking (baseline) are shown in
parentheses. Oracle-Sem and Oracle are theoretical upper bounds.

6 Discussion

Based on the results, we see that including semantic
similarity for re-ranking works better than using the
Confidence scoring only. In this section, we explore
the potential and limitations of this approach in
more detail.

6.1 Confidence Score vs. Semantic Similarity
Score

To better understand the results, we analyze the
relationship between the confidence scores and the
semantic scores. In Figure 3, the confidence scores
are plotted against the semantic similarity scores,
where blue dots denote correct hypotheses, and
red dots denote incorrect ones. We perform the
analysis on the Bridge system over Spider and the
GrammarNet system over Moviedata, as they show
the clearest difference in score distributions.

First, we note that the distributions for the two
systems look different. For Bridge the confidence
scores mostly lie at the edges, either at 0.0 or 1.0.
The Moviedata confidence scores are more evenly
distributed between 0.4 and 1.0. On the other hand,
the semantic similarity scores are evenly distributed
in both cases.

Second, we note that for the Bridge system, con-
fidence scores close to 1.0 are reliable, i.e., a hy-
pothesis with confidence close to 1.0 tends to be
correct. On the other hand, correct hypotheses with
low confidence tend to have higher semantic scores
(see upper left corner). This explains the strong
performance of Threshold Weighting for Bridge.
For Moviedata, the picture is different. The cor-
rect samples tend to have both high confidence and
high semantic scores (upper right corner). Thus,
the other weighing strategies tend to perform well,
while Threshold Weighting under-performs.

(a) Spider-BridgeV2

(b) Moviedata-GrammarNet

Figure 3: Confidence scores and semantic similarity
scores for hypotheses produced by Spider-BridgeV2
and Moviedata-GrammarNet. Every cross corresponds
to a hypothesis. Blue indicates correct hypotheses and
red incorrect ones.

Third, we note that semantic scoring alone is not
sufficient. For Bridge, the semantic score tends to
score correct hypotheses as low as the incorrect
ones (see lower part). However, it works well for
finding incorrect hypotheses. Although the distri-
butions for Bridge and Moviedata have great differ-
ences, our approach works in both cases.
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Error Type Missing Join
Original Question List all singer names in concerts in year 2014.
Ranking SQL Back-translated Question ci si

Gold

SELECT T2.name
FROM singer_in_concert AS T1 JOIN singer
AS T2 ON T1.singer_id = T2.singer_id
JOIN concert AS T3 ON T1.concert_id =
T3.concert_id
WHERE T3.year = 2014

What are the names of singers who performed
in concerts whose year is 2014? - -

Baseline

SELECT singer.Name
FROM singer_in_concert JOIN singer ON
singer_in_concert.Singer_ID = singer.Singer_ID
WHERE singer.Song_release_year = 2014
(missing table "concert")

What are the names of singers who were
released in 2014 who performed in concerts? 0.020 0.792

Semantic

SELECT singer.Name
FROM singer_in_concert JOIN singer ON
singer_in_concert.Singer_ID = singer.Singer_ID
JOIN concert ON singer_in_concert.concert_ID
= concert.concert_ID
WHERE concert.Year = 2014

What are the names of singers who performed
in concerts whose year is 2014? 0.015 0.823

Error Type Wrongly added Filter
Original Question Find the pixel aspect ratio and nation of the tv channels that do not use English.
Ranking SQL Back-translated Question ci si

Gold
SELECT Pixel_aspect_ratio_PAR , country
FROM tv_channel
WHERE LANGUAGE ̸= ’English’

What are the aspect ratios and countries of tv
channels whose language is not English? - -

Baseline

SELECT TV_Channel.Pixel_aspect_ratio_PAR,
TV_Channel.Country
FROM TV_Channel
WHERE TV_Channel.Language ̸= "English"

What are the aspect ratios and countries of tv
channels whose language is not english? 1.000 0.654

Semantic

SELECT TV_Channel.Pixel_aspect_ratio_PAR,
TV_Channel.Country
FROM TV_Channel
WHERE TV_Channel.Language ̸= "English"
AND TV_Channel.Country ̸= "English" (wrong
additional filter)

What are the aspect ratios and countries of tv
channels whose country is not english and
whose language is not english?

0.008 0.673

Table 2: Examples of types of errors due to re-ranking. For each error type, we show the natural language question
and the corresponding SQL gold standard. Next we show the top candidates according to the Confidence ranking
and the Semantic ranking. ci and si refer to confidence score of the NL-to-query translation and the similarity score
between the natural language questions, respectively.

NLin: Whats the average track size of tracks purchased from 120 S Orange Ave?
i NLgen ci si mequal

i OK
1 What is the average size of all tracks on invoice lines which are part of invoices? 0.669 0.49 0.327 F

2 What is the average size of all tracks on invoice lines which are part of invoices
whose billing street is 120 S Orange Ave?

0.668 0.61 0.407 T

9 What is the average size of all tracks on Albums on invoice lines which are part of
invoices whose billing street is 120 S Orange Ave?

0.632 0.3 0.1896 F

NLin: Which companies from Mexico produced their films in Mexico ?
i NLgen ci si mequal

i OK
1 What are the names of companies which produced movies whose status is Mexico? 0.729 0.676 0.492 F

3 What are the names of companies which produced movies which were produced in
countries whose name is Mexico?

0.712 0.751 0.534 T

5 What are the names of companies which produced movies whose name is Mexico? 0.664 0.741 0.492 F

NLin: What are the distinct template type descriptions for the templates ever used by any document?
i NLgen ci si mequal

i OK
1 What are the distinct descriptions of template types for templates? 0.494 0.686 0.338 F

2 What are the distinct descriptions of template types for templates used for docu-
ments?

0.091 0.973 0.166 T

3 Show me everything about template types. 0.031 0.133 0.050 F

Table 3: Illustrative examples of the impact of re-ranking. We show three original questions (NLin) and the
corresponding back-translated examples (NLgen). Value i denotes the rank in the Confidence ranking, ci is the
confidence score of the decoder, si is the similarity score, mequal

i is the combination of ci and si, OK indicates
whether the generated query is correct (T = true, F = false).

6.2 Error Analysis: Confidence vs. Semantic
Ranking

To better understand the differences between the
Semantic and Confidence rankings, we analyze the
cases in which one of the two ranking schemes re-

turns a correct query, and the other one does not.
This analysis is performed on the Bridge output
where in 19.2% of the cases, only one of the two
ranking schemes returns the correct hypothesis. In
25% of the cases in which only the Confidence
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ranking returns a correct query, the Semantic rank-
ing returned a query with a redundant WHERE-
clause, and in 20% of cases, the Semantic ranking
returned a wrong attribute in the projection. This
suggests that the Semantic ranking is not stable
against redundant information in the query and
slight variations in the return attributes.

In the cases where only the Semantic ranking
returns a correct query, the query returned by the
Confidence ranking contains missing or redundant
Join-clauses in 47% of cases and wrong query types
in 21% of cases. This suggests that the Semantic
ranking’s strength lies in detecting missing rela-
tions and detecting wrong query types (i.e., SUM
instead of COUNT).

In Table 2 two examples of errors are shown.
The first example shows a missing join operation
of Confidence. In particular, the table "concert"
is missing in the SQL statement. In this case the
confidence score of the wrong Confidence query,
i.e. ci = 0.02, is higher than the confidence of the
correct Semantic query, i.e. 0.015. On the other
hand, the semantic textual similarity score si of the
correct Semantic query, i.e., 0.823, is higher than
the score of the incorrect Confidence query, i.e.,
0.792. We note that although the confidence score
of the incorrect query is the highest of all hypothe-
ses, it is a low score. Usually, the confidence scores
are around 1.0.

The second example shows the problem of an ad-
ditional filter (TV_Channel.Country ̸= "English"),
which confuses the semantic similarity score. The
Confidence ranking selects the correct query with
high confidence, i.e. 1.0. However, the semantic
score of the incorrect Semantic query, i.e., 0.673, is
higher than the semantic score of the correct query,
i.e., 0.654.

This phenomenon motivates the Threshold
Weighting. The reason is that high confidence
scores from the NL-to-Query system are more trust-
worthy than the semantic scores. However, in cases
where the NL-to-Query system is not confident,
the semantic score performs well. The automati-
cally determined threshold in our experiments lies
at around 0.9.

6.3 Qualitative Analysis

In Table 3, we show examples of the different rank-
ings. We show three representative examples of a
15-best list. In the first example, we note that the
hypothesis with the best confidence score, i.e., c1 =

0.669, is incorrect. The second best hypothesis, ac-
cording to the confidence score, is correct and has
a very similar score to the hypothesis placed first
(0.669 vs. 0.668). The hypothesis that is placed 9th

adds an unnecessary relation. However, the confi-
dence score is still close to the hypothesis placed
first. The semantic score, on the other hand, is
more accurate. The correct hypothesis is placed
1st with a large margin (0.61 vs. 0.49) and an even
larger difference with the score of the 9th place. Fi-
nally, the combined score mequal

2 of 0.407 clearly
identifies result 2 as the correct one.

The second example shows a similar pattern: the
first hypothesis with a confidence score c1 of 0.729
is obviously wrong. The second hypothesis, which
is correct, has a slightly lower confidence score c2
of 0.712. The Semantic score s3 of 0.751 ranks
the set of hypotheses correctly. However, Semantic
re-ranking alone is not enough since the 5th ranked
example has a very high semantic similarity score
while being incorrect. In this case the Equal Weigh-
ing approach mequal

i helps differentiating: While
s3 and s5 are very close, mequal

3 and mequal
5 have a

bigger margin.
The last example shows a case where the Equal

Weighting does not work. Although the semantic
score s2 of 0.933 works to find the correct answer,
the confidence score c2 of 0.091 of the correct hy-
pothesis is much lower than the confidence of the
incorrect hypothesis, c1 of 0.494. In this case, the
Threshold Weighting would work well as it relies
on si for the cases where the maximum confidence
score is too low.

7 Conclusion

We proposed a novel approach to improve semantic
NL-to-Query systems based on back-translating the
generated query into a natural language question,
and re-ranking the top hypothesis of the NL-to-
Query system according to the semantic similarity
of the generated questions with regard to the origi-
nal question. Our approach improves over strong,
publicly available systems by up to 3 percentage
points on the Spider dataset and up to 9 points on
the OTTA dataset.

Our results clearly show the potential of back-
translation for improving NL-to-Query systems,
and it could be applied to more general semantic
parsing problems as long as a generation method is
available.
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A On Query-to-NL

While Query-to-Text is not a contribution of our
work, we discuss and motivate our choice of OT3
as our Query-to-Text engine. We adapted OT3 to
handle all the domains in the Spider development
set, which comprises 20 databases. In order to han-
dle SQL queries, we translate SQL queries into
OTs using a rule-based approach. The main advan-
tage over statistical methods is that we can be sure
that the queries are correctly back-translated to text.
This is due to the rule-based nature of OT3.
Sanity Check. In order to show that OT3 correctly
renders the semantics of a query, we first perform
a sanity check, where we backtranslated the gold-
standard tree for a given question. Thus, we need
to show that the original question and the back-
translation are semantically equivalent. As nega-
tive examples, we also mix in randomly sampled
human questions, thus the original question and
the negative back-translation should never be se-
mantically equivalent. We let humans annotate this
data, that is, we showed humans pairs of original
questions and either a positive or negative back-
translation. In this setting, humans agree in 94%
of cases with the parsing ground-truth. This shows
that the synthetic questions are understandable and
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generally maintain the semantics of the underlying
OT. The experiments show that the synthetic ques-
tions are of high quality and can be used as basis
for re-ranking.
Limitations. OT3 does not handle GROUP BY,
sub-queries and set operations, thus, we discard
these samples from the Spider and OTTA develop-
ment sets, keeping 82% of OTTA-Moviedata, 76%
of OTTA-Chinook and 43% of Spider. The reported
results are on these subsets of the datasets. Note
that several studies on natural language query logs
(Bonifati et al., 2017; Affolter et al., 2019) show
that typical queries in real-world applications are
far less complex than the ones contained in the Spi-
der dataset. Hence, not supporting GROUP BYs,
sub queries or set queries is not a significant issue
in a real-world scenario. Note that our method can
still be applied to the full datasets, defaulting to the
Confidence ranking when none of the hypotheses
could be back-translated. The positive results are
consistent, but the improvement is lower, correlated
with the coverage. E.g. an overall improvement of
0.67% for the whole Spider (with the Bridge sys-
tem using equal mixed re-ranking), which roughly
corresponds to the 1.57% improvement obtained
on the 43% subset of Spider which does not contain
complex SQL operations.
Selection. The choice of OT3 is motivated by
the fact that it renders relationships between en-
tities naturally. For instance, the relationship be-
tween persons and movies, which is modelled via
the cast table, is expressed as "Persons that play
in movies". For instance, Logos (Kokkalis et al.,
2012) expresses the same relationship as "Persons
associated with movies", which is not natural and
cannot be handled by our semantic textual simi-
larity tool. We also evaluated statistical models,
which suffer from hallucinations (i.e., adding text
that is not semantically related to the query) and are
generally unreliable. Thus, we are not aware of any
Query-to-Text solution, that handles all types of
queries (Group By, Set Operations, Nested Queries)
such that the generated texts read naturally. Thus,
OT3 has proved to be best suited for our task.

B On Evaluation

We adapted the Component Equality measure for
operation trees (OTs) since we translate the SQL
queries of the Spider-based systems to OTs. For
OTs, this measure checks if the nodes of the pre-
dicted tree correspond to the nodes of the gold stan-

dard tree. This allows measuring query equality in-
dependently of the order of the nodes. Furthermore,
we adapted this analysis also to measure if the
Join attributes are rendered correctly. We decided
against a result-based evaluation since it is impos-
sible to reasonably evaluate queries that return an
empty result set, often leading to over-estimating
the quality of NL-to-Query systems. This happens
often in cases where the result set is empty or for
count questions. For Spider the databases are very
small and do not contain much data, thus, queries
tend to return empty results. For OTTA, which
uses Yes/No questions, this problem is even more
pronounced. Thus, the result-based evaluation is
not reliable, and we opted for the component-based
evaluation, which is now the standard evaluation
for the Spider dataset.
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Abstract
Document corpora owned by law and regula-
tory firms pose significant challenges for text
classification; being multi-labelled, highly im-
balanced, often having a relatively small num-
ber of instances and a large word count per
instance. Deep learning ensemble methods
can improve generalization and performance
for multi-label text classification but using pre-
trained language models as base learners leads
to high computational costs.

To tackle the imbalance problem and im-
prove generalization we present a fast, pseudo-
stratified sub-sampling method that we use to
extract diverse data subsets to create base mod-
els for deep ensembles based on fine-tuned
models from pre-trained transformers with
moderate computational cost such as BERT,
RoBERTa, XLNet and Albert. A key feature of
the sub-sampling method is that it preserves the
characteristics of the entire dataset (particularly
the labels’ frequency distribution) while extract-
ing subsets. This sub-sampling method is also
used to extract smaller size custom datasets
from the freely available LexGLUE legal text
corpora. We discuss approaches used and clas-
sification performance results with deep learn-
ing ensembles, illustrating the effectiveness of
our approach on the above custom datasets.

1 Introduction

The increasing volume of regulations relating to ac-
tivities in the law and regulation domain require ef-
ficient methods for automated multi-label classifica-
tion (MLC), which can replace expensive and time-
consuming data labelling by domain experts. Ex-
amples include legal professionals who may need
to categorize the types of business activities a con-
tract relates to, or label types of individual clauses
(e.g. restrictive covenants, penalty clauses). Sim-
ilarly, companies involved in financial regulation
may need to label regulatory texts with the focus of
the regulation (e.g. fraud, accounting obligations
or mis-selling).

Since the creation of BERT (Devlin et al., 2018)
the “foundation model” for pre-trained transformer-
based language models, various new types of trans-
former models for NLP have been developed:
some improve the pre-training method such as
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020), the vocabulary size and specificity
such as LEGAL-BERT (Chalkidis et al., 2020), or
enable input sequence lengths larger than 512 to-
kens (Tay et al., 2020a) such as Reformer (Kitaev
et al., 2020), CogLTX (Ding et al., 2020), Long-
former (Beltagy et al., 2020), Big bird (Zaheer
et al., 2020).

The major advantage of using pre-trained trans-
formers for MLC is their large, context and seman-
tic aware language models (LM), which can signif-
icantly improve classification results even on small
datasets (Sun et al., 2019). Fine-tuning pre-trained
language models on legal texts can be challeng-
ing due to their uncommon vocabulary (containing
domain specific, rare, and conceptually complex
words) and the large text length in each document,
exceeding the maximum sequence input length of
pre-trained transformer-based models.

There is a trade-off between the pre-trained
model size and the available computational power.
The pre-trained model size increases with the vo-
cabulary size and with the number of parameters
(the number of bi-LSTM layers). The larger mod-
els enable improved performance at the cost of
increased computational effort (memory size and
processing units) (Tay et al., 2020b).

While pre-trained transformer models can pro-
vide efficient solutions for text classification, fine-
tuned models often lack flexibility as the fine-
tuning restricts generalization to the new (narrower)
domain. MLC based on deep ensemble models can
be improve generalization but these approaches are
constrained by high computational costs.

Here we present MLC results using deep-
learning ensembles of fine-tuned models discussing
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their suitability for limited resources environments
and small size datasets (6000 to 7000 instances).
Our approach is based on ensembles of fine-
tuned models obtained by transfer learning from
pre-trained transformers. We use transformers
that require moderate fine-tuning costs as BERT,
RoBERTa, XLNet (Yang et al., 2019) and ALBERT
(Lan et al., 2020). This study includes homoge-
neous and heterogeneous ensembles of deep base-
learners each generated from data re-sampling with
replacement, using our custom pseudo-stratified
random sampling method.

Our contribution includes: a custom pseudo-
stratified sampling method for sub-sampling
and train/test splitting of imbalanced multi-label
datasets, used for generating diverse datasets; ag-
gregating ensemble models using fine-tuned base-
models (transfer learning from pre-trained NLP
transformers), and discussing results. The datasets
used in our work, sub-sampled from benchmark
legal text datasets are available.

2 Multi-label classification

Real-life datasets as multi-domain business docu-
mentation or collections of legal and regulatory
documents are multi-labelled and highly imbal-
anced, presenting a complex MLC problem, re-
lating one example to multiple categories.

The imbalanced label distribution increases the
complexity of the learning problem as stratified
sampling cannot be applied for creating a balanced
test/train split that includes all labels. Iterative
methods for test-train split have been proposed to
ensure a similar label distribution in both test and
train sets (Sechidis et al., 2011).

Several approaches are designed to enable
classic algorithms (Naive Bayes, SVM, Ran-
dom Forests, k-means) to perform on multi-label
datasets: (a) Algorithm Adaptation (Szyma, 2019)
(b) Problem Transformation (Binary Relevance,
Label Powerset and Classifier Chains methods)
and (c) Ensemble learning, described in recent
reviews dedicated to MLC (Bogatinovski et al.,
2022; Kowsari et al., 2019). Since neural networks
and deep learning methods can generate a multiple
prediction output by design, such methods sup-
port multi-label classification and can be applied
with or without approaches (a)-(c), although these
can significantly improve the performance of deep
learning methods also.

The multi-label data can produce ensembles

of models, using one-vs-all and one-vs-one tech-
niques. Other methods are based on re-sampling
and sub-sampling (Bagging and Boosting) or
re-arranging the data into convenient domains
matching labels’ distribution: random k-labelsets
(Tsoumakas and Vlahavas, 2007), hierarchical ar-
rangements, pruned sets (Read et al., 2008).

2.1 Performance measures and thresholding

A variety of performance measures have been de-
signed to assess the various goals in multi-label
classification: Hamming loss, ranking loss, one-
error, average precision, coverage, micro-F1 and
macro-F1. Used for imbalanced datasets, F-scores
(measures) can be optimized either as an empirical
utility maximization EUM (optimal classifier) or
as a decision-theoretic approach DTA (predictions
by optimal classifiers) (Lewis, 1995), DTA being
better for handling rare classes and for domain
adaptation tasks.

The F-measure optimization is usually per-
formed in two steps: learn a score function from a
ML algorithm (optimized for DTA) and then select
a threshold to maximize the empirical F-measure
(Ye et al., 2012).

3 Ensemble deep learning

Ensemble learning methods (Madjarov et al., 2012;
Read et al., 2008; Tsoumakas and Vlahavas, 2007;
Dong and Han, 2004) use multiple base learners
to form an ensemble learner (model) to improve
generalization and model performance.

The models can be generated using the same ML
algorithm or a combination of algorithms. Ensem-
ble methods are commonly used on imbalanced
datasets with data over-sampling techniques.

The ensemble prediction is obtained from a suit-
able aggregation rule: plurality or majority voting,
(weighted) predictions’ mean, best performance
model, or using learning systems to combine pre-
dictions (Zhou et al., 2002).

Through the use of multiple models, ensemble
deep learning can improve generalization as well as
prediction performance (Yang et al., 2021). Using
base models generated from fine-tuning pre-trained
language models is expected to further improve per-
formance due to the large context and semantically
aware base models.

Ensemble methods provide an improved perfor-
mance based on the diversity of multiple models.
Creating a diverse committee of base learners that
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is still consistent with the training data was demon-
strated to be of high importance in generating a
good ensemble (Dietterich, 2000) as predictions
from each learner are combined into the classifica-
tion outcome.

Methods to generate diversity such as bag-
ging (Breiman, 1996) and boosting are usually ap-
plied. In bagging ensembles, multiple models are
created using data subsampling methods (i.e. ran-
dom drawing with replacement) and a joint predic-
tion is obtained through a voting mechanism. In
boosting using AdaBoost (Freund et al., 1996) and
its variants, data is sampled according to weights
assigned to instances and sampling weights are up-
dated based on classification outcomes to improve
the scores. These meta-learner methods can be ap-
plied to any base learner, including deep learners.

Using the disagreement of an ensemble member
with the ensemble’s prediction as a diversity mea-
sure, (Melville and Mooney, 2004) show that there
is a significant Spearman rank correlation between
diversity and error reduction of the ensemble. They
conclude that increasing ensemble diversity leads
to reducing generalization error of the ensemble.

The success of these meta-learners has led to
applications in a variety of fields, including text
categorization (Shapire and Singer, 2000; Dong
and Han, 2004) also revealing some weaknesses.
While bagging can reduce the error due to variance
of the base classifier, using stable learners, such as
Naive Bayes, will not reduce the error. Also, small
datasets can generate a limited amount of diversity.

Boosting can perform poorly with insufficient
data (Freund and Schapire, 1999) or noisy la-
bels (incorrect class labels in training) (Dietterich,
2000). Other drawbacks for deep model ensembles
are the high costs of computing power, memory and
process time when training multiple deep learners
(Yang et al., 2021).

Using transfer learning from pre-trained trans-
former language models and the available cloud
computing GPUs, our work investigates the feasi-
bility of deep learning ensemble models for text
classification. We use a bagging-type data resam-
pling with homogeneous and heterogeneous en-
sembles to assess how data diversity and type of
pre-trained model improve the ensemble model.

4 Legal Datasets

In recent years, curated collections of legal texts
have been made available, along with their ded-

icated language models as: CUAD (Hendrycks
et al., 2021), ECHR (Chalkidis et al., 2019), EU-
RLEX57k (Fergadiotis et al., 2018). Based on
these, several benchmark datasets included in
LexGLUE (available on the HuggingFace1 plat-
form) (Chalkidis et al., 2021) enable comparison
of various AI approaches using the same datasets
and metrics.

The LexGLUE multi-labelled datasets (ECtHR,
EUR-LEX) include the ECHR-A and ECHR-B
datasets containing case descriptions of the Euro-
pean Court of Human Rights, where labels repre-
sent articles of the European Convention on Hu-
man Rights that have been violated or allegedly
violated. LexGLUE also includes EUR-Lex data ,
which consists of EU legislation that has been la-
belled according to 7,000 EuroVoc concepts2 (with
4 granularity levels). The available EUR-Lex data
in LexGLUE contains 65,000 documents annotated
with the 100 most frequent concepts from level 2.

LexGLUE datasets are designed for Natural Lan-
guage Undersanding (NLU) and include a temporal
‘concept drift’ in the datasets for development and
test (i.e. data issued at a later time, within five
years of training set documents). Since in our study
we do not approach NLU problems, we use only
the original training datasets which we split into
new, smaller train/test sets that both include data
collected within the same time interval, limiting
the ‘concept drift’.

Here we only use the training data of the multi-
labelled datasets from the LexGLUE set (ECHR-A,
ECHR-B and EUR-Lex datasets) and sub-sample
from each, the datasets A, B and C (respectively)
without the ‘concept drift’. The datasets A and B
were sub-sampled using the custom function de-
scribed in Section 5.1 while for dataset C we select
from the EUR-Lex train data only the instances
labelled as ‘Regulations’ and take 50 of the most
frequent labels (out of 2941, see Table 1). The un-
labelled instances (where these are included in the
original train set) have also been removed.

The complexity characteristics of the new
datasets are shown in Table 1 in comparison to the
original data, where the labels’ Cardinality (Car)
and Density (Den) for a dataset with N the num-
ber of instances, Yi the set of labels for instance
i and L the number of instances are defined as:

1https://huggingface.co/datasets/lex_
glue

2https://eurovoc.europa.eu
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Dataset N L Car Den IR
ECHR-A train 8086 10 1.32 0.39 114.00
ECHR-B train 8866 10 1.48 0.45 67.12
EUR-Lex train
(Regulations) 29600 2941 4.94 0.002 3554.00

A 5651 10 1.23 0.37 125.34
B 5925 10 1.35 0.41 89.98
C 7201 50 3.34 0.07 8.77

Table 1: Data complexity for the sub-sampled datasets

Car = 1
N

N∑
i=1

|Yi|; and Den = 1
N

N∑
i=1

|Yi|
L ; while the

maximum imbalance ratio (IR) is the ratio of the
most common label against the rarest one. The new
datasets have a smaller number of instances (close
to that of custom datasets) and an IR that is higher
for datasets A and B and much lower for dataset C.

4.1 Dealing with large text lengths

One characteristic of text in the law and regulatory
domains is the large text length, often exceeding
5000 words/entry. Using pre-trained transformers
with low to moderate computational demands (as
BERT, ALBERT, RoBERTa) is a cost-effective ap-
proach to perform MLC on legal text, with limita-
tions due to their maximum input sequence length.

General-purpose NLP transformers can process
a maximum input length of 512 tokens, much
smaller than the text length in legal datasets. This
problem is usually solved by applying ‘text trunca-
tion’, ‘hierarchical methods’ or ‘data transforma-
tion’. Text truncation uses only the ‘head’, ‘tail’
or ‘head + tail’ parts of the document, considered
to contain the key information. In ‘hierarchical’
methods, the text is split into sequences (of lengths
smaller than 510) their pre-trained embedded rep-
resentations are extracted from the [CLS] token in
the last hidden layer and then combined using max-
pooling or mean-pooling (attention weighted) to
obtain the embeddings representation of the entire
text for classification (Sun et al., 2019).

Other hierarchical methods use hierarchical
transformers that generate embeddings and encode
these again using a shallow transformer (Chalkidis
et al., 2021). The ‘data transformation’ method
(applied here) performs text splitting into sections
of suitable length using them to create an expanded
dataset (preserving the associated labels). For infer-
ence, these entries can be re-joined after fine-tuning
along with their predictions.

While truncation methods can miss important
information, the ‘hierarchical’ methods (which cre-
ate embedding representations of the whole input
text) and the ‘data transformation’ method that re-

joins text sections and predictions can both improve
prediction outcomes.

5 Methods

5.1 Generating diverse datasets

Real-life, custom legal datasets have a small num-
ber of instances and are highly imbalanced – re-
quiring efficient data sampling/splitting methods
that enable all labels to be represented in both train
and test sets. The iterative method for stratified
sampling of imbalanced multi-label datasets pro-
posed by Sechidis et al. (2011) requires reaching
convergence, which is time-consuming when used
for repeated sub-sampling.

Here we have designed a fast, pseudo-stratified
sampling function that provides a train/test split
configured to follow the label distribution in the
original data and ensuring that all labels are repre-
sented in both train and test sets.

Figure 1: Pseudo-code describing the basic algorithm
for the pseudo-stratified sampling function

This pseudo-stratified sampling method is de-
signed to randomly extract (without replacement)
instances that represent each label in a number pro-
portional to the frequency of each label. We define
two integer parameters: M (related to the minimum
number of instances per label) and ‘ratio_in’, which
configure the number of entries to be extracted for
the test set for each label (basic algorithm described
in Figure 1).
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Figure 2: Train and Test size after split using the pro-
posed pseudo-stratified function, for a range of ‘ratio_in’
values (starting from the ECtHR-A train dataset).

Figure 3: Labels’ distribution when splitting the ECtHR-
A training dataset into train/test using ‘ratio_in’=7

For the training set we keep only the instances
that are not included in the test set. The ‘ratio_in’
values can be chosen from a value of 2 up to a
maximum depending on availability of instances
for each label. A plot of the train and test sizes for
various ratios is shown in Figure 2.

This method provides an efficient splitting en-
suring that all labels are represented in both train
and test sets. Low values of the ‘ratio_in’ (2 to
6) give a close representation of the original label
distribution, while values above 10 generate only a
roughly similar distribution. It can be argued that
more data diversity can be obtained using a more
distorted distribution. The typical label distribution
for the train and test sets is shown in Figure 3.

5.2 Data preparation
The main data is one-hot-encoded and split as
train/test datasets, then the train set is further split
by re-sampling into train/test sets to create the base-
models.

We apply the ‘data transformation’ method, split-
ting each text entry into sections of up to 120 words
(such that only entire sentences are included in
each sequence) while preserving the correspond-
ing labels, creating an expanded dataset. The split
sequences are then re-joined along with their pre-
dictions at testing or inference time.

The medium and average lengths of the se-

Datasets A B C
train test train test train test

Median length 108 108 103 105 73 64

Mean Length 104.29 104.42 94.84 96.11 72.51 69.5

Table 2: The medium and mean lengths of sequences in
the tran and test sets for the datasets A, B and C after
data transformation

quences in each dataset are shown in Table 2. Other
improvements of the sequence content (i.e. adding
to each sequence the last sentence from the previ-
ous sequence) are not applied here.

The ’data transformation’ method is context and
semantic aware within each sequence, as each is
expected to contain a representative amount of in-
formation, that enables classification. Moreover,
such phrases generally refer to a specific topic –
identified by a certain label group. The ‘data trans-
formation’ generates much larger train and test
datasets on which the model is defined, being a
type of boosting technique.

An advantage of text splitting into sequences is
that we obtain an increased number of instances,
improving the statistical basis of our model (and
its bias). This is a type of ‘data over-sampling’
leading to an ensemble model where predictions are
obtained by aggregating over each original instance,
which improves prediction variance.

5.3 Generating deep learning ensembles

The proposed method for generating diverse
datasets is applied for supervised multi-label clas-
sification of legal datasets, creating a train/test split
for each. The text for every entry in the train and
test datasets is split into sequences of up to 120
words (as described in Section 5.2) forming an ex-
panded dataset where each sequence keeps its orig-
inal labels, on which each base-model is defined.
For testing after fine-tuning, these ‘split’ entries are
re-joined along with their predictions generating
an aggregated prediction set.

We create homogeneous and heterogeneous en-
sembles of deep models, where base-models are
fine-tuned from the following pre-trained trans-
former models: BERT-based-uncased, RoBERTa-
base, ALBERT-base-v2 and XLNet-base-cased.
The simpletransformers3 library (based on Py-
Torch) has been used, taking advantage of the uni-
fied data, model output formats and default model
arguments available (i.e. batch sizes of 16, se-
quence length of 128, learning rate of 4.e-5).

3https://simpletransformers.ai/
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To enable generalization, the base learners can
be ‘incomplete’ (not fully trained) models and as
the fine-tuning reaches convergence fast (within 3
epochs), we have used only 2 epochs for fine-tuning
the base-learners when working on datasets sub-
sampled from ECtHR-A and ECtHR-B (10 labels)
and on 5 epochs for datasets sub-sampled from
the EUR-Lex dataset, (from which we selected
data including the most frequent 50 labels). Label
weights are applied during training of the model
as a means of regularization. Label weights are
proportional to labels’ frequency in each newly sub-
sampled dataset for each base model. The Label
Ranking Average Precision4 (LRAP) metric is used
for fine-tuning with the same threshold of 0.5 for
all labels.

A set of 10 base-models has been generated for
each homogeneous ensemble, each base-model
being fine-tuned on a newly resampled dataset.
The resampling is performed using the described
pseudo-stratified random sampling function, which
is used as a type of bagging technique (sampling
without replacement to generate the train and test
data). As the fine-tuning for the 10 base-models is
performed within a loop, to ensure independent
results, the model outputs and checkpoints are
deleted at the end of each fine-tune and the pre-
trained model type is re-initialized before starting
the fine-tuning for the next base model.

The base-model prediction arrays are obtained
from each ‘raw_output’ (as given by the prediction
outputs of the simpletransformers library) after
applying a sigmoid activation. We aggregate the
base-models as the mean of their prediction arrays
thus generating the ensemble model (which is also
a prediction array).

In the present study we use three types of opti-
mization: (i) we fine-tune (optimize) each classifier
using LRAP metrics (the average over each ground
truth label assigned to each instance, of the ratio
of true vs. total labels with lower score); (ii) we
use micro-F1 with thresholding to optimize the pre-
dictions on the expanded dataset and find the best
three models; (iii) to find the optimal prediction
threshold on the re-joined dataset, we use sample
averaged F1 as the harmonic mean of Precision
(P) and Recall (R) averaged over the sample size S
where Yi and h(xi) are the true and the predicted

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.label_
ranking_average_precision_score.html

Figure 4: Schematic of the workflow generating the
deep ensemble model.

Figure 5: Schematic of the workflow for test and infer-
ence using the deep ensemble model.

labels for an example xi: P = 1
S

S∑
i=1

Yi∩h(xi)
h(xi)

;

R = 1
S

S∑
i=1

Yi∩h(xi)
Yi

; F1 = 2 PR
P+R

The choice for the optimizations (ii) and (iii) was
made based on best results obtained using these
types of performance measures for the expanded
and re-joined datasets, respectively.

5.4 The workflows
The workflow for generating the ensemble model
of deep base-learners is shown in Figure 4 while
the workflow for testing and inference is shown in
Figure 5 . Both show a concise, intuitive overview
of the main steps in generating the models and
performing inference.

For inference, we load the saved models, gener-
ate the prediction array from each base model and
their ensemble as the mean prediction array. For
a given threshold in the range 0.1 - 0.9 we gener-
ate the predicted labels for the expanded dataset,
then aggregate (re-join) this back into the original,
while keeping all unique labels obtained from each
split text entry. The threshold optimization is per-
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formed by seeking the threshold that gives the F1
maximum (calculated as sample averaged).

6 Experiments

The ‘main’ datasets (A, B and C) have been sub-
sampled from each original dataset (ECtHR-A,
ECtHR-B and EUR-Lex, respectively) using the
pseudo-stratified sampling function at ratio_in=7,
extracting a ‘main’ dataset (Table 1) and a test
dataset (for inference) with a size of about 25-30%
of the ‘main’ dataset.

During fine-tuning, the ‘main’ dataset is split
into train/test using the pseudo-stratified sampling
function at ratio_in =5 to generate diverse models.
The train/test datasets are pre-processed (accord-
ing to the description in Section 5.2) obtaining ex-
panded datasets with a maximum text length of 120
words per entry. Fine-tuning is performed on the
expanded datasets optimizing the LRAP metrics
using model configuration arguments defaults from
the simpletransformers library.

Several types of deep ensembles are generated:
(a) homogeneous and (b) heterogeneous, where the
ensemble is created from base-models fine-tuned
on the same pre-trained model, or on different ones,
respectively. For each (a), and (b) two types of en-
semble predictions are then constructed: the ‘mean
model’ by averaging the prediction arrays of the 10
base-learners and the ‘best three’ model by averag-
ing the prediction arrays of the best three models.

The best three models are selected as those reach-
ing the highest micro-F1 values at the threshold that
maximizes micro-F1 on the expanded dataset, ob-
taining an optimal threshold at values of 0.2-0.3 for
the A and B datasets and of 0.5 for dataset C.

The ensemble prediction arrays are optimized us-
ing thresholding applied on the ‘re-joined’ dataset
with merged predictions, choosing as threshold the
value that maximizes the sample averaged F1. For
the A and B datasets the optimal threshold is 0.8-
0.85 while for dataset C the optimal threshold is
0.5. All predictions with probabilities above the set
threshold are kept for each instance.

7 Results and Discussion

Homogeneous ensemble models have been created
using the four pre-trained models considered. The
ensembles are aggregated as the mean prediction
over 10 models, the mean prediction over the best
three models, and compared to the best model. The

Expanded data Re-joined data

Mean Best3 Best Mean Best3 Best

RoBERTa 0.73 0.73 0.72 0.81 0.8 0.78
XLNet 0.73 0.73 0.71 0.81 0.81 0.78
BERT 0.73 0.66 0.73 0.81 0.81 0.78
ALBERT 0.72 0.73 0.72 0.81 0.78 0.81
Table 3: Optimised micro-F1 scores for dataset A (ex-
panded and re-joined data) on homogeneous ensembles.

Expanded data Re-joined data

Mean Best3 Best Mean Best3 Best

RoBERTa 0.71 0.71 0.69 0.79 0.79 0.77
XLNet 0.71 0.7 0.69 0.79 0.79 0.76
BERT 0.71 0.7 0.68 0.78 0.78 0.75
ALBERT 0.7 0.69 0.68 0.78 0.78 0.76

Table 4: Optimised micro-F1 scores for dataset B (ex-
panded re-joined data) on homogeneous ensembles.

Expanded data Re-joined data

Mean Best3 Best Mean Best3 Best

ROBERTA 0.74 0.74 0.73 0.79 0.78 0.78
XLNET 0.75 0.75 0.74 0.80 0.79 0.78
BERT 0.74 0.73 0.72 0.78 0.78 0.77
ALBERT 0.73 0.74 0.73 0.77 0.80 0.76

Table 5: Optimised micro-F1 scores for dataset C (ex-
panded and re-joined data) on homogeneous ensembles.

Expanded dataset Re-joined dataset

F1 scores micro macro weigh. micro macro weigh.

dataset A 0.74 0.67 0.73 0.82 0.75 0.82
dataset B 0.73 0.65 0.68 0.79 0.67 0.80
dataset C 0.75 0.67 0.74 0.79 0.71 0.81

Table 6: Optimized F1 scores for the heterogeneous
ensemble model using the Best 3 models from each
model type on datasets A, B and C.

best models are those with the highest micro-F1
values after applying thresholding.

Comparative results for threshold optimized
micro-F1 for the ensemble models calculated as
the ‘Mean’ (over the 10 prediction arrays), ‘Best 3’
(mean of best three models’ predictions) and ‘best’
(predictions from the best model) are shown in Ta-
ble 3, Table 4 and Table 5 for datasets A, B and
C, respectively. Table 6 shows F1 scores for the
heterogeneous ensembles built on the four types of
fine-tuned models using the mean prediction from
each ‘Best 3’ models).

While scores’ improvements between the ho-
mogeneous models and heterogeneous ones are
only within 1-2%, there is an important increase of
about 5-8% in scores between the expanded model
(based on the sequence split dataset) where aver-
age optimized micro-F1 is 0.73 and the one for the
re-joined data with micro-F1 averages at 0.81 (i.e:
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micro macro weigh. micro macro weigh.

dataset A 0.8 0.69 0.79 0.47 0.09 0.33
dataset B 0.76 0.64 0.75 0.44 0.09 0.29
dataset C 0.85 0.71 0.83 0.58 0.33 0.44

Table 7: Baseline scores for micro, macro and weighted
averaged F1 from sklearn LinSVC and MultinomialNB
multi-output methods.

values from Table 3).
The expanded dataset created from sequences

with their original labels generates another type
of ensemble (a type of over-sampling) which is
aggregated at prediction time by joining predic-
tions belonging to each original entry. This type of
ensemble appears to be more efficient than aggre-
gating (as a mean) prediction arrays.

In Table 7 we show results obtained for the same
datasets, using a strong baseline, the tf-idf text pro-
cessing with LinSVC linear support vector classifi-
cation from sklearn multi-label classification. The
LinSVC baseline has high scores, especially for
dataset C, as the LinSVC algorithm with the one-vs-
rest approach performs very well for datasets with
a low imbalance ratio (Table 1). Other multi-output
classifiers as ‘Multinomial Naive Bayes’ cannot
handle the data complexity and obtains low scores.

8 Conclusions

We performed multi-label classification on imbal-
anced datasets sub-sampled from legal text datasets
provided in LexGLUE, using deep learning ensem-
bles of base-learners built as fine-tuned transfer
models on four well-known NLP transformer mod-
els (BERT, RoBERTa, ALBERT and XLNet).

We designed a pseudo-stratified sampling
method for imbalanced multi-label datasets to re-
sample diverse datasets which were used to gener-
ate base-models for homogeneous deep-ensembles.

Using the GPUs on Google-Colab the training
times per epoch for the base models were in the
range of 2 - 15 min/epoch. Training times increase
with the number of instances as do the inference
times (between 1 min - 3 min per model), leading
to acceptable times for generating and using such
ensemble models.

The values for micro-F1 scores from homo-
geneous and heterogenous ensembles on the ex-
panded datasets reach close values that improve
very little from the ‘best model’ score (only by
1% - 2%). This also occurs for the scores on the
re-joined datasets. Such small differences in the

overall outcomes show the close performance of
the fine-tuned models, even when starting from dif-
ferent transformer models. These results were also
due to the threshold optimization applied, which
levels out the original difference in outcomes.

Nevertheless, there is an important score im-
provement between the expanded and re-joined
datasets, indicating that the ensemble generated
by text splitting can substantially improve classifi-
cation outcomes at aggregation time, as threshold
optimized scores for the re-joined dataset are 7%-
10% higher than those obtained on the expanded
dataset.

Overall, the best micro-F1 scores obtained on the
re-joined dataset reach 0.78-0.82 which are satis-
factory results for imbalanced multi-label datasets
of up to 50 labels. Higher scores can be obtained by
fine-tuning with optimized model hyperparameters
to obtain improved base-models.

The text length in each entry and the degree of
label imbalance play a significant role in the fine-
tuning performance. For the deep learning models,
dataset C (50 labels) with short mean text length per
entry and low imbalance obtained similar scores to
those for datasets A and B (10 labels) with larger
text length/entry and high imbalance. The LinSVC
baseline (using one-vs-rest scheme) obtained lower
scores on datasets A and B than on dataset C, due
to difficulties of binary-relevance type algorithms
on highly imbalanced data.

As we have considered small datasets, these can
only generate a limited amount of diversity, leading
to less variability in the ensemble models. To im-
prove results using ensembles, improved methods
to create diversity in datasets should be tested.
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Abstract

Understanding the links between datasets and
publications is a hard task. Yet it is very impor-
tant to improve dataset discovery and FAIR-
ness of research data. However, only a few
datasets with such high-quality links exist. Hu-
man annotations are the gold standard for pro-
ducing such links, but it is a time-consuming
manual task, much of which is spent reading
text that is not connected to dataset mentions
at all. In this paper, we propose a filter to
pre-screen scientific publications’ sections, so
that we can find candidates for dataset men-
tions reliably. For this, we test both BERT
and RoBERTa on sections content as well as
on sections title. The main challenge is the in-
herent imbalance in the data, which we tackle
using different imbalance handling techniques,
such as re-sampling and variations of the loss
function. The best result was obtained when
using RoBERTa on section contents by com-
bining re-sampling, balanced focal loss, and a
recall-biased validation metric to get a fairly
high recall and acceptable precision. The
source code and the best obtained model are
available here 1.

1 Introduction

Manual textual annotation is a very cumbersome
and expensive process, yet it acts as the gold stan-
dards that is used for training computational learn-
ing models (Pustejovsky and Stubbs, 2012). Un-
fortunately, this importance turned to be a bottle-
neck for NLP because the annotation is a time-
consuming, laborious, yet error-prone process. To
alleviate these difficulties, a lot of tools have been
introduced to pre-process the data in order to re-
duce the amount of human effort needed and to
make that effort more focused on the essential task
that can not be automated (Pan and Yang, 2009).

1https://github.com/YousefYounes15/
dataset_mention_detection

Detecting research dataset mentions in text (Fan
et al., 2022) is an example of an NLP task that
needs manually annotated data to train a model.

Research datasets play a crucial role in science.
They act as a unifying point that allows comparison
of different research ideas and also facilitate repro-
ducibility of results (Wilkinson et al., 2016). For
these reasons, the problem of finding datasets men-
tion in research papers has gotten more attention
recently (Zhao et al., 2018). To tackle this problem,
researchers like in (Färber et al., 2021)(Mesbah
et al., 2018) treat it as a domain-specific, super-
vised NER task that needs annotated dataset to op-
erate on. The Coleridge dataset 2 used in Kaggle’s
”Show US the Data” competition is an example of
such dataset in which research papers are annotated
with the datasets mentioned in them. One of the
challenges that annotators face when doing such
annotation is the sparsity of these mentions in sci-
entific text. By sparsity, we mean that most of the
texts do not have dataset mentions and only a small
amount contains such mentions. This sparsity has
negative consequences not only on the annotation
process but also on the annotation result. During an-
notation, the annotators spend a lot of time reading
texts that do not contain dataset mentions. Natu-
rally, the resulting annotated dataset is imbalanced
towards the samples without mentions.

One way to help annotators is to perform block-
ing (Azzalini et al., 2021) in order to pick the texts
that contain dataset mentions so they can focus on
them. To achieve this, we define a binary classifica-
tion task in which we classify text as belonging to
the negative class (N) when it does not have dataset
mention and to the positive class (P) when it has.
For example, the following excerpt ”...classification
problem on a subset of ADNI database consisting

2https://www.kaggle.com/c/
coleridgeinitiative-show-us-the-data/
data
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of 531 subjects with sMRI and DTI scans...” makes
the paper’s section that contains it belongs to the P
class since ANDI is an abbreviation for a dataset.
From here onward, N and P will be used to refer to
the negative and positive classes respectively.

Our goal is to get a binary classifier with the
highest possible P-recall and high precision as well.
Such classifier will help reduce the time and effort
needed for the manual annotation. To achieve this
goal we chose to work with language models as-
suming that the context plays a vital role for the
task at hand. Since our data is imbalanced, we used
the chance to compare the performance of two pop-
ular models: BERT (Kenton and Toutanova, 2019)
and RoBERTa (Liu et al., 2019) on such data. To
the best of our knowledge, there is no such com-
parison in the literature. We have experimented
on different parts of sections content and also on
the sections title to find out which settings work
better. We also have used different imbalance rem-
edy techniques like re-sampling and cost-sensitive
learning i.e., balanced focal loss.

The contributions of this paper can be outlined
in the following points:

• Re-sampling has more effect than cost-
sensitive learning on language model-based
classifiers.

• We can not depend on sections title to perform
this classification using language models, al-
beit dataset mentions are more present under
particular section titles.

• RoBERTa outperforms BERT even when the
data is imbalanced.

• The best results with a P-recall of 86% were
achieved with RoBERTa when combining re-
sampling, cost-sensitive learning, and a recall-
oriented validation metric.

The rest of this paper is organized as follows.
Section 2 reviews how text classification was im-
proved by word embeddings before it summarizes
bias handling techniques. Section 3 describes the
data that we used in the paper before it gives de-
tails on the different loss functions used in the ex-
periments. Section 4 describes the experimental
settings then it reports the results of the different
experiments. After that, the results are discussed in
section 5. Finally, the paper concludes in section 6.

2 Related Work

2.1 Text Classification with Deep Learning
Text classification is a supervised machine learn-
ing task in which a given piece of text is predicted
to belong to a class of a set of predefined classes
(Vijayan et al., 2017). To perform this task, many
traditional algorithms such as Naive Bayes, Sup-
port Vector Machines (SVM), Tree-based models
(Kowsari et al., 2019); and modern neural-based al-
gorithms such as RNN, CNN, DBN have been used
(Minaee et al., 2021). All of these models share
a common problem to which each has devised a
different solution which is text representation.

Transfer learning is a learning framework that
revolutionized the field of machine learning by
breaking the isolation of both tasks and models
(Pan and Yang, 2009). It enables a model which
is trained on one task to transfer the knowledge it
gained to another related task via fine-tuning (Tor-
rey and Shavlik, 2010). As a sub-field of machine
learning, NLP witnessed a huge leap due to transfer
learning thanks to the introduction of pre-trained
word embeddings.

Word embeddings are one of the most success-
ful examples of transfer learning because they
are learned in one task and used to solve other
tasks. Earlier word embeddings such as word2vec
(Mikolov et al., 2013a)(Mikolov et al., 2013b) and
GloVe (Pennington et al., 2014) represent a word
by a high-dimensional vector. The similarities be-
tween words are reflected as similarities between
their vector representations. These embeddings are
usually used to initialize new models but the whole
model needs to be re-trained from scratch on the
new data. That is why they are known as shallow
transfer learning. Contextual embeddings are an
improvement over word embeddings in which the
context of the word is involved in its representation
(Liu et al., 2020). Pretrained language models such
as ELMo (Peters et al., 2018), GPT-n (Radford
et al., 2019)(Brown et al., 2020), BERT (Kenton
and Toutanova, 2019), RoBERTa (Liu et al., 2019)
are used to obtain this type of representation. Un-
like word embeddings, these models are usually
used as part of new models which are fine-tuned on
the data for a particular task. This significantly re-
duces the need for huge training data thus reducing
the computational cost.

The great success achieved by language models
clearly indicates the vital role played by context in
natural language processing. Dataset mentions in
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the scientific text are not an exception. Although
there is no standard method to mention a dataset in
a research paper, we assume that there is some kind
of unwritten rules that govern the way researchers
mention a dataset. These rules have something to
do with the context in which the dataset title or
label is mentioned. For this reason, we make use of
language models to solve our problem. More par-
ticularly, the focus is on BERT and RoBERTa since
they provide a contextual embedding that proved
to be successful for many NLP tasks. In addition,
we take the chance to compare the performance of
these two models on imbalanced data.

The classifiers used in the experiments are con-
structed by adding one linear layer on top of the
base version of BERT and RoBERTa. So in the rest
of this paper, we will be using BERT and RoBERTa
as shortcuts to indicate the classifiers based on
them. While this is a very straightforward way to
turn these into classifiers, due to the inherent limi-
tation of the language model, they can only handle
a limited input of up to 512 tokens at a time. One
way to address this issue, which was introduced in
(Sun et al., 2019), is to select a representative set
of tokens from the document that results in the best
quality for the classifier. One of our intentions is
to use and extend this work for imbalanced data.
Another approach is to get a proper document rep-
resentation by dividing the text into equally-sized
chunks then using word-level encoder and pooling
followed by chunk-level encoder and pooling as
illustrated in (Su et al., 2021).

2.2 Handling Class Imbalance

Class imbalance is a feature that characterizes many
labeled datasets. This imbalance has a direct ef-
fect on the classifier so many techniques have been
proposed to deal with it. These techniques fall un-
der two categories: re-sampling and cost-sensitive
learning (Iikura et al., 2020).

Re-sampling methods try to address the problem
by duplicating samples of minority classes, remov-
ing samples of majority classes or generating new
samples of minority classes. These methods have
been used successfully for text classification e.g.,
(Estabrooks et al., 2004)(Tepper et al., 2020). But
the removal and duplication of samples change the
data distribution and can cause the models to over-
fit the minority classes. For this reason, approaches
like in (Chawla et al., 2002)(Guo and Viktor, 2004)
have been introduced to produce synthetic data. In

this work, we will use sample removal and dupli-
cation and leave sample generation for future work
because text generation is out of the scope of this
paper.

Cost-sensitive learning methods approach the
problem by injecting data bias in the cost function
also known as the loss function. The loss function
condenses the whole learning system into a single
number called the loss whose value must be mini-
mized in order to improve the performance of the
model. Cost-sensitive learning tailors the loss in
favor of a particular class(es) by multiplying it by
a weight value. One way to choose that weight is
to use the inverse class frequency like in Balanced
Cross Entropy (BCE) (Phan and Yamamoto, 2020).
Another way is to use the difficulty of the sample as
a weight like in Focal Loss (FL) (Lin et al., 2017).

To the best of our knowledge, a comparison of
the effect of imbalance handling techniques on
BERT- and RoBERTa-based classifiers was not per-
formed. In this work, we investigate empirically
the effect of using re-sampling and cost-sensitive
learning on such classifiers.

3 Methodology

This section describes the data and loss functions
that are used in this study. It starts by explaining
how the data is prepared. Then an overview of the
loss functions is presented.

3.1 Data

The experiments in this paper use the Coleridge
dataset. This dataset consists of a collection of re-
search papers (∼19.6 K) out of which 14.3K papers
are unique and 5.3K papers are duplicated due to
the fact that they have multiple dataset mentions.
Each of these papers is stored in a JSON-file that
wraps each section’s title and content in a JSON
object. In addition to the JSON files, there is a CSV-
file that contains basic metadata (file name, paper
title, dataset title, dataset label, cleaned dataset
label) about each paper. To prepare the data for
our experiments, it was processed as follows: scan
through the sections of each paper to extract the
title and text. Then a binary label is generated for
every section. This label contains (1) if a dataset
associated with the paper is mentioned in the sec-
tion either using its title or its label, otherwise it
contains (0). The final dataset that we got con-
tains approximately 233K samples. Each sample
consists of the following pieces of information:

80



(file name, paper name, section title, section text,
dataset mention, label). The sections are consid-
ered documents whose contents and titles are used
in the experiments. Using sections as our basic
text units is a compromise between using all of
the paper, which would be trivial, and sentence
level, which often does not have enough informa-
tion to make the decision and introduce even more
bias. Sections can be easily identified, even when
they are not part of the metadata of the publication
(Mathiak et al., 2009).

Before we run experiments on this dataset, we
divided it randomly into two parts: train and test
set. The test set accounts for 20% of the dataset
(∼ 47K samples) and is used to test the classifier
after training is complete. This testing set is the
same for all experiments. The remaining 80% (∼
187K samples) is kept for training and validation
sets. During training, 80% of this data is selected
randomly to be used for training and the remaining
are used for validation. Since the splitting is done
randomly, different sections from the same paper
could appear in train, val and test sets. In all oper-
ations involving randomization, a seed is used to
ensure reproducibility.

Inspecting the data, we have found that among
the existing 233297 samples only 27856 samples
contain dataset mentions i.e., they belong to the P
class. We also have found that the majority of the
sections (∼200K) contain long text. In summary,
only 12% of the samples in the data belong to the P
class. Besides that 85% of the samples contain long
text that will represent a challenge to the models
used in this work.

3.2 Loss Functions

Focal Loss (FL) was introduced in (Lin et al., 2017)
to handle the bias of the object detection problem
in computer vision. In this study, we apply it to
a binary text classification along with three other
functions, which are also variations of cross en-
tropy (Murphy, 2012). They can be generalized in
one formula, Eq.1, from which different loss func-
tions can be derived by assigning different values
to the parameters.

BFL(pt) = −αt(1− pt)γ log(pt) (1)

Equation 1 can be split into three components.
The main component is the binary cross entropy
−log(pt) where pt holds either the model’s esti-
mated probability (p ∈ [0, 1]) for class P or its

complement (1 − p) for class N. Another part is
the balancing factor αt which, when it is activated,
takes a different positive non-zero value for each
class to reflect its weight. But αt could be deacti-
vated by giving it the same value for all classes. In
the context of this paper, we will write αt = (x, y)
to indicate that x is the weight for class N and y
is the weight for class P. Since we have only two
classes, we will set αt = (1, 1) when the class’s
weight is not considered. Otherwise, αt will be
assigned values that can be chosen by the user or
set by some criteria like the inverse class frequency
(Phan and Yamamoto, 2020). The third part is the
modulating factor (1− pt)γ where γ >= 0 is the
focusing parameter. This modulating factor adjusts
the contribution of the sample in the loss based
on its difficulty. For difficult samples about which
the classifier is not certain, pt will have low values
which will increase the modulating factor resulting
in more contribution of these samples in the loss.
While for easy samples, pt will have high values
and the modulating factor approaches zero thus re-
ducing the contribution of these samples in the loss.
Now let us derive the loss functions.

Cross entropy is used as the loss function in
the BERT- and Roberta-based classifiers. It takes
neither the class’s weight nor the samples’ difficulty
into account. It can be derived from Eq.1 by setting
αt = (1, 1) and γ= 0. Balanced cross entropy
considers the class imbalance but not the difficulty
of the samples. To derive it from Eq.1, we set γ = 0
and αt could take different values. We will use the
classes’ percentages in the data αt = (0.12, 0.88)
beside other values in the experiments (cf. section
4.4). Focal loss pays attention to the difficulty of
the sample (γ > 0) but not on the weight of the
classes (αt = (1, 1)). Finally Balanced Focal Loss
(BFL) brings everything together so αi > 0 for
i = 0, 1 and γ > 0.

4 Results

In this section, we start by describing the experi-
mental settings. After that, the results of different
experiments are presented.

Our goal is to find the best model for selecting
texts with dataset mentions. The major challenges
in this are the length of the texts and the inherent
imbalance in the data (cf. section 3.1). We start by
experimenting with the section contents to find the
text features that give the best results. Then we use
these features to select the best sampling rates and
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loss function settings. After that, we combine all of
these results together. Additionally, we experiment
with the section titles using different configurations.
Finally, we try to improve the results by changing
the validation metric.

4.1 Experimental settings
All experiments were implemented in Pytorch and
ran on a 4-GPU machine with a GeForce RTX 2080
Ti with 11 GB RAM each. The classifiers were
trained for 4 epochs using the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 2x10-5 to overcome the catastrophic forgetting
problem following the recommendation of (Sun
et al., 2019). Each epoch consists of one full scan
of the training set to compute the loss followed by
one pass through the validation set then the accu-
racy is used as the validation metric to measure
the classifier progress. Different loss functions de-
scribed in section 3.2 will be used. To make full use
of GPU memory, the batch size was chosen to be
32 for experiments conducted on section contents
and 256 for the ones on section titles (cf. section
4.6). We have made use of the same seed for all
operations that involve randomization to make the
experiments repeatable. In some experiments, we
do diverge from these settings by changing the val-
idation metric which will be clearly stated in the
corresponding section.

To make sure that our results are reliable, we
adopt the following strategy. We start by running
a set of initial experiments to help us find settings
that produce the best results. If these settings were
in line with results obtained from previous research
we use them; otherwise, we run experiments using
5-fold cross-validation to verify our results and use
settings that produce the best average result on the
test set. In all experiments, we use the test data to
report the values of precision, recall and F1-score
for both the P and N classes. We also report the
accuracy (ACC) and Matthew Correlation Coeffi-
cient (MCC) metrics. Since the model is intended
to filter samples of the P class, we are mainly in-
terested in improving the P-recall. So we will be
comparing models based on their P-recall but in
case of a tie, other metrics will be used.

4.2 Feature Selection
In this subsection, we investigate which of the text’s
features serve our goal the best. Particularly, we
are interested in token selection, as we try to keep
within the 510 token limit imposed by BERT.

The sections content are used as input for the
classifier. In this context, every section is consid-
ered a document by itself (cf. section 3.1). BERT
accepts a maximum input of 512 tokens (cf. sec-
tion 2.1), yet most sections are longer than this (cf.
section 3.1). We also know that the choice of in-
put tokens for BERT has an impact on the quality
of the classifier (Sun et al., 2019). As such, we
want to find out which part of the text achieves the
best classification results. Working on balanced
data, it was found in (Sun et al., 2019) that pick-
ing three-quarters of BERT’s input tokens from the
beginning of the document and one-quarter from
the end of the document results in the best clas-
sification outcome. Since our data is imbalanced,
we want to examine whether that imbalance has
an impact on the choice of the tokens. To do so,
we run several experiments using different parts of
the sections. The results reported in Table 1 show
that the tokens (F 382+L 128) produced the best
result (P-recall = 0.79 and MCC = 0.835) for this
dataset. This complies with the result obtained in
(Sun et al., 2019) which implies that the imbalance
nature of the data has no impact on the choice of
the input tokens for the task at hand. Based on that,
we consider BERT with these input settings as our
base model. The experiments to follow will use
and build upon these settings.

4.3 Handling Imbalance by Under- and
Oversampling

As mentioned in the data description, most of the
text does not contain dataset mentions and only
12% of the sections belong to the P class. One way
to overcome this imbalance is to use re-sampling.
Here we will over-sample the P samples, downsam-
ple the N ones and combine the two together to find
the sampling ratio that gives the best result. Build-
ing on the results from the previous experiments,
we have used F 382+ L 128 tokens of sections texts
as input to BERT. We have run several experiments
with different re-sampling settings to find that the
best re-sampling factor for the dataset at hand is
(4:0.55) which is to quadruple the P samples and
take more than half of the N samples. The cor-
responding approximated ratio for this sampling
factor obtained by dividing the number of positive
samples by the number of negative samples is (1)
indicating that the numbers of P and N samples are
roughly the same. Putting it differently, the model
works best when the dataset is balanced. To get a
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Tokens Precision Recall F1-Score ACC MCC
N P N P N P

F 510 0.97 0.92 0.99 0.78 0.98 0.84 0.97 0.827
L 510 0.97 0.92 0.99 0.74 0.98 0.82 0.96 0.808
F 255 + L 255 0.97 0.92 0.99 0.79 0.98 0.85 0.97 0.834
F 128 + L 382 0.97 0.92 0.99 0.79 0.98 0.85 0.97 0.834
F 382 + L 128 0.98 0.93 0.99 0.79 0.98 0.85 0.97 0.835

Table 1: Feature Selection for Classifying Section Excerpts with BERT. In the “Tokens” column, F stands for First
and L for Last. F 510 means the first 510 tokens. L 510 means the last 510 tokens.

reliable result, we ran an experiment using 5-fold
cross-validation using a BERT-based classifier and
reported the average testing result in Table 2. Al-
though the accuracy is 95%, the P-recall is only
83%. This is the highest P-recall value that could
be obtained using re-sampling as a technique to
surpass the imbalance problem.

4.4 Imbalance Handling with Loss Functions

Loss-sensitive learning is another known technique
to handle Imbalance. Experiments ran so far used
cross entropy to compute the loss. Here we ran
several experiments with different loss functions
via changing the values of αt, γ in Eq. 1 as ex-
plained in section 3.2. The goal is to find the best
loss function settings for our task. To achieve this
goal, we experiment not only with BERT but also
with RoBERTa. Because, unlike text features and
sampling factor which are data-related issues, the
loss function is part of the model so we want to
compare its effect on the two models.

From the initial experiments in which differ-
ent values for αt and γ were utilized, we found
that when using the focal loss i.e., (αt = (1,1) and
γ = 2), RoBERTa outperformed BERT with re-
spect to P-recall. Moreover, with balanced cross
entropy (αt = (.12, .88) and γ = 0) both models
produce similar accuracy and P-recall. The best
results for both models were obtained when BFL
(αt = (.12,.88), γ=4) is used, with BFL the P-recall
value was 77% and 78% for BERT and RoBERTa
respectively. Using higher values for γ i.e., γ > 4,
the P-recall started to decline for both models. We
also tried to improve RoBERTa results using differ-
ent values for αt but we were not able to get better
results. To make sure that the best results that we
obtained using BFL (αt = (.12,.88), γ=4) are stable
and not due to some randomness, We ran an experi-
ment using 5-fold cross-validation and reported the
average of the results obtained on the testing data

in Table 3. These results show that RoBERTa is
outperforming BERT with 1% increase in P-recall.
The next step is to combine the best settings found
so far in one experiment.

4.5 Combining Best Settings

In previous experiments, we have seen the effect
of using re-sampling and BFL individually. In this
subsection, we will combine all the results that we
obtained so far. That is to use 382 tokens from
the beginning of the section and 128 tokens from
the end as the model’s input. Furthermore use the
sampling factor (4:0.55) that balanced the dataset
i.e., ratio=1. In addition, use balanced focal loss
with αt = (.12, .88) and γ = 4. We have run an
experiment using 5-fold cross-validation for both
BERT and RoBERTa with these settings reported
the average of all metrics in Table 4. The results for
RoBERTa and BERT are competitive in general but
RoBERTa achieved 3% increase in P-recall over
BERT with these settings.

4.6 Classifying Using Section Titles

Working on the training data, we have noticed that
there is a tendency among researchers to mention
datasets under sections with specific titles such
as Introduction, Methodology, Discussion, Data,
Datasets, Results, and Experiments among others.
Based on that, we had the hypothesis that we can
depend on the section titles to decide whether a
section contains dataset mentions or not. To test
this hypothesis, we experimented using four config-
urations (data as is, data with sampling, BFL, BFL
with sampling) on both models. The best P-recall
(68%) was obtained by RoBERTa when using BFL
with sampling. But lower values of other measures
such as P-precision = 0.22 and MCC=0.244 indi-
cate that using the titles with these configurations to
do the classification task at hand is not promising.
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Precision Recall F1-Score ACC MCC
N P N P N P

0.98 0.80 0.97 0.83 0.97 0.81 0.95 0.789

Table 2: Average Testing Results using BERT when Data is Balanced using Re-sampling

Model Precision Recall F1-Score ACC MCC
N P N P N P

BERT 0.97 0.93 0.99 0.76 0.98 0.84 0.97 0.821
RoBERTa 0.97 0.93 0.99 0.77 0.98 0.85 0.97 0.830

Table 3: Average Testing Results Using Balanced Focal Loss with αt = (.12, .88) and γ = 4

4.7 Experimenting With Validation Metrics

So far the best-known imbalance handling tech-
niques were used individually and combined but
we were not able to achieve a P-recall above 83%.
Here we will add a new idea: that is to select the
validation metric used on the validation set to be
in line with our goal. Since our goal is to have
a classifier that is able to find the overwhelming
majority of the P samples, recall represents an ex-
act match for this goal so we will use it as the
validation metric. We ran an experiment using
5-fold cross-validation for each model on both sec-
tion contents and titles. The average results of the
experiments are documented in Table 5. Again,
RoBERTa outperformed BERT on sections content
with a P-recall of 85%. In other words, using recall
as a validation metric resulted in 2% improvement
on RoBERTa’s P-recall reported in Table 4. Sim-
ilarly, for the experiment that used the titles, the
best P-recall obtained by RoBERTa was 70% which
means a 2% improvement compared to the result
from section 4.6.

To further improve the results, we have weighted
the recall three times more than precision by using
F-Beta score as the validation metric. With this,
we ran the experiments and reported the results in
Table 6. This modification improved the P-recall
for RoBERTa on sections content by 1% with 5%
decrease on P-precision compared to Table 5. So
RoBERTa-based classifier on the sections content
with Fbeta is the final result of this paper.

5 Discussion

The re-sampling experiments in section 4.3 show
that there are limits for oversampling the P-samples
and under-sampling the N-samples after which
the performance of the classifier starts to decline.
These limits correspond to having the same num-

ber of P- and N-samples i.e., achieving perfect bal-
ance, which is the expected outcome. The average
classifier performance obtained when re-sampling
balances the dataset is 83% P-recall and 80% P-
precision see Table 2. This is better than the orig-
inal results (79% P-recall) see table 1, but also
encourages us to find even better ways to address
the issue.

The experiments with loss functions in section
4.4 show that loss functions have more effect on
RoBERTa than on BERT. As a side effect, we
find that RoBERTa is better than BERT when deal-
ing with imbalanced data. Nevertheless, using re-
sampling with BERT produced better P-recall com-
pared to using BFL with both BERT and RoBERTa.
So we can conclude that re-sampling is actually
more effective than using BFL in this particular use
case. However, as seen in the experiments in sec-
tion 4.5 combining BFL and re-sampling together
improves the overall performance. RoBERTa out-
performed BERT with 3% increase on P-recall
see Table 4. That means when dealing with bal-
anced data, the impact of the used loss function on
RoBERTa is more than on BERT.

Starting from section 4.6, the experiments in-
volved section titles to do the classification task.
In these experiments, RoBERTa produced better
P-recall than BERT. But the best P-recall value
obtained was 70% is 16% lower than P-recall ob-
tained on section contents. This is not surprising
due to the lower amount of linguistic knowledge
contained in the section titles compared to the sec-
tion contents. This is in contrast to the findings in
(Galke et al., 2017), where they have very promis-
ing results with only the titles, but also a very dif-
ferent classification task not related to dataset men-
tions. In section 4.7, the experimental results show
that changing the validation metric has a good im-
pact on the results of both models. When weighing
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Model Precision Recall F1-Score ACC MCC
N P N P N P

BERT 0.97 0.81 0.97 0.8 0.97 0.80 0.95 0.779
RoBERTa 0.98 0.75 0.96 0.83 0.97 0.78 0.95 0.757

Table 4: Average Testing results using a combination of re-sampling and Balanced Focal Loss.

Setting Model Precision Recall F1-Score ACC MCC
N P N P N P

BFL BERT 0.97 0.90 0.99 0.77 0.98 0.83 0.96 0.815
RoBERTa 0.97 0.91 0.99 0.78 0.98 0.84 0.97 0.820

BFL+S+C BERT 0.97 0.75 0.96 0.82 0.97 0.78 0.94 0.749
RoBERTa 0.98 0.68 0.94 0.85 0.96 0.75 0.93 0.721

BFL+S+T BERT 0.94 0.22 0.70 0.68 0.80 0.34 0.70 0.252
RoBERTa 0.94 0.21 0.66 0.70 0.78 0.32 0.66 0.232

Table 5: Average Testing Results Using Re-sampling and Balanced Focal Loss with Recall as Validation Metric.
BFL stands for Balanced Focal Loss, C for Content, T for Titles, and S for Sampling.

Setting Model Precision Recall F1-Score ACC MCC
N P N P N P

BFL+ S + C BERT 0.98 0.73 0.96 0.81 0.97 0.77 0.94 0.741
RoBERTa 0.98 0.63 0.93 0.86 0.95 0.72 0.92 0.692

BFL+ S + T BERT 0.94 0.23 0.70 0.67 0.81 0.34 0.70 0.255
RoBERTa 0.94 0.23 0.72 0.63 0.81 0.33 0.71 0.238

Table 6: Average Testing Results Using a Combination of Best Settings with F-beta as Validation Metric

the recall three times more than the precision using
the F-beta score, we were able to obtain a classi-
fier with 86% P-recall and 63% P-precision using
RoBERTa. In other words, using such a filter will
reduce the annotation time by more than 50% at
the price of losing 14% of the positive samples.

We went further to investigate why the model
was not able to pick the 14% P-samples by looking
at some false negative cases which have dataset
mentions but the model classified them as not hav-
ing. We have found that the model has difficulty
when the dataset is mentioned indirectly like in
”...Empirically, Schwellnus and Arnold ( 2008 )
uses data from OECD’s firms to show that increases
in corporate taxes negatively impact firms...”. Here
the source of the data is used but the actual name of
the dataset is not used. In another case, the distance
between the name of the dataset and the word that
refers to it was quite long like in ”...Studies that
have collected longitudinal data tend to be based
on relatively small samples, whereas the E CL S - B
provided a large, nationally representative sample
a...”. Finally, we noticed that the dataset acronyms
represent a challenge for the tokenizer.

6 Conclusion and Future Work

The re-sampling experiments in section 4.3 show
that the models work best when the data is bal-
anced. The experiments with loss functions in
section 4.4 show that, with language models, us-
ing re-sampling to handle imbalance is more ef-
fective than using loss functions. In general,
RoBERTa kept outperforming BERT when using
imbalance handling techniques. The set-up with
which RoBERTa classifier reached the highest P-
recall (86%) was to use a balanced dataset of sec-
tion contents with a proper loss function and a
validation metric that is compatible with the task’s
goal. Particularly, we used F-beta as the validation
metric with recall weighted three times more than
precision. We are planning to test this filtering al-
gorithm with real-life annotators next. The idea is
to provide them with candidates for extracts from
full-text publications that allow them to efficiently
find dataset mentions and annotate them. In the
long run, we are interested in not only the dataset
mentions themselves but also to enrich the men-
tions with additional metadata, such as direct links
to the datasets.
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Abstract

Pre-trained models based on the Transformer
architecture have achieved notable perfor-
mances in various language processing tasks.
This article presents a comparison of two pre-
trained versions for French in a three-class clas-
sification task. The datasets used are of two
types: a set of annotated verbatim transcripts
from face-to-face interviews conducted during
a market study and a set of online posts ex-
tracted from a community platform. Little work
has been done in these two areas with tran-
scribed oral corpora and online posts in French.

1 Introduction

Opinion mining has recently undergone a change
with the rise of deep learning and, especially, the
use pre-trained Language Models (Vaswani et al.,
2017). The use of the latter such as ELMO (Peters
et al., 2018) and BERT (Devlin et al., 2018) has
led to significant improvements on a wide range
of NLP tasks for the English language, from re-
lation extraction to document classification (Peng
et al., 2019; Laskar et al., 2020). French variants
such as FlauBERT (Le et al., 2020) and Camem-
BERT (Martin et al., 2019) were proposed later
on.

In this work, we are interested in the classifica-
tion of two types of data as being either in favour
(motivation), either not in favour (barriers) or in
favour on the condition that (condition) :

• Verbatim transcripts from face-to-face inter-
views conducted in the context of a market
potential study of an innovative product using
natural language processing methods (NLP).

• Online posts comes from a community plat-
form called Yoomaneo.1

1https://www.yoomaneo.com/

Since we work with French data, we propose to
compare and analyse the performance of two pre-
trained versions for French. Additionally, since the
collected data is small, we propose to augment the
data with different augmentation techniques.

Contribution: This paper aims to compare and
analyse the performances of two french BERT mod-
els on two different types of data.

2 Dataset : Constitution and Annotation

2.1 Dataset origin: Verbatim transcript
The dataset used to build and evaluate the French
BERT models in this work comes from a set of
4367 verbatim. These verbatim were manually
extracted from 75 transcripts2 of face-to-face inter-
views. 3 To use this dataset for our research task,
we conduct a human evaluation. We gather 6 eval-
uators and create two subunits of 3 annotators and
add one more4 to balance the evaluation of the two
groups. We ask each group to review monthly 200
verbatim from the 4367.

Evaluation rules:
Only the verbatim whose classification obtained

an interrater agreement according to the following
rules were kept. Each verbatim of our initial corpus
(4367) must be evaluated by at least 3 people. If
a class (barrier, motivation or condition) results in
an agreement greater than or equal to 50% for a
verbatim and there is not a 50/50 on it, the selected
verbatim and the assigned class is selected. On the
other hand, if the interrater agreement is less than
50% or if there is 50/50 on two labels, the verbatim
is eliminated from the corpus. 1578 out of 4367
verbatim transcripts have been evaluated, and only
839 verbatim transcripts obtained an agreement

2434 081 tokens.
3The interviews were conducted as part of different mar-

ket potential studies catering various innovative products in
the field of electricity, health, electrical goods, gerontology,
automatism and pastry.

4We called him the common annotator since his role is to
fill the empty space left by one of the six initials annotators.
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greater than or equal to 50%. The distribution of
the corpus is given in Table 1.

Classes Number of verbatim
Barriers 189
Motivation 407
Condition 243

Table 1: Number of verbatim per categories.

2.2 Dataset origin: Online posts

Yoomaneo is a free community platform open to
all. It was created in 2020 by the company Ixi-
ade.5 Yoomaneo was created to build a database of
individuals willing to participate in studies on Inno-
vation. Ixiade is responsible for the recruitment of
the participants of the studies, who are then invited
to download the application. For our case, 755 re-
sponses or posts were extracted from Yoomaneo.
These posts come from 4 different projects which
focus on the evaluation of different innovative con-
cepts in 3 different domains: health, well-being
and electrical (2 projects).

Evaluation rules The collected posts were then
given to 3 research fellows to evaluate. The evalu-
ation procedure is similar to the one mentioned in
section 2.1. Only the posts which received at least
the same evaluation (same category when anno-
tated) were kept. As a result, of the 755 evaluated,
433 were assigned to the motivation class, 112 to
the barrier class, 97 to the condition class, 65 were
deemed unclassifiable, and 48 received no agree-
ment. The distribution of the corpus is given in
Table 2.

Classes Number of verbatim
Barriers 112
Motivation 433
Condition 97

Table 2: Number of verbatim per categories.

3 Data Augmentation

Data amplification involves all the techniques for
amplifying the amount of data available by adding
slightly modified copies of the original data (Li
et al., 2021) or artificially generating data from
the original data through transformations (Taylor
and Nitschke, 2018) with the goal of increasing

5https://www.ixiade.com/

the size of the dataset. It has been used in various
fields such image classification (He et al., 2016),
speech recognition (Park et al., 2019), etc. In this
work, 4 different popular augmentation methods
have been implemented and adapted for text clas-
sification for the French language (Bayer et al.,
2021): synthetic noise (Feng et al., 2020; Belinkov
and Bisk, 2017), synonym replacement (Wei and
Zou, 2019; Feng et al., 2020; Coulombe, 2020),
random trio techniques (Feng et al., 2020) and back-
translation (Mercadier, 2020; Marivate and Sefara,
2020), (Feng et al., 2020), (Wei and Zou, 2019),
and (Marivate and Sefara, 2020). To our knowl-
edge, most of the mentioned techniques have only
been applied to English data reviews and not on the
type of data this work used: verbatim transcripts
and online posts.

3.1 Synthetic noise

For each verbatim transcript in our training dataset,
we randomly delete, insert and swap characters
according to a replacement percentage rate. We
produce for a verbatim transcript 5%, 10%, and
15% noise variations.

3.2 Random trio techniques

For random trio techniques, we randomly remove
a word which is not a stopword, insert a random
synonym of a word into a random position in the
verbatim transcript and swap the position of two
words with a percentage rate of 5% (5% of the
words are changed).

3.3 Replacement methods

Lexical replacement approach is a technique that re-
places a word or words in a text with similar words.
Most works (Kolomiyets et al., 2011; Zhang et al.,
2015) replace words in the original text with their
synonyms using WordNet (Esuli and Sebastiani,
2007). Since we deal with French data, we used the
lexical resource DBnary (Sérasset, 2012; Sérasset
and Tchechmedjiev, 2014). DBnary is a large lex-
ical resource which provides multilingual lexical
data extracted from Wiktionary. The dataset con-
tains extracts from 22 Wiktionary languages. We
replace only adjectives, adverbs, verbs and nouns
with a randomly chosen synonym of the same POS
provided by DBnary. We use Stanza (Qi et al.,
2020) for tagging.
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3.4 Back-translation
Back-translation (Sennrich et al., 2015) consists
in translating a sentence from a source language
to a target language. The sentence obtained after
translation from the source language to the target
language is then translated back into the source lan-
guage. This approach makes it possible to obtain
different variants of the same sentence. We use
Deepl6 translation service web to produce those
new data for our training dataset. We used all the
languages provided by Deepl, approximately 25
languages.

Method Text
Original Tout à fait. Après il peut y avoir une application

pour les IPAD, et une autre pour les smart phone,
c’est pas le même usage.

Synthetic Noise Tout à faeit. Après il put y avoir upne applictaiown
pour lhes IaPAD, et une autre pour les
smart phone, cv’est pas le même usage.

Random trio Tout à fait . Après il peut y avoir
une usage pour les IPAD, et une autre
pour les smart phone , c’ est pas le même application.

Synonym replacement Tout à fait . Après il peut y avoir une
application pour les IPAD , et une autre pour les smart
phone , c’ est pas le même emploi .

Back-translation C’est vrai. S’il existe une application pour iPad
et une application pour smartphone, il ne s’agit
pas du même travail.

Table 3: Example of a verbatim transcript and its vari-
ations using our augmentation methods. Changes are
bolded.

4 Experimental Setup

We chose 4 data augmentation techniques and 2
Pretrained Models (FlauBERT and CamemBERT)
for this experimental work.

4.1 Data splitting and augmentation

Methods Training Testing
Original 503 168
Synthetic Noise 1981 168
Random trio 8024 168
Synonym replacement 6822 168
Back-translation 11 236 168

Table 4: Overview of the augmented datasets for the
verbatim dataset.

We divide our dataset into 3 subsets: train, dev
and test (respectively 60%, 20%, 20%). We aug-
ment only the training set. Table 3 gives an example
of verbatim transcripts generated using the differ-
ent augmentation methods mentioned above. Table

6https://www.deepl.com/fr/translator

4 and 5 gives an overview of the training size per
augmentation method.

Methods Training Testing
Original 384 129
Synthetic Noise 1465 129
Random trio 5481 129
Synonym replacement 3854 129
Back-translation 7691 129

Table 5: Overview of the augmented datasets for the
online posts dataset.

4.2 Pretrained Models and Finetuning

Model description. FlauBERT (Le et al., 2020) is
a French BERT model. It was trained on 71 GB of
French text corpus. The corpus consists of 24 sub-
corpora covering diverse topics and writing styles
from formal and well-written text (e.g. Wikipedia
and books).7 CamemBERT is also a language
model for French based on the RoBERTa (Liu et al.,
2019) architecture pretrained on the French cor-
pus OSCAR (Suárez et al., 2019) (138 GB) and
CCNET (Wenzek et al., 2019) (135 GB). Both
FlauBERT and CamemBERT were trained on the
masked Language Modeling (MLM) task.

Architecture. For our task, we append the rel-
evant predictive layer on top of CamemBERT’s
and FlauBERT’s architecture. We fine-tune all the
different models to follow the process described
by Devlin et al. (2018) and followed by Le et al.
(2020). The classification head for FlauBERT con-
sists of the following layers, a dropout, a linear
layer followed by the activation function tanh, a
dropout and another linear layer. To obtain the
probabilities for each class, the softmax function
was used. The dimensions of the inputs of the lin-
ear layers are respectively equal to the size of the
Transformer. For CamemBERT, the classification
heads are the same as the ones described in Martin
et al. (2019).

Parameters. As far as the hyperparameters are
concerned, they are all fixed at the time of learning,
with a batch size of 8 for all the architectures. The
number of epochs is set to 5 and the learning rate
to 5e-5 for the first epoch, then decreasing linearly.
The AdamW (Kingma and Ba, 2014) optimizer is
used.

7http://www.gutenberg.org.
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5 Results and Analysis

In this section, we present the results on our two test
data. We compare the performance of FlauBERT
with its competitor (CamemBERT). The metrics
used to measure the performance of each method
were the F1-score and the accuracy (F-micro). The
F-score is used as metric since our data are imbal-
anced in order to observe the real performance of
the model. The results are evaluated according to
the amplification method used and the architecture
used. Our baseline is the model without amplifica-
tion.

5.1 FlauBERT
For FlauBERT, we use the 3 model sizes:
FlauBERT BASE CASED (BC), FlauBERT BASE
UNCASED (BU) and FlauBERT LARGE (L). Ta-
ble 6 presents the size of data on which each model
was trained.

Model Parameters Architecture Training corpus
FlauBERT BASE CASED (BC) 138M Base 24 corpora (71GB)
FlauBERT BASE UNCASED (BU) 137M Base 24 corpora (71GB)
FlauBERT LARGE (L) 373M Large 24 corpora (71GB)

Table 6: pre-trained model size for FlauBERT (Le et al.,
2020).

TAD Verbatim transcripts
FlauBERT Base Cased FlauBERT Base Uncased FlauBERT Large
accuracy F1 accuracy F1 accuracy F1

0 - Baseline 0.482 0.217 0.500 0.267 0.589 0.538
1 - BT 0.667 0.604 0.690 0.650 0.690 0.657

+0.18 +0.39 +0.19 +0.38 +0.10 +0.12
2 - SR 0.589 0.574 0.649 0.607 0.690 0.641

+0.11 +0.36 +0.15 + 0.34 +0.10 +0.10
3 - RT 0.595 0.558 0.714 0.683 0.583 0.411

+0.11 +0.34 +0.21 +0.42 -0.01 -0.13
4 - NI 0.673 0.591 0.685 0.641 0.625 0.514

+0.19 +0.37 +0.18 +0.37 +0.04 -0.02

Table 7: FlauBERT: F1 and accuracy score for verbatim
transcripts test data.

Table 7 presents the final accuracy and F1 on
test set for the verbatim transcripts. The results
show that FlauBERT BU performs better than the
CASED model and the LARGE model, with an
accuracy score of 0.714 and F1 score of 0.682.
Overall, Back-translation and noise injection per-
form better for all the 3 models, with an average
accuracy greater than 0.60. Huge improvement
is observed with the F1 score for all the models,
except for the case where FlauBERT LARGE is
combined with random trio and Noise Injection.
One reason may be that too much injection and
replacement of words might have altered the se-
mantic sense of the training data when augmenting

it.

TAD Online Posts
FlauBERT Base Cased FlauBERT Base Uncased FlauBERT Large
accuracy F1 accuracy F1 accuracy F1

0 - Baseline 0,667 0,269 0,674 0,269 0,667 0,267
1 - BT 0,698 0,514 0,791 0,660 0,822 0,750

+0,03 +0,24 +0,12 +0,39 +0,15 +0,48
2 - SR 0,713 0,582 0,752 0,621 0,829 0,733

+0,05 +0,31 +0,08 +0,35 +0,16 +0,47
3 -RT 0,736 0,648 0,721 0,515 0,814 0,723

+0,07 +0,38 +0,05 +0,25 +0,15 +0,46
4 - NI 0,651 0,484 0,798 0,714 0,829 0,729

-0,02 +0,22 +0,12 +0,44 +0,16 +0,46

Table 8: FlauBERT: F1 and accuracy score for online
posts test data.

Table 8 presents the results on the test set for
online posts. The results show that FlauBERT L
performs slightly better than the CASED model and
the LARGE model, with an accuracy score greater
than 0.80 for all the amplification methods. The
best score is obtained with synonym replacement
and FlauBERT L with an accuracy score of 0.829
and F1 of 0.733.

By comparing the results, we observe that the
amplification methods combined with the differ-
ent FLauBERT models improve the classification
task for both test data. Nevertheless, the results are
more significant on the online post data, with an
accuracy above 0.80. This might be because they
are somewhat similar to reviews or critics. Verba-
tim transcripts are quite particular since they come
from oral dialogue which has been transcribed and
revised. The classification models have somewhat
more difficulties to classify those type of data com-
pare to online posts, even though the accuracy is
quite good (> 0.70 on verbatim transcripts test data).
Random trio and synonym replacement are respec-
tively the ones which produced the best score for
the test data for verbatim transcripts and test data
for online posts.

In the next section, we present the results ob-
tained when using CamemBERT model.

5.2 CamemBERT
For CamemBERT, we used three model sizes which
were introduced in Martin et al. (2019): Camem-
BERT BASE O for the model trained on the OS-
CAR corpus, CamemBERT BASE C for the model
trained on the CCNET corpus and CamemBERT
LARGE trained of the CCNET corpus.

Table 10 presents the final accuracy and F1 on
test set for online posts. The results show that
CamemBERT LARGE performs better than the
BASE model, with an accuracy score of 0.756 and
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Model Parameter Architecture Training corpus
CamemBERT BASE O 110M Base corpus OSCAR (135 GB )
CamemBERT LARGE 335M Large corpus CCNet (135 GB )
CamemBERT BASE C 110M Base corpus CCNet (135 GB )

Table 9: Pre-trained models size for CamemBERT (Mar-
tin et al., 2020).

TAD Verbatim transcripts
CamemBERT B (OSCAR) CamemBERT B (CCNet) CamemBERT L (CCNet)
accuracy F1 accuracy F1 accuracy F1

0 - Baseline 0,482 0,217 0,607 0,458 0,494 0,318
1 - BT 0,696 0,640 0,732 0,687 0,673 0,611

+0,21 +0,42 +0,13 +0,47 +0,18 +0,39
2 - SR 0,714 0,663 0,702 0,653 0,649 0,581

+0,23 +0,45 +0,10 +0,44 +0,15 +0,36
3 - RT 0,714 0,648 0,655 0,594 0,756 0,720

+0,23 +0,43 +0,05 +0,38 +0,26 +0,50
4 - NI 0,685 0,642 0,667 0,621 0,714 0,687

+0,20 +0,43 +0,06 +0,16 +0,22 +0,37

Table 10: CamemBERT: F1 and accuracy score for
Verbatim transcripts test data.

F1 score of 0.720. Random trio is the best per-
forming method (acc.: 0.756) follow by the back-
translation method (acc.: 0.732) and synonym re-
placement (acc.: 0.714).

TAD Online Posts
CamemBERT B (OSCAR) CamemBERT B (CCNet) CamemBERT L (CCNet)
accuracy F1 accuracy F1 accuracy F1

0 - Baseline 0,674 0,269 0,752 0,484 0,674 0,269
1 - BT 0,783 0,68 0,814 0,755 0,822 0,771

+0,11 +0,41 +0,06 +0,27 +0,15 +0,50
2 - SR 0,767 0,672 0,845 0,759 0,868 0,801

+0,09 +0,40 +0,09 +0,27 +0,19 +0,53
7 - RT 0,744 0,666 0,853 0,780 0,775 0,708

+0,07 +0,40 +0,10 +0,30 +0,10 +0,44
8 - NI 0,744 0,580 0,806 0,731 0,806 0,624

+0,07 +0,31 +0,05 +0,25 +0,13 +0,36

Table 11: CamemBERT: F1 and accuracy score for
Online Posts test data.

Table 11 show that CamemBERT LARGE per-
forms better than the BASE model, with an accu-
racy score of 0.868 and F1 score of 0.801. Random
trio is the best performing method, follow by the
back-translation method (acc.: 0.853) and synonym
replacement (acc.: 0.783).

By comparing the results, we observe that aug-
mentation methods used in this work clearly im-
proved the performances for both CamemBERT
and FlauBERT. Overall, CamemBERT perfor-
mances are better than FlauBERT. Synonym re-
placement combined with CamemBERT LARGE
is the best performing duo on verbatim and online
posts test data. We also noted that performances
on post online are better than on verbatim tran-
scripts. One reason may be the type of data the
pre-trained model were trained on. CCNET corpus
were crawled from internet, so they may be more
similar or linguistically closer to online posts than
verbatim transcripts. A linguistic analysis of the

data used to trained CamemBERT model may be
interesting to conduct in order to explore the lin-
gusitic similarities or differences with our datasets.
In conclusion, the results are promising and clearly
open up work prospects.

6 Conclusion

We have presented a work where we sought to
compare the performances of two BERT models
for French language on a three-class classification
task . Firstly, we show that simple augmentation
techniques used for text classification can be im-
plemented and adapted for the datasets used in
this work. Overall, we also obseved that Camem-
BERT model was better than FlauBERT for this
task and the best amplification method was syn-
onym replacement. For future works, we would
like to use other pretrained language models for
French such as XLNET, BERT multilingual, etc. In
this paper, we just focus on comparing two French
Variants. We also think exploring the linguistic
features of our dataset in the training of the model
may be interesting with the goal of evaluating their
impact on the performance. Finally, we also think
that trying to other amplification methods such as
replacement via a language model may be interest-
ing.

The data used in this work comes from a private
enterprise, and we have not received their consent
to share the dataset.
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Abstract

Clinical Text Notes (CTNs) contain physicians’
reasoning process, written in an unstructured
free text format, as they examine and interview
patients. In recent years, several studies have
been published that provide evidence for the
utility of machine learning for predicting doc-
tors’ diagnoses from CTNs, a task known as
ICD coding. Data annotation is time consum-
ing, particularly when a degree of specializa-
tion is needed, as is the case for medical data.
This paper presents a method of augmenting a
sparsely annotated dataset of Icelandic CTNs
with a machine-learned data imputation in a
semi-supervised manner. We train a neural net-
work on a small set of annotated CTNs and
use it to extract clinical features from a set of
un-annotated CTNs. These clinical features
consist of answers to about a thousand poten-
tial questions that a physician might find the
answers to during a consultation with a patient.
The features are then used to train a classifier
for the diagnosis of certain types of diseases.
We report the results of an evaluation of this
data augmentation method over three tiers of
information that are available to a physician.
Our data augmentation method shows a signifi-
cant positive effect, which is diminished when
an increasing number of clinical features, from
the examination of the patient and diagnostics,
are made available. Our method may be used
for augmenting scarce datasets for systems that
take decisions based on clinical features that do
not include examinations or tests.

1 Introduction

When a patient consults a physician, communica-
tion is created in the patient’s medical records. The
physician notes down the patient’s signs, symp-
toms, results of physical examination, the clinical
thinking process, and if any diagnostic tests are
warranted – in a free text format known as a Clini-
cal Text Note (CTN). Then, the physician saves the
diagnoses, using the International Classification of

Diseases (ICD)1 code, that they made during the
consultation. Thus, each CTN contains free text,
from which clinical features can be extracted, in
addition to the ICD classification code.

Previous work has shown the benefits of train-
ing machine learning classifiers on clinical fea-
tures for automated ICD coding (Liang et al., 2019;
Ellertsson et al., 2021; Zhang et al., 2020; Pascual
et al., 2021; Kaur et al., 2021; Blanco et al., 2021).
Ellertsson et al. (2021) hand-annotated features in
800 CTNs and trained a classifier to predict ICD
codes for one of four types of primary headache
diagnoses. Liang et al. (2019) hand-annotated a sig-
nificantly larger set, i.e. about 6,000 CTNs, for the
purpose of training a classifier to predict various
types of diseases, i.e. 55 ICD codes in total. Addi-
tionally, they developed a clinical feature extraction
model (CFEM), for the purpose of automatically
extracting features from the CTNs.

On its own, the CFEM is beneficial because it
could solve the common clinical problem of get-
ting a quick and comprehensive overview of a pa-
tient, when meeting a clinician for the first time.
A clinician could search a patient’s medical his-
tory with a question such as “Has the patient ever
had a colonoscopy?”. The ICD classifiers have, on
the other hand, the potential of being integrated
into a Clinical Decision Support System (CDSS),
where they could, for example, predict if a physi-
cian should order an MRI for a patient when pre-
sented with a particular symptom, what kind of
blood tests are warranted, or any other diagnostic
test for that matter.

Generally, machine learning systems require
large quantities of training data (Hlynsson et al.,
2019) and ICD classifiers are no exception. In order
to develop a high accuracy ICD classifier, without
annotating large amount of CTNs, we experiment
with a method of: 1) annotating a small subset of

1https://www.who.int/classifications/
classification-of-diseases
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the CTNs with question-answer pairs which are
used for training the CFEM, and then 2) use the
trained feature extractor to extract clinical features
from samples out of a larger dataset of CTNs for
training the classifier to predict one out of six ICD
codes2.

In prior work on ICD coding, classifiers have
been trained on discharge summaries, after the pa-
tient has left the clinic (Liang et al., 2019; Zhang
et al., 2020; Pascual et al., 2021; Kaur et al., 2021;
Blanco et al., 2021). We instead focus on evaluat-
ing our model on stages in the primary health care
pipeline where the recommendations of machine
learning models would be the most effective. We
thus introduce a novel three-tiered evaluation sys-
tem that is designed to mirror the circumstances
where ICD classification methods would actually
be used and we evaluate our semi-supervised data
augmentation method on these three tiers: 1) before
the patient meets a physician, 2) after the physician
performs the patient examination, and 3) after the
physician has ordered diagnostic tests.

Our evaluation results show that the data aug-
mentation method has a significant benefit for tier
1, i.e. before the patient meets a physician, but not
for the other two.

2 Related Work

Liang et al. (2019) frame the problem of clini-
cal feature extraction from CTNs as a question-
answering task. Every clinical feature mentioned
in a given CTN is marked, as well as the start and
the end of the text span referring to a given clinical
feature. A question is saved in the context of the
text span, which contains the answer to that specific
question. For example, given the text span “the pa-
tient has a fever”, the question “Does the patient
have a fever?” is saved with a binary value of 1.
Out of 1.3 million CTNs from a single institution
in China, Liang et al. (2019) annotated about 6,000
CTNs for training a CFEM, based on a Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) enriched with word embed-
dings. The feature extractor is trained on a batch
of (CTN, question, text span) tuples as input with
the goal of optimizing for the text span that con-
tains the corresponding answer to the question in
the given CTN. Thereby, the model learns to ex-
tract relevant clinical features from the questions

2The ICD classes were chosen by doctors according to
their perceived usefulness.

put forward in the context of the CTN. Liang et al.
(2019) used the CFEM to extract features from the
whole set of un-annotated CTNs. The extracted
features were then used to train a classifier, based
on multi-class logistic regression, to predict an ICD
code from a set of 55 codes.

Ellertsson et al. (2021) hand-annotated clinical
features (in a similar manner as Liang et al.) in
800 CTNs from a common medical database of all
primary care clinics in Iceland. Each CTN had an
accompanying ICD code for one of four types of
headache diagnoses. The resulting features (text
spans) were then used to train a Random Forest
classifier, for predicting one of the four possible
ICD codes. Furthermore, they performed a retro-
spective study where the classifier was shown to
outperform general practitioners on the four types
of headache diagnostics.

In this paper, we expand upon the work of Ellerts-
son et al. The main difference between our work
and theirs can be summarized as follows:

• We do not compare our ICD classifier to gen-
eral practitioners.

• We hand-annotate questions-answers pairs in
2,422 CTNs, which includes a larger number
of ICD codes, 42 in total (see Table 4 in the
Appendix).

• Using the hand-annotated CTNs, we
train CFEMs, based on Transformer mod-
els (Vaswani et al., 2017), for extracting
clinical features, and compare them to a
couple of LSTM models. These feature
extractors are used to extract features from
un-annotated CTNS as well as annotated
CTNs.

• We perform a three-tiered evaluation of our
classifiers on six of the ICD codes for pedi-
atric (under 18) patients (see Table 5 in the
Appendix).

Transformer-based models have rapidly become
a popular choice for automated ICD coding. These
models have been trained on CTNs in a fully end-
to-end manner (Zhang et al., 2020; Pascual et al.,
2021; Kaur et al., 2021; Blanco et al., 2021). A
drawback of this approach is that physicians will of-
ten write down their hypothesized diagnoses which
injects a serious bias to the data. We circumvent
this problem by using one model for clinical fea-
ture extraction and another for clinical prediction.
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Training Set Validation Set Test Set Total
Adults Total size 1700 199 220 2119

Mean Age ± Std 45.33 ± 17.91 43.54 ± 17.86 44.24 ± 17.92
Min Age – Max Age 18.01 – 94.43 18.04 – 86.75 18.17 – 93.72

Children Total size 237 33 33 303
Mean Age ± Std 10.01 ± 5.87 10.32 ± 5.82 9.39 ± 6.24
Min Age – Max Age 0.17 – 17.99 0.97 – 17.85 0.21 – 17.85

Table 1: Training data split statistics for the clinical feature extraction model. The adult sets are 63% female
and the child sets are 64% female. The different sizes of the adult validation and test sets came by to enforce a
constraint of an equal proportion of notes corresponding to each ICD code within each set.

For example, a fully end-to-end machine learning
model might learn to associate the qualitative com-
ment by a physician “the patient probably has a
migraine without aura” in a patient with a migraine-
without-aura ICD code. Our method avoids this by
creating a bottleneck of information, where only
specific questions are being answered.

Our approach also opens the door for interpret-
ing the results of the ICD classifier, as the impor-
tance of each input feature to the classifier can be
visualized, for example by portraying input coef-
ficients in the case of linear models (e.g. logistic
regression) or plotting other interpretability metrics,
such as SHAP values (Lundberg and Lee, 2017).

3 Approach

3.1 Data and annotation

We use the dataset from the same source as Ellerts-
son et al. (2021), i.e. from the Primary Health Care
Service of the Capital Area (PHCCA) in Iceland.
The dataset consists of 1.2 million CTNs, written
in Icelandic, from 200 thousand unique patients
that were collected in clinical consultations taking
place from January 2006 to April 2020. Physi-
cians are instructed not to write anything that can
uniquely identify their patients in the notes, but
we also used a combination of a parser for Ice-
landic (Þorsteinsson et al., 2019) as well as a regex
command to remove any personally identifiable in-
formation, such as names, personal identification
numbers and phone numbers. This dataset contains
CTNs that have an associated ICD 10 code, but
consist otherwise of unstructured text from which
clinical features can be extracted.

In the same manner as described by Ellertsson
et al., we reduced the full dataset by applying a
filter which only keeps notes that contain any word
from a medical keyword dictionary. From this re-
duced dataset, we randomly selected 2,422 notes

which were manually annotated by a physician3,
resulting in question-answer pairs as described in
Section 2.

As an example annotation, for a CTN containing
the text “the patient is not coughing”, one clinical
feature is the pair consisting of the question “does
the patient have a cough?” and the binary-valued
answer “0”, with the corresponding text span “not
coughing”. Some answers are continuous-valued,
such as for the question “what is the patient’s blood
pressure?”.

The number of clinical features that we use to
train the extraction model to output is 942. This
number represents the number of question-answer
pairs in the dataset. There is typically a heavy
class imbalance for each feature, where the binary
questions have on average a 0.75 positive answer
ratio, with a standard deviation of 0.2. The reason
for this sweeping class imbalance is that physicians
generally only ask questions that are relevant and
with an affirmative answer.

For our three-tiered classifier evaluation, we
define three strict subsets of these features, as
described in Section 3.6. Each question is also
paired with another binary variable which indicates
whether an answer to that question can be found in
the CTN or not.

The dataset is split into adults, that are 18 years
old or older, and children. Within each age group,
80% of the dataset is allocated for training, 10%
for development/validation, and hold out 10% for
final testing (see Table 1). The split is stratified
to ensure that each set has an equal proportion of
sexes and ICD codes.

3.2 Pre-trained Transformer-based models
We compared four existing Transformer-based
models in our experiments, based on the ELEC-
TRA (Clark et al., 2020) and RoBERTa (Liu et al.,

3The annotator is a white Icelandic male physician in his
thirties, specializing in general practice / family medicine.
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2019) architectures. We evaluated an ELECTRA-
small4, ELECTRA-base5 and two RoBERTa-base
models6,7 (consisting of 14M, 110M and 125M
parameters, respectively). All models have been
pre-trained on the Icelandic Gigaword Corpus
(IGC) (Steingrímsson et al., 2018), which consists
of approximately 1.69B tokens from genres such as
news articles, parliamentary speeches, novels and
blogs. For one of the RoBERTa models, which we
refer to as RoBERTa+, the IGC was supplemented
with texts obtained from online sources, increasing
the size of the pre-training corpus to 2.7B tokens.
The RoBERTa models were pre-trained for 225k
steps with a batch size of 2k. Otherwise, all models
were pre-trained using default settings (Daðason
and Loftsson, 2022). The pre-training process and
additional training data for the RoBERTa models is
described in further detail by Snæbjarnarson et al.
(2022).

3.3 LSTM architectures

For a baseline comparison, we created two LSTM
models. The first one (LSTM 1) tokenizes and
trains the embeddings from scratch, whereas the
second one (LSTM 2) pre-processes the inputs with
GloVe (Pennington et al., 2014) embeddings.

3.3.1 LSTM 1
The model splits up the tokenized input into ques-
tion and content parts. The content, which con-
tains text that may contain the answer, gets a 256-
dimensional embedding and the question gets a
32-dimensional embedding. The reason for the dif-
ference in dimensionality is that there is a much
greater variety in the composition of the contexts
opposed to the standardized number of questions
that is being processed. Each embedding is then
passed to its own, uniquely parameterized two-
layer bi-directional LSTM model, where each layer
has 256 units.

The outputs from those two parts are then con-
catenated and used to 1) train a set of dense net-
works, where one is tasked with predicting whether
an answer to the question can be found in the text
and, if yes, the other dense network predicts the

4https://huggingface.co/jonfd/
electra-small-igc-is. CC-BY-4.0 license.

5https://huggingface.co/jonfd/
electra-base-igc-is. CC-BY-4.0 license.

6https://huggingface.co/mideind/
IceBERT. AGPL 3.0 license.

7https://huggingface.co/mideind/
IceBERT-igc. AGPL 3.0 license.

probability of the answer being affirmative (in the
case of binary questions), and 2) predict the start
and end indices of the tokens that mark the span of
the answer in the context part.

3.3.2 LSTM 2
LSTM 2 has the same architecture as LSTM 1,
except there is no embedding layer and the inputs
have been processed by a pre-trained GloVe model.
The GloVe embeddings8 where pre-trained on the
IGC.

3.4 Clinical feature extraction models

We fine-tuned the four Transformer-based models,
mentioned in Section 3.2, on the hand-annotated
data in order to develop a CFEM. The fine-tuning
was carried out in the following manner: starting
with the pre-trained transformers weights, the top
layer was replaced with a randomly initialized net-
work, and the whole system was then trained end-
to-end for question-answering. We also trained the
two LSTM models described in Section 3.3 from
scratch for a CFEM comparison.

Each model learns to output the answer span for
each question9 as well as the probability of the an-
swer being affirmative for binary-valued questions.
The Transformer-based models were defined and
trained using the Transformers (Wolf et al., 2019)
and PyTorch libraries (Paszke et al., 2019) and the
LSTM models were defined and trained using Ten-
sorFlow (Abadi et al., 2016).

3.5 Semi-supervised learning

Once our CFEMs were trained, we saved their out-
puts over all the CTNs (i.e. 2,422 annotated CTNs
used for training and 750 randomly selected un-
annotated CTNs) to disk. The outputs define the
matrix of independent variables X which is, along
with the dependent variable array y of ICD codes,
used to train our logistic regression ICD classi-
fier (implemented in scikit-learn (Pedregosa et al.,
2011)).

CTNs require expertise to interpret, which re-
sults in a high cost when labelling medical datasets.
This is especially true for AI researchers that are

8https://github.com/
stofnun-arna-magnussonar/ordgreypingar_
embeddings/tree/main/GloVe

9If the question is not answered in the CTN, the model
outputs an impossible span in the text, which is technically
implemented as starting at the 0th token (a special “start”
token) and ending on the 1st token of the context.
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Train CFEM Train ICD
classifier+

Few fully human-
annotated CTNs

Many CTNs only human-
annotated with diagnosis

Many fully
human/CFEM-

annotated CTNs

Trained CFEM

Figure 1: Leveraging a Sparsely Annotated Dataset. Our clinical feature extraction model learns to mark text
spans (clinical features), containing an answer to a set of given clinical questions, from CTNs in which answer
spans have been hand-annotated. The feature extractor is then used to extract answer spans – given the same set of
questions – from a large set of CTNs that have diagnoses (ICD codes), but no marked answer spans. Finally, the
extracted answer spans are used to train the ICD classifier. In this way, we make full use of a large set of CTNs that
is only partly annotated and combine it with a much smaller set of human-annotated CTNs to learn automated ICD
coding.

working with a language with much fewer re-
sources than English (Blanco et al., 2021), such
as Icelandic.

In our project, we have a large collection of
CTNs, each of which is marked with a doctor’s
diagnosis, but does not contain answer spans for
the set of questions for our clinical features. We
input the un-annotated CTNs to a CFEM, that is
trained on a much smaller subset of the data, to
take advantage of the supervisory signal offered
by the ICD code of each un-annotated CTN. This
step keeps the interpretable clinical features and
removes potential bias from the CTNs. This set of
CTNs with imputed clinical feature values is then
combined with our “gold standard” set of anno-
tated CTNs, and both are used for training the ICD
classifier (see Figure 1).

3.6 Three-tiered evaluation
To simulate the different stages of a physician’s
evaluation of a patient in real clinical circum-
stances, we limit the number of features that are
available to the classifier at each stage:

• Tier 1: Before a patient meets with a physi-
cian. This includes the patient’s main com-
plaint, history, symptoms, and vital signs (420

features).

• Tier 2: After the patient has been examined
by a physician (582 features).

• Tier 3: After results from diagnostics are
available (608 features).

The full list of features is provided in the Ap-
pendix: Table 6 and Table 7 for tier 1, which are
features that the patient could self-report. Tables 8
and 9 show the features for tiers 2 and 3, respec-
tively. After tiers 2 and 3, decisions need to be
taken regarding what further tests need to be or-
dered, for example imaging.

Note that our system could fit into a triage con-
text at tier 1. The patient could fill out an online
questionnaire and get recommendations depending
on the results, for example, to go to the emergency
room, to go the general physician, or maybe just
rest at home with a set of self-care instructions.

4 Results and Discussion

4.1 Clinical feature extraction model training

The CFEMs were trained over three epochs on the
subset of hand-annotated CTNs (see Table 1). For
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the ELECTRA-base and RoBERTa-base transform-
ers, each epoch took approximately eight hours on
Cloud TPU v3 with eight cores, and half that for
ELECTRA-small. The training took approximately
three hours for each epoch for the LSTMs.

The RoBERTa+ model, which is pre-trained on
the largest corpus, achieves the best results for all
three metrics that we monitor (see Table 2): a span-
based F1-score, to evaluate the question-answering
portion of the models, and the Matthews correlation
coefficient (MCC) (Matthews, 1975; Chicco and
Jurman, 2020) for the binary-valued clinical fea-
tures (Binary MCC) and for predicting whether the
question is answered in the text (Answered MCC).

We chose the MCC metric because it is appro-
priate for imbalanced data (Chicco, 2017) (see dis-
cussion of our data in Section 3.1) and it offers
a suitable combination of the four confusion ma-
trix metrics: true positives, true negatives, false
positives and false negatives.

Note in Table 2 that the high F1-scores are due
to the fact that most questions were correctly pre-
dicted to be not answered in any given context.
This could be due to the fact that the 15.8 GB cor-
pus, which was used to train RoBERTa+, contains
33 MBs of medical texts. Although this is not a
large proportion, it could be enough for the model
to have learned transferable representations of med-
ical vocabulary.

To our surprise, the ELECTRA-base model was
outperformed by RoBERTa (both are trained on
equal-sized corpora), even though ELECTRA has,
previously, been shown to outperform RoBERTa
on question-answering tasks (Clark et al., 2020).

The LSTM variation whose inputs were not pre-
processed by a pre-trained GloVe model (LSTM
1) performed better according to the MCC metrics
(but slightly worse according to the F1-score) than
the other (LSTM 2). We hypothesize that it is due
to the fact that the pre-trained embeddings are not
trained with any tokenization, but rather on whole
words. The free-text style of doctor’s notes can
include words or abbreviations that are not defined
for the GloVe embeddings.

4.2 ICD classifier training

4.2.1 Transformer vs. LSTM
After training and evaluating the CFEMs, we vali-
dated the data augmentation scheme described in
Section 3.5. We used the best-performing mod-
els from each category, RoBERTa+ and LSTM 1,

F1 Bin. MCC Answer MCC

RoBERTa+ 0.993 0.846 0.872
RoBERTa 0.991 0.780 0.823
ELECTRA-base 0.987 0.656 0.729
ELECTRA-small 0.982 0.553 0.650
LSTM 1 0.975 0.331 0.327
LSTM 2 0.979 0.313 0.257

Table 2: Feature extraction model evaluation results.
Question-answering metrics and evaluation results for
each clinical feature extraction model on the test set.
Binary MCC measures the classification accuracy of the
binary-valued features and Answer MCC measures the
accuracy of predicting whether a feature is answerable
in the text.

to extract the clinical features from the children’s
notes10. These features, along with their associated
ICD codes, were then used to train the classifier.

Table 3 shows the diagnostic metrics of the clas-
sifier for tier 3 depending on the feature extractor.
Using RoBERTa+ yielded a higher weighted aver-
age for all diagnostic metrics compared to LSTM
1.

4.2.2 Qualitative analysis
To verify that the relationship between our features
and the outputs of our models matches our clinical
intuition, we use SHAP (Shapley additive expla-
nation) values (Shapley, 1953) to show the impact
of each feature in the prediction of our logistic re-
gression classifier, trained on the features in tier 3
extracted by RoBERTa+.

The feature importance plot is shown in Fig-
ure 2. We see, for example, that the top four fea-
tures are headache-related features and contribute
to classifying a CTN as Tension-type headache,
migraine with- and without aura. The two top fea-
tures after that involve the doctor doing a physical
examination of the patient’s lung and contribute
to predicting whether the patient has pneumonia
or bronchitis. The sixth most impactful feature is
then the result of an examination of the patient’s
ear, the result of which contributes to the diagnosis
of Otitis media (a disease of the middle ear).

4.2.3 Data augmentation experiment
In the next set of experiments, we investigated the
effect of augmenting a data set consisting of 303
human-labeled childrens’s CTNs with a varying

10Due to time constraints, our evaluation of the data aug-
mentation method is limited to only using the children CTNs.
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RoBERTa+ LSTM 1
Condition F1-score MCC TPR TNR F1-score MCC TPR TNR
Migraine without aura 0.40 0.36 0.33 0.97 0.00 0.00 0.00 1.00
Migraine with aura 0.67 0.70 0.50 1.00 0.40 0.36 0.33 0.97
Tension-type headache 0.94 0.89 1.00 0.88 0.86 0.73 1.00 0.71
Otitis media, unspecified 0.00 0.00 0.00 1.00 0.57 0.60 1.00 0.90
Bacterial pneumonia 0.86 0.83 1.00 0.93 0.75 0.75 0.60 1.00
Acute bronchitis 1.00 1.00 1.00 1.00 0.33 0.29 0.25 0.97
Weighted average 0.81 0.78 0.85 0.85 0.64 0.56 0.70 0.70

Table 3: Detailed ICD classification metrics. Per-class metrics for clinical diagnosis prediction when a logistic
regression classifier is trained on features extracted from CTNs by either our RoBERTa+ transformer or the baseline
LSTM 1 model. MCC is the Matthews correlation coefficient, TPR is the true positive rate and TNR is the true
negative rate.

Figure 2: Feature importance plot. The features are scored by their SHAP values. The size of the colored bar in
each feature’s row indicates the contribution of that feature to predicting the disease with the corresponding color.

number of machine-labeled children’s CTNs for
the purpose of training an ICD classifier.

We trained logistic regression classifiers using
5-fold cross-validation over the whole children set.
Each classifier had L1 regularization with the in-
verse regularization parameter of C = 0.2, which
was found to give good classification performance
in early tests. We chose not to do hyper-parameter
tuning as the scope of this project is not to get the
best possible classifier in this context, but rather in-
vestigate the data augmentation and the three-tiered
evaluation. The results are shown in Figure 3.

There is a clear benefit for using the data aug-
mentation method in tier 1, but it looks rather harm-
ful for tiers 2 and 3. We hypothesize that this is due
to the fact that the classifiers place a high impor-
tance on the outcome of examination (tier 2) and
test (tier 3) related features, making the classifiers

more sensitive to prediction errors for these feature.

5 Conclusions and Future Work

Our results show that training a CFEM on a small
annotated subset of CTNs and use it to extract fea-
tures from samples out of a larger, un-annotated
dataset can increase the performance of an ICD
classifier. However, the effect is only positive and
significant in the context before a patient has been
examined by the physician.

A future line of work is to further validate dif-
ferent classifiers by performing prospective studies
which allow us to get insight into how the classi-
fier performs in real clinical situations. This can
be done by integrating the classifier into a CDSS,
where a patient can log into a secure portal, at
home or at a medical institution, and answer tar-
geted questions regarding their symptoms. The
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Figure 3: Data Augmentation Results. Each classifier is trained on fixed set of hand-annotated clinical features, in
addition to a varying number of features automatically extracted by the RoBERTa+ model, i.e. machine-labeled
features. There are 237 hand-annotated CTNs in each training set and each step along the x-axis adds 75 machine-
labeled CTNs. Each point in the augmented curves shows the cross-validated metrics (accuracy in the left column
and MCC in the right column) averaged over 20 random subsets of machine-labeled points that are added to the
training set and the error band (the colored area around the Augmented Roberta+) signifies the 95% confidence
intervals. The dashed lines indicate the performance of the classifiers trained only on hand-annotated data.

CDSS could build a list of differential diagnoses,
recommend further diagnostics based on the pa-
tients symptoms, and then write out the CTN for
the clinician. This does not disturb the clinical
workflow, saves time for medical staff and poten-
tially allows a much more detailed history taking,
compared to the often time constrained clinician.
This is important in all outpatient care, both pub-
lic and private, since this kind of system has the
potential to save money, increase the effectiveness
and revenue for private clinics without losing the

quality of care.
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A Appendix

ICD code Description
G43.0 Migraine without aura
G43.1 Migraine with aura
G44.0 Cluster headaches and other trigeminal autonomic cephalgias
G44.2 Tension-type headache
G44.4 Drug-induced headache, not elsewhere classified
G45.9 Transient cerebral ischemic attack, unspecified
H66.0 Acute suppurative otitis media
H66.9 Otitis media, unspecified
I10 Essential (Primary) Hypertension
I63.0+ Cerebral infarction
I63.1 Cerebral infarction
I63.2+ Cerebral infarction due to unsp. occl. or stenosis of precerebral arts.
I63.3 Cerebral infarction due to thrombosis of cerebral arts.
I63.4 Cerebral infarction due to embolism of cerebral arteries.
I63.5 Cerebral infarction due to unsp. occl. or stenosis of cerebral arts.
I63.6 Cerebral infarction due to cerebral venous thrombosis, nonpyogenic
I63.8 Other cerebral infarction
I63.9 Cerebral infarction, unspecified
I84 Haemorrhoids
J00 Acute nasopharyngitis [common cold]
J01 Acute sinusitis
J01.0 Acute maxillary sinusitis
J01.9 Acute sinusitis
J02.0 Streptococcal pharyngitis
J03.0 Streptococcal tonsillitis
J03.9 Acute tonsillitis
J05.0 Acute obstructive laryngitis
J10.1 Influenza due to other identified influenza virus w/ other resp. manifs.
J11.1 Influenza with other resp. manifs., virus not identified
J12.9 Viral pneumonia, unspecified
J15 Bacterial pneumonia, not elsewhere classified
J15.7 Pneumonia due to Mycoplasma pneumoniae
J15.8 Pneumonia due to other specified bacteria
J15.9 Bacterial pneumonia, unspecified
J20.9 Acute bronchitis
J44.1 Chronic obstructive pulmonary disease with (acute) exacerbation
J44.9 Chronic obstructive pulmonary disease, unspecified
J45.0 Predominantly allergic asthma
J45.9 Asthma, unspecified
M54.1+ Radiculopathy
M54.5+ Low back pain
S83.2 Tear of meniscus, current injury

Table 4: ICD codes associated with notes used during
training of the clinical feature extraction model.

ICD code Description
G43.0 Migraine without aura
G43.1 Migraine with aura
G44.2 Tension-type headache
H66.9 Otitis media, unspecified
J15.9 Bacterial pneumonia, unspecified
J20.9 Acute bronchitis

Table 5: ICD codes associated with notes using during
classifier training.
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Abstract

Long document classification is one of the most
challenging linguistic processing tasks. Re-
cently, Recent deep-learning models such as
the transformers have proven to perform this
task with a high-level of success. Such models
typically include the self-attention mechanism,
which makes the calculations extremely com-
plex as document length increases. In order
to unlock the use of the most accurate docu-
ment classification tools on a wider range of
document types and make the use of methods
based on self-attention practically feasible, it’s
necessary to introduce some innovations that fa-
cilitate better scaling. In this work we provide
a quick and concise survey of recent research
work in the area of long documents classifica-
tion using deep-learning techniques. The ad-
vantages and disadvantages of these methods
have been discussed along with some directions
that may be useful in future research.

1 Introduction

Modern deep learning models for semantic anal-
ysis can achieve impressive results after they are
trained on very large datasets, gaining the ability to
generate highly accurate predictions about content
they haven’t seen before. However, their capacity
to capture the relationships between words and sen-
tences is dependent on statistical operations that
grow more complex as the length of the text se-
quence is increased (Tay et al., 2020). Effectively,
this renders many of the best methods nearly use-
less from a practical standpoint and necessitates
development of tools that can realistically process
long documents and return reliable results within a
reasonable timeframe. In particular, methods that
rely on the attention mechanism (BERT (Devlin
et al., 2018) and its derivatives) tend to become
computationally demanding when working with
long text documents (Vaswani et al., 2017).

Resolving this problem would allow for much
wider use of document classification algorithms

and would potentially allow large organizations
in many different sectors to manage their admin-
istrative burden more efficiently. This is why
researchers are looking into different possibili-
ties for updating the existing algorithms, imple-
menting changes aimed specifically at improv-
ing performance with long text, and testing hy-
brid approaches that offer better ratio between
training/inference time and accuracy of predic-
tion (Wagh et al., 2021; Tay et al., 2020). Their ef-
forts are going in different directions and at present
time it’s unclear which approach might offer the
best chances to overcome the current limitations,
but there are already some promising findings that
could hint towards sustainable solutions.

In this research paper we are trying to introduce
a quick and concise summaries of the recent re-
search papers published in the area of deep learning
that trying to solve the problem of long document
classification. Then we compare them from sev-
eral perspectives such as: used method, authors
objectives, performance and datasets. Finally, we
conclude this review with a discussion of some
ideas and suggestion that might become the basis
for a new research in this area.

2 Long Document Classification
Techniques

In this section we categorize the techniques and
methods that have been used for long document
classification in the most relevant existing research
works into two main categories; Transformer-based
technique such as BERT and hybrid techniques
which combines two or more deep neural network
(e.g., CNN, RNN, transformers, etc.), to improve
the performance of the classification model. All
of these techniques are aiming to identify proce-
dures that could remove some of the well-known
limitations of working with very long documents.
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2.1 Transformer-based

Transformer architecture was first proposed in 2017
by (Vaswani et al., 2017), and it quickly lead to
several successful implementations, most notably
BERT by (Devlin et al., 2018) and XLNet by (Yang
et al., 2019). Those models rely on bidirectional
transformations of input that allow for superior
tracking of semantic relationships. One of the
most important properties of a Transformer such as
BERT is that it can be pre-trained and fine-tuned
for specific tasks, languages, and subject matters.
One major problem with BERT is its limit to se-
quence length of 510 tokens. Several approaches
to this problem were considered, including chunk
selection, efficient self-attention, document trunca-
tion, and key sentence selection, with one existing
method chosen as a representative of each theoreti-
cal direction.

(Sun et al., 2019) show how to train and fine-
tune BERT for text classification. They tested their
model using standardized hyper parameters such
as batch size and sequence length, with several dif-
ferent datasets suitable for question classification,
topic classification, and sentiment analysis. The
best option was determined based on experimen-
tal results, for example, in this way it was found
that multiple strategies can be used to get around
BERT’s limit to the sequence length, but the ‘head
& tails’ strategy where only the first 128 and the
last 382 tokens are kept performs the best (Pappa-
gari et al., 2019).

On the other hand (Ding et al., 2020) presents a
very creative solution to get around BERT’s limit
to sequence length. This solution inspired by a
cognition theory of working memory proposed by
Baddeley in 1992. The solution is named CogLTX,
and it starts from the logical assumption that a
majority of semantically important information is
concentrated within specific sentences inside of a
longer text, making it unnecessary to check for con-
nections between all words in a document. Instead,
they propose training a judge model that can rec-
ognize high-relevance sentences and pass them as
input to the reasoning model that can complete the
classification task.

Another work by (Adhikari et al., 2019) attempt
to develop a computationally more efficient version
of BERT that would be better suited for classifica-
tion of long documents. Knowledge distillation is
used where knowledge is transferred from a large
version of BERT to a much smaller BiLSTM net-

work, which is then used to perform the classifi-
cation task on new examples. Likewise, (Beltagy
et al., 2020) attempt to adjust the successful Trans-
former architecture and make it better suited for
analyzing long documents. Due to exponential in-
crease in computational complexity, with models
of this kind it becomes nearly impossible to handle
documents whose length exceeds a certain arbi-
trary threshold. To remedy this issue, the authors
propose an altered model they named Longformer,
which reduces the complexity of the self-attention
matrix.

2.2 Hybrid Methods

Two main approaches that we investigate are algo-
rithms with sparse attention and hierarchical mod-
els, each of which has inspired a number of at-
tempts to adjust the DNN architecture for the long
document classification tasks. Some works use
CNN and utilizing local convolutional feature ag-
gregation to obtain the predictions of the document
class (Liu et al., 2018). They proposed a RNN
component to the architecture described in the first
method, and uses it to track the semantic order
for each of the selected sequences. Another work
by (He et al., 2019) present a hybrid solution devel-
oped specifically with the idea to perform long doc-
ument classification more efficiently. It combines
a RNN-based controller component with a CNN
that extracts discriminative features from linguistic
content. The controller contextualizes the attention
and localizes the extracted bits into a coarse rep-
resentation of the document, before grouping the
extracted features to acquire the overall structure.

Some other ideas are to avoid the exponential
growth of complexity along with text sequence
length that is typical for architectures of this
kind (Huang et al., 2021; Park et al., 2022). For
example, (Khandve et al., 2022) propose a hybrid
solution with transfer learning as the central prin-
ciple and a hierarchical architecture that reduces
the number of necessary operations. The input data
was divided into parts and processed with Universal
Sentence Encoder and BERT, both of which were
pre-trained. After this, the results were passed onto
a shallow network based on either LSTM or CNN
concept, which was used in the role of a classi-
fier. Different combinations were explored to de-
termine whether an improvement can be observed,
and in case of USE it was possible to improve accu-
racy in this manner while for BERT the addition of
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CNN classifier resulted in similar level of accuracy
but with much lower computational requirements
thanks to the hierarchical structure.

Another example was developed for the med-
ical domain, and is characterized by strong per-
formance with document of extraordinary length
that are typical within this sector (Hu et al., 2021;
Si and Roberts, 2021). (Hu et al., 2021) describes
a hybrid model that includes several components,
including bi-directional recurrent neural network
(RNN), convolutional neural network (CNN) and
the attention mechanism. Words are embedded as
vectors in the initialization phase, before n-grams
are extracted from sentences to capture more of
the semantic context. A matrix of features is con-
structed with a combination of CNN output with
the ReLu unit.

3 Comparison of the proposed methods

Most of the recent works addressing the problem
of long document classification start from similar
principles common to all deep learning methods.
They also diverge in many aspects, as the authors
explore different avenues for leveraging the power
of the learning algorithms and overcoming the most
significant obstacles (Dai et al., 2022). Since the
authors are essentially attempting to solve the same
problem, namely how to maintain high accuracy of
semantic predictions while keeping the computing
demands reasonable, it would be fair to describe
the papers as belonging to the same family despite
the considerable differences in approach.

To provide an impartial comparison of the pro-
posed models and evaluate the degree of innovation
they introduce, it’s necessary to look at several ele-
ments present in each work, including:

• Basic methodological blueprint used to con-
struct the model

• Priority objectives the authors are trying to
achieve

• Statistical operations and training procedures
designed to improve accuracy and/or effi-
ciency

• Datasets and standards used for quantitative
evaluation of the model

• Potential for real-world applications and
follow-up work

In terms of methodological choices, practically all
works from this group acknowledge the unmatched
power of the attention mechanism for analyzing
semantic relationships, and incorporate it in some
way into the proposed architecture. There is a di-
vision between works that mostly (or completely)
embrace an existing architecture and perform only
minor operations such as fine-tuning or knowledge
transfer in order to reduce the computational de-
mands (Adhikari et al., 2019; Sun et al., 2019). On
a different end of the spectrum, there are works
that propose innovative hybrid solutions in which
the attention mechanism and/or Transformer ar-
chitecture are combined with elements of differ-
ent deep learning paradigms, such as RNNs and
CNNs. In particular, a common strategy is to adopt
a hierarchical structure for the overall solution and
use the attention mechanism only in a limited role,
thus avoiding the exponential growth of complex-
ity (Huang et al., 2021; Si and Roberts, 2021).

The aforementioned methodological differences
stem largely from the expectations for each paper,
which range from proving a theoretical point to at-
tempting to develop specialized model for long doc-
ument classification. Works with a narrower scope
tend to stay closer to the original BERT model de-
sign (Beltagy et al., 2020), while more ambitious
efforts that aim to create new tools are more in-
clined to experiment with previously untested com-
binations of elements. In some papers, the scope
of intended applications is limited to long docu-
ments from a certain domain (i.e. medical) (Si and
Roberts, 2021), while others are approaching the
problem in more general terms. Finally, there is an
important distinction between works that aim for
greater accuracy, and those that primarily attempt
to improve computational efficiency and shorten
the inference time (Park et al., 2022).

It’s a fair assessment that practically all works
from this group are grappling with the same prob-
lem – the tendency of attention-based models to
become prohibitively complex as the length of the
analyzed text is increased. In response, the authors
tried a variety of ideas that rely on vastly different
mechanisms to decrease complexity. From fine-
tuning and knowledge distillation to introduction of
hierarchical architectures and restrictive elements
such as fixed-length sliding window (Beltagy et al.,
2020; Wang et al., 2020), the proposed techniques
are quite innovative and typically leverage some
known properties of deep learning models to affect

109



Table 1: Comparison of the reported performance of different long document classification methods

Author Method Reported accuracy

(Liu et al., 2018) Local convolutional feature aggregation From 88 to 95.4%
(Sun et al., 2019) BERT + head and tail truncation Error rates from 0.67 to 5.4
(He et al., 2019) Recurrent attention learning From 77.4 to 80.4%
(Adhikari et al., 2019) DocBERT From 54 to 91%
(Pappagari et al., 2019) RoBERT/ToBERT From 82 to 95.4%
(Wang et al., 2020) Dynamic hierarchical topic graph From 68.8% to 97.3%
(Beltagy et al., 2020) LongFormer F1 score from 64.4 to 94.8
(Ding et al., 2020) CogLTX a BERT-based model + MemRecall algorithm F1 score from 70% to 97%
(Si and Roberts, 2021) Hierarchical Transformer Up to 94.7%
(Huang et al., 2021) Hybrid self-attention sparse network From 73.2% to 95.7%
(Khandve et al., 2022) Hierarchical Attention Network (HAN) + BERT + CNN/LSTM From 80 to 100%

how the attention mechanism performs in a par-
ticular deployment. The diversity of ideas found
in those papers illustrates that researchers are cur-
rently casting a wide net and searching for uncon-
ventional answers to a difficult problem, without a
single dominant strategy. On the other hand, hybrid
approaches hold a lot of promise and they combine
some proven elements from different methodolo-
gies into new, potentially more optimal configura-
tions (Huang et al., 2021; He et al., 2019).

Evaluation of the proposed changes to estab-
lished algorithms is crucially important, and all
of the reviewed works include some form of em-
pirical confirmation of their premises. While the
numbers seemingly validate that the proposed solu-
tions achieve state-of-the-art results under the best
possible conditions, those findings are self-reported
and may often be too optimistic. All of the papers
are interested in document classification tasks and
use it to evaluate their solutions, but datasets used
for testing may not be the same in terms of size,
diversity, and content. When directly comparing
different solutions, it’s extremely important to keep
in mind the particulars of the evaluation protocols.
Studies aiming to provide evaluations with inde-
pendently administered comparative testing of sev-
eral different BERT-like algorithms for document
classification are slowly emerging and reporting
some interesting findings that often diverge from
self-assessed results (Wagh et al., 2021; Dai et al.,
2022; Park et al., 2022). Still, there are no widely
accepted evaluation standards and every compari-
son suffers from ‘apples-to-oranges’ problem up to
an extent.

When it comes to practical use of the proposed
solutions, there is a general lack of field data and
even discussions of use cases are rare. This is un-

derstandable considering the main focus is on dis-
covering more efficient methods, but without real
world testing it’s difficult to predict whether any
of the solutions can deliver similar results to their
reported findings. Some works may be directed
as specific niches such as legal (Wan et al., 2019;
Bambroo and Awasthi, 2021) or medical (Si and
Roberts, 2021), but even in this case little attention
is paid to practicalities associated with real world
application. This weakness may reflect the cur-
rent state of the field, which is highly experimental
and mostly built on data collected in a controlled
environment.

4 Datasets and Reported Accuracy

As previously stated, all papers include an exper-
imental evaluation of the proposed solution and
present certain quantitative findings that underscore
their methodological choices. In particular, they
measure the ability of the model to correctly clas-
sify long documents by topic. The performance is
typically reported in terms of accuracy with several
different metrics, but other aspects may be tracked
as well such as complexity or speed of inference.
It’s important to note that multiple versions of the
algorithms are tested on several datasets in each
study, which is why accuracy estimations are given
as ranges as shown in Table 1.

The choice of the training and testing datasets
also carries great significance when analyzing the
output of various deep learning algorithms. The
same is true for the length of documents, as all of
the reviewed papers state among their objectives
the improvement of performance with long text
sequences. Datasets may also differ by their vol-
ume, the number of classes, and other parameters
as well, and some studies may include tasks other
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Table 2: Overview of the datasets used for training and evaluation with average sequence length

Author Datasets Average document length

(Liu et al., 2018) Custom set comprised of arXiv papers 6000 words
(Wang et al., 2020) 20NG, R8, R52, The Oshumed, MR, From 39 to 389
(Sun et al., 2019) IMDB, Yelp reviews, TREC, Yahoo answers, AG News, DBPedia, Sogou 10 – 740 words
(He et al., 2019) Custom set comprised of arXiv papers 6300 words
(Adhikari et al., 2019) Reuters, AAPD, IMBD, Yelp 2014 145 -390 words
(Beltagy et al., 2020) WikiHop, TriviaQA, HotpotQA, OntoNotes, IMDB, Hyperpartisan from 139 -2000
(Ding et al., 2020) NewsQA, 20NewsGroups,Alibaba and HotpotQA from 300-650 Limited by MemRecall block
(Pappagari et al., 2019) CSAT, 20NG, Fisher Phase I 260 – 1790 words
(Si and Roberts, 2021) MIMIC III 700 tokens
(Huang et al., 2021) IMDB, Yelp 2018 From 100 to 500 words per review
(Khandve et al., 2022) 20NG, BBC News, AG News, BBC Sports, IMDB, R8 From 39 to 389 words per document

than document classification. The overall datasets
used for training and evaluation with average se-
quence length are presented in Table 2.

5 Conclusion and Future Directions

It is beyond doubt that Transformer architecture
changed the way linguistic analysis is performed,
and in a very short time BERT has been widely
accepted as the golden standard of semantic un-
derstanding. However, the greatest value of this
concept may be tied to its flexibility, as it allows
for extensive customization and specialization with
only minimal modifications of the training proce-
dure. While there have been numerous adaptations
of successful Transformer models in the past, it’s
highly likely that the number and quality of deriva-
tive work will increase in the near future. Figuring
out ways to improve an already impressive model
is not easy, but growing presence of this topic in the
online forums and greater availability of research
papers dealing with some of the outstanding chal-
lenges could power the next wave of research in
this direction. This process is already underway,
and a breakthrough achieved with Transformers is
being actively exploited by research teams from
around the world.

Computational efficiency remains the central
challenge, and developing models that can achieve
elite accuracy on a wide range of tasks without
requiring escalating amount of resources is a top
priority for the next stage of research. Some of the
ideas presented in the reviewed works will certainly
be revisited and expanded in the coming years,
and their cumulative contributions could eventu-
ally lead to a consensus solution. In parallel with
the process of consolidation of knowledge and re-
solving practical difficulties, we can also expect
to see a larger number of domain-specific applica-
tions that are designed and trained with real-world

use in mind. Since in many domains there are
long documents to be classified, solving the diffi-
culties that current algorithms are having with long
text sequences will stay a key objective. Local-
ization is another issue that should be addressed
in future work, as most of the current tools were
never tested with non-English datasets. Given that
the volume of non-English documents is enormous
and growing very fast, it would be refreshing to
see language-specific applications that match the
quality of original BERT.

Hybridization of models remains an area that
hasn’t been sufficiently explored, in part due to
huge potential for mixing and matching different el-
ements. The advantages offered by older paradigms
such as recurrent or convolutional neural networks
shouldn’t be ignored, and some very imaginative
efforts to combine them with the attention mecha-
nism were made. Hybrid approaches to long docu-
ment classification are rapidly emerging over the
last few years (Qin et al., 2022), and some of them
deserve to be explored further. Balancing complex-
ity of the model and compatibility of all compo-
nents presents a unique challenge, and it may take
several years before fully mature solutions of this
type start appearing.
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Abstract

The similarity of documents is typically com-
puted using fairly simple similarity measures,
such as mean or maximum pooling of word
representations followed by vector cosine simi-
larity. This results in fast computation but com-
pared to second-order or matrix-based similar-
ity measures loses information. In this work,
we investigate the value of matrix similarity
measures for document similarity comparison
in full-length patent retrieval tasks and intro-
duce two new metrics motivated by the Schat-
ten p-norm. The new similarity measures are
based on singular values and involve learnable
parameters to be optimized for a given evalu-
ation task. We show that tuning the similarity
measures for a specific task improves the simi-
larity comparison accuracy.

1 Introduction

1.1 Document representations and similarity
For natural language processing tasks, we typically
represent words and documents as numerical vec-
tors, since they allow mathematically simple com-
parisons (e.g. similarity between two documents)
and are space-efficient. Modern vector representa-
tion methods are highly informative for individual
words and even long documents can be represented
as relatively low-dimensional vectors. Already sim-
ple mean pooling can work well in practice (Con-
neau et al., 2018), and further developments such as
smart weighting schemes (Arora et al., 2017; Gupta
et al., 2020), directly learned document vector rep-
resentations (Le and Mikolov, 2014; Chen, 2017),
and especially the contextual embeddings and trans-
former models (Vaswani et al., 2017; Devlin et al.,
2018) have pushed the limits of what one can en-
code into a vector. Transformers, however, have
often very high computational cost (Sharir et al.,
2020) and simpler methods and better similarity
measures based on static word representations still
have their place in many applications.

We step outside such vector-shaped represen-
tations and directly work with a full matrix A ∈
Rn×d that stores d-dimensional representations for
n words appearing in the document. We explore
the value of covariance pooling and singular value
(SV) based similarity measures in patent similarity
comparison tasks, and show that in the case of static
embeddings, these similarity measures outperform
mean vector representations in full document com-
parison tasks.

The key contribution of this work is the introduc-
tion of new matrix similarity measures for docu-
ment similarity. We explain how submultiplicative
norms can be converted into a metric resembling
cosine similarity, providing a family of similarity
measures building on the Schatten p-norm (later
just p-norm) computed using SVs of covariance
pooling. We then introduce new similarity mea-
sures that are based on the same SVs but map them
to similarity scores in a more flexible manner. The
new similarity measures have learnable parameters
that are tuned for a specific end task and hence can
learn to represent relevant information better.

1.2 Matrix metrics

We define a matrix similarity measure to be a func-
tion f(A,B) ∈ R that assigns similarity score for
document matrices A ∈ Rn×d and B ∈ Rm×d,
where d is the dimensionality of the word embed-
ding vectors (here d = 300), n is the amount of
tokens in the document A, and m is the amount of
tokens in document B.

The similarity between matrices can be defined
in multiple ways. The most straightforward ones
– such as Word mover’s distance (Kusner et al.,
2015) (also known as Bures-Wasserstein distance
(Bhatia et al., 2019)) or pairwise comparison of all
possible word pairs in a matrix – can be directly
applied on matrices with an arbitrary number of
rows, and hence for documents of arbitrary lengths.
Some other similarity measures assume A and B
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to be the same shape. To apply those for docu-
ment comparisons, we need to first preprocess the
document matrices suitably; we here call this step
pooling. The simplest pooling approach is padding
the shorter document with suitably many rows of
zeros, whereas a more general approach is to use
covariance pooling where we use ATA ∈ Rd×d

and BTB ∈ Rd×d as the inputs for the similarity
measure. Covariance pooling has been shown to
have beneficial properties as a document representa-
tion (Torki, 2018; Lagus et al., 2019). As d is often
large, for the smaller size we can use SVD pool-
ing where only k leading singular vectors of the
covariance representation are used. This can have a
regularizing effect in addition to lowering memory
and computational costs (Lagus et al., 2019).

1.3 Patent retrieval as context

We evaluate the measures in the context of patent
applications, as an example domain with long but
structured documents. Tools for handling patent
documents are in high demand due to the high labor
cost of manual inspection. This is especially the
case for the invalidity search stage, aiming to find
relevant patents that could possibly cause issues
with e.g. patent infringement, or lead to delays or
rejection of the application. Over the years, there
has been lots of research on how to automate dif-
ferent parts of the process (Balsmeier et al., 2018;
Aristodemou and Tietze, 2018) and on end-to-end
solutions (Gao et al., 2022) for specific tasks. In
addition to trying to solve specific tasks, there have
been efforts toward creating patent-text-specific
language models (Lee and Hsiang, 2020; Bekamiri
et al., 2021). The patent domain is ideal for ex-
ploring alternative similarity measures as the docu-
ments are often tens of pages long and better meth-
ods are needed to use the full information.

2 New similarity measures

This section introduces our technical contribu-
tions. We first explain how submultiplicative ma-
trix norms can be used for deriving a similarity
measure between two matrices and provide a fam-
ily of measures building on the p-norm, computed
using SVs of the covariance pooling of document
matrices. We then introduce a family of more ex-
pressive matrix similarity measures, replacing the
matrix norm with alternative functions of the SVs.
The new measures have learnable parameters that
can be fine-tuned for a given task.

2.1 From matrix norm to similarity measure
Any submultiplicative matrix norm ∥A∥ satisfying
∥AB∥ ≤ ∥A∥∥B∥ can be used as a basis for a
normalized similarity measure between matrices
A and B. If we denote the norm (or norm-like
function) with S(·), we get the general formula

D(A,B, S(·)) := S(ATB)

S(ATA)1/2S(BTB)1/2
. (1)

This measure is a natural extension to the standard
cosine similarity between vectors. Due to submul-
tiplicativity, it is always within the range [−1, 1].
Even though the measure will not in general be a
proper metric, we will have higher similarity when
A and B are similar in terms of the norm and can
use it for similarity comparisons.

We build on a particular family of submultiplica-
tive norms called Schatten p-norms, defined as

Sp(A) :=

(∑

n

spn(A)

)1/p

, (2)

where p ∈ [1,∞) and sn(A) is the nth SV of
the matrix A in descending order. The normal-
ized similarity measure can then be expressed as
D(A,B, Sp(·)) in the general notation of Eq. (1).
This family generalizes several well-known norms:
for p = 2 we get the Frobenius norm, for p = 1 it
corresponds to the trace norm, and for p = ∞
we get the operator norm. Lagus et al. (2019)
presented the similarity measure of Eq. (1) in the
specific context of the Frobenius form, but here
we consider the general formulation for arbitrary
norms and norm-like functions.

For p ∈ (0, 1) the p-norm is a quasinorm as it
does not fulfill the triangle inequality, but we still
have D(A,B, Sp(·)) ∈ [−1, 1] and hence get a
normalized similarity measure. The p-quasinorm
has gained traction in other matrix applications
such as low-rank matrix recovery (Zhang et al.,
2019) and image denoising (Xie et al., 2016).

2.2 Learnable similarity measures
The measure (1) depends on the norm. Instead of
assuming a specific norm in advance, we propose
using a slightly more flexible parametric family
of norms. We can then optimize the parameters
of the norm directly for a task where the distance
measure is used. The p-norm (2) itself has the
parameter p which can be learned to maximize a
task performance, such as retrieval accuracy.
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For more flexibility, we propose extensions of
the p-norm that involve additional control parame-
ters. We start from the observation that the p-norm
is based on SVs, and construct two alternatives that
use SVs as inputs.

The simplest extension

Sw,p(A) :=

(∑

n

(
wnsn(A)

)p
)1/p

(3)

weights each SV independently but otherwise re-
tains the functional form of the p-norm. This gener-
alization is still a norm, since for any matrix A, we
can always find matrixA′ where si(A′) = wisi(A).
One motivation for this norm is the observation of
Arora et al. (2017) that removing the direction of
the largest singular vector reduces the effect of the
most common words that are often uninformative.
For p = 1 (denoted as Sw,1(·) later on) we obtain
simple weighting as special case of the more gen-
eral weighting. Alternatively, we can interpret the
weights wn as a form of an attention mechanism.

As a still more flexible alternative, we consider
directly mapping the SVs of ATB to the similarity
with a flexible model. We can then include the
normalization within the measure itself, and hence
get directly a replacement for Eq. (1). For this, we
use a small neural network

DNN (A,B) = T (R(R(s(ATB)W1)W2)W3),

where R(·) is a the rectified linear unit activation
function and the layer weights

W1 ∈ Rd×500,

W2 ∈ R500×500, and

W3 ∈ R500×1.

Finally, the hyperbolic tangent T (·) at the end en-
sures the output is normalized between [−1, 1].
Each layer has also a bias term of suitable size,
which is omitted here for conciseness. The net-
work architecture could be further tuned by stan-
dard architecture search and hence this architecture
is to be seen as one practical example of the more
general approach.

3 Experiments

We evaluate the proposed similarity measures in
the context of patents. When patent examiners eval-
uate the novelty of a patent application, there are
different kind of prior art that is to be considered.

The X citations are prior work that can alone lead
to a rejection, while the A citations describe the
state of the art, but are not immediate reasons for
rejection. Differentiating between these categories
can be useful, for example, in retrieval tasks where
we want to rank the patents by their relevance to the
original document. If we know the relative order-
ing of each citation class, we can reorder the search
results to highlight the most relevant documents,
i.e. in this case Xs before As.

Patents themselves consist of two main parts,
Claims and Description, where the Claims part
describes the actual claims that are being made and
the description part is a more free-form description
of the invention overall. For this reason, the Claims
part is usually much shorter and less noisy than
the Description part, while the Description part is
more thorough and thus contains more fine-grained
information. We evaluate the similarity measures
for both cases to provide two parallel sets of results.

3.1 Data and evaluation
Documents and encoding The dataset consist
of 3,500 full-length patent applications acquired
from the United States Patent and Trademark Of-
fice, with average document length being 37,754
characters for the Descriptions and 1,907 charac-
ters for the Claims. We encode the patent docu-
ments using English 300-dimensional fastText
embeddings (Joulin et al., 2016) and form the co-
variance matrices of dimensionality 300× 300 of
each document as the representation.

Training For the models that require learning
the parameters, we use PyTorch (Paszke et al.,
2019) library to do gradient-based optimization
using 2,000 samples as the training set and 500
samples as the validation set. We use triplet loss
as the loss function setting one of the models as
the distance function and the margin (chosen using
hyperparameter optimization) to 0.5. The loss for
one instance for the measure in Eq. (1) is then

max(D(A,P, S(·))−D(A,N, S(·)) + 0.5, 0),

and for the neural network model it is

max(DNN (A,P )−DNN (A,N) + 0.5, 0),

where A is the encoded original document, P is
the encoded X citation (positive sample), N is the
encoded A citation (negative sample), and S(·) is
a norm-like measure. Optimization is terminated
once the result on the validation set decreases for
three consecutive evaluations.
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Figure 1: a) Development of singular value weights as a function of iterations for the model Sw,1. b) Development
of the weights and p for the model Sw,p. Only first 70 out of 300 weights are shown; the rest are effectively zero.

Dataset Mean S0.1 S0.2 S0.5 S1.0 S1.5 S2.0 S5.0 S∞ Sopt Sw,1 Sw,p DNN

Claims 0.566 0.593 0.601 0.580 0.594 0.577 0.558 0.545 0.545 0.603 0.588 0.589 0.642
Descr. 0.553 0.549 0.558 0.573 0.520 0.504 0.496 0.482 0.482 0.574 0.525 0.574 0.652

Table 1: Numerical results. Mean shows the baseline of mean vector with cosine similarity. Free-form neural
network model DNN is clearly the best for both tasks.

Evaluation Finally we evaluate the trained
model using a test set of 1,000 triplets, measur-
ing the distance from the anchor to both positive
and negative samples and counting how often the
positive sample is closer to the anchor than the neg-
ative sample, i.e. the X citation ranks higher than
the A citation. As the baseline, we use the standard
mean vector combined with cosine similarity.

3.2 Results

Results are reported in Table 1. We first inspect
the accuracy using standard p-norm by grid search
over p. The main observation is that small values
of p are the best, so that p = 1 is the best of the
proper norms in both cases and the highest overall
accuracy is obtained with quasinorms with p < 1.
The best p clearly outperforms the baseline of mean
vector and cosine similarity (Mean); for Claims we
improve from 0.566 to 0.601 with p = 0.2 and
for Descriptions from 0.553 to 0.573 with p =
0.5. Large p are clearly worse and all p > 3 are
effectively equivalent to p = ∞.

Instead of evaluating the metric for a range of
p, we can directly optimize over p. For both cases,
the solution (Sopt), slightly improves from the one
chosen amongst the grid of alternatives as expected,
with optimal values of p = 0.884 for Claims and
p = 0.327 for Descriptions. One technical aspect
we note is that when p ∈ (0, 1) the function is
non-convex (Shang et al., 2020) and can have mul-
tiple local optima within this range, but we did not
observe this to be a problem in practice.

The weighted extension of p-norm of (3) is de-
noted here by Sw,p. Figure 1 (a) illustrates the
learned weights (as function of iteration) for fixed
p = 1, demonstrating how the measure assigns
more weight for the first 10 or so SVs. Figure 1
(b) illustrates the behavior of the weights and p
when optimized jointly, and reveals quite different
phenomena: Instead of small p it is now better to
use large p and down-weight many of the early sin-
gular vectors. For both Claims and Descriptions,
the weighted variant Sw,p outperforms the mean
baseline, but does not provide an improvement over
Sopt and for Claims it remains worse. One advan-
tage of these measures is that – as seen here – the
similarity measures only depend on a fairly small
number of SVs; it is enough to compute some tens
of the SVs rather than all 300.

The still more flexible neural network measure
DNN works well, reaching the highest accuracy
for both Claims and Descriptions, with substantial
improvement also over Sopt. This verifies that SVs
ofATB can be used as the basis for accurately mea-
suring similarity between documents. Importantly,
we have high accuracy also for the full-length doc-
uments (Descriptions) that are challenging for all
other similarity measures.

4 Conclusions

We set out to investigate how similarity measures
based on matrix norms work in document similarity
comparisons in the context of patent retrieval. We
focused on similarity measures based on singular
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values of the inner product of the two document
matrices, motivated by the p-norm. Our main con-
tribution was introducing new parametric similarity
measures that build on the same singular values but
are fine-tuned for the specific task at hand, and we
showed how a direct neural network mapping the
singular values to a distance outperforms both stan-
dard mean representation as well as our attempts
of more constrained and interpretable measures. In
this work we did not fine-tune the neural network
architecture to maximize the accuracy but rather
used a generic small network, but for practical use
the network architecture could be tuned to further
improve the accuracy.

While the work was done in the context of static
embeddings and patent data, the applicability is not
limited to these. Likely any full-document compari-
son task can benefit from richer representations and
the contextual embedding models should enhance
the results even further.
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Abstract

In this study, we introduce a new method for
creating paraphrase datasets from parallel bilin-
gual corpora. We also introduce large para-
phrase datasets created using this method. We
utilize machine translation to create paraphrase
datasets by translating the English phrases in
Turkish-English parallel datasets to Turkish.
Detailed pre-processing steps are applied to
the text pairs. A sample from our translated
datasets was annotated by native speakers for
semantic similarity, and a model with the same
task was chosen based on the correlation with
human annotations. We then filtered the pre-
processed and translated text pairs by semantic
similarity calculated by the chosen model. Two
pre-trained encoder-decoder architectures were
fine-tuned on the datasets that we created. We
present results asserting our data collection and
filtering method’s effectiveness.

1 Introduction

Paraphrase generation can be applied in several
fields including data augmentation (Kumar et al.,
2019), machine translation evaluation (Thompson
and Post, 2020), chatbots (Garg et al., 2021), ques-
tion answering (Zhu et al., 2017), and semantic
parsing (Cao et al., 2020). A major challenge in
paraphrase generation research is the lack of large
paraphrase datasets, especially in languages other
than English. This served as a motivation for us to
create high-quality and large paraphrase datasets in
Turkish. We use English-Turkish datasets and trans-
late the sentences from English to Turkish. Seman-
tic similarity is then calculated using a Transformer-
based (Vaswani et al., 2017) model for each pair in
the resulting Turkish-Turkish datasets. Pairs that
have a score greater than a threshold are accepted as
paraphrases. The threshold is chosen in accordance
to human annotations collected by us.

Our main contributions are as follows:

• We present the largest Turkish paraphrase

datasets yet consisting of approximately 800k
pairs in total.

• We introduce a new method for creating a
paraphrase dataset from a parallel corpus com-
bining machine translation and semantic simi-
larity based filtering.

• We share paraphrase generation models
trained on the datasets we introduce as part
of our work and evaluate them using several
benchmark metrics.

• We share a manually annotated semantic tex-
tual similarity dataset consisting of 500 pairs.

The datasets and the fine-tuned models are shared
publicly.1 We hope that our work encourages more
research in this area, and provides a dataset that can
be used for benchmarking paraphrase generation
architectures and datasets in the future.

2 Related Work

The task of finding texts with similar or identical
meaning, often called paraphrase identification is
a challenging task. Several approaches have been
tried to create paraphrase datasets in previous work.

Manual paraphrase collection is very expensive,
unscalable and implausible with limited resources.
Studies in this area have usually made use of crowd
sourcing to construct a paraphrase dataset (Burrows
et al., 2013). The main advantage of this method
is its effectiveness in constructing a high-quality
dataset where diversity of the sentences can be
increased without the fear of producing pairs with
low semantic similarity.

Semantic similarity based mining can be em-
ployed to detect paraphrases in a corpus of texts.
Each sentence is compared with every other sen-
tence in the corpus and given a similarity score, the

1https://github.com/mrbesher/semantic-filtering-for-
paraphrasing
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sentence with the highest score is considered a para-
phrase. This method suffers from quadratic runtime
and thus fails to scale to large paraphrase datasets.
A similar approach was employed in (Martin et al.,
2020).

Machine translation can be used where a text is
translated to a pivot language then to the source lan-
guage again (Wieting and Gimpel, 2018), (Wieting
and Gimpel, 2018), (Suzuki et al., 2017). Multi-
ple pivot languages can be used in a similar man-
ner. While this method is successful, it may suffer
from noise caused by automatic translation from
the source to the pivot language and back from it.

Other automatic approaches were used like us-
ing parallel movie subtitles (Aulamo et al., 2020),
image captions of the same image (Lin et al., 2014),
and texts that can be marked as paraphrases based
on different conditions such as duplicate ques-
tions,2 duplicate posts (Lan et al., 2017), and text
rewritings (Max and Wisniewski, 2010).

A handful of research on Turkish paraphrase
dataset creation have been shared. (Karaoğlan
et al., 2016) conduct a study resulting in 2,472 text
pairs annotated by humans. (Demir et al., 2013)
present a paraphrase dataset consisting of 1,270
paraphrase pairs from different sources. The men-
tioned datasets are not shared publicly. (Bağcı and
Amasyali, 2021) present a combination of trans-
lated and manually generated datasets focusing on
question pairs, and train a BERT2BERT architec-
ture on it. None of the existing studies provide a
comprehensive dataset in Turkish to the best of our
knowledge.

3 Dataset Creation

The dataset creation process pipeline consists of
several steps to ensure that the dataset is of high
quality. Firstly, English-Turkish parallel texts with
only one source and one target were downloaded
using Opus Tools (Aulamo et al., 2020).

We considered using the datasets shared on
OPUS (Tiedemann, 2012).3 The following datasets
where downloaded, examined, filtered and machine
translated:

• OpenSubtitles2018: A large database of
movie and TV subtitles across 60 languages4

compiled, pre-processed and aligned by (Li-
son and Tiedemann, 2016).

2https://www.kaggle.com/c/quora-question-pairs
3https://opus.nlpl.eu/
4http://www.opensubtitles.org/
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Figure 1: Dataset Creation Pipeline

• TED2013: A parallel dataset of TED talk
subtitles originally provided by Web Inventory
of Transcribed and Translated Talks.5 The
talks were translated automatically, leading to
significant noise.

• Tatoeba v2022-03-03: A collaborative collec-
tion of sentences and translations, compiled
using crowdsourcing.6

Text pairs were pre-processed according to the char-
acteristics of each dataset to remove unwanted text
pairs. An example is removing the explanations
done in the TED dataset indicated by two hyphens
before and after the explanation while keeping text
in square brackets as they made the statements
more understandable.

Machine translation is applied on the whole
dataset from English to Turkish. At this stage
the dataset contains valid text pairs that are candi-
dates to be paraphrases. Source and translated sen-
tences were removed if one includes the other and
pre-processing steps were applied again to remove
noisy texts generated by the translation model. Af-
ter that, semantic similarity between text pairs is
measured and pairs with a high semantic similarity
score are chosen as paraphrases. The steps, illus-
trated in Figure 1, ensure a robust process to create
a high-quality paraphrase dataset.

4 Translation and Semantic Similarity
Based Filtering

4.1 Translation

Due to the huge volume of data that we aimed to
translate, usage of online machine translation ser-
vices was unfeasible due to restrictions set by the
providers. We chose a machine translation model
provided by OPUS-MT project (Tiedemann and

5https://wit3.fbk.eu/
6https://tatoeba.org
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Thottingal, 2020) and shared publicly on Hugging
Face.7

4.2 Human Annotations for Ground Truth
Semantic Similarity

To filter the pairs further, we considered using a
semantic similarity metric to remove pairs with
low semantic similarity. We had several models
to achieve the task of semantic similarity scoring
to choose from. For model selection, we sampled
250, 150, and 100 pairs from OpenSubtitles2018,
Tatoeba, and TED2013 respectively. The samples
were then annotated by 6 native Turkish speakers,
with each pair assigned to two different annotators.
Following (Creutz, 2018), each pair could be as-
signed one of the labels described in Table 1. If the
annotators disagreed and the score difference was
less than two, the label indicating less semantic
similarity was chosen. Otherwise, the label was
discarded.

A bot was created on Telegram8 to ease the pro-
cess of annotation collection and the scores col-
lected from annotators were used later to determine
a threshold to filter out low quality paraphrases.

Annotators disagreed by two points on 16 sam-
ples from OpenSubtitles2018 (OST), 5 samples
from TED2013 (TED), and 3 samples Tatoeba
(TAT). Therefore, a total of 24 samples were re-
moved. The distribution of the labels in each
dataset is shown in Table 2.

The desired phrase pairs are the ones labeled
as near-synonyms or synonyms. 66.32%, 70.94%
and 88.44% of the pairs in TED, OST and TAT
respectively can be considered paraphrases accord-
ingly. The results show a need for further filtering
as phrases with different meanings are expected to
affect the model’s performance.

4.3 Semantic Similarity Based Filtering

Several semantic similarity models were consid-
ered to filter the text pairs. The goal is to cap-
ture the closeness in meaning between two input
texts. The models we considered utilize BERT as
a baseline (Devlin et al., 2019). Among those are
Bi-encoders, two identical encoders that compute
embeddings of sentences separately. Cosine sim-
ilarity is then calculated between the embedding
pair. We considered three pretrained models of this
kind:

7https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-tr
8https://telegram.org/

• distiluse-base-multilingual-cased: Pre-
sented in (Reimers and Gurevych, 2020),
this model creates multilingual sentence
embeddings. The training objective is to
map translated sentences’ embeddings to the
embeddings of the original sentences.

• multilingual-l12: This model maps texts to
a 384 dimensional dense vector space, the
model is shared on Huggingface.9

• emrecan: This model was fine-tuned on a
machine translated version of STS-b10 and
NLI (Budur et al., 2020) to map texts to a 768
dimensional dense vector space. Contrary to
the models mentioned before, this model is
trained on Turkish datasets.

Cross-encoder networks (Reimers and Gurevych,
2019) accept sentence pairs as inputs, and output
the semantic similarity between sentences. Follow-
ing (Beken Fikri et al., 2021), and using their STS-b
(Cer et al., 2017) dataset, which was translated by
the authors using Google Cloud Translation API.11

We fine-tuned BERTurk12 starting from 5 random
seeds for 4 epochs and used the model with the
highest correlation score with the similarity labels
on the development set split provided by the au-
thors.

We chose the semantic similarity model that fil-
tered out the least amount of pairs labeled as syn-
onyms or near-synonyms. The goal is to remove
pairs labeled as having distant meanings or no rel-
evance. We chose thresholds for each model such
that after filtering out pairs below the thresholds in
the sample annotated by humans, 95% of the kept
pairs are labeled as synonyms or near-synonyms.
The percentage of the valid pairs kept can be seen in
Table 3 for every model. Emrecan was chosen for
filtering due to its superiority to the other models.

Table 4, shows the number of text pairs before
any filtering was applied in the raw column and the
number of kept pairs after pre-processing, prior to
translation. The number of pairs kept after seman-
tic similarity based filtering is shown in the last
column.

9https://huggingface.co/sentence-
transformers/paraphrase-multilingual-MiniLM-L12-v2

10https://huggingface.co/datasets/emrecan/stsb-mt-turkish
11https://github.com/verimsu/stsb-tr
12https://huggingface.co/dbmdz/bert-base-turkish-cased
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Category Description Example
Eş Anlamlı İki cümle birbirlerinin yerine kullanıla-

bilir ve temelde aynı anlama gelmekte-
dir.

Ona yaklaşmayın, hasta olabilir.
Ondan uzak durun! Hasta olma ihtimali
var.

Synonyms The two sentences can be used inter-
changeably and essentially mean the
same thing

Do not get close to him. He might be
sick.
Stay away from him! There is a chance
that he is sick.

Yakın Anlamlı Cümlelerin tarzları farklı olsa da iki
cümlenin aynı anlama geldiğini düşün-
mek mümkün.

O, saçını yapma tarzını değiştirdi.
Saçının şeklini değiştirmiş.

Near-synonyms Even though the style of the sentences
is different they can be thought to have
the same meaning.

She changed the way she does her hair.
She changed the shape of her hair.

Uzak Anlamlı İki cümlenin neden yan yana geldiği an-
laşılabilir ancak aynı anlama geldikleri
söylenemez.

Farklı roller için de seçmelere
katılmıştım
Birkaç rol için bekledim.

Distant Meanings It can be explained why the sentences
are coupled together but one cannot
consider them to have the same mean-
ing

I attended the auditions for different
roles.
I waited for some roles.

Alakaları Yok Cümleler arasında bir bağlantı yok.
Farklı anlamlara sahipler.

Afedersin bana benim iki elim yeter.
Üzgünüm, sadece ikisini alabilirim.

No Relevance The sentences have no connection.
They have different meanings.

Execuse me, my two hands are enough
for me.
Sorry, I can only take two of them.

Table 1: Semantic Similarity Labeling Task Description for Human Annotators

Label OST TAT TED
No Relevance 25 2 6

Distant Meanings 43 15 26
Near-synonyms 92 40 37

Synonyms 74 90 26

Table 2: The distribution of human annotations across
the datasets

Model OST TAT TED
BERTurk 33.73 33.85 42.86
Distiluse 40.36 8.46 34.92

Multilingual-l12 36.75 9.23 36.50
Emrecan 42.68 26.92 46.03

Table 3: Percentage of the Kept Valid Pairs

5 Experiments

We ran experiments to measure the quality of our
constructed datasets. These are intended to be used
as a baseline for future research on Turkish para-
phrase generation. We train our models on the

unfiltered and the filtered versions of our datasets
to analyze the applied filtering method’s impact on
the quality of our datasets.

For our experiments, we randomly select 5% of
the pairs in each dataset as development split and
5% as test split. The rest of the pairs are used for
training the models. In this section we present the
experimental results of the models we fine-tuned
on the train splits and tested on the test splits of
our datasets. We employ transfer learning using
pre-trained Text-to-Text Transformer models. mT5
is a multilingual variant of T5 presented in (Xue
et al., 2021). We use a pre-trained checkpoint of
mT5-base provided by Google and published on
Hugging Face.13 We also utilized BART (Lewis
et al., 2020) using trBART, a checkpoint of BART-
base (uncased) pre-trained from scratch by (Safaya
et al., 2022). The authors published the model on
Hugging Face.14

In our initial experiments, models fine-tuned

13https://huggingface.co/google/mt5-base
14https://huggingface.co/mukayese/bart-base-turkish-sum
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Name Raw Pre-processing Similarity Based Filtering
OST 13,190,557 1,944,955 706,468
TAT 393,876 265,203 50,423
TED 131,874 104,238 39,763

Table 4: Number of Text Pairs in the Datasets Before and After Filtering

on the TED dataset failed to generate acceptable
parahrases. We did not continue experimenting
with the dataset, and thus only provide the trans-
lations and the filtered dataset without experiment
results.

Our models were trained for 4 epochs with a
learning rate of 1e− 4 on the OST dataset, and for
6 epochs with a learning rate of 1e− 4 on the TAT
dataset. Those values yielded the highest BLEU
scores of the models on the development splits after
several experiments with different learning rates.
Five candidate texts were generated for each source
text. The candidate with the highest probability that
does not consist of the same letters as the source
was chosen for evaluation.

We report the following metrics: BERTScore
(Zhang et al., 2019),15 BLEU (Papineni et al.,
2002),16 ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), and TER (Snover et al., 2006).
The scores reported in Table 5 are the mean of 4
results from 4 training runs using the settings we
described earlier.

Note that the mT5-base trained on the OST
dataset outperformed the other models in both
datasets. This, in our opinion, suggests general-
izability and high dataset quality. To further assess
the impact of our filtering method, we fine-tuned
mT5-base on the unfiltered datasets and observed
that despite the difference in size, the models fine-
tuned on the unfiltered datasets yielded worse per-
formance on the OST dataset and less semantically
similar pairs on the TAT dataset. We believe that
this is due to the fact that TAT is more carefully con-
structed using crowdsourcing, and thus the effect
of semantic similarity based filtering is less visi-
ble. We report the score of mT5-base trained for 3
and 4 epochs on the unfiltered OpenSubtitles2018
(OST-RAW) and Tatoeba (TAT-RAW) respectively.
The scores of the model on the test splits started to
decrease after those epochs.

We present some generated paraphrase examples
in Appendix A, to highlight the success and the

15https://github.com/Tiiiger/bert_score
16https://huggingface.co/spaces/evaluate-metric/bleu

failure cases of the fine-tuned models.

6 Conclusion

We detailed an approach for creating paraphrase
datasets from parallel text coprora using machine
translation and semantic similarity based filtering.
For filtering, we chose a semantic similarity model
that kept the most paraphrases in the datasets based
on similarity labels we collected from human an-
notators for a sample of our datasets. We present
the paraphrase datasets we created with benchmark
results of Text-to-Text Transformer models trained
on our datasets across a variety of metrics.

7 Future Work

Our approach results in a high-quality paraphrase
dataset, but has a downside of filtering out valid
pairs with low lexical similarity depending on the
semantic similarity metric used. We plan on com-
bining lexical and semantic similarity into a new
filtering metric to obtain a dataset that has more
diverse pairs. We will compare the effectiveness
of models trained on the current datasets and the
diverse dataset in data augmentation for different
tasks. Furthermore, we also plan to test the ef-
fect of curriculum learning (Bengio et al., 2009)
on the newly created diverse datasets, and similar
to (Li et al., 2018) we will evaluate the output of
the models with the help of human annotators on
multiple aspects like clarity, fluency, and semantic
similarity.

8 Acknowledgment

This study was supported by the Scientific
and Technological Research Council of Turkey
(TUBITAK) Grant No: 120E100.

References
Mikko Aulamo, Umut Sulubacak, Sami Virpioja, and

Jörg Tiedemann. 2020. OpusTools and parallel cor-
pus diagnostics. In Proceedings of The 12th Lan-
guage Resources and Evaluation Conference, pages
3782–3789. European Language Resources Associa-
tion.

123



OST Test Dataset
Model Train Dataset BERTScore Cased BERTScore Uncased BLEU ROUGE-L METEOR TER

mT5-base OST 89 ± 0.01 92.05 ± 0.01 46.26 ± 0.09 74.8 ± 0.02 72.97 ± 0.13 36.4 ± 0.04
trBART OST 77.8 ± 0.17 87.92 ± 0.13 33.59 ± 0.32 64.65 ± 0.33 62.62 ± 0.45 50.96 ± 0.4

mT5-base TAT 84.95 ± 0.38 89.23 ± 0.24 29.37 ± 0.83 66.64 ± 0.46 63.14 ± 0.86 49.29 ± 1.13
trBART TAT 74.21 ± 0.32 85.25 ± 0.28 23.45 ± 0.29 59.32 ± 0.6 54.93 ± 0.5 57.22 ± 0.59

TAT Test Dataset
Model Train Dataset BERTScore Cased BERTScore Uncased BLEU ROUGE-L METEOR TER

mT5-base TAT 94.07 ± 0.36 95.75 ± 0.25 61.66 ± 1.34 84.67 ± 0.62 82.72 ± 0.42 22.43 ± 1.27
trBART TAT 84.42 ± 0.33 94.09 ± 0.26 56.58 ± 0.99 81.68 ± 0.54 78.83 ± 0.52 26.69 ± 0.76

mT5-base OST 94.47 ± 0.06 95.94 ± 0.03 63.87 ± 0.44 85.18 ± 0.19 82.46 ± 0.27 21.41 ± 0.21
trBART OST 82.65 ± 0.25 92.47 ± 0.16 48.71 ± 0.69 76.45 ± 0.32 73.26 ± 0.6 34.79 ± 0.28

Table 5: The Performance Scores of Our Models on the Test Datasets. TER score measures distance. The other
metrics measure similarity.

OST Test Dataset
Model Train Dataset BERTScore Cased BERTScore Uncased BLEU ROUGE-L METEOR TER

mT5-base OST 89 ± 0.01 92.05 ± 0.01 46.26 ± 0.09 74.8 ± 0.02 72.97 ± 0.13 36.4 ± 0.04
mT5-base OST (Unfiltered) 88.89 ± 0.06 91.94 ± 0.04 36.4 ± 0.23 73.87 ± 0.09 72.16 ± 0.16 37.58 ± 0.15
mT5-base TAT 84.95 ± 0.38 89.23 ± 0.24 29.37 ± 0.83 66.64 ± 0.46 63.14 ± 0.86 49.29 ± 1.13
mT5-base TAT (Unfiltered) 88.95 ± 0.2 92.08 ± 0.14 38.13 ± 0.4 68.39 ± 0.23 65.87 ± 0.22 45.13 ± 0.33

TAT Test Dataset
Model Train Dataset BERTScore Cased BERTScore Uncased BLEU ROUGE-L METEOR TER

mT5-base TAT 94.07 ± 0.36 95.75 ± 0.25 61.66 ± 1.34 84.67 ± 0.62 82.72 ± 0.42 22.43 ± 1.27
mT5-base TAT (Unfiltered) 91.61 ± 0.12 93.93 ± 0.09 34.74 ± 0.62 86.6 ± 0.2 84.85 ± 0.23 18.23 ± 0.25
mT5-base OST 94.47 ± 0.06 95.94 ± 0.03 63.87 ± 0.44 85.18 ± 0.19 82.46 ± 0.27 21.41 ± 0.21
mT5-base OST (Unfiltered) 91.97 ± 0.07 94.2 ± 0.05 37.02 ± 0.16 84.05 ± 0.19 81.59 ± 0.28 22.76 ± 0.32

Table 6: A Comparison Between the Performance of mT5 Model Checkpoints Trained on Our Filtered and Unfiltered
Datasets. TER score measures distance. The other metrics measure similarity.
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A Paraphrase Examples

We present in Table 7, 8 examples of paraphrases
generated by the models fine-tuned on our train
datasets. An abbreviation of the dataset each model
was fine-tuned on is provided in parenthesis. We
tried to choose representative examples showing
cases of both failure and success.
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Source Ve onu sizden kimse alamaz, beyler. Woodhouse tatlım biraz daha buza ihtiyacım var. Bir sandviçe yetecek kadar malzemem var.
And no one can take it away from you, gentlemen. Woodhouse, honey, I need some more ice. I’ve got stuff that will be enough for a sandwich.

mT5-base (OST) Ve kimse onu sizden alamaz, beyler. Woodhouse, tatlım, biraz daha buz lazım. Bir sandviç için yeterli malzemem var.
And no one can take it away from you, gentlemen. Woodhouse, honey, there is a need for more ice. I’ve got enough stuff for a sandwich.

trBART (OST) beyler ve onu sizden kimse alamaz. woodhouse biraz daha buza ihtiyacım var. bir sandviçe yetecek kadar malzeme var.
gentlemen and no one can take it away from you. woodhouse, I need some more ice. there is enough stuff for a sandwich.

mT5-base (TAT) Kimse bunu sizden alamaz, beyler. Woodhouse tatlım biraz daha buza ihtiyacın var. Sandviçe yetecek kadar malzemem var.
No one can take that away from you, gentlemen. Woodhouse, honey, you need more ice. I’ve got stuff that will be enough for sandwich.

trBART (TAT) beyler ve onu sizden kimse alamaz. woodhouse biraz daha buza ihtiyacım var. bir sandviçe yetecek kadar malzeme var.
gentlemen and no one can take it away from you. woodhouse, honey, there is a need for more ice. there is enough stuff for a sandwich.

mT5-base (OST-RAW) Kimse onu senden alamaz, çocuklar. Woodhouse, tatlım, biraz daha buz lazım. Bir sandviç için yeterli malzemem var.
No one can take it away from you, kids. Woodhouse, honey, there is a need for more ice. I’ve got enough stuff for a sandwich.

mT5-base (TAT-RAW) Kimse bunu sizden alamaz, beyler. Woodhouse tatlım biraz daha buza ihtiyacın var. Sandviçe yetecek kadar malzemem var.
No one can take that away from you, gentlemen. Woodhouse honey you need more ice. I’ve got stuff that will be enough for sandwich.

Table 7: Generated Paraphrases of Examples from the OST Dataset

Source Tom daha sonra ne yapacağını bilmiyordu. Tom asla tek başına oraya gitmezdi. İlk olarak ne yapacaklarını merak ettiler.
Tom didn’t know what to do next. Tom would never go there by himself They wondered what they would do first.

mT5-base (OST) Tom ne yapacağını bilmiyordu. Tom oraya tek başına gitmezdi. Önce ne yapacaklarını merak ettiler.
Tom didn’t know what to do. Tom wouldn’t go there by himself. They wondered what they would do before.

trBART (OST) tom bundan sonra ne yapacağını bilmiyordu. tom oraya hiç gitmezdi. ilk olarak ne yapacaklarını merak ediyorlar.
tom didn’t know what to do next. tom never went there. they are wondering what they’re going to do first.

mT5-base (TAT) Tom sonra ne yapacağını bilmiyordu. Tom oraya asla tek başına gitmez. İlk başta ne yapacaklarını merak ettiler.
Tom didn’t know what to do next. Tom never goes there by himself. They wondered what they were going to do at first.

trBART (TAT) tom bundan sonra ne yapacağını bilmiyordu. tom oraya hiç gitmezdi. ilk olarak ne yapacaklarını merak ediyorlar.
tom didn’t know what to do next. tom never went there. they are wondering what they’re going to do first.

mT5-base (OST-RAW) Tom bundan sonra ne yapacağını bilmiyordu. Tom oraya hiç tek başına gitmedi. Önce ne yapacaklarını merak ediyorlar.
tom didn’t know what to do next. Tom didn’t go there by himself. They are wondering what they would do before.

mT5-base (TAT-RAW) Tom bundan sonra ne yapacağını bilmiyordu. Tom oraya asla tek başına gitmez. Önce ne yapacaklarını merak ettiler.
Tom didn’t know what to do next. Tom never goes there by himself. They wondered what they would do before.

Table 8: Generated Paraphrases of Examples from the TAT Dataset
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Abstract

The similarity of documents represented using
static word embeddings is best measured us-
ing second-order metrics accounting for the co-
variance of the embeddings. Transformers pro-
vide superior representations for words com-
pared to static embeddings, but document rep-
resentation and similarity evaluation are cur-
rently often done using simple mean pooling.
We explain how the second-order metrics can
be used also with transformers, and evaluate
the value of improved metrics in this context.

1 Introduction

Many NLP models rely on pretrained representa-
tions, either static embeddings (e.g. Word2Vec by
Mikolov et al. (2013)) or context-aware models like
transformers (e.g. BERT by Devlin et al. (2018))
that process text sequentially but still represent
each word or subword with a fixed-dimensional
latent representation. These models are then fine-
tuned to solve specific tasks, by continuing to train
the representations while optimizing for the task
performance.

Longer documents cannot be directly modeled
by most transformers, but a representation can be
obtained by processing them in smaller units (e.g.
sentences) and then pooling the representations of
the individual words. The pooling method is often
a simple mean or max pooling, but despite the sim-
plicity, such approaches work relatively well both
with static embeddings (Wieting et al., 2015; Arora
et al., 2017; Gupta et al., 2020) and transformers
(Devlin et al., 2018; Reimers and Gurevych, 2019).

For instance, Torki (2018); Nikolentzos et al.
(2017); Muzellec and Cuturi (2018) and Lagus et al.
(2019) have shown that for static embeddings the
similarities can be more accurately captured by ac-
counting for the covariance structure of the word
matrix using so-called second-order metrics. We
study whether this holds also for transformers. This
is not obvious upfront, since transformers process

documents sequentially and hence capture some
document-level information already in (sub)word
representations, and directly fine-tuning the repre-
sentations for accurate document comparison may
enable even mean pooling to capture some of the
same information the second-order representations
use.

We explain how model-agnostic second-order
metrics can be used with transformers, provide de-
tails for fine-tuning both full-rank (Torki, 2018)
and low-rank (Mu et al., 2017; Yang et al., 2018;
Lagus et al., 2019) metrics using the new pooling
functions, and evaluate them in three tasks. We
focus on precomputable document representations,
not relying on similarity comparisons that require
cross-encoding the document pairs like in the orig-
inal BERT paper by Devlin et al. (2018). This
makes the methods suitable for online processing
and enables caching representations in a database.
Second-order metrics have computational overhead
in isolation, but the fine-tuning process is domi-
nated by other parts of the model and hence the
added computation time is small, even for low-rank
metrics that require propagating gradients through
singular-value decomposition (SVD). We show that
second-order metrics improve document similarity
comparison in two languages and for two trans-
former models, but do not help for sentence simi-
larity.

2 Document Metrics

We denote by A ∈ Rn×d a matrix that collects
the d-dimensional representations of the n words
occurring in the document as its rows.

The first-order metrics compress A into a d-
dimensional vector, typically using the mean a =
1
n1

TA, where 1 is n-dimensional vector of ones,
and compare the documents e.g. by cosine similar-
ity Scos(a, b) = (a ·b)(‖a‖‖b‖)−1 where b denotes
the mean vector for another document B (typically
with different n). See Arora et al. (2017) for details
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(e.g. weighting) for static embeddings and Reimers
and Gurevych (2019) for use with transformers.

The second-order metrics are based on
covariance-like products ATA ∈ Rd×d capturing
both variance and correlation between the repre-
sentation dimensions. Several slightly different
metrics have been proposed: Torki (2018) vector-
ized the covariance and combined it with the mean
pooling, Lagus et al. (2019) derived a second-order
metric from pair-wise cosine similarity of all word
pairs in the two documents, and Muzellec and Cu-
turi (2018) used Wasserstein metric to compare
second-order representations. Next, we describe
the specific metric of Lagus et al. (2019) that sup-
ports also low-rank computation proposed for com-
putational reasons but note that the other metrics
can be implemented as minor modifications.

The second-order metrics compare ATA and
BTB. A metric normalized to range [−1, 1] can be
conveniently expressed as SF (ATA,BTB) using
the general similarity measure

SF (X,Y ) =
〈X,Y 〉F
‖X‖F‖Y ‖F

, (1)

where 〈X,Y 〉F = Tr
(
XTY

)
is the Frobenius in-

ner product and ‖X‖F =
√
〈X,X〉F.

The obvious drawback of the metric is that ATA
has O(d2) elements, compared to O(d) of the
mean representation. Lagus et al. (2019) showed
that forming the covariance matrix can be avoided
by computing SVD of A: If A = UΣV T then
ATA = V ΣUTUΣV T = V Σ2V T , and the trace
term can be evaluated using the SVDs of the two
document matrices. They also demonstrated empir-
ically that a low-rank approximation for the metric,
using Ak = ΣkV

T
k ≈ A with k � min(n, d) com-

ponents has a regularizing effect while reducing
computation time compared to full-rank matrices.

3 Fine-tuning Second-order Metrics

Fine-tuning of transformers is done end-to-end for
a model that combines four parts: the embedding
model E(·), a pooling function P (·), the similar-
ity metric S(·, ·) and some eventual loss function
L(·, ·) that compares the similarities with ground
truths. If we denote by A = E(dA) the matrix
formed by the embedding model processing a text
sequence and by S̃ the ground truth similarity, the
objective to be trained with respect to parameters
of E(·), starting with the pretrained values, is

L(S(P (E(dA)), P (E(dB))), S̃(dA, dB)).

3.1 Pooling for Second-order Metrics
The current modeling pipelines building on mean
pooling Pmean(A) = 1

n1
TA can be re-used with

second-order metrics, by re-writing the metrics
as a combination of a generalized pooling func-
tion and a distance measure. For this, we assume
P (A) to be any function that transforms A to a
fixed-dimensional representation (vector or matrix).
Then we can define the new pooling functions

Pcov(A) = ATA and Psvd(A, k) =
√

ΣkV
T
k ,

where Σk and Vk refer to matrices that retain the
singular values and vectors corresponding to k
largest values. In the experiments, we also use
additional method derived from Pcov(·) named,
Pcov(·, k) where the dimensionality reduction to
k dimensions is done after the fine-tuning in the
prediction phase. Then the three metrics for docu-
ment comparison can be written as

mean : Scos(Pmean(A), Pmean(B)),

full-rank : SF (Pcov(A), Pcov(B)),

low-rank : SF (Psvd(A, k), Psvd(B, k)).

This unified formulation makes it easy to imple-
ment the second-order metrics as part of stan-
dard processing pipelines. The implementation
of the second-order metrics, compatible with the
sentence-transformers library by Reimers and
Gurevych (2019), is made available on GitHub1.

The size of Pcov(·) is quadratic in d and hence
can be large, which is generally considered a chal-
lenge in the case of static embeddings. In the con-
text of transformers, however, this is insignificant
since we are anyway fine-tuning a typically very
large model. The practical computation is hence
largely dominated by the other parts of the pipeline
(see Section 4 for empirical validation).

3.2 Differentiable SVD
Fine-tuning for full-rank second-order metrics does
not require special treatment, but for low-rank met-
rics we need to propagate gradients through the
singular value decomposition used for approximat-
ing ATA as described in Section 2. Deep learning
frameworks offer differentiable SVD implementa-
tions out-of-the-box, providing multiple approxi-
mate algorithms with varying properties. While
the forward pass through SVD is relatively fast
and stable for all choices, the backward pass is

1https://github.com/jalagus/second-order-transformers
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more costly and prone to instabilities arising from
ill-conditioned document matrices. We found the
CPU version of torch.svd_lowrank, imple-
menting the algorithm of Halko et al. (2011), to be
the most stable and hence use that.

Another challenge is the sign ambiguity over
the matrices U and V . The pooling function
Psvd(·, k) =

√
ΣkV

T
k is hence not unique which

causes issues with the distance computation; some
components might point to opposite directions
while still encoding the same information.

To address these issues we explicitly recon-
struct the covariance matrix ATA to improve back-
ward pass stability and remove the sign ambiguity.
The pooling is thus implemented as Psvd(A, k) =
UkΣkV

T
k . This has no practical effect on computa-

tion speed as it is dominated by other components
of the full model. Since ATA is symmetric, the U
and V matrices will be identical and it is enough to
save the matrix D =

√
ΣkV

T
k and reconstruct the

full covariance inference-time using DTD. The
space requirement is then O(kd).

The same space reduction for the representation
can be obtained by fine-tuning using the full-rank
covariance and computing the low-rank representa-
tion using SVD only after the training is done. This
approach does not need a differentiable SVD, but
as we will later show it performs worse in practice.

4 Experiments

We demonstrate second-order metrics in three ex-
ample cases; sentence similarity on the STS bench-
mark (Cer et al., 2017) and two document similarity
tasks. For all experiments, we compare the three
alternative pooling methods and provide results for
alternative embedding methods.

4.1 STS Benchmark: Sentence Similarity

Even though our main goal is to provide tools for
longer documents, we also evaluate the methods
in the STS sentence matching benchmark. The
STS experiment was conducted using the sentence-
tranformers library, by replacing only the pool-
ing method and the distance computation accord-
ing to the proposed metric. We compared three
pooling operations (mean, covariance, and SVD
with k = 1) for three transformers, BERT (De-
vlin et al., 2018), TinyBERT (Turc et al., 2019),
and RoBERTa (Liu et al., 2019), and for com-
pleteness include also results on static GloVe em-
beddings (Pennington et al., 2014). The sentence-

Table 1: Sentence similarity on STS benchmark.

Model Pooling IC MC WT
BERT Pcov(·) 0.5957 0.8831 16.59
BERT Psvd(·, 1) 0.5900 0.8838 336.37
BERT Pmean(·) 0.5932 0.8775 11.67
TinyBERT Pcov(·) 0.6932 0.7975 3.29
TinyBERT Psvd(·, 1) 0.6930 0.7962 20.38
TinyBERT Pmean(·) 0.6937 0.7823 3.20
RoBERTa Pcov(·) 0.6463 0.8874 16.32
RoBERTa Psvd(·, 1) 0.6446 0.8875 312.63
RoBERTa Pmean(·) 0.6500 0.8857 12.03
GloVe Pcov(·) 0.7425 0.7425 -
GloVe Psvd(·, 1) 0.6517 0.6517 -
GloVe Pmean(·) 0.7163 0.7163 -

tranformers library handles the input tokenization
and the default mean pooling serves as a baseline
representing the current practice in the field.

Table 1 shows the Pearson correlation with true
similarity. Here IC denotes the initial correlation
before fine-tuning and MC denotes the maximum
correlation during fine-tuning. We report results
on the development set, following the practice of
cross-encoding with [SEP] tags by (Devlin et al.,
2018) and using the sentence-transformers library
for easy reproduction. We ran each configuration
for 15 epochs using a batch size of 16. WT denotes
the wall-time (minutes) taken to complete the entire
fine-tuning process. All reported numbers are aver-
ages of five complete fine-tuning runs on different
seeds, and our baseline results with Pmean(·) are in
line with those reported in sentence-transformers.

For all embedding methods, using a second-
order metric improves the similarity compared to
mean pooling, but the gain is considerably smaller
for the three transformers (below 1%) compared
to the static embeddings (3.6%). For transform-
ers the low-rank metrics perform identically with
full-rank, whereas for GloVe using full-rank is pre-
ferred, matching the result of Lagus et al. (2019)
for STS. Without fine-tuning the transformers are
worse than static embeddings, highlighting the well
known importance of fine-tuning them. In conclu-
sion, second-order metrics can be used with trans-
formers already for sentence comparison, but the
gain is very small and due to the need of computing
SVD on CPU the computation is slower.

4.2 Full-length document experiments

Second-order metrics are expected to be more use-
ful for longer documents, and hence we evaluate
them on two document similarity tasks. In both
experiments, triplet loss (Schultz and Joachims,

130



Table 2: Document similarity: Finnish news

Model Pooling Initial Acc Acc
FinBERT Pmean(·) 0.499 0.626
FinBERT Pcov(·) 0.325 0.663
FinBERT Pcov(·, 1) - 0.484
FinBERT Pcov(·, 5) - 0.591
FinBERT Psvd(·, 1) - 0.644
FinBERT Psvd(·, 5) - 0.644
fastText Pmean(·) - 0.194
fastText Pcov(·) - 0.073

2004) is used as the optimization target and hyper-
parameter optimization is done using grid search,
performing computation on CPU because of insta-
bility of SVD computations on GPU.

Finnish news data We use data from the Finnish
national broadcasting company Yle 2, of news ar-
ticles written in easy-to-read Finnish, a morpho-
logically rich language. We form an artificial task
where each article is split into two equal-sized parts
and the goal is to retrieve the correct second part
(amongst the set of all second parts) using the first
part as a query. For the triplet loss, we use the sec-
ond half of a random document from the training
set as the negative anchor.

For fine-tuning, we split the dataset of 600
triplets into 500 training samples and 100 valida-
tion samples. We use FinBERT (Virtanen et al.,
2019) model and fine-tune it for 15 epochs, evalu-
ating the final accuracy on a fresh set of 1500 sam-
ples. For baseline computations, we use Finnish
fastText embeddings.

Patent data As a real document similarity com-
parison task, we consider a patent retrieval task.
When patents are applied, multiple kinds of prior
art might lead to rejection. Here we consider two
types of prior art, namely X and A citations. The
X citations are prior work that can alone lead to a
rejection, while the A citations describe the state of
the art, but are not immediate reasons for rejection.
An ideal model would hence rank the X citations
ahead of A citations.

Patent documents are split into two main parts,
claims and description. We only use the claims part
– containing approximately 2,100 character per doc-
ument – that defines the exact claims of the inven-
tion, leaving out the more free-form description.
For training, we split a proprietary dataset acquired

2http://urn.fi/urn:nbn:fi:lb-2019121205

Table 3: Document similarity: Patent retrieval

Model Pooling Initial Acc Acc
TinyBERT Pmean(·) 0.553 0.885
TinyBERT Pcov(·) 0.606 0.901
TinyBERT Pcov(·, 1) - 0.836
TinyBERT Pcov(·, 5) - 0.867
TinyBERT Psvd(·, 1) - 0.844
TinyBERT Psvd(·, 5) - 0.879
fastText Pmean(·) - 0.566
fastText Pcov(·) - 0.592

from the United States Patent and Trademark Of-
fice of 1000 triplets into 800 training samples and
200 validation samples. In each triplet, the anchor
is the patent document, the positive sample is any
X citation of that patent and the negative sample
is any A citation of that same patent. We fine-tune
TinyBERT model for 15 epochs and evaluate it on
a fresh set of 1000 documents. Static embeddings
are used as a baseline.

Results The results for both tasks, reported in Ta-
bles 2 and 3, are similar. The main observations are
(a) transformers clearly outperform static embed-
dings, (b) fine-tuning for document similarity com-
parisons improves accuracy dramatically, and (c)
the second-order metrics outperform the standard
mean pooling clearly, with improvements of 3.7
and 1.6 percentage points for the two tasks (Pcov(·)
vs Pmean(·)). In conclusion, the second-order met-
rics are useful also in the case of transformers.

On both tasks, the total computation time for the
low-rank models is only approximately 5% higher
(not shown), due to need for fewer iterations for
SVD, and hence the choice of the metric can be
made purely based on the accuracy. Here the full-
rank (Pcov(·)) metrics slightly outperformed the
low-rank ones (Psvd(·, k)), but the latter may still
be beneficial due to smaller representations. Fi-
nally, we see that extracting a low-rank representa-
tion from a model fine-tuned for the full-rank met-
ric (denoted by Pcov(·, k)) is worse than directly
fine-tuning for the low-rank metric. As there is no
notable difference in computational cost, we do not
recommend doing this.

5 Conclusions

Transformers provide richer representations for text
compared to static embeddings. For documents,
the current practice is to use averages of the word
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representations for similarity comparisons, which
is naive compared to the richer representations and
distance metrics used for static embeddings.

We investigated the use of second-order met-
rics in the case of transformers, showed how they
can be implemented into existing pipelines using
pooling functions, and empirically demonstrated
consistent improvement in similarity comparisons.
The gain is smaller than with static embeddings
but especially for longer documents still clear and
consistent across different setups. Even though the
improvement is not particularly large, the metrics
are easy to use and hence we recommend practi-
tioners to evaluate performance for both first-order
and second-order metrics – at least the full-rank
one that does not have computational overhead –
and select the best metric on a validation data.
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Abstract

Over the last years, software development in
domains with high security demands transi-
tioned from traditional methodologies to unit-
ing modern approaches from software devel-
opment and operations (DevOps). Key princi-
ples of DevOps gained more importance and
are now applied to security aspects of software
development, resulting in the automation of
security-enhancing activities. In particular, it is
common practice to use automated security test-
ing tools that generate reports after inspecting
a software artifact from multiple perspectives.
However, this raises the challenge of generating
duplicate security findings. To identify these
duplicate findings manually, a security expert
has to invest resources like time, effort, and
knowledge. A partial automation of this pro-
cess could reduce the analysis effort, encourage
DevOps principles, and diminish the chance of
human error. In this study, we investigated the
potential of applying Natural Language Pro-
cessing for clustering semantically similar se-
curity findings to support the identification of
problem-specific duplicate findings. Towards
this goal, we developed a web application for
annotating and assessing security testing tool
reports and published a human-annotated cor-
pus of clustered security findings. In addition,
we performed a comparison of different se-
mantic similarity techniques for automatically
grouping security findings. Finally, we assess
the resulting clusters using both quantitative
and qualitative evaluation methods.

1 Introduction

The automation of security tests is a common prac-
tice for software engineering projects that apply
software development and operations (DevOps)
practices. Different security tools employ differ-
ent perspectives to scan a software artifact as part

* The first three authors have contributed equally.

of Continuous Integration or Continuous Deploy-
ment (CI/CD) pipelines, producing semi-structured
reports of security findings. While this approach
fosters DevOps principles, reduces manual effort,
and shifts security efforts to the earlier stages of
development, it also comes at a cost.

Since security testing tools often have an overlap-
ping scanning coverage, duplicates or nearly iden-
tical findings are unavoidable. Further, considering
that each iteration brings new security findings,
identifying duplicate security findings is essential
to achieve a reliable overview. In this context, it
is important to note that we define duplicates as
findings that point out the exact same security prob-
lem, potentially occurring at multiple locations in
the software. Exemplary for that would be an SQL
injection vulnerability at multiple locations of a
web interface. Amongst multiple other activities,
the identification of duplicates is traditionally ad-
dressed by a team member with security domain
knowledge, a so-called security professional, be-
fore looping back the security findings to develop-
ment to improve the software security-wise (Simp-
son, 2014). Taking the frequency of new reports
and the number of findings throughout all secu-
rity tests into account, an entirely manual analysis
is unfeasible, prone to human error, and violates
fundamental DevOps principles.

Natural Language Processing (NLP) has been
shown to be effective in analyzing and clustering
textual data from various application domains, such
as medicine, linguistics, and software engineering
(Demner-Fushman and Lin, 2006; Majewska et al.,
2018; Aggarwal et al., 2017). Although security
tool reports contain highly domain-specific text,
it seems promising to investigate NLP techniques
for automatically grouping findings into problem-
oriented clusters, which can assist security profes-
sionals in their analyses. To our best knowledge, no
studies specifically focus on the machine-generated
finding texts produced by security scanning tools.
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Addressing this research gap, we evaluated the
performance of three common semantic similar-
ity techniques. The selected techniques originate
from knowledge-based, corpus-based, and neural
network-based methods. Our main contributions
are twofold:

1. We publish a human-annotated corpus of clus-
tered security findings along with the annota-
tion tool used by the security professionals.

2. We perform an in-depth analysis of three pop-
ular semantic similarity techniques for cluster-
ing security findings, followed by a quantita-
tive and qualitative evaluation of the results.

The remainder of this paper is structured as fol-
lows. Section 2 presents background information
on security scanning tools and gives an overview
of related work on applying NLP techniques in the
software engineering domain. Section 3 describes
the employed two-stage research approach for the
dataset construction and experimental evaluation.
We report the clustering results, discuss our obser-
vations, and outline the limitations in Section 4,
Section 5, and Section 6, respectively. Section 7
concludes the paper with a summary and an outlook
toward future work.

2 Background and Related Work

This section provides background information on
security testing tools and security finding reports in
DevOps. Furthermore, we mention related studies
concerning the application of NLP techniques in
the software engineering domain.

To tackle the challenge of duplicates in security
reports, we first establish the definition of what
duplicate security findings are. We consider two
findings to be duplicates if they describe the ex-
act same problem at any location of the software.
Consequently, the same issue, e.g., an SQL injec-
tion, could occur at multiple places but would be
considered a duplicate. Besides the problem-based
approach, other strategies for describing duplicates
can also incorporate the location of a finding or its
underlying solution. The selection of a strategy in
this area highly depends on the subsequent actions
on the dataset.

Furthermore, it is necessary to explain the ac-
tivities that generate security reports that contain
duplicate findings. Security testing can be cate-
gorized according to multiple properties depend-
ing on the testing strategy, involved testers, tested

components, and numerous others. We limit our
categorization to those security tests that can be
automated in pipelines and scan an actual part of
the product. Further, we categorize them into two
major categories: tests that examine the static el-
ements of the software (e.g., code, configuration,
or dependencies) are called static application secu-
rity testing (SAST) and tests performed against the
dynamic, actually running application are called
dynamic application security testing (DAST). This
separation represents a clear distinction, as static
testing can only guess whether a finding is actually
affecting the software, while dynamic techniques
directly identify the exploitable security finding.

From our analysis of the literature on security
findings management, we found that there are no
NLP-related publications that focus on the identi-
fication of duplicate security findings. However, a
number of NLP methods have been successfully
applied to related subdomains in the software engi-
neering field. For example, Kuhn et al. (2007) use
latent semantic indexing (LSI) and clustering to an-
alyze linguistic information found in source code,
such as identifier names or comments, to reveal top-
ics and support program comprehension. In a study
from Schneider (2020), a corpus of app reviews
with comments about a variety of software issues
is clustered into topics with problem-specific issue
categories. Another study from Eyal Salman et al.
(2018) focuses on automatically forming semantic
clusters of functional requirements based on cosine
similarity with a corpus of documents containing
software requirements specifications. The authors
conduct an empirical evaluation of agglomerative
hierarchical clustering using four open-access soft-
ware projects. In order to assess the software qual-
ity of programs, Tan et al. (2011) apply a hierar-
chical cluster algorithm to create problem-oriented
clusters, reducing the effort needed to review the
code. The study shows that semantic clusters are
an effective technique for defect prediction.

3 Method

In order to achieve our objective of investigating
semantic similarity techniques for clustering find-
ings from security testing reports, we constructed
a human-annotated dataset. This annotated cor-
pus consists of 1351 SAST and 36 DAST findings.
The two-stage process with dataset construction as
well as experimental evaluation is explained in the
following subsections.
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3.1 Dataset Construction

To quantify the performance of different semantic
similarity techniques, a ground-truth benchmark
dataset is required, enabling the comparison be-
tween human-labeled clusters and the predictions
of the semantic similarity algorithms. Therefore,
we asked two security professionals from the indus-
try to annotate semantically duplicate findings in
a given list of security reports. Due to the signifi-
cant differences in perspective between SAST and
DAST reports, we decided to construct two sep-
arate datasets, each of which comprising reports
from only one testing type.

A major challenge in constructing such a dataset
is the content of the security tool reports. Secu-
rity tool reports are often exported as JSON files
containing security finding objects. Across differ-
ent tools, these reports utilize different schemas,
resulting in different property names referring to
the same finding feature (e.g., description, FullDe-
scription, text, Message, or details). For the con-
struction, the security professionals consolidate se-
mantically duplicate findings from all tool reports
of a testing iteration based on certain features, e.g.,
description, location, or unique identifier. There-
fore, they need to find the feature in the respective
tool schema and compare it to the other findings.
Manually annotating such a dataset would require
them to memorize N ×M property names when
identifying N features across M distinct security
testing reports. To enhance efficiency and reduce
manual, repetitive work, we developed the Security
Findings Labeler (SeFiLa).1 This tool allows secu-
rity professionals to upload reports from different
security tools and conveniently group all findings
into named clusters.

The initial, unconsolidated reports of the dataset
were generated by scanning the open-source, vul-
nerable web application JuiceShop2 with seven
SAST tools and two DAST tools. For reproducibil-
ity reasons, we solely selected tools free of charge
that can be reasonably automated in real-world soft-
ware development pipelines. We selected Anchore,
Dependency Check, Trivy, HorusSec, Semgrep,
CodeQL, and Gitleaks as SAST tools. For DAST,
we selected Arachni and OWASP ZAP. Fundamen-
tal information about each tool can be found in
Table 5 in the appendix. From each tool, one test-
ing report was taken for the dataset. The security

1https://github.com/abdullahgulraiz/SeFiLa
2https://owasp.org/www-project-juice-shop/

professionals assigned findings to named clusters
representing the same security problem. This pro-
cess was aided by features like the CVE-ID (com-
mon vulnerabilities and exposures) which provides
an identifier and a reference-method for publicly
known security vulnerabilities. Other helpful fea-
tures are descriptions and solutions generated by
the testing tools. After all findings were assigned
to clusters, the dataset comprising our baseline for
duplicate identification was completed. The dataset
and the code to run the test cases were published
in a public GitHub repository.3

3.2 Evaluation Procedure

For conducting the evaluation, we investigated se-
mantic similarity methods proposed in the literature
and chose three popular techniques that are often
used as baseline models: knowledge graph-based
similarity with WordNet (Miller, 1995), LSI (Lan-
dauer and Dumais, 1997), and SBERT (Reimers
and Gurevych, 2019). To evaluate the semantic
similarity techniques, we extracted all findings
from the security testing tool reports and concate-
nated selected features from them to form problem-
specific finding strings. We applied the three cho-
sen semantic similarity techniques to the finding
strings to determine those that are semantically sim-
ilar. Since semantic similarity between two finding
strings is calculated as a score between 0 and 1
where 1 indicates highest similarity, we established
a similarity threshold for each experiment. This
threshold defines the value above which two find-
ing strings are deemed to be semantically similar.
Findings corresponding to these similar finding
strings are then grouped to form predicted clusters.
Implementation-wise, predicted and ground-truth
clusters both consist of unique integer sequences,
each integer representing a finding from the dataset.

Before the clusters were compared with each
other in the quantitative evaluation, we encountered
the need for transitive clustering of findings. In cer-
tain cases, the problem description of two findings
was identical, but it was repeated in one finding for
multiple instances, leading to a discrepancy in text
length. Since the similarity depends on the simi-
larity of the finding strings, we encounter the fol-
lowing example predictions with Similar Findings
listed in descending order of semantic similarity
scores with the corresponding Finding identifier:

3https://github.com/abdullahgulraiz/SeFiDeF
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{Finding : 1, Similar F indings : {1, 2, 4}}

{Finding : 2, Similar F indings : {2, 1, 3, 5}}
Let us assume that findings {1, 2, 3} contain the

same problem description, although it appears once
in Finding 1, two times in Finding 2, and three
times in Finding 3. While Finding 1 is found
similar to findings {1, 2, 4}, its similarity score
with respect to Finding 3 is below the clustering
threshold due to the different text length. However,
Finding 2 does have Finding 3 in its set of simi-
lar findings. If Finding 3 is similar to Finding 2,
it should also be similar to Finding 1, regard-
less of repetitive text. Therefore, even though
Finding 3 exists only in the set of similar find-
ings for Finding 2, it should appear in the final set
of similar findings of Finding 1 as well. In our
initial clustering experiments and discussions with
the security professional, we observed that while
lowering the similarity threshold led to many false
positive predictions, transitive clustering improved
the results without changing the similarity thresh-
old. Therefore, we apply the transitive property to
consider findings as semantically related through
intermediate findings. This causes the above pre-
dictions to become:

{Finding : 1, SimilarF indings : {1, 2, 3, 4, 5}}

{Finding : 2, SimilarF indings : {1, 2, 3, 4, 5}}
After transitive clustering, we removed the du-

plicate clusters from predictions and evaluated the
final predictions against the ground-truth clusters.

Table 1 shows a contingency matrix that illus-
trates possible outcomes when comparing clusters
from predictions (P) with clusters from the ground-
truth dataset (Q). The number of occurrences of
these outcomes is used to calculate the metrics of
precision, recall, and F-score.

Predictions (P)
Clusters in P Clusters not in P

Ground-truth
(Q)
Clusters in Q True Positive

(TP)
False Negative
(FN)

Clusters not in Q False Positive
(FP)

True Negative
(TN)

Table 1: Contingency matrix of predicted clusters P and
ground-truth clusters Q.

The precision (Hossin and Sulaiman, 2015) mea-
sures positive patterns correctly predicted from the

total predicted patterns in a positive class. In our
experiments, it measures the ratio of correct cluster
predictions to all predictions. Higher precision in-
dicates that less false positive predictions appeared
in the results. It is calculated as:

Precision =
TP

TP + FP

The recall (Hossin and Sulaiman, 2015) is used
to measure the fraction of correctly classified posi-
tive patterns. In our experiments, it represents the
ratio of correctly predicted clusters to all ground-
truth clusters. A high recall value thus indicates
that the semantic clustering results retrieve many
ground-truth clusters of the security professional.

Recall =
TP

TP + FN

The F-score, also known as Dice Measure (Dice,
1945), calculates the harmonic mean between preci-
sion and recall. It balances both metrics to provide
an overall performance overview.

F − score =
2 ∗ TP

2 ∗ TP + FP + FN

In addition to the quantitative evaluation with
performance measures, we collected qualitative
feedback from the security professionals on incor-
rectly clustered findings. We limited the informa-
tion about each finding to the finding strings used as
input for the NLP techniques and asked for possible
reasons for the incorrect clustering. This created
a list of reasons that led to poor duplicate identi-
fication from the perspective of a domain-aware
security professional. Finally, each incorrect clus-
ter is associated with at least one reason for the
incorrect clustering, providing insights into the dif-
ferent challenges and their prevalence in the results.
The evaluation was aided by SeFiLa for annota-
tion of the findings, assignment of reasons, and
documentation.

4 Experiments

4.1 Dataset Description

After labeling the exported security findings with
our annotation tool SeFiLa, the security profes-
sionals provided us with two datasets, namely the
manually grouped SAST and DAST findings. The
descriptive statistics of both datasets are summa-
rized in Table 2. We observe that SAST findings
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Statistic SAST DAST
Number of clusters 183 10
Number of findings 1351 36
Avg. findings per cluster 7 3
Avg. characters per finding 302 471
Min. findings per cluster 1 1
Max. findings per cluster 408 25

Table 2: Data records from static analysis security tools
(SAST) and dynamic analysis security tools (DAST).

are far more frequent, making up 97.4% of the to-
tal findings. The number of formed clusters for
the SAST findings is significantly higher than for
DAST findings. While both datasets had clusters
with only one finding, the maximum cluster size
was by far larger in the SAST dataset. Despite
these discrepancies, the average number of find-
ings per cluster is not too different between the
datasets, ranging from a mean value of 3 for DAST
to a mean value of 7 for SAST findings. In addi-
tion, DAST finding texts are more verbose since
they contain 169 more characters on average. To
investigate the potential of semantic similarity tech-
niques, constructing the finding string from the
finding features is crucial. Analyzing the initial
dataset, we identified that solely a single feature de-
scribing the finding is consistently found across all
SAST tools. For the DAST findings, multiple fea-
tures, including the description, a name, and even a
solution/mitigation, were consistently found across
all findings. Furthermore, we observed that DAST
features are sufficiently verbose to comprehend the
problem from their finding string and thereby con-
tain enough semantic content for NLP. Contrarily,
we find SAST features to be very brief, for that
matter, making it almost impossible to understand
a finding just from the finding string.

To counteract the limitation of very short SAST
finding strings, we make use of CVE-IDs to in-
crease the textual content of SAST finding strings.
By leveraging the CVE identifier present in some
findings, we concatenated finding strings of vari-
ous machine-generated descriptions with the same
CVE-ID. This allows for more semantic content
and longer descriptions about the underlying prob-
lem. We used the concatenated finding strings as
input to the NLP-based similarity techniques.

This step led us to construct a total of four cor-
pora with finding strings from both SAST and
DAST datasets for the identification of duplicate

findings, as listed below:

• SAST-D: consists only of SAST finding de-
scriptions

• SAST-ConcD: consists of concatenated SAST
finding descriptions with the same CVE-ID

• DAST-NDS: consists of concatenated DAST
finding names, descriptions, and solution texts

• DAST-D: consists only of DAST finding de-
scriptions

4.2 Evaluation Results
The summary of the quantitative results achieved
when applying semantic clustering using a tech-
nique from each category of semantic similarity
methods to each of the four corpora is presented
in Table 3. The experiments were performed for
similarity thresholds 0.1 ≤ and ≤ 0.95. The per-
formance metric values for the experiment with the
highest F-score are reported.

Technique Corpus Metrics
F-score Precision Recall

SBERT

SAST-D 0.709 0.621 0.825
SAST-
ConcD

0.797 0.701 0.923

DAST-
NDS

0.857 0.818 0.900

DAST-D 0.857 0.818 0.900

LSI

SAST-D 0.739 0.658 0.842
SAST-
ConcD

0.816 0.734 0.918

DAST-
NDS

0.857 0.818 0.900

DAST-D 0.857 0.818 0.900

KG

SAST-D 0.659 0.556 0.809
SAST-
ConcD

0.777 0.676 0.913

DAST-
NDS

0.727 0.667 0.800

DAST-D 0.727 0.667 0.800

Table 3: Summary table of performance metrics (high-
lighted results show the best performing techniques for
SAST and DAST).

4.2.1 Comparison of Semantic Similarity
Techniques

Figure 1 and Figure 2 show the F-scores of differ-
ent technique-corpus combinations over different
similarity thresholds for SAST and DAST, respec-
tively. We see that the F-scores increase with in-
creasing similarity threshold, peaking at a threshold
value ≥ 0.6 for DAST and at around 0.9 for SAST.
Figure 3 in the appendix shows the performance
metrics for clustering with knowledge graph-based
semantic similarity. It is noteworthy that the F-
scores for the knowledge graph-based clustering
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Figure 1: Semantic clustering results of SAST findings for different similarity thresholds.

are not only lower in comparison to LSI and SBERT
but they also reach a plateau for threshold values
higher than 0.2.

4.2.2 Qualitative Evaluation
For the qualitative evaluation, we showed incor-
rect predictions from the best results of semantic
clustering of SAST and DAST findings to a secu-
rity professional. The cluster results came from
applying LSI to SAST-ConcD corpus for the SAST
dataset and applying SBERT to DAST-NDS corpus
for the DAST dataset. Using SeFiLa, the security
professional inspected incorrect predictions and
their associated ground-truth cluster. The security
professional assigned possible reasons for poor du-
plicate identification by reading finding strings as-
sociated with incorrect predictions. These reasons
are documented for 72 incorrect SAST predictions
and 2 incorrect DAST predictions. The reasons
and the number of times they were assigned to an
incorrect prediction from either SAST or DAST
clusters are listed in Table 4.

5 Discussion

From the quantitative evaluation, we see that SAST
findings are best clustered by applying LSI to the
SAST-ConcD corpus, which gives a F-score of
0.816. Although applying SBERT to the same
corpora provides a similar F-score of 0.797 and
matches a higher ratio of ground-truth clusters due
to higher recall, LSI has a higher precision and less
false positive predictions, which is a crucial require-

ment to the security professionals. Hence, applying
LSI to SAST-ConcD corpus is our recommendation
for identifying duplicate SAST findings.

When clustering DAST findings, we see that the
highest F-score of 0.857 is achieved by applying
SBERT and LSI to both DAST-D and DAST-NDS
corpora. However, as illustrated in Figure 2, ap-
plying SBERT yields a high F-score for similar-
ity threshold ≥ 0.6, whereas LSI yields a lower
F-score. Since higher similarity thresholds are pre-
ferred in production scenarios to prevent false posi-
tive predictions, SBERT is preferred over LSI. For
the corpus, DAST-NDS is preferred over DAST-D
due to more textual content from three features,
which leads to a better grasping of semantics and
provides better distinction amongst false positives.
We also see that for similarity threshold > 0.9,
the F-score of SBERT with DAST-NDS slightly de-
creases. This is because of the strict distinction by
semantic similarity algorithms, which also consider
the semantics of a problem’s solution when distin-
guishing between problems identified by different
findings.

From the qualitative evaluation, we see that a
significant challenge for SAST findings is the con-
tent of the finding description. Some tools provide
a title instead of an actual description of the under-
lying problem. This leads to insufficient semantic
content being derived from the finding corpus texts,
thereby leading to poor duplicate identification. An-
other frequent reason for incorrect predictions in
SAST are suboptimally constructed finding strings.
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Figure 2: Semantic clustering results of DAST findings for different similarity thresholds.

This primarily arises when the information con-
tent of the original finding is low, which even is
challenging for security professionals when deter-
mining duplicate findings just from reading the
findings string. The third most highlighted chal-
lenge for SAST is the imbalance in the verbosity
of description features of findings. The descrip-
tion either contains contextually rich problem de-
scriptions or under-specified ones, leading to dif-
ferent extents of semantic content being captured
and, thereby, incorrect comparisons being made.
For DAST, we only have two incorrect predictions,
which can be traced back to the challenge of being
very application- and domain-specific.

To improve SAST findings clustering results,
it is evident that the semantic content of finding
strings representing a problem must be improved.
This can be done by using multiple external sources,
e.g., the National Vulnerability Database4, the
GitHub Advisory Database5 for enrichment, or by
scraping information from the multiple reference
sources listed in a finding. The goal is that the
textual data of each finding consists of multiple
paragraphs and contains enough semantic content
for the semantic similarity techniques to grasp as
much contextual information as possible. Further-
more, the final corpus texts should contain the same
verbosity level to avoid a bias related to the text
length. Lastly, the same clustering approach can be

4https://nvd.nist.gov/
5https://github.com/advisories

studied using NLP models that are fine-tuned for se-
curity findings, accounting for the domain-specific
vocabulary to improve the clustering results.

6 Limitations

While we present a variety of results regarding
semantic clustering of security findings, our con-
clusions are limited in certain aspects. Firstly, all
our findings result from scanning a single web ap-
plication: JuiceShop. While it contains vulnerabil-
ities encountered in real-world applications, it is
restricted in its representation of a real scenario be-
cause JuiceShop is intended to comprise multiple
vulnerabilities. Moreover, the subset of JuiceShop
vulnerabilities that are clustered poorly might ap-
pear most often in reality, threatening the external
validity of the results. Furthermore, our findings re-
sult from a finite number of modern security tools.
While these tools are open-source and currently
widely used, the scanning functionality of security
testing tools is constantly evolving. Thereby, the
scanning tools we use might change based on the
needs of the domain. Lastly, our datasets were la-
beled by two security professionals and the results
were evaluated by one security professional. While
this is beneficial to prevent inconsistencies due to
the subjective nature of the annotation tasks, the
relevance of our results is highly dependent on the
created ground-truth dataset. However, our cho-
sen research design aims at making the results of
our work as objective as possible. Researchers and
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Reason Explanation for Incorrect Clustering SAST DAST
1 In the context of the product, this result can only be identified by somebody knowing the

context of the application.
- 2

2 Different tools use a different phrasing to explain the same issue. 5 -
3 The tools sometimes provide no description of the finding. Hence, the features could only

rely on the title.
39 -

4 Some tools provide more and some tools provide less text in their description, which
reduces the impact of actual relevant features.

19 -

5 Additional review necessary due to an unknown reason for the decision. 5 -
6 The sub-optimally constructed feature string could be the reason for the incorrect cluster-

ing.
39 -

7 The tool describes the finding precisely according to the location of occurrence. Hence the
finding text is over-specified.

3 -

8 Human annotation error and the suggested clustering by the algorithm is correct. 1 -
9 One tool addresses the issue of using an eval function, while the other one has the problem

of user controlled values in it. However, it would not be considered as a major false
positive.

3 -

Table 4: Overview of provided explanations from the qualitative evaluation.

practitioners can also use our developed annotation
tool to reproduce our data collection or transfer our
study insights to a setting of their own choice.

7 Conclusions and Future Work

In this work, we explored the applicability of se-
mantic clustering of security findings through var-
ious similarity techniques. We tested three tech-
niques from neural network-based, corpus-based,
and knowledge-based methods on finding strings
that describe security vulnerabilities identified by
testing tools.

To this end, we created a ground-truth dataset
of security findings clustered according to the ex-
pertise of security professionals. We compared
this dataset to the results of semantic similarity
techniques, indicating that SAST findings are best
clustered by applying LSI to SAST-ConcD corpus,
whereas DAST findings are best clustered by ap-
plying SBERT to DAST-NDS corpus. Conducting a
qualitative evaluation with a security professional,
we additionally pointed out the challenges encoun-
tered by semantic similarity techniques when ap-
plied to security findings and discussed possible
solution strategies.

One potential future work would be the appli-
cation of the chosen techniques to cluster security
findings according to other testing strategies like
solution-based clustering. This could grant deeper
insights into the challenges of grouping security
findings with NLP and provide access to new use
cases. Furthermore, research on how plain neural
networks perform when trained directly on semi-
structured security findings appears to be promis-
ing given modern advancements in neural network
architectures. Especially when compared to the

NLP-based approach in this work, the properties
of neural networks are worth exploring. Since neu-
ral networks automatically prioritize important fea-
tures with layers like max-pooling, the manual ef-
fort undertaken to determine problem-describing
features and clustering based on them could be alle-
viated. However, training a neural network requires
significantly more data, so the construction of a
much larger findings dataset would be necessary.
Finally, an evaluation of the identified techniques in
real-world DevOps scenarios could provide valu-
able insights into the practical usefulness of our
approach in software development projects.
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A Supplementary Material

In this appendix, we provide additional material to the main article. Table 5 lists the security testing tools
that were used to scan the web application JuiceShop and generate security findings. Figure 3 shows the
performance metrics for clustering with knowledge graph-based semantic similarity.

Tool Category Analysis Type Link
Anchore SAST Third-party vulnerabilities anchore.com/opensource
Dependency Checker SAST Third-party vulnerabilities owasp.org/dependency-check
Trivy SAST Third-party vulnerabilities github.com/aquasecurity/trivy
GitLeaks SAST Hardcoded secrets github.com/zricethezav/gitleaks
CodeQL SAST Coding flaws codeql.github.com
Horusec SAST Coding flaws horusec.io/site
Semgrep SAST Coding flaws semgrep.dev
Arachni DAST Web app scan github.com/Arachni/arachni
ZAP DAST Web app scan www.zaproxy.org

Table 5: Overview of static (SAST) and dynamic (DAST) analysis security tools that were used to scan JuiceShop.
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Figure 3: Semantic clustering results with knowledge graph-based similarity.
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Abstract

Lexical ambiguity is a pervasive feature of nat-
ural language, and a major difficulty in un-
derstanding language is selecting the intended
meaning when more than one are possible.
Despite this difficulty, many studies of sin-
gle word recognition have found a process-
ing advantage for ambiguous words compared
to unambiguous ones. This effect is not ho-
mogeneous however–studies find consistent
advantages for polysemes (words with mul-
tiple related meanings), and inconsistent re-
sults for homonyms (words with multiple un-
related meanings). Complicating this is the
fact that most measures of ambiguity are de-
rived from human- annotated or curated lexi-
cographic resources, and their use is not con-
sistent between studies. Our work investigates
whether contextualized word embeddings are
able to capture human-like distinctions between
senses and meanings, and whether they can
predict human behavior. We reanalyze data
from previous experiments reporting ambigu-
ity (dis)advantages using the lexical decision
times reported in the English Lexicon Project.
We find that our method does replicate the pol-
yseme advantage and homonym disadvantage
previously reported, and the predictors are supe-
rior to binary distinctions derived from lexico-
graphic resources. Our findings point towards
the benefits of using continuous-space repre-
sentations of senses and meanings over more
traditional measures. Additionally, we make
our code publicly available for use in future
research.

1 Introduction

Distributed representations of meaning (word em-
beddings) have brought great advancements to
many natural language processing tasks including
sentiment analysis, text summarization, and transla-
tion, to name just a few. Outside of computational
applications, these embeddings have also been used
successfully in psycholinguisitcs to predict seman-

tic priming data (Ettinger and Linzen, 2016), eye-
tracking data (Søgaard, 2016), and even neural acti-
vations (Honari-Jahromi et al., 2021). Despite their
success in a wide variety of fields and tasks, these
static representations’ performance is greatly lim-
ited because each orthographic wordform is limited
to only one vector representation.

This is problematic because ambiguity is quite
pervasive in natural language. Words that have the
same spelling can have multiple senses (polysemes)
and/or meanings (homonyms). For example, in
Wordsmyth online dictionary, slam has two entries
(meanings). Under the first entry there are multiple
senses–a noun meaning “sharp criticism”, a verb
meaning “shut something loudly”, an additional
noun meaning "the sound made by shutting some-
thing loudly", and others. Under the second there
are additional senses unrelated to the first entry’s
senses–a noun meaning “winning of all tricks in a
card game” and another noun meaning “a poetry
reading event.” Despite all these different usages,
slam has just a single unchanging spelling and pro-
nunciation.

To successfully use language, both humans and
language models must somehow be able to select
a single meaning from a set of multiple candidates
for ambiguous words. For models based on static
representations, this was not a straightforward task
because all of the possible senses and meanings
were collapsed into a single representation that was
used invariantly across any possible context. There
were no senses or meanings for the model to choose
among. This flaw impacts a model’s ability to un-
derstand the true meaning of words when they are
used in changing contexts.

One recent advancement to address this problem
is the use of contextualized word embeddings such
as ELMo and BERT. Instead of having a single rep-
resentation per wordform, these systems produce
embeddings that change dynamically based on the
surrounding context of a single word occurrence.
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This way, slam used in the sentences When I’m
mad I slam the door and I attended the poetry slam
last night will have two distinct representations de-
spite sharing the same orthographic form. The use
of these contextualized embeddings have provided
even further progress in a wide variety of com-
putational applications because they successfully
address the ambiguity problem.

While contextualized embeddings and trans-
former architectures have begun to be adopted in
the analysis of human language processing (Jain
and Huth, 2018; Kumar et al., 2022; Heilbron et al.,
2021), this body of work has largely focused on
language processing in context, rather than at the
single-word level. In this work, we attempt to show
that contextual embeddings can also be useful for
analyzing human language processing even in the
absence of context by looking specifically at the
"ambiguity advantage". This is a widely studied
psycholinguistic phenomenon in which ambiguous
words are recognized faster than unambiguous ones
in lexical decision experiments1.

In previous work investigating the ambiguity ad-
vantage, senses and meanings have often been dis-
tinguished based on how they are listed in lexico-
graphic resources (Rodd et al., 2002). Meanings
generally correspond to dictionary entries, while
senses will correspond to the various distinguished
uses within those entries. (Following the previous
example, slam would have two meanings, and at
least five senses). Additionally, senses are gener-
ally assumed to be related and share some semantic
core between them, while meanings have no shared
semantics and are unrelated. For example, two
of slam’s senses both have something to do with
shutting something and making a noise–one is the
action and one is the resulting sound; clearly there
is a shared semantic core here. However, it is not
clear that there is a semantic core shared between
these senses and the senses of the other meaning,
such as winning tricks in a card game.

Even though lexicographic resources do distin-
guish senses and meanings, using them to study the
ambiguity advantage is challenging because they
typically lack explicit criteria or explanations to
why particular distinctions of relatedness are made.

1This finding has been observed in both single word recog-
nition tasks (Rodd et al., 2002; Borowsky and Masson, 1996;
Hino and Lupker, 1996) and sentence presentation contexts
(Frazier and Rayner, 1990; Klepousniotou, 2002). In this
work, we focus exclusively on advantages for single word
recognition.

For example, a door slam and a slam of the produc-
tion are considered related to each other according
to Wordmsyth online dictionary (even though the
latter doesn’t necessarily have any meaning related
to shutting something or a noise), but neither are
related to a poetry slam.

Understandably, extensive discussions of the na-
ture of semantic relatedness is typically outside
the scope of most lexicographic resources, but this
means they are not very well-suited to psycholin-
guistic research where such distinctions are of great
importance. For this purpose, a more useful mea-
sure of a word’s senses and meanings would be
derived from the way speakers use the words at
present as opposed to lexicographer categorizations
and would have clear criteria for what makes some-
thing a sense versus a separate meaning.

In this study, we used BERT to derive a new
measure of a word’s numbers of senses and mean-
ings 2, and we apply this measure to previously
gathered lexical decision data. We compare our
results to those from a previous study which quan-
tified ambiguity using lexicographic resources and
find that ours perform at least as well. This points
to the benefits of further adopting contextualized
embeddings for use in psycholinguistic research.

2 Related Work

Comparing the way that ambiguous and unambigu-
ous words are processed can give information about
the organization of the mental lexicon and ways in
which different kinds of words may be retrieved
and recognized. This is primarily tested in lexical
decision experiments, where a mix of target stimuli
and non-words are presented one at a time, and
participants respond as quickly as possible with
whether or not they recognize the presented string.
Their reaction times on the target stimuli are then
analyzed to determine what variables make word
recognition easier (faster response times) or harder
(slower responses times). These experiments gen-
erally reveal that there is, in fact, a difference in the
way words with multiple senses and/or meanings
are processed as compared to unambiguous words.

Most studies find that multiple senses facilitate
recognition, as evidenced by a faster reaction time
for words with multiple senses in a lexical decision
paradigm (Borowsky and Masson, 1996; Hino and
Lupker, 1996) compared to unambiguous words.

2The tools developed for this study are available at https:
//github.com/kyrawilson/word-senses-from-CWE.
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This lends support to a model of word recognition
where words with multiple senses have multiple
semantic representations, leading to easier recog-
nition as a result of increased semantic activation
compared to words with fewer senses.

However, the same result is not as consistent
for words with multiple meanings. Some studies
find increased reaction time compared to unam-
biguous words (Rodd et al., 2002; Beretta et al.,
2005) (suggesting that having multiple unrelated
meanings may make recognition more difficult be-
cause of competing activations), while others find
an equivalent advantage for both multiple senses
and multiple meanings (Hino et al., 2010; Pexman
et al., 2004). Because the results are mixed, it is
unclear whether words with multiple meanings are
stored and accessed in a way similar to those with
multiple senses, or whether they are different in
some critical way.

It has been proposed that the contradictory re-
sults for words with multiple meanings are a con-
sequence of differing methodologies in selecting
ambiguous stimuli (Haro and Ferré, 2018). Namely,
experimenters use a variety of sources for select-
ing ambiguous words because there is no gold
standard resource for differentiating between re-
lated senses and related meanings; thus differences
arise not only in what sources are used, but also in
what the individual sources classify as ambiguous
words since they are curated by different groups
using varied techniques. This paper shows that
that with advances in distributed representations
of meanings, previous measures that relied on lexi-
cographic sources can be exchanged for measures
derived from contextual representations (specifi-
cally contextualized meaning vectors from BERT,
a transformer-based language model) without refer-
ence to any outside resources, and these measures
will perform at least as well as traditional ones.

There have been previous attempts to identify
information about word senses from BERT embed-
dings. Reif et al. (2019) sampled sentences from
Wikipedia and found that similar contextual usages
of words tended to cluster together in meaning vec-
tor space and that the spatial location of a word
could be changed by altering the context sentence.
This suggests that BERT is able to represent mean-
ingful semantic information within a subset of its
vector dimensions 3. Following Reif et al. (2019),

3A similar result was observed by Thompson and Mimno
(2020) in the topic modeling domain.

there have been multiple attempts to use BERT for
word sense disambiguation, including some which
also use lexicographic resources to interpret the
disambiguated senses (Wiedemann et al., 2019; Du
et al., 2019; Vial et al., 2019).

In addition, there has also been research inves-
tigating how BERT represents words with differ-
ent numbers of senses and meanings. Garí Soler
and Apidianaki (2021) investigated both whether
BERT could distinguish words with a single ver-
sus multiple senses and whether the senses cluster
in interpretable ways. First, they found that us-
ages of words with a single sense (according to
WordNet) had a higher similarity than words with
multiple senses. Furthermore, they used a k-means
algorithm to cluster senses of ambiguous words,
and they found that the quality of this clustering
was high and correlated with annotator judgements
about sense similarities. Although this study did
demonstrate the potential of using clustering to an-
alyze BERT embeddings, the use of the k-means
algorithm is suboptimal because the number of
clusters must be known a priori, and thus does not
extend well to applications in which human anno-
tations are unavailable or contradictory.

There has also been work investigating how
BERT’s representations of polysemy may corre-
spond to humans’. Nair et al. (2020) collected
human judgements of meaning relatedness for
homonyms and polysemes and compared them to
distances in BERT embedding space. They found
that homonym meanings were more reliably dis-
tant than related senses. This suggests that the way
BERT represents information is somewhat consis-
tent with human intuitions. However, the experi-
mental task in this study was metalinguistic: people
were asked about how they use language, which
may or may not be consistent with actual language
use.

An additional test of how well BERT corre-
sponds with human language would be to use it
to predict actual human behavior rather than intu-
itions. Therefore in our study, we explore BERT’s
similarities to human language knowledge, ana-
lyzing behavioral reaction time data to potentially
ambiguous and polysemous words and correlating
human reaction times to the numbers of senses and
meanings derived from BERT embeddings.
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3 Methods

3.1 Data
For the 182 words (124 ambiguous and 58 unam-
biguous) used in the first experiment of Rodd et al.
(2002), we retrieved their mean reaction time in a
visual lexical decision experiment from the English
Lexicon Project (ELP) (Balota et al., 2007). These
reaction times were used as the response variable
in a linear regression model.

The words used in this experiment were selected
by Rodd et al. (2002) to amplify the differences
between ambiguous and unambiguous words. Of
the 124 ambiguous words, 113 were taken from
the Twilley et al. (1994) homograph norms, and
the remaining 11 were judged to have similar prop-
erties. Most of these words were judged to have
two or three meanings according to the original
annotations, where meanings and senses were con-
flated, and half of them had two distinct entries in
the Wordsmyth dictionary (corresponding to two
meanings). The other half only had a single entry;
the other “meaning” was annotated by Wordsmyth
as a sense instead. This difference in the two groups
allowed for a comparison of meaning relatedness.
The words with two Wordsmyth entries were con-
sidered ambiguous (homonyms) while the remain-
ing 58 words in the stimuli set were identified as
being unambiguous (polysemes, since they were
judged to have multiple senses) and had only one
meaning.

We also included a number of control variables
in our analysis in line with Rodd et al. (2002), in-
cluding log word frequency, length, orthographic
neighborhood, and concreteness. These were also
collected from ELP.

3.2 Number of Senses
Our method for deriving the number of senses for
a word assumes that same senses will be used in
similar contexts, and therefore the contextual em-
beddings for a word in a particular sense will also
be similar to each other. Furthermore, other senses
will have dissimilar enough contexts that we can
derive a measure of the number of senses by ap-
plying a clustering algorithm (HDBSCAN) to the
BERT embeddings, where the identified clusters
will correspond to individual senses of a word.

HDBSCAN (Campello et al., 2013) is a hierar-
chical clustering algorithm which uses the stability
and persistence of clusters in order to select an opti-
mal clustering from the hierarchy. It works by first

identifying areas of high and low density points and
deriving a distance (mutual reachability) metric that
amplifies the distance to sparse points. Next, a min-
imum spanning tree is constructed using the mutual
reachability distance and then converted into a hi-
erarchy by sorting the edges in increasing order
and creating a new cluster for each edge. Finally,
a single clustering is selected from the hierarchy
by selecting the clusters with the greatest stability,
meaning that for a large range of distance values
the cluster remains as a whole and does not split
into two smaller clusters.

The use of HDBSCAN is particularly suited to
the clustering of word senses for two reasons 4.
First, the algorithm allows extreme outlier points to
be categorized as noise rather than coercing them
into a cluster. This is good for our application
because of the flexibility of language. Even though
words have a generally standard and accepted set of
meanings, there is nothing to prevent novel usages
of a word in a new context. For our purposes, we
would like to avoid including very low-frequency
senses or meanings which are unlikely to be known
by a majority of speakers.

Additionally, the only hyperparameter of the al-
gorithm is the minimum number of points a cluster
must contain, in contrast to other clustering algo-
rithms in which the number of clusters must be
specified a priori. We are interested in deriving
the number of different senses from an unlabelled
corpus rather than simply identifying the sense clus-
ters which correspond to entries in lexicographic
resources. Another side effect of this is that we
are able to specify how many usages a particular
sense must have in order to be considered well-
known and avoid contaminating our clusters with
too many “noise usages”. We specified that our
clusters should contain, at minimum, at least one
percent of the points in the total number of embed-
dings for a given word.

Following Reif et al. (2019), we first sampled
1,000 occurrences of each word in Rodd et al.
(2002)’s stimuli set from English Wikipedia5, and
used the publicly available pre-trained BERTBASE
model (Devlin et al., 2019) in combination with
the Hugging Face (Wolf et al., 2020) and Flair li-

4A related algorithm, DBSCAN (Ester et al., 1996), has
also been shown to have success in clustering word embed-
dings (Mohammed et al., 2020). We chose to use HDBSCAN
due to its increased flexibility over DBSCAN.

5For one word (poach), there were only 578 occurrences
in Wikipedia. We used all of the occurrences in this case.
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Figure 1: Spearman’s rank correlation between all pre-
dictors.

braries (Akbik et al., 2019) to encode the word in
their context sentences6. The word token of inter-
est was then extracted from each context sentence
and its layers were averaged, resulting in a single
768-dimension embedding for each sentence 7.

Finally, the embedding dimensions were reduced
from 768 to two using t-SNE (Van der Maaten and
Hinton, 2008). HDBSCAN is not guaranteed to per-
form well for high-dimensional data, so we chose
to have it operate over embeddings that were also
used for visualization in order to aid with inter-
pretability of the clustering results. For each word,
the minimum cluster size was one percent of the
total number of embeddings for that word.

3.3 Ambiguity
Since there can be multiple senses of a word within
a single meaning, we were interested in identify-
ing any superstructure amongst the clusters which
might correspond to different meanings. Broadly,
to identify meanings, we are now aiming to clus-
ter the senses of words themselves rather than the
individual usages as an attempt to join senses that
are most similar to each other. We do this by only
clustering a subset of the points used in the the
number of senses calculation as well as increasing
the minimum cluster size hyperparameter in the
HDBSCAN algorithm. This way, we are able to
use the same algorithmic approach to derive unique

6We only selected from sentences in which the target word
appeared a single time.

7Multiple studies have shown that semantic representa-
tions differ depending on the BERT layer (Garí Soler and
Apidianaki, 2021; Jawahar et al., 2019). While we averaged
all layers together, it is possible that selecting a single layer
would yield higher performance. We leave this investigation
for future work.

measures for number of senses and ambiguity.
To begin, we select a subset of points to use for

identifying meaning clusters. This is done in order
to make the data sufficiently different to avoid recre-
ating identical senses clusters as well as eliminating
possible noise usages from the meaning clustering.
The subset of points we used were those identified
as "exemplars" by HDBSCAN within each of the
identified sense clusters. In this implementation,
exemplar points are those which persist in their
cluster for the largest range of distance values and
which are generally centrally located in their re-
spective clusters. In other words, the exemplars
are the points which are identified as being the
strongest members of the cluster and least likely to
be noise.

After identifying the set of exemplar points for
each cluster, we used HDBSCAN clustering again
in order to identify any potential higher order clus-
ters. In contrast to the number of senses clustering,
in this iteration we allowed the clustering algorithm
to assign all the exemplar points to a single cluster,
under the assumption that some subset of the stim-
uli are unambiguous and should thus have only one
meaning.

Another difference between the ambiguity clus-
tering and the number of senses clustering is the
minimum cluster size. It has been observed that
there is interpretable structure even within sense
clusters (Reif et al., 2019). For example, for the
word die, Reif and colleagues found that within a
single sense cluster there was a separation relating
to the number of people who died. We wanted to
avoid the formation of even more granular sense
clusters, so in this iteration we set the minimum
cluster size to be the size of the smallest set of
exemplar points from a single sense cluster. Fi-
nally, if the clustering procedure still resulted in a
larger value for ambiguity (number of meanings)
than the number of senses, we assigned the number
of meanings to be equal to the number of senses
post-hoc.

4 Results

4.1 Qualitative Analysis

An example of the clustering of senses and mean-
ings can be seen in Figure 2 for the word tent,
which has three senses and one meaning according
to our proposed method. The three different shapes
indicate that there were three senses identified–one
that has to do with tent as a physical object used
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Figure 2: Example of sense and meaning clustering for tent, including example usages in sentences from Wikipedia.
Different senses are indicated by different shapes, exemplar points used to cluster meanings are larger, and colored
points indicate meaning groups.

for shelter, one that is a part of the phrase big tent
party, and a third where tent is part of a title or used
as a proper noun. The senses are accurately sepa-
rated into groups that have internal cohesion, but
separated from other groups with slightly different
semantics.

The single group of red points indicate that tent
has only one meaning combining the "physical ob-
ject" and "political party" uses. Although these
senses are not interchangeable, they are clearly re-
lated. Just as people might congregate under tents
at a concert, they also metaphorically congregate in
a big tent party. The third sense, however, is both
unrelated to this meaning and also not cohesive
enough to form its own separate meaning. The clus-
ter contains titles and other proper nouns usages, so
tent is both unlikely to have a single shared context
corresponding to a new meaning in this cluster or a
context close enough to the other two senses that it
should be included in the first meaning. Therefore,
it is correctly identified as "noisy" usages of tent
and not analyzed as an additional meaning.

4.2 Number of Senses

To begin, we compared the BERT-derived number
of senses to the number of senses as indicated in
WordNet8. There was a weak positive correlation
between the BERT-derived number of senses and

8The Rodd et al. (2002) study did not indicate how the
number of senses was calculated, so we used WordNet as an
approximation of their metric.

the number of senses reported by WordNet (ρ =
0.26), as shown in Figure 1. We entered both pre-
dictors into a linear regression model with response
time in a lexical decision task as reported in the
ELP as the dependent variable. The full model
results are shown in Figure 3.

Only the number of senses as derived from
BERT was a significant predictor of reaction time,
and the effect replicated what has been reported
in previous studies. Words with more senses were
generally recognized faster than those with fewer
senses. This effect can be seen in Figure 4. Next we
performed an ANOVA to assess whether additional
variance is explained by our predictor. As expected,
the ANOVA indicated that including the number of
senses derived from the contextual embeddings did
improve the model fit (F = 3.78, p = 0.05).

4.3 Ambiguity
We compared the binary ambiguity variable used
by Rodd et al. (2002) with our continuous variable
derived from contextualized embeddings. There
was low correlation between the binary ambiguity
variable and our BERT-derived variable (ρ = 0.11).
In the model with none of our predictors, we did
not replicate the ambiguity effect reported by Rodd
et al. (2002). In fact, we found the opposite; Rodd
et al. (2002) reported an inhibitory effect where
ambiguous words were recognized more slowly
than unambiguous words, but our analysis showed
that ambiguity made reaction time faster (just as
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Figure 3: Estimates of linear regression coefficients predicting reaction time. The significant predictors are the
number of senses and meanings derived from contextual embeddings, the binary ambiguity variable from Rodd et al.
(2002), log word frequency, and length.

Figure 4: Regression line showing inverse relationship
between number of senses and reaction time.

multiple senses facilitate recognition).
However, when we included our predictors, we

found that the ambiguity variable as derived from
BERT did produce an inhibitory effect as originally
reported, as shown in Figure 5. Compring models
with and without the ambiguity in ANOVA showed
that our predictors also significantly improved the
fit of the model (F = 6.61, p = 0.01).

5 Discussion

There are multiple important results from this in-
vestigation. First, we found that the contextual

Figure 5: Regression line showing direct relationship
between ambiguity and reaction time.

embeddings not only correspond to human judge-
ments as previously reported (Nair et al., 2020),
but also to human behavior. Our number of senses
measure replicated the well-reported finding that
having multiple senses is facilitatory in word recog-
nition (more senses lead to faster identification). In
fact, for this particular set of stimuli, our measure
outperformed the more traditional measure derived
from WordNet in predicting reaction times in a
lexical decision task.

The results for ambiguity (number of meanings)
are slightly more complex. First, our analysis did
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not replicate the original results when using the
binary ambiguous/unambiguous variable as com-
puted by Rodd et al. (2002). We instead found an
additional facilitatory effect for this variable where
multiple meanings correspond to faster recognition
as compared to single meanings. However, our
number of meanings variable, derived from clus-
tering senses using sense exemplars, did result in
words with more meanings having slower reaction
times as previously reported, above and beyond the
effects of the binary variable. For theories of word
recognition, it is not immediately apparent why
these two variables should have opposite effects,
but as our measure has consistent criteria and clear
definitions for deriving predictor values, further
experiments should be able to investigate this in
depth using a wider variety of stimuli.

Finally, another interesting outcome worth fur-
ther investigation is that our results were obtained
using only two-dimensional embeddings derived
from BERT. Previous experiments investigating the
representations of polysemy and ambiguity within
BERT have done so using all 768 dimensions of
the embeddings (Reif et al., 2019; Garí Soler and
Apidianaki, 2021), while our experiment suggests
similar information can be represented using far
fewer dimensions. Determining the optimal num-
ber of dimensions for representing polysemy and
ambiguity using BERT remains an open question
worth further study.

The replication of the previous ambiguity advan-
tage results show how contextual embeddings such
as BERT can be useful in the analysis of experimen-
tal data. For the number of senses advantage, we
showed a stronger effect than more traditional pre-
dictors relying on lexicographers. For the number
of meanings, we also replicated previous findings
and found that our predictor performed just as well
as traditional ones. However, because our predictor
was derived from unlabelled corpora without resort-
ing to any human annotation (which may introduce
bias) we find it methodologically superior to predic-
tors derived from lexicographic resources such as
dictionaries and WordNet. We think that continuing
to use contextual embeddings to derive predictors
will facilitate transparency and replicability across
many different areas of linguistic research as well
as allowing for more flexibility in what words and
languages are able to be studied.

Finally, another potential benefit of this method-
ology is the possibilities of extending it to lan-

guages other than English. Generating high-quality
lexicographic resources is very time- and labor-
intensive, so current research into the ambiguity
advantage is limited to those languages which al-
ready have such resources. Our methodology, on
the other hand, could theoretically be extended to
any language which has a pre-trained model able
to produce contextual embeddings (or for a slightly
higher cost, any language for which a new con-
textual embedding model could be trained and de-
ployed), and further research should be done to
verify that the properties of BERT embeddings ob-
served in this experiment would also be present in
models trained on other languages.

6 Conclusion

This study further supports work which indicates
that contextualized embeddings contain informa-
tion which is able to predict human language pro-
cessing. We extended the approaches of earlier
work by not only deriving a measure of how many
senses a word has, but also finding how many
distinct meanings a word has by clustering those
senses. We used these numbers to replicate the
finding that multiple senses facilitate recognition
in a lexical decision experiment and add support
to the finding that multiple meanings inhibit word
recognition. This is an important result because it
suggests this method can be used as a replacement
for traditional ways of deriving measures of ambi-
guity and polysemy, allowing for standardization
of variable predictors across experiments in order
to facilitate comparison and minimize conflicting
results.
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A Polysemy and Homonymy Values

Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

admit Amb. 8 1 2
advance Amb. 20 8 15
affair Amb. 3 1 14
alone Unamb. 6 2 5
amuse Unamb. 2 1 3
apple Unamb. 2 3 3
arms Amb. 10 8 11
article Amb. 5 5 6
baby Unamb. 8 2 3
badger Amb. 4 3 3
bark Amb. 9 3 3
batter Amb. 5 4 4
Bible Unamb. 2 1 3
blind Amb. 10 2 14
bonnet Amb. 3 2 3
bowl Amb. 12 4 6
boxer Amb. 4 1 4
brain Unamb. 7 5 5
bridge Amb. 12 1 8
broke Amb. 60 1 17
brutal Unamb. 4 1 2
bulb Amb. 6 5 5
bus Unamb. 7 7 8
cabinet Amb. 4 1 3
calf Amb. 4 4 4
can Amb. 8 1 2
cane Amb. 4 6 6
case Amb. 22 1 3
cattle Unamb. 1 3 3
chance Amb. 9 5 5
charm Amb. 8 4 4
chest Amb. 4 3 3
China Amb. 4 1 2
cider Unamb. 1 3 3
cigar Unamb. 1 3 3
citizen Unamb. 1 5 5
clay Unamb. 5 3 6
clog Amb. 9 4 4
coal Unamb. 5 3 3
company Amb. 10 3 4
craft Amb. 6 6 10
cricket Amb. 3 1 8
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Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

custard Unamb. 1 3 3
deed Amb. 2 3 5
degree Amb. 7 7 9
dense Amb. 4 1 4
destroy Unamb. 4 1 2
diamond Unamb. 6 6 10
digit Amb. 3 6 6
dollar Unamb. 4 1 3
dozen Unamb. 2 1 2
dry Amb. 19 1 7
express Amb. 13 6 6
fee Unamb. 3 2 3
feet Amb. 11 5 5
fence Amb. 7 1 2
firm Amb. 14 3 3
fling Amb. 7 1 2
forest Unamb. 3 5 5
fraud Unamb. 3 1 2
free Amb. 22 1 7
frog Unamb. 4 4 4
fun Unamb. 4 3 4
glare Amb. 6 3 3
glass Amb. 12 4 4
glove Unamb. 3 5 8
goat Unamb. 4 4 4
grain Amb. 15 2 3
grief Unamb. 2 1 2
grow Unamb. 10 1 2
hamper Amb. 4 1 3
hill Unamb. 6 2 7
horn Amb. 12 6 8
hotel Unamb. 1 4 5
interest Amb. 10 2 2
item Unamb. 6 1 2
jumper Amb. 8 6 15
kid Amb. 7 3 3
kind Amb. 4 7 13
kingdom Unamb. 6 1 2
lake Unamb. 3 5 8
last Amb. 21 1 12
late Amb. 11 1 2
lean Amb. 10 3 9
left Amb. 24 1 3
letter Amb. 8 1 13

Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

lie Amb. 10 6 14
like Amb. 11 1 3
limp Amb. 5 2 5
lobby Amb. 4 4 5
lung Unamb. 1 8 11
marble Amb. 4 3 3
march Amb. 14 6 10
maroon Amb. 6 4 4
metal Unamb. 4 4 4
might Amb. 1 1 3
misery Unamb. 2 4 5
nail Amb. 10 6 11
net Amb. 12 1 14
novel Amb. 4 1 9
ocean Unamb. 2 4 4
odd Amb. 6 8 8
organ Amb. 6 4 4
palm Amb. 5 6 6
panel Amb. 10 5 6
park Amb. 8 5 9
patient Amb. 3 3 4
peer Amb. 3 11 19
picket Amb. 8 5 5
pine Amb. 3 4 4
pitcher Amb. 5 6 13
poach Amb. 2 16 24
poet Unamb. 1 1 6
poker Amb. 2 3 4
pole Amb. 13 5 11
prayer Unamb. 5 1 2
pride Amb. 6 5 7
pupil Amb. 3 3 4
rabbit Unamb. 4 3 3
ram Amb. 9 4 8
rare Amb. 6 1 17
rate Amb. 7 6 13
reflect Amb. 7 2 3
refrain Amb. 3 3 3
river Unamb. 1 3 6
ruler Amb. 2 1 2
sack Amb. 13 6 7
safe Amb. 7 1 7
sage Amb. 5 6 16
sane Unamb. 2 7 11
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Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

scrap Amb. 7 3 3
screen Amb. 16 2 15
seal Amb. 15 4 8
season Amb. 6 5 5
second Amb. 15 1 19
seek Unamb. 6 1 8
sense Amb. 9 4 5
sentence Amb. 4 1 2
shed Amb. 6 3 4
sign Amb. 20 6 6
spade Amb. 4 7 8
speaker Amb. 3 5 5
spell Amb. 10 5 5
stable Amb. 7 2 3
staff Amb. 8 2 2
stag Amb. 5 4 4
stalk Amb. 8 3 3
stamp Amb. 18 2 4
staple Amb. 7 3 3
static Amb. 5 1 3
stern Amb. 7 5 5
store Amb. 6 1 2
strand Amb. 9 5 5
straw Amb. 7 7 7
swallow Amb. 11 5 5
swear Amb. 5 1 2
task Unamb. 4 4 4
temple Amb. 4 2 4
tend Amb. 3 1 2
tense Amb. 8 2 3
tent Unamb. 3 1 3
term Amb. 8 2 3
terror Unamb. 4 5 6
thief Unamb. 1 3 3
throat Unamb. 4 1 2
throw Unamb. 20 6 7
tiger Unamb. 2 5 6
toast Amb. 6 2 4
travel Unamb. 9 3 3
trial Amb. 6 4 4
trust Amb. 12 6 8
uniform Amb. 6 1 2
unite Unamb. 6 6 8
urban Unamb. 2 4 5

Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

vent Amb. 7 8 12
vote Unamb. 10 1 16
warn Unamb. 4 1 2
watch Amb. 13 8 16
weapon Unamb. 2 1 2
winter Unamb. 2 1 4
yard Amb. 9 7 13
lorry Unamb. 2 3 3
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Abstract

We present a novel procedure for acquir-
ing productive knowledge of restrictions on
adjective ordering from counts of adjective-
bigrams, which are readily obtainable from nat-
ural language corpora. The procedure uses a
model-based Collaborative Filtering (CF) algo-
rithm, and is the first computational model of
adjective-ordering to do so. We consider two
widely-used model-based CF algorithms, Sin-
gular Value Decomposition and Non-negative
Matrix Factorization. We evaluated the pro-
cedure by first training the underlying CF
model on subsets of the largest publicly avail-
able dataset of English adjective-bigrams, the
Google Books NGram database, and then mea-
suring the model’s capacity to predict the or-
dering of (unseen) pairs of adjectives. Our re-
sults show that both CF models exhibit good
performance on the task of predicting adjec-
tive ordering. Moreover, the CF models con-
sistently outperform a baseline model that is
grounded in a ranking of adjectives intended
to align with a (linear) hierarchy of adjective-
classes, suggesting that CF models make use
adjective-ordering data that does not neatly fit
into (proposed) hierarchies of adjective-classes.

1 Introduction

Linguists have long been observing, studying and
characterizing restrictions on the ordering of adjec-
tives – e.g. native English speakers will say “the
big red ball” and not “the red big ball” (Rizzi
and Cinque, 2016; Trotzke and Wittenberg, 2019).
Typically, linguists have grouped adjectives into se-
mantic classes over which an ordering is proposed -
e.g. (Goyvaerts, 1968; Vendler, 1968; Dixon, 1982;
Shaw and Hatzivassiloglou, 1999; Cinque, 1994)
propose an ordering over the following classes of
adjectives (where A>B indicates A precedes B):

SIZE > SHAPE > AGE > COLOR > PROVENANCE

Moreover, linguists have noted recurring patterns
of restrictions on adjective ordering that appear

over a wide and diverse range of languages, and
these patterns can be assembled together to form a
cross-linguistic hierarchy of adjectives that informs
the ordering of adjectives that (directly) modify a
noun phrase (Sproat and Shih, 1991; LaPolla and
Huang, 2004; Trainin and Shetreet, 2021).1 Given
that these tacit restrictions on adjective ordering
appear consistently across languages, it is puzzling
how, and the degree to which, learners acquire this
knowledge of language from the primary linguistic
data. This study addresses this puzzle by intro-
ducing a novel procedure for acquiring productive
knowledge of restrictions on adjective ordering.

Our procedure, implemented as a working com-
puter program, takes as input adjective-bigram
statistics listed in the Google Books NGram
database, and outputs a (learned) model of
adjective-ordering preferences. Importantly, the
procedure learns a model of adjective-ordering
preferences that is productive in that it can pre-
dict that a speaker would prefer to say “the big
red ball” and not “the red big ball” even if it has
never seen the adjective bigrams “big red” and

“red big”, so long as the input data includes other
adjective bigrams that involve “big” and “red”.
In this way, the model output by the procedure
goes beyond the null-hypothesis of learners simply
repeating back what they have heard (Bar-Sever
et al., 2018). The procedure centers on a model-
based Collaborative Filtering (CF) algorithm that
maps adjectives-ordering data to a low-dimensional
embedding space where latent relationships be-
tween adjectives are surfaced; our approach is in-
formed by earlier work suggesting that CF can
be employed to model constituent selection more
broadly (Indurkhya, 2021). Our experiments show
that model-based CF algorithms perform well on

1This led to the cartographic enterprise, which aims (in
part) to provide a syntactic accounting, in the form of a
detailed map, of the observed cross-linguistic hierarchy of
adjective-classes (Scott, 2002; Laenzlinger, 2005; Cinque,
2010; Shlonsky, 2010; Cinque and Rizzi, 2012; Cinque, 2014).
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the task of predicting the ordering relation (if there
is one) between the two (input) adjectives. More-
over, the CF algorithms substantively outperform
a baseline model that computes the relative differ-
ence in the ranking of the two (input) adjectives –
this baseline model is informed by prior work that
suggested that a ranking of adjectives that corre-
lates with a (linear) hierarchy of adjective-classes
can be used to determine restrictions on adjective
ordering. Our experiments thus suggest that model-
based CF algorithms leverage adjective-ordering
data that does not neatly align with proposed hier-
archies of adjective-classes.

The remainder of this study is organized as fol-
lows. We begin by discussing prior work that
(computationally) modeled restrictions on adjec-
tive ordering (see §2) and review established meth-
ods for CF (see §3). Next, we walkthrough
the construction of an Adjective Ordering matrix
from adjective-bigram data drawn from the Google
Books NGram database, and make note of cylical
orderings over adjective that defy the organization
of adjectives into a hierarchy (see §4). We then
detail the computational experiments central to this
study, and analyze the information used by the CF
models we evaluated (see §5). Finally, we conclude
by discussing the broader implications of our study,
especially in light of the minimal assumptions our
approach aims to make (see §6).

2 Prior Studies of Adjective Ordering

Previous (computational) models of adjective or-
dering can broadly be construed as falling into one
of two categories that are distinguished by what
they aim to explain. The first category of work
includes empirically-grounded methods that aim
to explain the distribution of adjective orderings
observed in corpus data. The second category of
work includes models that encode some proposed
measure of adjectives and that aim to explain the
proposed cross-linguistic hierarchy of adjectives
(from which the ordering of adjectives can be de-
duced).2 Note that this two-fold categorization of
prior work is not a strict dichotomomy - e.g. work
aiming to explain how a cross-linguistic hierarchy
is learned may involve an empirically grounded ap-
proach. Let us now examine these two categories
of prior work in more detail.

2As (Svenonius, 2008) notes, each adjective-class in the
hierarchy can be mapped to a functional head that may be
incorporated into a determiner phrase.

Figure 1: CF model for predicting the ordering of ad-
jective pairs. Evidence supporting the prediction is: (i)
destructive is similar to dark w.r.t. preceding military
and following dangerous, and dark precedes foreign; (ii)
foreign behaves like military w.r.t. preceding political
and following dark, and destructive precedes military.

Prior work falling into the first category relies
on corpus data from which the statistics of nouns
and their adjectival pre-modifiers can be derived.
Shaw and Hatzivassiloglou (1999) outline some of
the standard methodologies employed, which we
briefly describe here:
(a) Direct Evidence method: if the counts of

adjective-bigrams “A B” and “B A” are cAB

and cBA (respectively), a binomial test is used
to determine whether the ratio of cAB to cBA

differs significantly from the null-hypothesis of
a 1:1 ratio – if the null-hypothesis is rejected,
then we know speakers prefer “A B” over “B
A” if cAB > cBA (and vice versa). A weak-
ness of this method is that it is not productive
as it can only predict ordering preferences for
adjective pairs that appeared as bigrams in the
input corpus data.

(b) Transitivity method: given adjectives A, B and
C, and evidence that A > B and B > C (per-
haps determined via the binomial test outlined
in the Direct Evidence method), this method
will infer via transitivity that A > C. This
method, which relates to the notion of ordering
being derived from a hierarchy of adjective-
classes, runs into difficulty when adjective or-
dering preferences inferred from the (input)
corpus data violate transitivity. (See Table 1
for examples of adjective-bigram cycles.)

(c) Clustering method: adjectives are clustered
together (e.g. via k-Nearest Neighbors) based
on their ordering relation to other adjectives
(with ordering determined via the binomial test
as outlined in the Direct Evidence method),
and the ordering of adjectives (A,B) is made
by examining how other adjectives similar to
A are ordered with respect to B. Similar to
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memory-based CF algorithms (reviewed in §3),
this approach suffers from sparsity of adjective-
bigrams in the (input) corpus data, with many
adjective pairings appearing only once in the
data (Malouf, 2000).3

Although these empirically-grounded methods
achieve reasonably good performance when ap-
plied to specific or restricted domains of text
(where there are fewer occurrences of polysemy),
their performance declines when applied to broader
corpora of text that span multiple domains.

The second category of prior work aims to
account for the (cross-linguistic) hierarchy of
adjectives-classes. Some work in this category
introduces a metric that can be used to rank ad-
jectives, with the ordering over a pair of adjectives
determined by comparing the rank of the two adjec-
tives. For example, Hahn et al. (2018) introduces
a metric that computes the mutual information be-
tween an adjective and the nominal head it modifies,
so that given a nominal head, N , adjectives hav-
ing higher mutual information with N will appear
closer to N ; this metric was grounded in the sub-
jectivity theory of Hill (2012) and Scontras et al.
(2017), with the latter carrying out experiments
showing that property-subjectivity is what predicts
adjective ordering - i.e. adjectives that are less
subjective appear closer to the (modified) nominal
head.4 Alternatively, other work takes the approach
of directly inferring a hierarchy of adjective classes.
For example, recent work by Leung et al. (2020)
demonstrates that latent-variable models (that pre-
dict adjective ordering) can learn cross-linguistic
adjective hierarchies that align with Cinque’s hi-
erarchy – their model represents adjectives using
multi-lingual word embeddings, which can (im-
plicitly) encode information pertaining to adjective
ordering in the form of the presence or absence
of (nearby) non-adjectival tokens - e.g. the non-
adjectival tokens that form the context of a word
(that is being embedded) may encode the semantic
category the word belongs to, in turn allowing it to

3Malouf (2000) also notes that trying to incorporate infor-
mation from the text surrounding an adjective bigram doesn’t
provide sufficient syntagmatic information because the left
side is usually a determiner and the right hand side (typically
a nominal) only worsens the data sparsity issue.

4Note that this approach only partly aligns with there being
a hierarchy of adjective classes as the experiments in Scon-
tras et al. (2017) showed that users sometimes have differing
subjectivity ratings for adjectives – this aligns with our obser-
vation (detailed in §4) that there are large numbers of adjective
pairings for which there is no clearly preferred ordering. (See
also Scontras et al. (2019).)

be placed within Cinque’s hierarchy.5

To summarize, this study primarily falls under
the first category of work, although it is informed
by prior work from both categories of prior work
in so far as: (i) we employ a binomial test to de-
termine adjective ordering from bigram counts as
in Shaw and Hatzivassiloglou (1999); (ii) based
on the assessment of Malouf (2000), we opt to di-
rectly work with the adjective-bigram counts listed
in the Google Books NGram database, and thus do
not consider the words surrounding the adjective-
bigrams (see §4); (iii) the baseline model we test
the CF models (output by our procedure) against is
informed by observations in (Scontras et al., 2017;
Hahn et al., 2018) that adjectives can be ranked,
with an adjective’s ranking determining it’s order-
ing relative to other adjectives (and with the ranking
meant to correlate with the hierarchy of adjective-
classes). Finally, as we discuss in §3, our decision
to use model-based CF algorithms is motivated in
part by the need for a productive model that ro-
bustly deals with sparse (adjective-bigram) data
drawn from a single language (i.e. no use of multi-
lingual word embeddings), builds on the ideas un-
derlying the memory-based models referenced in
Shaw and Hatzivassiloglou (1999), and does not
make assumptions about the transitivity of restric-
tions on adjective ordering.

3 A Review of Collaborative Filtering

The Collaborative Filtering (CF) algorithms used
in this study are (widely used) examples of Recom-
mender Systems (Herlocker et al., 2004; Su and
Khoshgoftaar, 2009; Lü et al., 2012; Bobadilla
et al., 2013). Given a finite set of users (e.g. sub-
scribers), a finite set of items (e.g. movies), and
a user-item rating matrix that encodes ratings as-
signed by (some) users to (some) items, a Recom-
mender System is tasked with predicting the rating
a given user would assign to a given item; these
predictions may then be used to enumerate a list of
recommended items for the given user. This study
takes the users to be the first adjective in an adjec-
tive bigram, the items to be the second adjective
in an adjective bigram, and the user-item rating
matrix to be an adjective-ordering matrix (detailed

5The experiments detailed in Leung et al. (2020) control for
explicitly encoded information about adjective ordering in the
text from which the word-embedding models are learned; they
do not, however control for implicitly encoded information in
the form of the presence or absence of non-adjectival tokens
incorporated into the word-embedding model.
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Adj. Type Examples

Ordered Adj. Pairs Unordered Adj. Pairs Adj. Cycles of Length 3

all (important, private), (relative, domestic), (permanent, unconscious, young),
(abbreviated, new) (foreign, strategic) (acoustic, grand, old)

pure (intriguing, new), (recent, substantial), (ethical, foreign, institutional),
(international, technological) (everyday, practical) (elementary, historical, prospective)

noun (independent, moral), (overall, specific), (aged, former, intermediate),
(radical, socialist) (fundamental, common) (medium, stiff, ordinary)

verb (certified, registered), (dry, round), (flat, major, long),
(corresponding, free) (open, parallel) (appropriate, major, free)

Table 1: Examples for each subset of the adjective-bigram data. An ordered pair of adjectives, (a, b), indicates that
a typically precedes b (as determined by the test outlined in §4). An unordered pair of adjectives, (a, b), indicates
that there is no preference of either a preceding b or b preceding a. Finally, an adjective cycle, (a, b, c), indicates the
presence of three ordered pairs, {(a, b), (b, c), (c, a)}, that together form a cycle (and cannot be folded into a strictly
linear hierarchy of adjectives).

in §4) – then a Recommender System may be used
to predict, for a given adjective, which adjectives
may follow it to form an adjective bigram.

Recommender Systems are typically divided into
Content-Based (CB) recommendation algorithms
and CF recommendation algorithms.6 CB recom-
mendation algorithms make use of similiarities be-
tween the valuations of features associated with
each item (or alternatively, between the valuations
of features associated with each user). For exam-
ple, a CB recommendation algorithm can predict
whether the adjective “red” can follow the adjec-
tive “large” by comparing the syntactic and seman-
tic features associated with “large” with those asso-
ciated with other adjectives known to follow “large”
(such as “blue”). If these semantic and syntactic
features are unavailable – e.g. as in this study, in
which we intentionally restrict our attention to ad-
jective bigram statistics derived from (unannotated)
corpus data – then we can instead use CF recom-
mendation algorithms, which can simultaneously
take into account: (i) similarities between users, as
measured by how similarly they rate items; (ii) sim-
ilarities between items, as measured by how sim-
ilarly they are rated by users. Conventionally, CF
algorithms are grouped into two classes, memory-
based CF algorithms and model-based CF algo-
rithms, which we will now describe in turn.

Memory-based CF algorithms operate on the
assumption that the more similar two users are
(with respect to the ratings they assign), the more
likely they are to assign similar ratings to items.

6(Burke, 2002, 2007) detail hybrid recommender systems
that fuse together aspects of CB and CF algorithms.

A Memory-based CF algorithm predicts the rat-
ing a user, u, would assign to an item, i, by: (i)
identifying a set of users, S, that are similar to
u – e.g. by computing the k Nearest Neighbors
using a similarity measure such as the Pearson cor-
relation coefficient; (ii) computing the predicted
rating as the weighted average of ratings assigned
by each s ∈ S to i, with the weights corresponding
to the degree-of-similarity of each s to u (Schafer
et al., 2007). More broadly, a memory-based CF
algorithm is either an instance of user-based col-
laborative filtering, in which case it operates by
identifying similar users (as described above), or
alternatively, item-based collaborative filtering, in
which case it identifies similar items. See (Sarwar
et al., 2001) for a review of item-based CF.

Despite enjoying widespread usage, memory-
based CF algorithms struggle in two scenarios:
first, the quality of their predictions quickly de-
grades when the user-item rating matrix is sparse,
and second, they do not scale well (with respect
to memory consumption) as the number of users
and items grow (Adomavicius and Tuzhilin, 2005).
These difficulties are addressed by Model-based
CF algorithms, which center on a learned pre-
dictive model. Notable examples of model-based
CF algorithms include Non-negative Matrix Fac-
torization (NMF) and Singular Value Decompo-
sition (SVD). NMF and SVD, both instances of
latent factor models, work by factoring apart the
user-item rating matrix, so that the user and item
profiles (corresponding to the rows and columns
of the user-item rating matrix) are embedded in a
lower-dimensional space where latent relationships
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between users and items are more readily apparent;
in this way, NMF and SVD address two weaknesses
of memory-based CF algorithms, sparsity and scal-
ability. Finally, we note that NMF and SVD yield
linear models that have the capacity to encode a
hierarchy of adjective-classes (e.g. Cinque’s hierar-
chy).7 For these reasons, the present study opts to
use two (latent factor) model-based CF algorithms,
NMF and SVD, to model adjective-ordering.

4 Constructing an Adj. Ordering Matrix

We now detail how to derive an adjective-ordering
matrix (i.e. the CF-model’s input) using bigram
data taken from the American-English (2019) sub-
set of the Google Books NGram database (for the
years 1969-2019) (Michel et al., 2011; Lin et al.,
2012).

To begin, we define a word pair to be a two-tuple
of words, (x, y), such that x lexicographically pre-
cedes y. We restricted our analysis to only consider
a word pair (x, y) if met three conditions:
(a) let A be the set of all adjectives appearing in

the Google Books NGram database (as marked
by the Part-of-Speech tagging of each ngram
in the database), then x, y ∈ A;

(b) the sum of the frequencies of the bigrams “x y”
and “y x” is at least 100 – this eliminates word
pairs with insufficient samples for statistical
hypothesis testing;

(c) let W be the set of adjectives in the WordNet
database (Miller et al., 1990; Miller, 1995),
and let W

′
be the set of adjective lemmas ob-

tained by lemmatizing members of W – then
lemma(x) ∈W

′
and lemma(y) ∈W

′
.89

There were 491499 distinct word pairs that met
these conditions.

Next we define an adjective pair as a two-tuple
of lemmas, (s, t), such that s and t are both lem-
mas of adjectives that make up a word pair; there
are 472823 distinct adjective pairs, and 10041 dis-
tinct adjective-lemmas appeared in these adjective

7This is possible if each adjective is mapped (via it’s em-
bedding vector) to a weighted sum of adjective classes – then
the learned matrix can encode information about which adjec-
tive classes can precede which other adjective classes.

8Checking for membership in WordNet’s list of adjectives
guards against potential mislabeling of Part-of-Speech tags in
the Google Books NGram database, spelling errors, etc, and
enables identification of adjectives that are also verbs or nouns
(using WordNet’s lists of nouns and verbs).

9The lemmatized form serves to normalize the various
forms of adjectives (e.g. superlatives and comparatives). of
W

′
. We used spaCy (v3.2.0) to lemmatize words.

pairs. Given an adjective pair (s, t), we define
its forward frequency, f(s, t), as the sum of the
frequencies of bigrams of the form “x y” where
s = lemma(x) and t = lemma(y).10 Likewise,
we define the backward frequency, b(s, t), as the
sum of the frequencies of bigrams of the form “y
x” where s = lemma(x) and t = lemma(y). Fi-
nally, we define the ratio, r(s, t), as f(s,t)

f(s,t)+b(s,t) .
We then marked each adjective pair as either be-

ing ordered or unordered. To make this determina-
tion for an adjective pair (s, t), we used a two-tailed
binomial test, with probability of success r(s, t), to
evaluate the null hypothesis that bigrams “x y” and
“y x”, where s = lemma(x) and y = lemma(y),
are equally likely to appear (because there is no
significant preference in the ordering of the two
adjectives, and thus the adjective pair is determined
to be unordered). We rejected the null hypothesis
(implying the adjective pair is ordered) if p < 0.01

n2 ,
where n = 10041 is the number of distinct (lemma-
tized) adjectives and n2 is the Bonferroni correc-
tion factor.11 Of the adjective pairs, 344228 were
found to be ordered and 128595 were found to be
unordered. Table 1 shows examples of ordered and
unordered adjective-pairs.12

We can now define the adjective-ordering matrix,
Q (a 10041×10041 matrix), as follows. Let L be
the set of adjectives pairs. Then for each (s, t) ∈ L,
(i) if (s, t) is unordered, thenQ[s, t] = Q[t, s] = 1;
(ii) if (s, t) is ordered, then Q[s, t] = 2 if r(s, t) >
0.5, otherwise Q[t, s] = 2. Any entry in Q not
defined above has value 0.13

To better understand how the (alternative) lexical
categories that a polysemous adjective can appear
as may impact a model’s ability to learn ordering
information,14 we also produced adjective-ordering
matrices for subsets of the set of adjective pairs -
these subsets are labeled as follows: all denotes

10The frequency of a bigram is the number of times it ap-
pears in the Google Books corpus, as recorded in the Google
Books Ngram database. Our measurement of bigrams fre-
quency was case-insensitive.

11Bonferroni correction counteracts the propensity for false-
positives arising when doing multiple comparison testing.

12The reader can inspect an example of an adjective
pair (a, b) by going to the google-ngrams website (https:
//books.google.com/ngrams) and running the query
“a_ADJ b_ADJ, b_ADJ a_ADJ” with the queried data
restricted to the years 1969-2019.

13We use values of 2 and 1 so that the adjective-ordering
matrix can serve as input to the Non-negative Matrix Factor-
ization (NMF) CF model; the CF models ignore the 0 values.

14E.g. the polysemous word “sound” can appear as a noun
or as an adjective, each having a different meaning. See also
(Taylor, 2003; Baker and Baker, 2003; Falkum, 2015).
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Adj. Type Adjective-Ordering Matrix Statistics Model Performance (AUROC) t-Test Statistic

Adjs. Adj. Pairs Ordered Pairs Cycles NMF SVD Baseline (γ) NMF SVD

all 10041 472823 72.8% 970527 0.788 0.770 0.716 28.972 33.420
pure 6817 76228 70.3% 15661 0.756 0.738 0.676 5.915 26.799
noun 2688 130701 75.6% 311491 0.767 0.734 0.710 23.431 10.143
verb 1755 26284 71.2% 22430 0.716 0.689 0.662 10.426 13.654

acyclic-all 9296 382335 66.6% 0 0.867 0.862 0.791 45.505 46.278
acyclic-pure 4776 64843 66.3% 0 0.813 0.809 0.755 6.239 27.481
acyclic-noun 2450 105938 70.0% 0 0.858 0.853 0.795 29.530 9.344
acyclic-verb 1265 21657 65.8% 0 0.797 0.788 0.758 10.367 9.586

Table 2: Performance of two Collaborative Filtering models (NMF and SVD) and a baseline (γ) model on each
adjective-ordering matrix that was derived from the (Google NGrams) Adjective Bigram data. Notably, the NMF
model consistently has the top performance, and both Collaborative Filtering models consistently outperform the
baseline model. Adj. Type indicates the subset of the data from which an adjective-ordering matrix was derived and
whether or not adjective cycles are present. Key statistics are presented for each adjective-ordering matrices, and for
each (model, dataset) pair, we report for the median-scoring model: (i) the performance (as measured by AUROC),
and (ii) the Welch’s t-test statistic that is used to compare the distributions of the fraction of adjacent adjective pairs
for correctly and incorrectly classified adjective pairs (see the analysis in §5 for details).

the original set of adjective pairs; noun denotes the
subset of all in which both lemmas in an adjec-
tive pair appear in the lemmatized list of nouns in
WordNet; likewise, verb denotes the subset of all
in which both lemmas in an adjective pair appear
in the lemmatized list of verbs in WordNet; pure
denotes the subset of all in which both lemmas in
an adjective pair are not members of the noun or
verb subsets. Table 2 presents statistics for each
adjective-ordering matrix.

Finally, we note that the ordered adjective pairs
can be modeled as a directed graph: an adjacency
matrix encoding a directed graph, where nodes cor-
respond to distinct lemmatized adjectives, may be
obtained by removing the entries in Q associated
with unordered adjective pairs. Upon constructing
these graphs, we identified the presence of adjec-
tive cycles, which are cycles of edges in the graph
formed by a sequence of adjective bigrams - see Ta-
ble 1 for examples of these cycles, and see Table 2
for counts of adjective cycles of length three. The
presence of these adjective cycles surprised us as
it seems to rebut the ordering hierarchy over adjec-
tives proposed by the Cartographic Enterprise. To
better understand the role that the presence of these
cycles may play in a model’s ability to learn the
ordering of adjectives, we constructed a directed
acyclic graph (DAG) that was a subgraph of the
directed graph derived from the adjective-ordering
matrix. We did this by identifying a feedback arc
set, which is a set of adjective pairs that contains at
least one adjective pair in each cycle in the graph,
using the method introduced by (Eades et al., 1993);

note that this method divides the original directed
graph into two DAGs, and we selected the larger
DAG. The resulting DAG was then used to reformu-
late an adjective-ordering matrix, with the entry for
an unordered adjective pair (s, t) carried over from
the source adjective-ordering matrix if s and t were
both present in the DAG. This process was repeated
for each subset of adjective pairs, yielding four new
subsets labeled acyclic-noun, acyclic-verb, acyclic-
all and acyclic-pure (see Table 2 for details).

5 Experiment

We evaluated two different latent factor model-
based Collaborative Filtering methods (Hofmann,
2004; Koren et al., 2009), Singular Value Decom-
position (SVD) and Non-negative Matrix Factor-
ization (NMF), on the task of predicting, given
adjective pair data in the training set, whether a
given adjective pair (in the test set) is ordered, and
if it is ordered, which direction the ordering is in.15

Methodology. Given an adjective-ordering matrix,
we trained each of the two CF models by employ-
ing nested 5-fold cross-validation with shuffling, in
which the outer loop evaluates trained models, and
the inner loop is used for model selection (hyper-
parameter tuning) and model fitting (i.e. training).
Specifically, the outer-loop consists of 5-fold cross-
validation, with 20% of the data (i.e. entries in
the adjective-ordering matrix) held out as a test

15We used the implementations of NMF and SVD provided
in the (python) library Surprise (v1.1.1) (Hug, 2020). See
Appendix A for details about the computing infrastructure,
software libraries and runtime used for these experiments.
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dataset and the remaining data used for training
and validation; the inner-loop consists of 5-fold
cross-validation with 80% of the data used as a
training set and the other 20% of the data held out
as a validation set.16 We evaluated performance
during model selection by computing the mean av-
erage error (MAE), a metric that is commonly used
for evaluating model-based CF algorithms.17

We trained and evaluated each of the two CF-
models on each of the eight adjective-ordering ma-
trices listed in Table 2. Note that a trained CF
model,M , consists of: (i) a mapping, uM , between
(lemmatized) adjectives and embedding vectors of
length nf+1 – this mapping encodes the first item
in an adjective pair (i.e. the s in an adjective pair
(s, t)) into an embedding vector; (ii) a second map-
ping, vM , between (lemmatized) adjectives and
embedding vectors of length nf+1 – this mapping
encodes the second item in an adjective pair into an
embedding vector; (iii) an (nf+1)×(nf+1) ma-
trix, SM – in the case of NMF, SM is the identity
matrix. The model estimates the value for an adjec-
tive bigram (from the test set), (s, t), as:

M(s, t) = uM (s)S(vM (t))T

Given two adjectives a and b, the procedure for
determining adjective ordering (which encapsulates
the CF-modelM ) makes a prediction, P{a,b}, about
the ordering relationship between a and b as:

P{a,b} =

{
A > B, if M(a, b) ≥ ψ > M(b, a)

A < B, if M(a, b) < ψ ≤M(b, a)

No Ordering, Otherwise

Here ψ is a threshold with 1 ≤ ψ ≤ 2, such that we
classify M(s, t) as a high value (2) if M(s, t) ≥ ψ
and a low value (1) otherwise. As the accuracy of
the model depends on the value ψ, we thus eval-
uated model-performance by computing the Area
Under the Receiver Operating Characteristic (AU-
ROC) curve (Fawcett, 2006).
Results. Table 2 summarizes the results of our ex-
periments. Notably, the CF models, NMF and SVD,
achieved high AUROCs of 0.87 and 0.86 (respec-
tively) on the acyclic-all adjective-pair data, and

16An adjective-ordering matrixQ can be represented as a set
of tuples of the form (A,B,QA,B) where A is an adjective
coding for a row, rA ∈ Q, B is an adjective coding for a
column, cB ∈ Q, and QA,B is the value Q[rA, cB ] – then
(A,B) is the model’s input, and QA,B is the model’s output.

17Model selection for both models, NMF and SVD, in-
volved optimizing the hyperparameter for the number of latent
factors, nf ∈ {4, 6, 8, . . . , 16, 18}, and both models were
trained for 450 epochs. The NMF model used a regularization
rate of 0.06, and the SVD model used a learning rate of 0.005
and a regularization rate of 0.02.

0.79 and 0.78 (respectively) on the all adjective-
pair data. Overall, NMF achieved the highest AU-
ROC on each of the adjective pairs datasets. We
also observed that both NMF and SVD performed
better on the acyclic datasets than on their cyclic
counterparts, and that for datasets both with and
without cycles, both CF-models performed better
on larger and less restricted datasets, all and noun
(c.f. the smaller, more restricted datasets, pure).

We also evaluated a baseline model, referred to
as the γ baseline, that serves as a reference point
against which we compared the performance of
the CF models. The γ baseline, which takes into
account both input adjectives, is defined as follows.
For an adjective z, let ρz,1 be the multiset of val-
ues for entries in the training data18 where the first
adjective is z, let ρz,2 be the multiset of values for
entries in the training data where the second adjec-
tive is z, and let h(z) be the weighted harmonic
mean of avg(ρz,1) and (3− avg(ρz,2)), so that:

h(z) =
|ρz,1|+ |ρz,2|

|ρz,1|(ρz,1)−1 + |ρz,2| (3− (ρz,2))
−1

Here, h(z) is a ranking of the adjective z that is
intended to correlate with z’s position in the hier-
archy of adjective-classes.19 Given adjective pair
(s, t) in the test data, the γ baseline is a linear trans-
form20 of the difference between the rankings of
the two adjectives s and t:

γ(s, t) =
3

2
+

1

2
(h(s)− h(t))

Importantly, by using the γ baseline (in place of the
CF models), our procedure can predict the ordering
of adjectives, s and t, by comparing their rankings
(per h) – importantly, this grounds the γ baseline
in the second category of work described in §2.

Notably, the two CF models, NMF and SVD,
outperformed the γ-baseline on each of the eight
adjective-ordering matrices (see Table 2). We also
observed that the γ baseline performed better on
the acyclic datasets than on the full datasets – this
was not surprising as the γ baseline is a model of
a linear hierarchy of adjectives (i.e. h(z) forms
a total preordering over adjectives). Overall, our
results show that both model-based CF algorithms:
(i) perform well on the task of predicting adjec-
tive ordering, and (ii) outperform a baseline model

18The training data does not include any zero-valued entries
in the adjective-ordering matrix from which it is derived.

19N.b. the greater the number of adjectives that z precedes
(as measured by ρz,1), and the fewer the number of adjectives
that precede z (as measured by 3−ρz,2), the larger h(z) is.

20As h(z) ∈ [1, 2], this transform ensures γ(s, t) ∈ [1, 2].
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grounded in a ranking (of adjectives) meant to cor-
relate with a (linear) hierarchy of adjective-classes.

Analysis. We analyzed the degree to which the CF
models, when predicting adjective ordering, utilize
information about related adjective pairs. Let ω
be the set of adjective pairs (in the training data),
and let ψ be the set of all adjectives appearing in ω.
Given an adjective pair (s, t), we define its adjacent
adjective pairs (AAP) as the set µ(s,t) ∩ ω where:
µ(s,t) = {(x, y) ∈ ψ×ψ|(s, y)∈ω ∧ (x, t)∈ω}

We define the fraction of adjacent adjective pairs
(FAAP) for (s, t) as the ratio:

|µ(s,t) ∩ ω|/|µ(s,t)|
Given an adjective pair (s, t), FAAP is the ratio of
AAP present in the training data vs. the maximum
number of AAP that could have been in the training
data; the smaller the FAAP of (s, t) is, the more
discriminating s and t are in the adjectives they
appear with (in a bigram).

We now consider, for each (model, dataset) pair,
how FAAP relates to model performance. We
first computed the threshold21 that maximized the
model’s F1-score, and then determined, for each
adjective pair (s, t) in the test data, whether the
model’s output, M(s, t), was correct (as classified
by Ps,t).22 We then computed the means and vari-
ances for the distributions of FAAP for adjective
pairs that were correctly and incorrectly (respec-
tively) classified, and we found that the mean of
the former distribution was consistently lower than
the mean of the latter.23 We thus evaluated whether
these two distributions of FAAP differed substan-
tively. We used Welch’s t-test (Welch, 1947) to test
the null-hypothesis (α=0.01) that there is no (statis-
tically) significant difference between the means of
the two distributions (e.g. see Fig. 2); in each case,
the null-hypothesis was rejected as the p-value was
at most 3.5×10−9, which was well below the crit-
ical value (α). We inferred that, consistently, the
means of the two distributions differ significantly.

Moreoever, the t-test statistic appeared to corre-
late with the model’s maximum F1-score, and is
generally greater in the acyclic datasets (cf. the
cyclic datasets) and in the all and noun subsets (cf.
verb and pure). To validate this observation, we
used linear regression to analyze the correlation be-

21I.e. the threshold used to classify the model’s (continuous)
output as 1 (low) or 2 (high).

22We used, for each (model, dataset) pair, the model in-
stance with median AUROC during cross-validation.

23Table 3 in the appendix details these distributions and lists
the maximum F1-score for each (model, dataset) pair.

Figure 2: Given the ordering classifications made by
the NMF model on the all test set, the distributions
of FAAP for correctly and incorrectly classified adjec-
tive pairs have (mean, variance) of (0.237, 0.008) and
(0.253, 0.008) respectively. Welch’s t-test yields a test
statistic of 28.97 and a p-value of 1.93×10−183, which
falls well below a critical p-value of 0.01 – hence, the
means of the two distributions differ significantly.

tween the t-test statistic of a model and the optimal
F1-score of the model, which yielded a coefficient
of determination (R2) of 0.61 (p=3.7×10−4). This
suggests that the difference between the means of
the correct and incorrect FAAP distributions is a
significant factor in explaining model performance.

6 Conclusion

This study showed that CF models, when trained
on adjective bigram data readibly obtained from
a corpus, perform well on the task of predicting
the ordering of (unseen) adjective pairs. We com-
pared the CF models with a baseline model, γ, that
is grounded in a ranking of adjectives intended to
parallel a (linear) hierarchy of adjective-classes.
Notably, our results show that the CF models (con-
sistently) perform markedly better than the base-
line model, suggesting that CF models leverage
adjective-ordering data that does not neatly align
with proposed hierarchies of adjective-classes.

More broadly, the present study was motivated
by the desire to see how far productive corpus-
based models can be taken when they: (i) are re-
stricted to adjective bigram statistics, (ii) do not re-
quire retention of the entire adjective-cooccurrence
matrix after training, (iii) are robust in the face
of sparse datasets, and (iv) must make predictions
about the ordering of previously unseen adjective
pairs. Moreoever, we made minimal assumptions
about a learner’s innate knowledge of language, the
kind of data they have access to, and the size of
their memory. To this extent, our procedure is a
baseline that other models should aim to surpass to
better justify any stronger assumptions they make.
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A Computing Infrastructure and
Runtime

The experiments described in this paper were car-
ried out on a linux server with the following spec-
ifications: Intel(R) Core(TM) i7-3930K CPU @
3.20GHz; 54 GB of RAM; 1 TB of HDD. We
used Python (v3.9.7) and the following libraries:
pandas (v1.2.3) and matplotlib (v3.4.3), and scipy
(v1.6.2); we used the implementation of Student’s
t-test and linear regression found in the python
library, scipy (v1.6.2). The data-processing and
experiment (i.e. model selection and training, eval-
uation and analysis-routines) took ≈30 hours of
total runtime.

B Applications

The procedure introduced in this study makes min-
imal assumptions about a learner’s innate knowl-
edge of language, the kind of data they have ac-
cess to, and the size of their memory. For this
reason, we believe that upon further analysis of the
procedure’s performance on smaller corpora that
reflect the primary linguistic data a child learner
would encounter (MacWhinney and Snow, 1985;
MacWhinney, 2000; Sanchez et al., 2019), our pro-
cedure may prove to be a suitable candidate for aug-
menting computational models of child language
acquisition – see (Yang, 2011) for a review of com-
putational models of language acquisition, and see
(Indurkhya, 2020, 2022) for examples of models
that this procedure could augment. Specifically,
the procedure may be used to augment models that
aim to explain how children acquire knowledge
of restrictions on constituent selection (Svenonius,
1994) when forming syntactic structures, and in par-
ticular, when forming the fine structure of the De-
terminer Phrase (DP) in which a sequence of adjec-
tives may be (hierarchically) embedded (Bernstein,
1993; Alexiadou, 2001; Baker and Croft, 2017).
E.g. the productive model learned by this pro-
cedure can be used to score (or rank) candidate
sequences of adjectival modifiers within a syntac-
tic structure produced via a generative procedure,
thereby serving as a filter on the production of ad-
jective bigrams that the learner did not see in the
primary linguistic data.
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Abstract

This study compares token- and character-
level approaches to restoration of spaces, punc-
tuation, and capitalization to unformatted se-
quences of input characters, which is a vital
step in use cases such as formatting outputs
of automatic speech recognition systems for
automatic transcription, and formatting hash-
tags. We obtain an overall F-score of 0.95 for
our main English dataset with a hybrid pipeline
model composed of a Naive Bayes classifier
for space restoration and a BiLSTM classifier
with a pre-trained Transformer layer for restora-
tion of punctuation and capitalization. We also
propose a novel character-level end-to-end BiL-
STM model (overall F-score 0.90) which has
the advantages of being able to restore mid-
token capitalization and punctuation and of not
requiring space characters to be present in in-
put strings. We demonstrate that this model
is language agnostic through experiments on
Japanese, a scriptio continua language, and Gu-
jarati, a low-resource language. We also com-
pare our models with the only existing work
on this task of which we are aware by carrying
out experiments on the same dataset, and find
that all of our models outperform those in that
work.

1 Introduction

The accuracy of automatic speech recognition
(ASR) systems has improved dramatically in re-
cent years, with increasingly sophisticated deep
learning architectures bringing about year-on-year
improvements in word error rates (WERs) on es-
tablished benchmark datasets such as LibriSpeech
(Synnaeve, 2022). It has been claimed that ASR
systems have reached the level of human parity

1Laurence Dyer and Anthony Hughes contributed equally
to this work as first authors.

Repositories containing the code used for all of the exper-
iments in this paper, together with comprehensive documenta-
tion and links to interactive demo notebooks, are available on-
line at: https://ljdyer.github.io/Space-Punct-Cap-Restoration.

(Xiong et al., 2016) or even super-human perfor-
mance (Nguyen et al., 2020). The result has been
a resurgence of various speech technologies, not
least automatic transcription. Automatic transcrip-
tion is widely used in the medical field (Van der
Straten, 2017) and is now a hot topic in the general
business community after many businesses shifted
to fully remote or hybrid working following the
COVID-19 pandemic. Transcription services inte-
grated into online conferencing applications like
Microsoft Teams and Zoom are used on a daily ba-
sis by organizations around the world to facilitate
information sharing and record keeping.

However, most modern end-to-end ASR systems
output streams of lowercase words without punc-
tuation or capitalization (Guan, 2020), so these
features must be restored by dedicated models in
the post-processing stage. The presence or ab-
sence of certain punctuation marks can dramati-
cally alter the understood meaning of a sentence—
as anyone who has read the book Eats, Shoots &
Leaves (Truss, 2004) knows—and the same set of
letters can carry completely different meanings de-
pending on the capitalization ("The Who" vs. "the
WHO"). Capitalization and punctuation are also
known to improve the readability of transcriptions
(Jones et al., 2003). Moreover, absence of capi-
talization and punctuation negatively impacts the
performance of downstream natural language pro-
cessing (NLP) applications such as neural machine
translation (Peitz et al., 2011), named entity recog-
nition, and part-of-speech tagging (Mayhew et al.,
2019). Appropriate punctuation and capitalization
styles may vary depending on domain, so the abil-
ity to easily train models to restore these features
is likely to become increasingly important in the
future.

Most work on punctuation and capitalization
restoration to date has been targeted at the token
level, assuming that inputs are already correctly
segmented into words. However, there are some

168



drawbacks to this approach. Firstly, it necessar-
ily restricts the possible positions of each feature
within a single word, and therefore cannot learn
or restore mid-token punctuation or capitalization
such as that found in "iPhone" or "yahoo.com".
Secondly, it cannot be applied directly to scriptio
continua languages like Chinese, Japanese, and
Thai. Space restoration may also be required for
certain use cases in spaced languages, for example
when dealing with hashtags (Abd-hood and Omar,
2021).

For these reasons, in this study we assume raw
data that comprises streams of lowercase characters
and digits only, and examine a range of approaches
to restoring spaces, punctuation, and capitalization
to generate readable output texts. We compare
pipeline approaches that first restore spaces and
then tackle capitalization and punctuation at the to-
ken level with end-to-end approaches that perform
all tasks simultaneously at the character level. We
implement a combination of statistical and deep
learning models in order to ascertain whether using
neural network architectures leads to better perfor-
mance in each part of the task under consideration.

2 Related Work

2.1 Space Restoration/Word Segmentation

Space restoration for spaced languages is largely
equivalent to the problem of word segmentation
for scriptio continua languages such as Chinese,
for which a wealth of literature exists due to
its applications in higher-level NLP tasks includ-
ing part-of-speech tagging and machine transla-
tion. The problem can be tackled using dictionary-
based approaches and statistical machine learning
methods including Naive Bayes, support vector
machines (SVM), and conditional random fields
(CRF) (Haruechaiyasak et al., 2008). However,
most recent work in this area employs neural net-
works.

Shao et al. (2018) propose a bidirectional recur-
rent neural network (RNN) architecture with gated
recurrent units (GRU) that works at character level,
and demonstrate its effectiveness on over 75 lan-
guages from a diverse range of language families.
Sun (2010) compares word- and character-based
approaches to Chinese word segmentation and pro-
poses a classifier ensemble method after observ-
ing that each method leads to different types of
error. Zhang et al. (2018) and Liu et al. (2019a)
have proposed methods for incorporating informa-

tion from dictionaries to improve neural network
models. Higashiyama et al. (2019) integrate both
word character information and character attention
into a character-based neural network for Japanese
language word segmentation. Zheng and Zheng
(2022) improve on existing results for Vietnamese
word segmentation by using an improved LSTM
model with a convolutional neural network (CNN)
extraction portion.

2.2 Restoration of Capitalization and
Punctuation

CRF (Lui and Wang, 2013) and finite state au-
tomata (FSA) (Gravano et al., 2009) have been used
to restore capitalization and punctuation, but state-
of-the-art approaches use neural network models.
Che et al. (2016) demonstrate that both deep neu-
ral networks (DNNs) and CNNs can outperform
CRF-based approaches for restoration of commas,
periods, and question marks on a dataset of Ted
Talks.

Recent work has demonstrated the advantages
of using Transformer architectures for restora-
tion tasks. Nguyen et al. (2019) restore capi-
talization and punctuation in a single model us-
ing a Transformer-enriched sequence-to-sequence
LSTM model, while Wang et al. (2018) apply an
Encoder-Decoder Transformer architecture with
attention to restoration of punctuation only. Yi
et al. (2020) and Courtland et al. (2020) achieve
state-of-the-art results for punctuation restoration
using deep bidirectional Transformer architectures
with the pre-trained language models BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019b)
respectively. Guerreiro et al. (2021) improve on the
work of Yi et al. (2020) by training and evaluating
their models at chunk level rather than segment
level.

Guerreiro et al. (2021) also successfully train a
single model for punctuation restoration in multiple
languages using the multilingual language model
XLM-RoBERTa (Conneau et al., 2019). However,
they observe that better results for English are
obtained when using the monolingual RoBERTa.
Gupta et al. (2022) use IndicBERT (Kakwani et al.,
2020) to carry out punctuation restoration for 11
Indic languages, including Gujarati.

All of the studies cited above adopt purely lexi-
cal approaches, but others (Tilk and Alumäe, 2015;
Klejch et al., 2017; Yi and Tao, 2019) have incor-
porated audio features from original ASR inputs.
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Guan (2020) proposes an end-to-end ASR system
with punctuation restoration included. Zhu et al.
(2022) train a BiLSTM model with a hybrid rep-
resentation to enable restoration of punctuation to
unpunctuated texts either with or without accompa-
nying audio.

Gale and Parthasarathy (2017) is a rare exam-
ple of a character-level approach to punctuation
restoration, in which results on-par with state-of-
the-art CRF-based models are obtained using vari-
ous architectures containing LSTM networks. The
models in that paper differ from our own in that
they restore punctuation only, and each output tag
contains only a single feature.

2.3 Restoration of Spaces, Capitalization and
Punctuation

The only study of which we are aware that deals
with restoration of spaces, punctuation, and capital-
ization as a single task is Sivakumar et al. (2021).
The authors use a single model type— bigram-level
GRU—but adopt a pipeline approach where one
feature is restored successively in each model com-
ponent. Interestingly, they find that the best results
are obtained by restoring spaces later in the restora-
tion process, after periods and commas but before
capitalization.

3 Models

In this section we describe the models used in this
study, which encompass a range of both traditional
and neural machine learning techniques for restor-
ing spaces, punctuation, and capitalization, or a
subset of those features. The model names in bold
are unique names that we assigned to the models
for the purpose of this paper.

NB is a Naive Bayes-based model that uses
dynamic programming with memoization to recur-
sively assign probabilities to possible word seg-
mentations based on frequency lists of words learnt
during training. Our implementation closely fol-
lows the description of the bigram model in Norvig
(2009), but we treat the maximum possible word
length L and smoothing parameter λ, which are
assigned constant values in the original work, as
tunable hyperparameters.

Since NB assigns probabilities to word segmen-
tations recursively, inference can only be run on
string of up to around 100 characters in length
due to recursion limits, so longer inputs have to
be broken up into shorter chunks. We use the

method in Jenks (2018), where the last few words
of each chunk is appended to the beginning of the
following chunk to prevent words being incorrectly
segmented due to being cut off at the end of a
chunk. The same method is employed for BiL-
STMCharSpace and BiLSTMCharE2E to allow
for control of the model input length without the
need for padding tokens.

BiLSTMCharSpace and BiLSTMCharE2E
are character-level BiLSTM sequence-to-sequence
classification models. They were implemented
from scratch for this paper and are not based on ex-
isting literature. BiLSTMCharSpace is for restora-
tion of spaces only, a binary classification task,
so binary cross entropy is used for the loss func-
tion and sigmoid is used for the activation function.
BiLSTMCharE2E uses multi-class classification
to restore any possible combination of features fol-
lowing each character. The number of possible
classes when restoring n features is 2n, so for our
standard set of features for English a maximum of
16 classes are possible. Categorical cross entropy
is used for the loss function and softmax is used
for the activation function.

Training examples for BiLSTMCharSpace and
BiLSTMCharE2E were generated using a sliding
window over each document with a step size of
one word (or three characters in the case of the
OshieteQA dataset). This approach ensures that
less frequent words appear multiple times in the
training data. The sequence length was set to 200
characters so that at least two or three sentences
would be included in each training sample in order
to provide sufficient context for restoration of end
punctuation.

CRF uses CRF to restore punctuation and capi-
talization through multi-class token classification.
Our implementation is based on Lui and Wang
(2013), but where that study assigns only 4 classes
to capture presence or absence of any punctuation
and/or capitalization, we increase the number of
classes to capture presence or absence of a period
and/or comma directly after a token and whether
a token is lowercase, title cased, or fully capital-
ized. Also, the previous study uses named entity
recognition (NER) results on uncapitalized input
text as a model feature, but we skip this step as
we found in initial experiments that the low accu-
racy of NER without capitalization meant that the
impact on model performance was minimal.

BERTBiLSTM is a token-level model which
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uses a pre-trained Transformer layer, BERT (De-
vlin et al., 2018), with the final hidden layer
attached to a BiLSTM with sigmoid activation.
Classes capture combinations of features, for exam-
ple a period following a token and capitalization of
the first letter of the token. Unlike CRF, this model
does not have a class for full capitalization of a
token. It has a maximum sequence length of 256,
with a padding token used to fill any remaining
slots in each sequence. Padding tokens are masked
to avoid the attention layer deriving importance
from them. The model is based on the punctua-
tion restoration model in Alam et al. (2020), but
expands on that work by restoring capitalization in
the same model.

Models for space restoration and models for
restoring other features were combined to form
pipeline models for restoration of all features. For
example, NB + BERTBiLSTM refers to the result
of inputting the outputs of NB into BERTBiLSTM.
BiLSTMCharE2E is the only model that can re-
store all features in a single inference step.

4 Experiments

4.1 Languages

The languages studied in this paper are English,
Japanese, and Gujarati. These languages were se-
lected in order to ascertain the suitability and per-
formance of the novel character-level model BiL-
STMCharE2E on a diverse range of language
types.

English is a spaced language with rich use of
capitalization and punctuation. It is also the most
widely studied language in the field and its inclu-
sion was essential for comparison with existing
work. Japanese is a scriptio continua language in
which spaces are not inserted between word tokens,
and is also in high demand for NLP applications.
Gujarati is a low-resource language belonging to
the group of Indic languages with special typo-
graphical and orthographic characteristics that need
to be taken into account when developing character-
based models (W3C Group, 2022).

Further, the authoring team contained at least
one member who is either native or proficient in
each of the languages under study, which made
direct qualitative evaluation and analysis of model
outputs possible.

4.2 Datasets

In this section we describe the datasets used in this
study. The dataset names in bold are unique names
that we assigned to the datasets for the purpose of
this paper.

Our main dataset for English was a corpus of
transcripts of TED Talks collected in June 2020
(Gupta, 2020) (hereafter referred to as TedTalks).
This dataset was chosen because it consists of high-
quality professional transcriptions of spoken En-
glish, and so closely reflects the intended use case
and desired outputs of our models. Ted Talk tran-
scripts have also been used in many prior studies
on punctuation and capitalization restoration in-
cluding Che et al. (2016), Wang et al. (2018), and
Courtland et al. (2020). Our aim when preparing
this dataset was to establish the feasibility of each
of the models under investigation. We therefore
carried out thorough data cleaning with the aim
of restricting the input vocabulary while retaining
as much of the context of the original as possi-
ble. For example, we replaced question marks and
exclamation marks with periods, “$” signs with
the acronym “USD”, and “%” signs with the word
“percent”. We also removed speaker indicators (e.g.
“Narrator:”) and descriptions of audience activity
(e.g. “(Applause)”), which appear frequently in the
original corpus. The cleaned dataset consisted of
only upper- and lower-case alphabetic characters,
digits, spaces, commas, and periods.

The second dataset for English was the Brown
corpus, which was used for comparison with
Sivakumar et al., 2021. Data cleaning was carried
out following the procedure described in Section
A.2 of that paper in order to mirror their experi-
ments as closely as possible.

The Japanese and Gujarati datasets were used to
ascertain the feasibility of BiLSTMCharE2E on
languages with larger character vocabularies. Only
minimal data cleaning was carried out for these
datasets.

For Japanese, we collected our own corpus,
JapaneseQA, of questions and answers written
in 2021 from the popular Q&A site Oshiete!
goo (2022) ("教えて！goo"/”Tell me! goo”).
The dataset contains questions and answers from
a wide range of categories (16 in total), with
the most common being “life advice”, “educa-
tion/science/learning” and “health/beauty/fashion”.
Both full-width and half-width spaces (which do
not generally belong in Japanese text) were re-
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Dataset Language Num. docs Num. words Num. chars Num. unique chars
TedTalks English 3,997 7,149,001 39,490,824 65
Brown English 500 1,023,563 5,921,920 65
JapaneseQA Japanese 42,940 N/A 25,634,557 5,489
GujaratiNews Gujarati 3,498 906,498 3,814,697 1,470

Table 1: Datasets used in the experiments

moved, as were line breaks after appending a period
(“。”) to lines without end punctuation. Exclama-
tion marks (”！”) were replaced with periods. The
texts in this dataset are not transcribed from spo-
ken Japanese, but are written in a conversational
style that is similar to polite spoken Japanese, and
were chosen for this reason. Since they are written
by individual site users as opposed to professional
writers or transcribers, the punctuation usage is less
consistent than for our other datasets.

For Gujarati, we collected our own corpus, Gu-
jaratiNews, of news articles written in 2021 and
2022 from the news website Gujarat Samachar
(2022). We used written data due to the difficulty
of obtaining large collections of transcriptions of
spoken Gujarati. We collected article headlines and
body text from six of the site’s category pages. A
period and space were appended to lines without
end punctuation before removing line breaks.

The numbers in Table 1 describe the size of each
dataset before splitting into train and test sets. A
randomly selected 20% of the documents in each
dataset were saved for testing, with the remaining
80% used for training and validation.

4.3 Evaluation Metrics

A combination of character- and word-level met-
rics was used to evaluate the results of our experi-
ments. All metrics were calculated by comparing
reference documents in the test sets with document-
level model outputs (after combining chunks, etc.).

We used character-level metrics—precision, re-
call, and F-score for each restored feature—as our
primary metrics in order to ensure comparability
across all experiments. These scores were cal-
culated based on the features possessed by cor-
responding non-feature characters in the reference
and hypothesis outputs. Since our models were not
designed to restore multiple instances of the same
feature character after a single input character (e.g.
...), only presence or absence of each feature for
each non-feature character was considered. The
character-level metrics were highly informative for

understanding the performance of models on each
restored feature and identifying future areas for
improvement. We do not report character-level ac-
curacy because it takes into account true negatives
and therefore can be misleadingly high for features
that do not occur frequently.

We also provide word error rate (WER) for all
experiments in which spaces were among the fea-
tures restored. Apart from being a standard met-
ric for ASR tasks, this metric has the advantage
of summarizing the overall performance in each
experiment in a single percentage, and we (like
Sivakumar et al., 2021) found that it closely cor-
related with our subjective evaluation of model
outputs based on observation. Reference and hy-
pothesis texts were split at space characters and the
Levenshtein distance between them–—the sum of
substitutions (S), deletions (D), and insertions (I)
required to get from the hypothesis to the reference–
—obtained. Any number of false positives or neg-
atives across the possible features for a single
word prompted a single edit (because, for example,
However, is not the same as either however,
or However.,). WER is calculated as follows:

WER (%) =
(S +D + I)

lenref
× 100 (1)

where lenref is the number of words in the reference
text.

Lower WERs indicate better model performance,
with 0% indicating a perfect match between refer-
ence and hypothesis outputs. WER is affected by
the relative frequency of restored features in each
dataset, so should not be used to compare the re-
sults of experiments on different datasets or when
restoring different features.

In addition to quantitative metrics, we also found
qualitative observation of reconstructed texts to be
highly informative, so we include selected extracts
from the model outputs to illustrate some of our ob-
servations. In all of the sample outputs presented, a
dark gray highlight indicates a false positive, while
a light gray highlight indicates a false negative. Fea-
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Model Dataset Units Batch size Dropout Recurrent dropout
BiLSTMCharSpace TedTalks {128,256} {2048, 4096, 8192} {0, 0.1, 0.2} {0,0.1, 0.2}
BiLSTMCharSpace Brown {128,256} {2048,4096, 8192} {0, 0.1,0.2} {0, 0.1, 0.2}
BiLSTMCharE2E TedTalks {128,256} {2048, 4096, 8192} {0, 0.1, 0.2} {0, 0.1, 0.2}
BiLSTMCharE2E Brown {128, 256} {2048, 4096, 8192} {0, 0.1,0.2} {0,0.1, 0.2}
BiLSTMCharE2E OshieteQA {32, 64,128} {128, 256} {0, 0.1, 0.2} {0, 0.1,0.2}
BiLSTMCharE2E GujaratiNews {64, 128,256} {512, 1024, 2048} {0, 0.1, 0.2} {0,0.1, 0.2}

Table 2: Hyperparameters used for BiLSTMCharSpace and BiLSTMCharE2E

tures without any highlight are true positives—i.e.
correctly restored features.

4.4 Hyperparameter Tuning

Tunable hyperparameters for NB are L, the maxi-
mum possible word length, and λ, the smoothing
parameter. Hyperparameters are applied at infer-
ence time, so grid search was carried out by running
inference on 5% of the test data with each candidate
hyperparameter combination and selecting the one
with the highest space F-score for the final model.
Combinations with L ∈ {14, 16, 18, 20, 22} and
λ ∈ {6.0, 8.0, 10.0, 12.0, 14.0} were tested. The
hyperparameters selected for use in the final mod-
els were L = 16, λ = 12.0 for TedTalks and
L = 14, λ = 14.0 for Brown.

Tunable hyperparameters for BiLSTM-
CharSpace and BiLSTMCharE2E are the
number of BiLSTM units, batch size, dropout rate,
and recurrent dropout rate. Grid search was carried
out for each model/dataset pair by training on 10%
of the training data for one epoch with each candi-
date hyperparameter combination and selecting the
one with the highest validation accuracy for use in
the final model. Some candidate hyperparameter
combinations overloaded GPU memory, which
suggests that GPU resources were optimized for
successful combinations. Candidate units and/or
batch sizes had to be reduced for the Gujarati and
Japanese datasets to generate a sufficient number
of viable hyperparameter combinations; this is
thought to be due to the larger input vocabularies
for these models. Candidate hyperparameters for
all model/dataset pairs are presented in Table 2,
with the hyperparameters used in the final models
displayed in bold.

CRF has three tunable hyperparameters: C1, C2,
and the possible_transitions parameter, which
specifies whether to generates transitions between
feature pairs that were not present in the training
set. We used the values C1 = 1.0, C2 = 1e−3,
and possible_transitions = True, following the
example notebook by Korobov (2016).

BERTBiLSTM also has three tunable hyperpa-
rameters: learning rate, decay and gradient clip.
These were set to 5e− 6, 0, and 1 respectively, the
same values as used in Alam et al. (2020).

5 Results

All five of our pipeline and end-to-end models were
applied to restoration of capitalization, spaces, pe-
riods, and commas for the two English-language
datasets. The results for TedTalks are presented in
Table 3. The metrics for pipelines containing BiL-
STMCharSpace were almost identical to those
containing NB, with precision, recall, and F-score
differing by no more than 0.01 for each feature and
WER differing by no more than 0.28%. The results
of pipelines containing BiLSTMCharSpace are
therefore omitted for brevity. The results for the
most performant pipeline model and for the end-to-
end model for Brown are presented in Table 4.

5.1 Space Restoration (English)

Both NB and BiLSTMCharSpace have F-scores
of 0.99 for the space restoration task on the
TedTalks dataset. The numbers of space restora-
tion errors in the results for each model are very
close, but the errors occur in different places. Of
the 22 errors in the results for BiLSTMCharSpace
on the first document in the test set, only 7 were in
words where NB also made an error. This is con-
sistent with the observation made in Sun (2010),
and suggests it may be possible to obtain higher
performance by combining the outputs of the two
models in some way.

NB assigns probabilities based on whole tokens
learnt during training, so errors occur for unlearnt
words that can be formed by concatenating two or
more learnt words, such as in un filled ("un-
filled" was not in the training data). BiLSTM-
CharSpace learns at the character level and ap-
pears to have implicitly learnt some of the common
morphemes in the English language, as it was able
to output the correct word in this and similar exam-
ples.
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NB + CRF
WER: 19.85%

Precision Recall F-score
Spaces (’ ’) 0.99 0.99 0.99
CAPS 0.74 0.37 0.49
Periods (’.’) 0.59 0.34 0.43
Commas (’,’) 0.46 0.22 0.30
All 0.95 0.86 0.90

NB + BERTBiLSTM
WER: 8.49%

Precision Recall F-score
Spaces (’ ’) 0.99 0.99 0.99
CAPS 0.88 0.81 0.84
Periods (’.’) 0.82 0.82 0.82
Commas (’,’) 0.77 0.67 0.72
All 0.96 0.95 0.95

BiLSTMCharE2E
WER: 20.48%

Precision Recall F-score
Spaces (’ ’) 0.98 0.98 0.98
CAPS 0.69 0.62 0.65
Periods (’.’) 0.58 0.53 0.56
Commas (’,’) 0.50 0.38 0.43
All 0.92 0.89 0.90

Table 3: Results from a selection of models on the
TedTalks dataset.

BiLSTMCharSpace + BERTBiLSTM
WER: 17.27%

Precision Recall F-score
Spaces (’ ’) 0.97 0.97 0.97
CAPS 0.77 0.73 0.75
Periods (’.’) 0.69 0.70 0.69
Commas (’,’) 0.60 0.40 0.48
All 0.93 0.91 0.92

BiLSTMCharE2E
WER: 24.46%

Precision Recall F-score
Spaces (’ ’) 0.97 0.97 0.97
CAPS 0.74 0.42 0.54
Periods (’.’) 0.55 0.38 0.45
Commas (’,’) 0.51 0.11 0.17
All 0.94 0.84 0.89

Table 4: Results from the best pipeline model and the
end-to-end model on the Brown dataset.

Both models tend to commit errors in cases
where part of an input string can be segmented
into more than one pair of learnt words, such as
the input sequence chargeshe. NB sometimes
chooses the wrong segmentation for the context
(in this case charge she), whereas BiLSTM-
CharSpace sometimes inserts a space in both posi-
tions (charge s he). The output of BiLSTM-
CharSpace may be easier to post-edit in such cases,
as errors would be picked up by a spellchecker.

BiLSTMCharE2E performs slightly worse than
NB and BiLSTMCharSpace in the space restora-
tion task for TedTalks, which suggests that a larger
number of possible output classes reduces perfor-
mance on each individual feature. However, the
F-score is still very high, at 0.98, which shows that
BiLSTMCharE2E is able to accurately restore
spaces at the same time as other features.

The results of each model for the space restora-
tion task were also very similar for the Brown
dataset, with pipelines containing NB and BiL-
STMCharSpace both having F-scores of 0.97 for
space restoration. However, for the Brown dataset,
a pipeline containing BiLSTMCharSpace had
the highest overall F-score, which suggests that
BiLSTMCharSpace may perform better than NB
when less training data is available.

5.2 Capitalization and Punctuation
Restoration (English)

Pipeline models containing BERTBiLSTM outper-
formed those containing CRF on all features. This
is thought to be because BERTBiLSTM can take
into account more contextual information and also
benefits from the pre-trained word Transformer
layer. The outputs of NB + BERTBiLSTM for the
TedTalks dataset are generally very readable and
closely match the punctuation style of the training
data. Figure 1 shows a typical extract. The one
divergence from the reference document is also a
valid punctuation. The outputs of the other mod-
els contain more severe errors that result in less
readable text.

BiLSTMCharE2E outperformed pipelines con-
taining CRF at capitalization and punctuation
restoration (likely owing to its ability to take into
account a greater amount of contextual informa-
tion), with a lower overall F-score due solely to
poorer performance at space restoration. Combined
with its simplicity due to being able to restore all
features in a single model, this makes BiLSTM-
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Imagine a brilliant neuroscientist named Mary. Mary lives in a black
and white room., She only reads black and white books, and her scre
ens only display black and white. But even though she has never seen

Figure 1: Output of NB + BERTBiLSTM for an extract from the test set for TedTalks

WER: N/A

Precision Recall F-score
Periods (’。’) 0.54 0.53 0.54
Commas (’、’) 0.31 0.31 0.31
Q. marks (’？’) 0.56 0.48 0.52
All 0.43 0.43 0.43

Table 5:
Results from BiLSTMCharE2E on JapaneseQA

CharE2E a very viable model for the task under
consideration. Further, observation of output texts
confirms that BiLSTMCharE2E is able to cor-
rectly restore mid-token punctuation and capitaliza-
tion. It was the only model able to correctly restore
the middle periods in B.C. and D.C., and the
final-letter capital in PhD, to cite a few examples
observed in the first 100 test documents.

The gap in performance between the best-
performing pipeline model and BiLSTMCharE2E
was smaller for Brown than for TedTalks, which
suggests that the negative impact on performance
from reducing the volume of training data is lower
for BiLSTMCharE2E.

Based on reading of the paper and consultation
with the authors, we believe the "Distance" metric
in Sivakumar et al. (2021) to be equivalent to the
metric referred to in this paper as WER. Since the
lowest Distance reported in that paper at the testing
stage is 29.7, we conclude that all of our models
(WER 17.27-24.46%) outperform those in that pa-
per. Inspection of the sample outputs presented in
that paper compared with those from our models
supports this claim.

5.3 Other Languages

Results for BiLSTMCharE2E on Japanese and
Gujarati datasets demonstrate that this model can
handle large input vocabularies, does not depend on
extensive data cleaning, and is readily applicable
to scriptio continua languages.

Results for the OshieteQA dataset are presented
in Table 5. F-scores for punctuation marks are
comparable to those for the same model on the
TedTalks dataset, and scores of more than 0.5 for
both periods and question marks indicate that the

model is able to differentiate to a large extent be-
tween sentences and questions based on context.
The overall F-score is lower because spaces were
not among the features considered for Japanese.

Since JapaneseQA consists of texts written by
non-professional writers, there is a lot of irregular
punctuation in the dataset. Inspection of deviations
from the reference examples in the model results
reveals that in some cases the model actually ren-
ders better punctuations than the "gold standard".
A similar normalizing effect is noted in Tilk and
Alumäe, 2015. In the example in Figure 2, the
author has overused commas, and the model left
out some of the unnecessary ones. In order to have
this verified by expert and impartial judges, 5 na-
tive Japanese speakers were given the characters
stripped of punctuation and asked to insert commas
and periods as they deemed appropriate. The first
comma omitted by the model was included by only
3 out of the 5 participants, and the second was not
included by any of them. The irregularity of the
dataset may have led to the quantitative metrics
underestimating the model’s performance.

Initial results for Gujarati revealed a flaw in the
implementation of BiLSTMCharE2E. Our orig-
inal implementation split input strings at the byte
level for training and inference, but Gujarati dif-
fers from English and Japanese in that graphemes
are not equivalent to bytes because combinations
of vowel and consonant characters can form a sin-
gle grapheme. While the model was able to learn
to some extent from byte-level information, space
restoration performance was surprisingly low (F-
score 0.69), and incorrectly restored spaces some-
times caused characters intended to be displayed to-
gether with another character as a single grapheme
to be displayed separately, leading to ugly and un-
readable outputs. This issue was resolved by split-
ting strings into grapheme clusters rather than bytes.
Grapheme clusters are equivalent to bytes for most
languages, so the improved model implementation
still works as intended for those languages.

Results for GujaratiNews when BiLSTM-
CharE2E is trained on grapheme clusters are pre-
sented in Table 6. The F-score for spaces is close
to those for the English datasets, and F-scores for
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ＢＤについては、3リージョンAで、3北米も同じだから、2再生も可ってことになる。
ＤＶＤビデオの場合だと、5プレイヤーによっては、0リージョンフリーのものもある。

For BD it’s region A, the same as North America, so playback is possible.
In the case of DVD video, some players are region-free.

Figure 2: An extract from the results of BiLSTMCharE2E for the first document in the test set for JapaneseQA.
The numbers in superscript indicate how many out of a sample of 5 native Japanese speakers included each comma.

WER: 13.85%

Precision Recall F-score
Spaces (’ ’) 0.97 0.97 0.97
Periods (’.’) 0.86 0.81 0.83
Commas (’,’) 0.57 0.45 0.50
All 0.96 0.94 0.95

Table 6:
Results from BiLSTMCharE2E on GujaratiNews

periods and commas are the highest of all of the
datasets. This may be due partly to greater regular-
ity of the punctuation usage in the dataset due to its
genre, and regularity in the characters used to end
clauses and sentences in Gujarati. The scores are
nonetheless impressive given the relatively small
size of the dataset.

6 Conclusion and Future Work

We assessed a variety of pipeline and end-to-end
models for restoration of spaces, punctuation and
capitalization on unformatted English, Japanese,
and Gujarati texts. Of all of the models considered
in this study, the pipeline model NB + BERTBiL-
STM outperforms the others for restoration of all
features under consideration. Both components of
this pipeline model take into account token-level in-
formation, which suggests that there are advantages
to using this information over purely character-
based approaches. In particular, a neural network
model with a pre-trained Transformer layer was
highly performant in restoration of capitalization
and punctuation, allowing the pipeline model to
render readable outputs that could be used in the
real world with very minimal post-editing. BERT-
BiLSTM could be improved further by including
a class to restore full capitalization to a token to
improve scores for capitalization restoration.

The end-to-end character-based model BiLSTM-
CharE2E outperformed pipeline models contain-
ing a CRF-based component for punctuation and
capitalization restoration, and only slightly under-
performed those models for space restoration. Fur-

thermore, BiLSTMCharE2E was shown to be eas-
ily applicable to different languages and sets of
features, and to be able to restore features to indi-
vidual characters inside tokens.

Due to the observed advantages of using pre-
trained word embeddings for token-level models,
we are very interested in investigating the effect of
using pre-trained byte level language models such
as ByT5 (Xue et al., 2021) on both character- and
token-level models. This is left for future work.
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Abstract

This paper presents new feature functions and
an efficient training approach to discrimina-
tive keyword spotting. A 5-dimensional fea-
ture function is derived from a frame-based
phoneme classifier and a pitch detector. The
mechanism by which each feature function
finds a correspondence between the keyword-
specific variables and the speech segment is
discussed. Multiple aspects of the keyword,
that the feature functions capture, are explored.
The keyword-scoring function along with the
positive and negative data associated with a
keyword is defined. A computationally inten-
sive operation in keyword training is identi-
fied and an approach is developed to reduce
the training more tractable. The proposed ap-
proach is implemented with a set of 10 key-
words and benchmarked against a traditional
lattice-based keyword search on a real-world
dataset, and the results are discussed.

1 Introduction

Keyword spotting refers to the detection of specific
words in a speech stream. This is different from
automatic speech recognition(ASR) in the sense
that models are built exclusively for the keywords.
Keyword spotting is used in large-scale audio in-
dexing and retrieval, wake-up word for devices,
etc. Traditionally hidden Markov model(HMM)
based approaches have been used in keyword spot-
ting (Bahl et al., 1986; Rohlicek et al., 1989; Rose
and Paul, 1990; Szöke et al., 2005). Keywords are
modelled using keyword-specific HMMs and the
rest of the speech is modelled using background
models (Wilpon et al., 1990). The likelihood ra-
tio of a speech segment running through a key-
word HMM to the background speech HMM is
used to detect the keyword. Phone lattice keyword
search (Young et al., 1997) searches for the se-
quence of phonemes of the keyword in the phone
lattice generated during N-best Viterbi decoding.

The lattice search can be improved by dynamic pro-
gramming and minimum edit distance (James and
Young, 1994; Thambiratnam and Sridharan, 2005).
Optimizations like unique arc per-second pruning
and posting-list merging (Gales et al., 2017) are
employed to prune the lattice for faster keyword
search, especially in low-resource keyword spot-
ting. In a low-resource environment, the lattice
search has been further optimized using web data
for language model training (Mendels et al., 2015)
and stimulated training (Ragni et al., 2017).

A phone lattice can be rescored using different
approaches to make the path scores more relevant.
Acoustic word embeddings (Piunova et al., 2019),
lattice context information (Chen and Wu, 2017),
word-burst (Ma et al., 2014) have been used to
rescore the lattices. Future word contexts have been
exploited using recurrent neural language models
to rescore the lattices (Chen et al., 2019). Rather
than using a single feature, multiple features like
hierarchical bottleneck features (Riedhammer et al.,
2013), smoothened posteriors (Chen et al., 2014),
and multilingual bottleneck features (Menon et al.,
2018b) are also used for keyword spotting. To
increase robustness, especially in noisy and chan-
nel degraded environments, feature fusion (Mitra
et al., 2014) is used. Generally, the keyword spot-
ter works on top of ASR. Recently, ASR-free ap-
proaches (Menon et al., 2018b; Audhkhasi et al.,
2017; Menon et al., 2018a) are also proposed for
keyword spotting. This is especially useful in low-
resource settings.

Neural networks are often used in conjunction
with HMMs for keyword spotting (Rath et al., 2014;
Chen and Lee, 2013). Different neural network ar-
chitectures like deep neural networks (Chen et al.,
2014), convolutional neural networks (Sainath and
Parada, 2015), compressed time delay neural net-
works (Sun et al., 2017), recurrent networks (Li
et al., 1992; Fernández et al., 2007), long short-
term memory(lstm) (Wollmer et al., 2009) have
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been employed for keyword detection in speech.
Recently transformers have been used for keyword
spotting in speech (Berg et al., 2021). In this paper,
we follow the framework defined in (Keshet et al.,
2009), where a set of feature functions are defined
and a weight vector, corresponding to each key-
word, is trained in an online discriminative manner.
While training, a minimum margin is specified be-
tween the keywords and all the other words. In
the original setting, the authors derive most of the
feature functions directly from the spectral level
features, while we use an intermediate layer of a
frame classifier and a pitch detector, sitting atop
the spectral layer, and deriving feature functions
out of it.

In section 2, we review the discriminative key-
word spotting framework. The training algorithm,
feature functions, and positive and negative vectors
are defined. A computationally efficient approach
to reduce the individual keyword training time is
discussed in detail. In section 3, the experimen-
tal details of benchmarking the proposed approach
against a traditional lattice-based keyword search
are discussed. Section 4 concludes the paper.

2 Problem Setting

First, we define an acoustic tuple (X,P, F ) to be
a set of vectors derived from passing a speech seg-
ment through a frame classifier and a pitch detector.
X is the decoded phoneme string sequence with
softmax probability sequence P for an utterance
of length T frames. F is the sequence of pitch
values. A keyword k is associated with a set of pos-
itive acoustic tuples (X+

k , P
+
k , F

+
k ) and negative

acoustic tuples (X−
k , P

−
k , F

−
k ). The superscript +

implies the presence of the keyword in the speech
segment and − indicates its absence. Next, we
define a feature function φ that takes the form

φ : (Vk, X, P, F )→ R5 (1)

A feature function broadly takes 2 classes of ar-
guments and maps them into a feature space. Vk
is associated with the orthographic representation
of the keyword k and (X,P, F ) is associated with
a given speech segment. Vk involves the variables
like the distribution of the ideal duration of the key-
word, dictionary entries of the keyword, number
of voiced segments in the keyword, distribution of
the ideal duration of the voiced segments in the
keyword, etc. The feature function must output
similar vector values in some distance sense for the

same keyword with similar speech segments. The
scoring function for keyword k takes the form

f = wk.φ(Vk, X, P, F ) (2)

where wk is the keyword-specific weight vector.

2.1 Training
Given a set of positive and negative acoustic tu-
ples, we wish to learn the weight vector wk for the
keyword k. The algorithm operates in an online
manner. Let wki−1 be the weight at the i− 1th iter-
ation. To find wki , we first calculate (X∗

k , P
∗
k , F

∗
k )

as,

(X∗
k , P

∗
k , F

∗
k ) =

max
(Xk,Pk,Fk)

wki−1 .φ(Vk, X
−
k , P

−
k , F

−
k ) (3)

(X∗
k , P

∗
k , F

∗
k ) is the worst possible negative acous-

tic tuple for wk at the i− 1th stage. In the i-th step,
this has to be penalized. Define ∆i as,

∆i =
1

|X+||X−|
[
φ(Vk, X

+
k , P

+
k , F

+
k )

−φ(Vk, X
∗
k , P

∗
k , F

∗
k )] (4)

To find wki from wki−1 , the following optimiza-
tion problem has to be solved.

wki = min
w
||w − wki−1 ||

s.t. w.∆i ≥ 1
(5)

The solution to this optimization problem is

wki = wki−1 + δi∆i (6)

where δi = min

{
A,

1− wki−1 .∆i

||∆i||2
}

(7)

where A is a complexity-accuracy tradeoff parame-
ter. The optimization in equation (5) ensures that
the new weight vector wki−1 is close to the cur-
rent weight vector wki , yet obeying the margin
requirement. The correctness of this online update
is proved in (Crammer et al., 2006).

In the original setting (Keshet et al., 2009), the
authors use feature functions that map a tuple of an
acoustic vector, a phoneme sequence, and an align-
ment sequence to a real vector. For a keyword, each
training unit consists of the phoneme sequence cor-
responding to the keyword along with a positive
and negative acoustic vector. At any stage in train-
ing, the worst possible acoustic negative tuple is
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Figure 1: Density of softmax probability of /f/

the tuple that consists of the keyword phoneme
sequence, negative acoustic vector, and the worst
possible alignment sequence. In our framework,
the acoustic tuples and the feature functions inher-
ently capture the alignment sequence, so that we
can get away without having an explicit alignment
sequence variable.

2.2 Feature Functions

We define foreign frames of a keyword as the
frames that belong to the phonemes which do not
fall in any dictionary entry of the keyword. φ1 is
the percentage of relevant phonemes detected in
sequence in X , in the total number of phonemes in
the dictionary entry of the keyword, expressed in
decimal. φ1 captures the relevance of phonemes in
the speech segment to the keyword. φ2 is the per-
centage of the relevant frames detected in sequence,
in the total number of frames in X , expressed in
decimal.
φ3 is based on the observation that, for a frame

based phoneme classifier with a softmax output, the
density of softmax probability for true positive and
false positive phoneme detections are different for
different phonemes. φ3 is the average ratio of the
density of frame softmax probability of true posi-
tives to the false positives of the frames detected
correctly in sequence. Fig.1 and Fig.2 plots the
density of the softmax probability of true positive
and false positive detections of the phonemes /f/
and /aa/. The plot is generated from the frame la-
belled data dtrain2, which is explained in section 3.
At the peak, the density of true positives is greater
than that of false positives. If a set of consecutive
frames are detected as /f/, and if all the frames have

Figure 2: Density of softmax probability of /aa/

a softmax probability greater than 0.95, it is more
probable that all the frames are true positives. φ3
is calculated as follows.

φ3(Vk, X, P, F ) =

{
1
N

∑
i
ftp(pi;xi)
ffp(pi;xi)

50% rec.

0 else
(8)

where ftp(xi; pi) and ffp(xi; pi) are the densities
of the softmax probability pi evaluated on the true
positive and the false positive softmax probability
density curve of the phoneme xi. N is the number
of relevant frames detected in sequence. φ3 returns
0 if less than 50% phonemes in the best possible
dictionary entry of the keyword are detected in
sequence.
φ4 captures how well the total duration of the

detected voiced regions in the speech segment
matches the ideal total voiced duration of the key-
word. The ideal total voiced duration of a key-
word is the sum of all the voiced durations in
the keyword and is represented by a normal den-
sity,N (µvoiced, σ

2
voiced). Likewise, φ5 captures how

well the duration between the voiced regions at
the starting and the ending of the speech segment
matches the ideal duration between the voiced re-
gions at the boundaries. φ5 is also represented by
a normal density N (µbetween voiced, σ

2
between voiced).

φ5 in a sense captures the length of the keyword.
φ5 mandates the keywords to have atleast 2 voiced
segments. If there are no 2 voiced regions detected
in a speech segment, φ5 outputs 0.

2.3 Negative Data

Negative data corresponds to the speech segments
where a given keyword is absent. For a big dataset,
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the number of speech segments that can be selected
where a particular keyword is absent is enormous.
We employ a simple heuristic to cut short the num-
ber of such speech segments. We compute the av-
erage duration d of a keyword from the positive in-
stances of that keyword. From an arbitrary starting
frame t, all the speech segments from (t, t+ d/2)
to (t, t + 3d/2) are treated as separate negative
instances of the keyword k, and the correspond-
ing negative acoustic tuples are computed. This
makes it extremely skewed to negative instances
compared to the positive instances of a keyword.

For a keyword, the calculation of the worst possi-
ble acoustic tuple involves the dot product compu-
tation of all the negative instances with the present
weight vector w as expressed in equation (3). This
is computationally expensive as the number of neg-
ative instances is often much more than the number
of positive training instances of a keyword. To
solve this problem, we first compute the convex
hull of all the negative vectors of a keyword. Then,
take the dot product of the current weight vector
with all the extremal points in the convex hull and
assign the extremal point with the highest dot prod-
uct as the worst possible acoustic tuple for the cur-
rent weight vector.

2.4 Analysis

Consider a finite set of points P in Rd. Let C be
the convex hull constructed on the set P . Let E
be the set of extremal points of the convex hull.
E ⊂ P . Let x be a point outside C. Let · denote
the dot product.

Proposition 1 There exists atleast one point e ∈
E with the condition, x · e ≥ x · i ∀ i ∈ P −E.

Proof Let us consider R2. Let b be a point in C
such that x · b ≥ x · p. Further, there are 2 cases.

1. b ∈ E. In this case, Proposition 1 is proved.

2. b /∈ E. In this case, b is a point in a line
segment b1b2 with endpoints in E. Assume
a hyperplane, H = {z|x · z = x · p}. In R2,
H is a line. We loosely label a point c inside
H , if x · c < x · p. Now there are 4 possible
cases.

(a) The line segment b1b2 is such that x·b1 >
x · p and x · b2 > x · p. Both b1 and b2
are outside points. Proposition 1 stands
true.

(b) The line segment b1b2 intersects H . For
b1,

x · b1 = x · p+ x · (b1 − p)
x · (b1 − p) < 0 b1 is inside H

x · b1 < x · p (9)

Similarly for b2,

x · b2 = x · p+ x · (b2 − p)
x · (b2 − p) > 0 b2 is outside H

x · b2 > x · p (10)

Proposition 1 stands true.
(c) Same case as above, where b2 is insideH

and b1 outside H . Proposition 1 stands
true.

(d) Both x · b2 < x · p and x · b1 < x · p. i.e,
both b1 and b2 are inside H . If this is the
case,

x · b = x · [λb1 + (1− λ)b2] (11)

= λx · b1 + (1− λ)x · b2 (12)

< x · p (13)

which is against the initial assumption
x ·b ≥ x ·p. Hence this case is infeasible.

Note that the convex hull computation is a one-
time operation for a keyword, and is computed
in the feature space. Once the convex hull of the
negative points of a keyword, i.e, E is computed,
the equation (3) becomes

(X∗
k , P

∗
k , F

∗
k ) =

max
(Xk,Pk,Fk)

wki−1 .φ(Vk, X
−
k , P

−
k , F

−
k )

where φ(Vk, X
−
k , P

−
k , F

−
k ) ∈ E (14)

3 Experimental Details & Results

Voxforge dataset (Voxforge.org) is used in the ex-
periments. The Voxforge dataset is a real-world
non-curated dataset that perfectly captures the real-
world noise and the acoustic characteristics of dif-
ferent recording equipment. Approximately 40
hours of data(dtrain1) is forced aligned using Kaldi
(Povey et al., 2011) and a baseline multilayer per-
ceptron(MLP) frame classifier, with the architec-
ture 351x1000x1000x1000x41, is built using ICSI
Quicknet (Johnson) with perceptual linear predic-
tion(plp) coefficients as the feature input. Standard
English phonemes are used as the target. Given a
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Figure 3: ROC of discriminative keyword spotting

9 frame plp input, with each frame corresponding
to 25ms with 15ms overlap, the classifier outputs
a probability vector of size 41, each component
corresponding to a phoneme, and the phoneme
corresponding to the highest probability is treated
as the recognized phoneme. For identifying the
voiced regions, an autocorrelation-based pitch de-
tector (Huckvale) is used. A pitch range of 40-
600Hz is used and any value outside is discarded.
Pitch values are computed on a 50ms time win-
dow and boundary adjusted with the output of the
frame classifier. A pitch segment with a pitch dif-
ference between the adjacent frames within a 20Hz
threshold is treated as a voiced region.

A separate 20 hours of data dtrain2 is used to
learn the parameters in φ3, φ4 and φ5. This goes
into the keyword-specific variable Vk. Another 20
hours of speech data is run through the baseline
classifier and the pitch detector to get the dmeta.
Keyword present areas in dmeta are manually la-

Table 1: Number of extremal points on the convex hull

Keyword # Extremal Points
australia 126
existence 133
schedule 178
powerful 124

mysterious 204
hundred 172
daylight 264
fighting 151
quickly 181
stopped 152

Figure 4: ROC of lattice keyword spotting

belled at the word level, and the positive and nega-
tive training segments (X,P, F ) of each keyword
are generated. The positive and negative segments
of each keyword are converted to points in the fea-
ture space. The convex hull is computed for all
the negative data points and the weight vector is
trained as described in subsection 2.1 for all the
keywords. The value of the complexity-accuracy
tradeoff parameter A is set to 1. Ten keywords
are chosen, depending on the frequency, duration,
and presence of voiced regions in the boundaries.
Table 1 shows the number of extremal points on
the convex hull computed from a random sample
of 20000 points of negative instances of each key-
word. Although the number of extreme points of
the convex hull of a set is dependent on how the
points are distributed, from Table 1, it is clear that
atleast an order of magnitude reduction in the com-
putation of dot product is attained. The convex hull
is computed as explained in (Barber et al., 1996).

20 hours of data dtest is used for testing. The
occurrence of all the keywords is manually time
labelled and positive and negative points are gener-
ated for all keywords in the feature space. Speech
segments, for creating the negative points in the
feature space, are generated in the manner speci-
fied in subsection 2.4. The scoring function for a
speech instance against a keyword takes the form
as expressed in equation (2).

The discriminative keyword spotter is bench-
marked against a lattice-based keyword search us-
ing Kaldi. Kaldi is trained using the same dtrain
and is decoded into a lattice using dtest. Multi-
ple phoneme paths through the lattice are searched
for keywords. While searching through the lat-

183



Figure 5: Number of states vs number of all possible
paths in the lattice

tice, constraints like reducing the number of cycles
and pruning the maximum length of paths, are em-
ployed to reduce the search space. We discard the
lattice with states more than 500000. The acoustic
score in the lattice is ignored. A bigram language
model is used for decoding. The phoneme path
through the lattice is divided into chunks of the
size of the dictionary entry, and the length of the
longest subsequence with the dictionary entry of
the keyword is found. We consider a keyword to be
detected if the longest subsequence length between
a phoneme chunk in the lattice path and the dictio-
nary entry is above a certain number of phonemes.

Fig.3 and Fig.4 plots the ROC curve of the dis-
criminative keyword spotter and the lattice key-
word spotter for various keywords. The number
of phonemes detected in sequence is used as the
threshold in Fig.4. It is clear that lattice keyword
spotting is superior compared to discriminative key-
word spotting. Lattice keyword spotting operates
with a language model, while the discriminative
spotter is purely acoustic in nature. Moreover, the
number of possible paths through a lattice can be
large, whereas the discriminative keyword spotter
selects speech segments linearly in a recording for
locating the keywords. Fig.5 plots the number of
all possible paths against the number of states in the
lattice, for a small subset of testing data. The maxi-
mum number of possible states is limited to 5000.
As the number of states in the lattice increases, the
number of possible paths also increases. A lattice
decoded with a 4-gram language model constrains
the number of possible paths compared to that with
a bigram.

4 Conclusion

A set of 5 robust feature functions derived from a
frame classifier and a pitch detector, for the discrim-
inative approach to the keyword spotting problem,
is presented. The feature functions along with the
positive and negative training instances of the key-
word are defined. The mechanism by which each
feature function finds a correspondence between
the keyword-specific variables and the speech seg-
ment is discussed in detail. Multiple aspects of
the keyword, that the feature functions capture, are
explored. A computationally intensive operation
in keyword training is identified. An approach
that makes keyword training more efficient, is pre-
sented, proved, and discussed in detail. The pro-
posed approach is implemented with a set of 10
keywords with the Voxforge dataset. To bench-
mark our approach, a lattice-based keyword search
is implemented in Kaldi with the same dataset and
the results are compared. ROC curves are plotted
for each keyword separately.

The approach shows how feature functions de-
rived from multiple aspects of speech, can be com-
bined to predict the keyword. In the future, the
same framework can be used to incorporate more
features like formants, acoustic-phonetic character-
istics, phoneme-specific spectrogram features, etc
for better keyword recognition.
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Abstract

This paper proposes a method for multilin-
gual phoneme recognition in unseen, low re-
source languages. We propose a novel hier-
archical multi-task classifier built on a hybrid
convolution-transformer acoustic architecture
where articulatory attribute and phoneme clas-
sifiers are optimized jointly.

The model was evaluated on a subset of 24
languages from the Mozilla Common Voice
corpus. We found that when using regular
multi-task learning, negative transfer effects
occurred between attribute and phoneme classi-
fiers. They were reduced by the hierarchical ar-
chitecture. When evaluating zero-shot crosslin-
gual transfer on a data set with 95 languages,
our hierarchical multi-task classifier achieves
an absolute PER improvement of 2.78% com-
pared to a phoneme-only baseline.

1 Introduction

While many highly effective architectures for
speech recognition have been introduced in recent
years, most require large amounts of language-
specific training data. However, for a substantial
portion of the worlds languages, only few or no
annotated speech recordings are available for train-
ing or fine-tuning. To leverage the accuracy of
end-to-end architectures, systems intended for low-
resource ASR are often (pre-)trained on large mul-
tilingual corpora from mostly high-resource lan-
guages such as in Xu et al. (2021), who fine-tune
a multilingually pretrained wav2vec 2.0 model for
the crosslingual transfer task. They are either fine-
tuned on low resource languages as evaluated by,
e.g., Siminyu et al. (2021) or directly applied zero-
shot, as outlined by Li et al. (2021a).

Several systems have been introduced that use ar-
ticulatory attribute systems developed by linguists
to improve phoneme recognition performance. In
such systems, attributes are primarily used as an
input in the form of trainable embeddings for each

attribute individually as proposed by, e.g., Li et al.
(2021a) or for feature vectors as in, e.g., Zhu et al.
(2021), or using signature matrices as described by,
e.g, Li et al. (2020). In contrast, Lee et al. (2019)
applied multi-task learning to train separate articu-
latory feature classifiers and triphone states using
shared layers for Mandarin at the same time with a
TDNN architecture on forced alignments.

In this work, a multilingual phoneme recog-
nition architecture is introduced. It is derived
from a similar architecture applied to computer as-
sisted pronunciation training in Mandarin (Glocker,
2021). Hierarchical multi-task learning is used to
learn jointly to classify articulatory attributes and
phonemes with an additional direct connection be-
tween the attribute and the phoneme classifier.

The proposed acoustic model for phoneme recog-
nition is introduced in Section 2. The system is
then evaluated in Section 3 in the high resource and
zero-shot crosslingual settings. Afterwards, results
are discussed and the paper concluded in Section 4.

2 Crosslingual Phoneme Recognition

Section 2.1 describes the hybrid transformer-
acoustic model for encoding frame sequence. The
hierarchical multi-task classifier for articulatory at-
tributes and phonemes is introduced in Section 2.2.

2.1 Transformer Acoustic Model

A hybrid convolution and transformer encoder
model is used for acoustic sequence modeling as
shown in Figure 1. The architecture and hyperpa-
rameter choices are derived from the transformer
model introduced by Synnaeve et al. (2019). First,
the audio is resampled to 16kHz. 40 dimensional
MFCC features using 25ms frames with a stride of
10ms are extracted. The features are then passed
into two GLU-activated convolution layers to en-
code local context, with a kernel size of three and
512 and 400 channels respectively. Each convolu-
tion layer is preceded by layer normalization and
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Figure 1: Illustration of the hybrid convolutional trans-
former phoneme recognition model with the hierarchical
connections between attribute and phoneme classifiers

followed by a dropout layer for regularization. A
stride of 2 is used in the second GLU layer, increas-
ing the receptive field of the model to 5 frames
while keeping the output lengths shorter than the
length of phoneme sequences for CTC.

Sinusoidal positional encodings as proposed by
Vaswani et al. (2017) are added to the output repre-
sentations of the convolution layers. The sequence
is passed through a shallow 2-layer transformer.
In the transformer, Pre-LN transformer blocks are
used without warmup as proposed by Xiong et al.
(2020). Feedforward layers with a hidden size of
2048 and 4 attention heads are used motivated by
Vaswani et al. (2017). The dropout rate is 0.2.

2.2 Hierarchical Multi-Task Classifiers
In contrast to previous work (Lee et al., 2019), clas-
sifiers are not trained completely independently
but are connected in a hierarchical structure. Cas-
cading information between tasks has also previ-
ously been successfully applied to jointly optimiz-
ing NLP tasks at different “levels” such as POS and
dependency parsing (Crawshaw, 2020).

In the hierarchy, both the attribute and phoneme
classifiers take the normalized output of the trans-
former acoustic model as an input. In addition to
the acoustic representation, the phoneme classifier
receives a concatenation of the probability distri-
butions from each articulatory attribute classifier.
More specifically, for each time step t given a set

of attribute classifier logits At, the transformer hid-
den vector ht, and the weights and biases of the
phoneme projection layer W and b, the phoneme
logits pt are computed as follows:

vt =
(⊕

a∈At
softmax(a)

)
⊕ ht (1)

pt =W T vt + b (2)

Each classification layer is then independently
but simultaneously optimized using connectionist
temporal classification (CTC; Graves et al. (2006)).
For consistency, articulatory attribute vectors are
directly mapped to each phoneme without merging
repetitions. As a result, there is always a 1:1 cor-
respondence between attribute and feature labels
at training time. While the attribute and phoneme
classifiers form a flat hierarchy in this work, the
hierarchical structure generalizes to any directed
acyclic graph representing phonetic feature struc-
tures.

3 Evaluation

We evaluated the proposed hierarchical multi-task
transformer with two experiments.

(1) In the “Multi-Task” variant, regular multi-
task learning is used where attribute probabilities
are not used as inputs to the phoneme classifier.

(2) In the “Phonemes Only” model, only the
phoneme classifier is used and attribute information
is only applied to phoneme mapping at test time.

Batch sizes are set dynamically for efficiency
until the product of the batch and frame sequence
dimensions reaches 320,000. The Adam optimizer
(Kingma and Ba, 2015) was used for training with
β1 = 0.9 and β2 = 0.98 as in Vaswani et al. (2017).
A learning rate of 0.001 is used. The training was
stopped once the average validation set losses did
not decrease for more than 3 epochs.

The transformer acoustic model was imple-
mented in the PyTorch framework (Paszke et al.,
2019), using Torchaudio (Yang et al., 2021) for
Audio processing and feature extraction.

The data sets for training and evaluation are de-
scribed in Section 3.1. Section 3.2 presents and
analyses the results for phoneme and attribute clas-
sification for high and low resource languages.

3.1 Datasets
For training and evaluation in the high resource
setting, version 10.0 of the Mozilla Common Voice
corpus was used, which contains crowdsourced
recordings of sentences. Each sentence is tokenized
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using Stanza (Qi et al., 2020), after which punctua-
tion is removed and each token is transcribed into
phonemes using Epitran (Mortensen et al., 2018).
Finally, the transcriptions are segmented accord-
ing to the IPA segments available in the Panphon
database (Mortensen et al., 2016) for the phoneme
inventory extracted from the training data for each
language. The 24 articulatory attributes from Pan-
phon are used for creating and supervising the at-
tribute classifiers. The multilingual training set was
constructed from at most 15,000 sentences from the
training sets of 24 languages from Common Voice,
for which both a tokenization and a grapheme-to-
phoneme model is available. The original develop-
ment and test sets were used unchanged.

The first release1 of the multilingual corpus pub-
lished by Li et al. (2021b) is used for evaluat-
ing zero-shot transfer in this work as in Li et al.
(2021a). It provides 5,509 validated utterances with
phoneme transcriptions for 95 low-resources lan-
guages from five continents. Since recordings for
Czech, Dutch, Maltese, Hindi and Hungarian are
also included in the training data, they are removed
from the test data before computing the averages.

To handle different inventories and OOV
phonemes in the test languages, phonemes pre-
dicted by the model are mapped to each target
inventory using the hamming distance between at-
tribute vectors. This corresponds to the “tr2tgt”
approach introduced by Xu et al. (2021). For the
UCLA Phonetic Corpus, the included inventory
files are used for this mapping even if they include
a phoneme that doesn’t appear in a transcription.

3.2 Experiments

The overall performance on phoneme and articu-
latory attribute detection on Common Voice can
be seen in Table 1. In addition to the phoneme
error rate (PER), the attribute error rate (AER) is
computed for each attribute individually and then
averaged over all attributes. The hierarchical multi-
task model reaches lower PER and average AER
than regular multi-task learning in both the high
and low resource setting. The regular multi-task
model also performs worse than the phoneme only
baseline. This shows, that negative transfer effects
are stronger without the hierarchical connection.

Compared to the “Phonemes Only” model, the
hierarchical model performs almost identically in

1https://github.com/xinjli/
ucla-phonetic-corpus/releases/tag/v1.0

Architecture %PER %AER

Phonemes Only 48.96 –
Multi-Task 52.19 19.43
Hierarchical Multi-Task 49.11 17.99

Table 1: Average phoneme and attribute error rates
for the Common Voice subset representing the high
resource setting

Architecture %PER %AER

Phonemes Only 74.77 –
Multi-Task 75.28 34.14
Hierarchical Multi-Task 71.99 30.25

Table 2: Average phoneme and attribute error rates for
the UCLA Phonetic Corpus representing the low re-
source setting

the high-resource setting. However, as shown in
Table 2, there is an improvement to the unseen
low-resource languages from the UCLA Phonetic
Corpus. In contrast, the regular multi-task model
also yields higher PERs in this setting.

Figure 2 shows the phoneme and average at-
tribute error rates for the Common Voice test sets
of the languages used for training. The variance
of PERs between languages is high (σ2 = 135.03).
On the attribute level, the variance of the AER be-
tween languages is much less pronounced (σ2 =
15.61) and lower AER doesn’t correlate with higher
PER (r2 = 0.016). For instance, the PER is high-
est for Arabic and Vietnamese even though their
AER are among the lowest in the test set.

Since the AER was improved most consistently
across languages through the hierarchical architec-
ture, research into better modeling the connection
between articulatory attributes and phonemes could
lead to larger PER improvements in future work.

For Arabic and Urdu, a contributing factor might
be Epitran not transcribing short vowels since they
are not present in their orthography (Mortensen
et al., 2018). For Vietnamese, the higher PER is
likely due to it being the second-lowest resource
language in the training data with only 2259 val-
idated utterances and one of only two tonal lan-
guages alongside Thai.

In contrast, phoneme recognition is the most
accurate for the five romance languages including
Spanish, Italian and Catalan. They likely benefit
the most from the multilingual settings since they
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Figure 2: Phoneme Error Rates (PER) and the averages over all Attribute Error Rates (AER) on the test sets from
Common Voice for the languages used for training
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Figure 3: Phoneme Error Rates (PER) for the languages
in the UCLA Phonetic Corpus grouped into macrore-
gions accordig to Glottolog (Hammarström et al., 2022)

are closely related.
A possible explanation for the low correlation

between AER and PER is, that the frame level
probabilities tend to form single frame spikes when
trained with CTC (Graves et al., 2006). Since CTC
loss is computed for every classifier independently,
spikes for attributes of the same phoneme some-
times occur on different frames. As a result, the
phoneme classifier is likely to receive high blank
probabilities from multiple attribute classifiers.

The crosslingual transfer results are further di-
vided into macroregions in Figure 3 based on Glot-
tolog (Hammarström et al., 2022). The model
transfers best to the set of 10 languages from the
“Papunesia” region, despite there being no lan-

guages from this region in the training set. In
contrast, the model generalizes poorly to the four
American languages. Some outliers with partic-
ularly high PER might also be caused by the
noisy conditions under which some utterances were
recorded (Li et al., 2021b).

4 Conclusion

A novel hierarchical multi-task architecture is
presented and evaluated together with a hy-
brid convolution-transformer acoustic model for
phoneme classification. In contrast to regular multi-
task learning, the phoneme classifier receives at-
tribute probabilities as additional inputs.

It tackles the crosslingual transfer task for
phoneme recognition in low resource languages.
For zero-shot classification in such languages, only
their phoneme inventory is required.

Negative transfer effects observed in regular
multi-task learning were reduced. When evalu-
ated on the UCLA Phonetic Corpus, the proposed
system yielded an absolute phoneme error rate re-
duction of 2.78% across 95 unseen languages com-
pared to a phoneme-only baseline.

Future work may investigate the low correlation
between AER and PER, and further analyse the
cause of the high variance of PER between lan-
guages. In particular, we plan to investigate and im-
prove the mapping between the shared phoneme in-
ventory and language specific inventories to tackle
these challenges. Furthermore, tones could be
moved to their own layer in the hierarchy to better
reflect their suprasegmental nature.
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Abstract

We propose a flexible concatenative text-to-
speech system to synthesize hypothesized pro-
nunciations of the reconstructed Proto-Indo-
European language. To accomplish this, we
synthesize speech examples in 100 extant lan-
guages and extract individual phones. Using
this large database of phonetic sounds, we con-
catenate individual phonemes together to esti-
mate pronunciations of Proto-Indo-European.
Where available, we prioritize consecutive
phones from the same source to help increase
naturalness and intelligibility of the synthe-
sized speech. Since the language’s precise pro-
nunciation is debated, we provide an interface
to select the specific phonetic symbol(s) used
for each of the language’s phonemes and diph-
thongs. We provide this novel interactive tool
to enable researchers and students to aurally
explore the different and competing phonolog-
ical hypotheses debated in the literature.

1 Introduction

Proto-Indo-European (PIE) is the reconstructed an-
cestor of all Indo-European languages. PIE is hy-
pothesized to have been spoken as a single lan-
guage sometime during the late Neolithic through
the Early Bronze Age (between 4500 to 2500 BCE).
According to the Kurgan hypothesis (Gimbutas,
1956), the language likely originated in the Pontic-
Caspian steepe of eastern Europe. Over the follow-
ing centuries, waves of Indo-European (IE) peo-
ples migrated across much of the Eurasian conti-
nent. As they dispersed, their language split and
underwent shifts in pronunciation, changes in mor-
phology, and acquisitions of new vocabulary. This
process continued for centuries, resulting in 448 ex-
tant daughter languages across eight subfamilies.1

1https://www.ethnologue.com/subgroups/
indo-european

There is no historical record of PIE. Like
other proto languages, the language was meticu-
lously reconstructed using the comparative method
(Hoenigswald, 1963). Although Indo-European
(IE) linguists have largely converged on the phone-
mic inventory of PIE, there remains ongoing de-
bate about the interpretation of these phonemes.
Unlike living languages, there does not exist an
agreed upon mapping of phonemes in PIE to spe-
cific phonetic symbols in the International Phonetic
Alphabet (IPA). For this reason, there have not been
previous attempts to synthesize PIE speech.

In this work we present a text-to-speech sys-
tem that attempts to estimate PIE speech given
a specific mapping of phonemes to IPA pronun-
ciations. We sample phonetic sounds from 100
modern languages to build a concatenative speech
synthesizer which is able to pronounce text in the
reconstructed Proto-Indo-European language. We
provide a flexible approach that allows listeners
to tune the phonology to enable aural realizations
of different hypothetical pronunciations. To our
knowledge, this is the first attempt at speech syn-
thesis for a prehistoric reconstructed language.

2 Proto-Indo-European Language

The phonology of PIE has been reconstructed based
on the phonology of extant IE languages. This
scholarship initially relied upon modern and well
attested historical languages, such as Latin, Ancient
Greek, and Vedic Sanskrit. However, the surprise
discoveries of the Hittite and Tocharian languages
in the early 20th Century provided new schol-
arly evidence that led to new understandings and
sparked new academic debates (Jasanoff, 2017).

Hundreds of words have been reconstructed
in PIE and scholars have largely converged on
the morphology, although areas of debate still re-
main. In 1868, the linguist August Schleicher com-
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Labial Coronal Dorsal Laryngeal
palatal plain labial

Nasals *m *n

Stops
voiceless *p *t *ḱ *k *kw

voiced ( *b ) *d *ǵ *g *gw

aspirated *bh *dh *ǵh *gh *gwh

Fricatives *s *h1, *h2, *h3
Liquids *r, *l
Semivowels *y *w

Table 1: Common notation used for Proto-Indo-European phonology (Kapović, 2017). The preceding asterisk (*)
denotes the phoneme is reconstructed rather than attested. The symbol *b is disputed and shown in parenthesis.
The superscripts h and w stands for aspiration and labialization, respectively. The symbols *h1, *h2, *h3 serve as
phonemes for the three unknown laryngeal sounds. The phoneme *y represents the palatial semivowel (IPA /j/).

posed the short story “The Sheep and the Horses”
(“H2ówis h1éḱwōs-kwe”) in his version of recon-
structed PIE (Adams, 1997). Over the decades,
linguistics have published revisions to this story,
accounting for new consensuses in the field or to
advance their own linguistic hypotheses. In the
absence of any text in PIE, this story has come to
serve as the standard mechanism to demonstrate
and compare different reconstructions. More re-
cently several Indo-Europeanists linguists collab-
orated to each reconstruct their versions of an-
other short story entitled “The King and the god”
(“H3r´̄eḱs deywós-kwe”) (Adams, 1997).

2.1 PIE Phonology

Although linguistics have generally converged on
the phonetic inventory of PIE, there remains signif-
icant debate regarding the pronunciation of these
phonemes (Kapović, 2017). The pronunciations of
certain sounds in PIE are not known, and may never
been known. The majority of phonetic controversy
concerns two issues. The first debate pertains to the
pronunciation of the series of plosive stops. The
second debate pertains to the belief that PIE had
a set of phonemes that are not attested to in any
extant daughter language.

2.1.1 Glottalic Theory
Glottalic theory proposes that PIE had ejective
stops (*p’, *t’, *k’) instead of the traditionally re-
constructed plain voiced stops (*b, *d, *g). Once
popular, this theory is no longer widely accepted
by historical linguists (Barrack, 2002). The recon-
struction of these phonemes is made more difficult
by the centum-satem language split that divides
northern and southern IE languages. This divide
is named for the pronunciation of the word “hun-

dred” in early PIE languages (Greek vs. Sanskrit).
In centum languages, the plain and palatovelears
merged together, while in the satem languages, the
plain and labiovelars merged together.

2.1.2 Laryngeal Theory
The other controversy surrounding PIE phonology
pertains to the number and pronunciation of vowels
in PIE. Laryngeal theory proposes that there existed
at least three sounds which do not survive in any ex-
tant daughter languages. Once reconstructed with
five vowels, PIE is now commonly reconstructed
with only two vowels, [e] and [o], that were colored
by three hypothesized laryngeal sounds: *h1, *h2,
and *h3. Today most linguists accept the existence
of the laryngeals but continue to dispute their ex-
act phonetic realization (Keiler, 2015). As such,
there exist numerous competing interpretations and
revisions in the scholarly literature.

2.2 Open Questions
Given these significant open questions regarding
its pronunciation, there have not been any previ-
ous attempts at automatic speech synthesis of PIE.
Most modern synthesis approaches that seek to pro-
duce naturalistic speech require extensive knowl-
edge about the pronunciation rules of the language
or large datasets of spoken examples. Therefore,
speech synthesis using cutting edge technologies is
not readily possible for reconstructed languages.

3 Speech Synthesis

Speech synthesis is the task of converting writ-
ten text into an audio waveform that represents a
machine generated realization of the spoken text.
These systems are also known as Text-to-Speech
(TTS) tools. The majority of approaches for speech
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synthesis utilize large corpora of text and audio ex-
amples. Accordingly, the majority of research in
speech synthesis has focused on widely-spoken
languages, particularly those with global influence.

Despite calls for more speech recognition tools
for under-resourced languages (Besacier et al.,
2014), there has been relatively little work in TTS
for most of the world’s languages. Nevertheless,
speech synthesizers have been built for historical
languages, such as Latin and Greek; constructed
languages, such as Esperanto and Klingon (Jokisch
and Eichner, 2000); and some endangered Euro-
pean languages like Basque or Irish (Chasaide et al.,
2017). In an encouraging direction, the authors of
a recent study collected and analyzed corpora, doc-
umented phonology, and built TTS systems for 12
different African languages (Ogayo et al., 2022).

Researchers have been attempting speech syn-
thesis since the 1950’s. Here we briefly review the
principle categories of speech synthesis models.

3.1 Articulation Synthesis

Articulation Synthesis is a physical model which
emulates various aspects of human pronunciation
to synthesize speech. They provide tuneable pa-
rameters for the various aspects of human pronun-
ciations (e.g., tongue, pharynx, vocal chords, etc.).
While articulation synthesizers are able to produce
high-quality speech, the large number of param-
eters make these systems computationally expen-
sive. These constraints limit their practicality in
real-time deployment. Neil Thapen’s interactive
Pink Trombone2 is a recent interactive example of
articulation synthesis.

3.2 Formant Synthesis

Formant Synthesis generates speech by sending
a source signal through a series of filters model-
ing different formants of the desired speech sound.
Speech created with formant synthesis often sounds
less naturalistic than other approaches, but it is fast
to produce and is generally intelligible (Lukose
and Upadhya, 2017). In this work, we make use of
the popular formant synthesizer eSpeak-ng3 to
generate various phonetic sounds across different
languages spoken by a single artificial speaker.

2https://imaginary.github.io/
pink-trombone/

3https://github.com/espeak-ng/
espeak-ng

3.3 Concatenative Speech Synthesis

Concatenative Speech Synthesis is another tradi-
tional approach that relies upon large databases of
sounds vocalized by the same speaker. These sys-
tems concatenate different prerecorded waveforms
together in order to vocalize the desired text. De-
pending on the system, the individual constituent
waveforms may be phones or phonemes, syllables,
or entire words. Speech produced with concate-
native synthesis is often intelligible but can poten-
tially sound rather unnatural. This occurs because
of the limited syntactic and semantic context as
different sounds are spliced together at a very low
structural level (Khan and Chitode, 2016).

3.4 Machine Learning Approaches

In recent years, these aforementioned signal pro-
cessing methods have largely been superseded by
new approaches using machine learning. Because
these new approaches require large corpora of spo-
ken audio examples, they are not suited for our
attempt to estimate pronunciation of a non-attested
reconstructed language. These approaches are be-
yond the scope of this work, but we briefly review
the important recent developments here.

Techniques using statistical parametric estima-
tion, such as hidden Markov models, consistently
achieved robust and intelligible speech synthesis
(Yamagishi et al., 2009). However, the recent abun-
dance of big data and advances in deep learning
algorithms have led to new speech synthesis tech-
niques that dominant use in modern day TTS appli-
cations and research directions (see review (Ning
et al., 2019)).

One such example is Wavenet, an autoregressive
generative model for end-to-end speech synthesis
(Oord et al., 2016) which models the waveform
directly, without requiring a hybrid model or other
processes to assemble the synthesized speech. An-
other such production-quality model, Deep Voice,
synthesizes speech entirely from deep neural net-
works (Arık et al., 2017). Ongoing research in
speech synthesis continues in many areas, such as
emotional, dialogic, and spontaneous speech pro-
duction (Delić et al., 2019).

3.5 Our Approach

Our approach requires the use of sets of phonetic
sounds that do not occur together in any single lan-
guage. And we require these sounds to originate
from the same speaker. Unfortunately, there has
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been very little development into multi-language
speech synthesis (Malcangi and Grew, 2010). None
of the aforementioned modeling techniques are par-
ticularly well suited for this task alone. For simi-
lar reasons, concatenative synthesis has previously
been used to study some under-resourced languages
(Van Niekerk and Barnard, 2009).

In this work we use formant synthesis to produce
a library of spoken sounds in various languages.
We then use concatenative synthesis to build speech
from this corpus of sampled sounds.

4 Database of Phones

We present an approach that attempts to estimate
the speech in PIE by concatenating different pho-
netic sounds extracted from various languages. To
accomplish this task, we require phonemes across
many different languages spoken by the same
speaker. This is necessary in order to maintain
a continuity of acoustic characteristics across the
concatenation points. To build this dataset, we gen-
erate word lists in multiple languages, synthesize
speech utterances for each word, splice the audio
by individual phoneme, and save these phonetic
sounds to a database.

4.1 Sampling Languages

To generate multi-language speech using the same
speaker, we use the open-source eSpeak-ng tool,
a popular TTS engine. eSpeak-ng currently sup-
ports 127 languages and accents.

For each language available in eSpeak-ng,
users have carefully crafted lists of phonemes, pro-
nunciation rules, and example words. These spe-
cific pronunciation rules allow the synthesizer to
generate more realistic speech by considering the
pronunciation context of phonemes, syllables, and
words. These rules are developed with feedback
from native speakers, and subsequently the lan-
guages available in eSpeak-ng reflect only those
languages with a very large number of speakers.

Of the 127 available languages, we exclude con-
structed languages such as Esperanto or Klingon
but we include the IE languages of Ancient Greek
and Latin. For English, we retained only standard
American and British pronunciation, and we ex-
clude other less common dialects. For Spanish and
Portuguese, we include both European and Latin
American pronunciation. Although the majority of
remaining languages are IE languages (56%), we
also include non-IE languages in order to increase

our phonetic inventory. Among those, we included
three dialects of Chinese: Cantonese, Hakka and
Mandarin. Altogether, we select 100 unique lan-
guages and five additional dialects for a total of
105 speakers from whom we synthesize speech.

4.2 Swadesh Lists
Swadesh lists were devised by linguist Morris
Swadesh as a tool when measuring relationships
between languages using glottochronology. A
Swadesh list contains 207 words in a particular
language (Swadesh, 1952). Given their long use
in comparative linguistics, there exist complete or
partial lists for many of the world’s languages. We
collect these lists for our 100 selected languages
from Wiktionary.4

Some of these lists contain multiple synonyms or
variants for each word. We exclude stand-alone suf-
fices, but otherwise accept all complete words. Our
goal is not to compare phonology but to generate
a sampling of many possible phonemic pronunci-
ations in the language. Therefore the number of
words synthesized varies between languages.

4.3 Generating Phonemes
Next we synthesized each of these words using
Praat.5 Praat is popular tool for speech analysis in
phonetics that also provides speech synthesis us-
ing eSpeak-ng. When generating speech, Praat
labels and segments each of the phonemes used
to create the synthesized utterance, using the Kir-
shenbaum phonetic encoding notation for IPA. This
provides very specific IPA notation for each indi-
vidual phoneme. These include various articulation
diacritics, co-articulations, and diphthongs.

Praat supports a scripting language, which we
use to automate the following tasks. For each lan-
guage we generate a speech synthesizer. We use
the default speaker voice “Female 1” and a speech
rate of 150 words per minute. For each word in the
language word list, we automatically generate the
synthesized utterance. We iterate across the wave-
form to split and save each excerpt representing a
single phoneme. We save these phonetic sounds
as a single channel 16k Hz wav file. We snip all
audio at zero-crossings in the waveform to prevent
sonic artifacts when concatenating sounds together.
We henceforth refer to these excerpts as phones,
indicating that they have been extracted from the

4https://en.wiktionary.org/wiki/
Appendix:Swadesh_lists

5https://www.praat.org
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phonemic context of their source languages. Later,
we will use sets of these phones to approximate
phonemes in PIE. In a database, we log the source
for each phone, and we make note of its context by
logging the phones that precede and follow it.

4.4 Phonetic Inventory

In total, we collected 124,252 audio samples cover-
ing 339 uniquely labeled phonetic sounds. This set
includes many short and long vowels, diphthongs,
and consonantal articulations. Because the gener-
ated phones are shaped by the phonemic context
within the source word and the specific pronunci-
ation rules of their language, the duration of the
excerpts differ even among sounds with the same
precise phonetic IPA annotation.

Some of the sounds hypothesized to exist in
PIE no longer occur in any IE daughter languages.
While they do survive in some of the world’s extant
languages, they are quite rare. One such example
is the voiced uvular plosive /å/ (Prescott, 2018)
which does not occur in the languages available.

Among our phonetic sounds extracted from these
100 widely spoken languages, we find examples
of aspiration (e.g., /gh/) and palatalization (e.g.,
/gj/) but not examples of labialization (e.g., /gw/).
Instead we will need to approximate a few hypothe-
sized sounds (e.g., /kw/, /gw/, and /gwh/) using pairs
of phones. For example, we substitute the sequence
of two consecutive phones /gw/ for /gw/. In lan-
guages such as Welsh, this sound occurs frequently,
descended from this origin in PIE.

5 Concatenative Synthesizer

In this section we outline our concatenative speech
synthesizer and describe our user interface.

5.1 Text Processing

In order to prepare the user-provided text for pho-
netic matching against our database of phones, we
must perform a number of text manipulation steps.
First, we normalize whitespace and convert the
text to lowercase. Next, we split the text into indi-
vidual sentences and phrases. We then split these
phrases further into individual words. Lastly, we
remap alternate orthography to a common notation.
For example, the graphemes *ĝ and *“g are both
remapped to *ǵ. Finally, we tokenize each word
into phonemes in PIE, greedily grouping characters
together to match the phonological notation given
in Table 1.

5.2 Mapping Phonemes

In this step, we map the different PIE phonemes
to specific pronunciations in IPA. Because there is
no established pronunciation for PIE, our goal is to
provide a flexible tool to realize different hypothet-
ical pronunciations. To accomplish this, we read a
JSON file containing a mapping of PIE phonemes
to phonetic sounds. This mapping can be specified
by the user at run-time to guide the desired pronun-
ciation of the synthesized speech. The user is able
to assign an IPA symbol to each consonant, vowel,
and vowel-semivowel diphthong (e.g., *ew, *oy).

We also provide the user control over the pro-
nunciation rules for the vowels following each of
the unknown laryngeals *h1, *h2, *h3. The po-
tential “coloring” of the vowels following these
sounds is an important part of hypotheses subscrib-
ing to Laryngeal Theory. Evidenced by pronuncia-
tions across its descendants, the presence of *h2 is
thought to color the vowel *e to *a while *h3 colors
*e to *o. Additionally, when the laryngeal occurs
after the vowel, it likely lengthens the vowel.

5.3 Matching Phones

For each PIE phoneme in a word, we search our
database for an example that represents the target
sound. Of those found, we then examine the phone
that precedes and that follows our target phone. We
first attempt to retrieve a tri-gram of consecutive
phones taken from a single source word. When
unavailable, we next prioritize retrieving a bi-gram
of phones. Finally, when such a pair is unavail-
able, we resort to a single phone. Our approach
prioritizes finding consecutive phones from a sin-
gle source word in order to attempt a more natural
pronunciation. This is especially beneficial in the
cases of short syllables or voiceless consonants
whose pronunciation is shaped by adjacent vowels.

In this task, we consider silence as a possible
target sound, which allows us to explicitly find
sounds that start or end a syllable when present in
the data. We prioritize matching these phones at
the beginning and end of syllables to help shape
a more natural pronunciation. In particular, this
process helps reflect the natural attack and release
that occurs at the beginning and end of words.

5.4 Audio Manipulation

Next, we manipulate the audio snippets that corre-
spond to accented vowels. We provide three pos-
sibilities for handling the accent. In the first, we
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ignore the accent altogether and use the unaltered
phone. In the second option, we provide a stress
accent. To simulate a stressed pronunciation, we
increase the amplitude of the waveform contain-
ing the vowel by +3 dB. In the third option, we
apply a pitch accent. To simulate a pitch accent,
we raise the frequencies of the waveform by one-
tenth of an octave. These default threshold values
were selected to sound reasonable but can readily
be tuned.

Once matching audio files have been identified
for each PIE phoneme in the input, we concatenate
these phones together. We add pauses of silence
between syllables, words, and sentences. To help
make the speech sound slightly more natural, we
randomize the amount of silence added, scaled by
the type of the pause. As a final step, we export a
single channel 16 kHz audio file that can be saved
to disk or displayed on an interactive web-page.

5.5 User Interface
We provide a graphical interface to demonstrate our
concatenative speech synthesis tool, built in Python
using the data science interface Streamlit.io.6 This
interface, shown in Figure 1, allows a user to select
a particular mapping from each PIE phoneme to a
specific IPA pronunciation. For each phoneme, we
provide various possibilities hypothesized in the
literature (Swiggers, 1989; Beekes, 2011; Meier-
Brügger, 2013; Kapović, 2017; Byrd, 2018). How-
ever, some of these options are limited by what is
available in our dataset of phonetic sounds.

After selecting the phonology, the user can enter
a PIE word or phrase in the textbox. After the
user clicks the “Speak” button, the app syntheses
the text to speech using the process outlined in
Section 5. This process is quick but may take a few
seconds for longer texts. The interface then adds an
audio player widget, allowing the user to listen to
the speech or save the file to disk. Below the audio
player, the interface prints the IPA transcription that
was used to produce the speech. The user also is
given an option to display a spectrogram generated
from the waveform of the speech utterance.

Each time the user clicks the the “Speak” button,
the app will generate a new utterance. Because we
randomly select from the multiple audio examples
available for each IPA symbol, each generated ut-
terance will have a slightly different pronunciation,
even when resynthesizing the same word.

6https://streamlit.io/

6 Discussion

Over the last two centuries of studies, linguists
have meticulously reconstructed the Proto-Indo-
European language. Since we may never know
exactly what PIE sounded like, we can only es-
timate its pronunciation. Confounding this issue,
there are multiple and competing hypotheses in the
literature debating the language’s pronunciation.

The quality of synthesized speech is often evalu-
ated using human subjects and Mean Opinion Score
tests (Streijl et al., 2016). Such an evaluation ap-
proach is not feasible for a reconstructed language
which lacks consensus in its phonological interpre-
tation. Nor can we use objective tests to compare
the synthesized speech to spoken examples, since
no such recordings exist. For these reasons, we
do not attempt empirical evaluation of the qual-
ity of the naturalness of our speech. Instead we
present this flexible and interactive tool as a way to
estimate hypothetical pronunciations of PIE.

6.1 Limitations

Our system is a concatenative speech synthesizer
using speech sounds generated by formant synthe-
sis. Given the limitations of these older technical
approaches, our synthesized speech will not sound
naturalistic. Although our generated speech may
sound mechanical and emotionless, it is highly
intelligible. In this work, our goal is not natu-
ralistic speech but to provide a means to realize
hypothetical speech using custom pronunciations
specified by the user. Our phonetic concatenative
approach yields this flexibility whereas other mod-
els, whether they be articulation synthesizers or
cutting-edge deep-learning approaches, cannot.

In our process, we naı̈vely decontextualize
phonemes from their use in their source languages
and reappropriate them as individual phonetic
sounds towards our goal of approximating speech
in PIE. Because we are divorcing individual pho-
netic sounds from their pronunciation context, we
are ignoring the subtle differences in the pronuncia-
tion of the same IPA symbol in different languages.
For this reason, the timing or transition of some
generated sequences of phones occasionally do not
flow naturally together, such as an undue pause be-
tween sounds. If a pronunciation is not satisfactory,
the user can readily generate another rendering.

We do not make attempts to control for other
high-level aspects of the pronunciation, such as
emotion or prosody. Any attempt to define rules
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Figure 1: Screenshot of the user interface.
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to control prosody in PIE would largely be based
on conjuncture. We caution that attempts to
make more our synthesizer sound more naturalistic
would introduce even more bias, such as favoring
the phonology of one language over another.

Although we sample from a large set of the
world’s popularly spoken languages, we are still
missing several of phonetic sounds favored in some
hypotheses of PIE phonology. One such sound, the
voiced uvular plosive consonant represented in IPA
as /å/, is quite rare and occurs in only 2% of the
world’s languages.7 Furthermore, articulation vari-
ants, such as /åw/, /åh/, and /åwh/ are even more
rare. We also lack examples of the labialized voice-
less velar plosive /kw/. To compensate for these
sounds we instead needed to substitute consecutive
phonetic pairs from the same source utterance.

6.2 Future Work

To increase our phonetic inventory, we will con-
sider larger words lists. This will allow us to en-
counter more naturally occurring sequences of two
and three consecutive phones. However, increasing
our inventory will also increase the disk space re-
quired to store the individual audio excerpts. There-
fore, we will strategically sample from this data set
to reduce excessive duplicates. Specifically, we
will consider the phones that precede and follow
as well as the length of a phone when deciding
whether to retain or prune a phone from our dataset.
In this way, we can retain a diversity of pronuncia-
tions and contexts, while eliminating those that are
essentially duplicates.

As another strategy to improve our system, we
will explore di-phone concatenative synthesis. A
di-phone-based approach prioritizes concatenating
sounds that cover the transition between individual
phones. This typically consists of units sounding
from the middle of a phone to the middle of the
next phone. For those transitions not available in
our dataset, we will substitute a single phone.

To improve our system’s ability to realize all
possible hypotheses of PIE phonology, we need to
create examples of those few sounds we lack in our
current approach. To do so, we intend to design
and compile a espeak-ng speaker that uses the
phonology we currently lack, such as the sound /å/.

Although our current approach provides a few
naı̈ve options for pronunciation of PIE’s accent,
more work remains to improve this feature. We

7https://phoible.org/

will consult with Indo-European linguistics to de-
termine realistic parameters to more faithfully repli-
cate the pitch and stress accents. We intend to add
support for a rising accent, another hypothetical
possibility for PIE’s treatment of accent.

6.3 Contributions and Novelty

We describe a novel approach for a concatenative
TTS synthesizer for the Proto-Indo-European lan-
guage. We combine formant and concatenative syn-
thesis to simulate a phonology of sounds that are
not present together in any single language. When
generating speech, we search among the multiple
stored examples for each phone and consider the
immediate phonetic context.

We present this unique and novel tool with
the hopes of educating users about the ancestor
language of 46% of the world’s speakers. The
approach presented here can be adapted by re-
searchers to explore different hypothetical pronun-
ciations of other reconstructed or extinct languages.
For example, we envision extensions to this work
to provide learners a way to aurally explore the
effects of different sound laws, such as Grimm’s
law (Germanic), Burgmann’s law (Indo-Iranian),
or Winter’s law (Balto-Slavic).

7 Conclusion

We propose a novel text-to-speech system to realize
various hypothetical pronunciations of the Proto-
Indo-European language. We synthesize speech
waveforms from word lists using 100 different
languages to extract a large library of individual
phonetic sounds. Using this inventory, we build
a concatenative speech synthesizer that combines
phones in an attempt to recreate spoken speech
in PIE. Since the precise pronunciation of many
phonemes in PIE is uncertain, our system provides
a user interface that permits users to select a spe-
cific IPA realization for each PIE phoneme and
diphthong. Where available in the data, we priori-
tize extracting consecutive phones from the same
original source utterance in order to provide conti-
nuity of the waveform and the pronunciation. We
randomly select from the matching phones to pro-
vide a slightly different pronunciation each time
a text is synthesized. We add small randomized
pauses between syllables, words, and sentences
to better emulate naturalistic speaking rates. We
provide an interactive demonstration of our tool at
https://soundbendor.org/projects/PIE.
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Speech technology progress based on new machine
learning paradigm. Computational intelligence and
neuroscience.

Marija Gimbutas. 1956. The prehistory of eastern Eu-
rope. 20. Harvard University.

Henry M Hoenigswald. 1963. On the history of the
comparative method. Anthropological linguistics,
pages 1–11.

Jay Jasanoff. 2017. The impact of hittite and tocharian:
Rethinking indo-european in the 20th century and
beyond. Handbook of Comparative and Historical
Indo-European Linguistics, pages 220–238.

Oliver Jokisch and Matthias Eichner. 2000. Synthe-
sizing and evaluating an artificial language: Klin-
gon. In Proc. 6th International Conference on Spo-
ken Language Processing (ICSLP 2000), volume 1,
pages 729–732.
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Abstract

Negative list (NL) detection, commonly re-
ferred as open-set multi-target speaker detec-
tion, attempts to match a test utterance with
any one of a set of known utterances enrolled
in the negative list. A number of normaliza-
tion techniques have been developed for simi-
larity score calibration in order to increase the
detection accuracy. While these normalization
methods apply to both single-target verifica-
tion and multi-target detection, in this work we
propose NL-Norm, a novel normalization tech-
nique that is designed specifically for multi-
target detection by considering scores between
all enrolled NL utterances and the normal-
ization cohort as a single distribution. Fur-
thermore, we propose using Locality Sensi-
tive Hashing (LSH) to efficiently find a small
subset of utterances from enrolled NL utter-
ances and the normalization cohort that are
most similar to the test utterance, so that the
number of similarity score computations can
be significantly reduced. The combination
of these novel techniques is evaluated on the
MCE 2018 datasets. Applying LSH and NL-
Norm, our approach demonstrated significant
improvements in both speed and accuracy over
using PLDA only in the backend, resulting in
88% reduction in detection time while decreas-
ing the equal-error rate (EER) from 6.49% to
5.48% for MCE2018 dataset.

1 Introduction
Much progress has been made in speaker recogni-
tion, as demonstrated by continuously improving
results in US National Institute of Standards and
Technology (NIST) Speaker Recognition Evalua-
tion series (Greenberg et al., 2020; Sadjadi et al.,
2020). Meanwhile, in real world applications such
as call center services, Negative List (NL) detec-
tion is often a crucial component of fraud detection
based on voice biometrics. In NL detection, a call
is flagged for investigation if an utterance is deter-
mined to be spoken by one of the known fraudulent

speakers that are enrolled in the NL, without need-
ing to identify which specific NL speaker the caller
is matched with.

NL detection is often referred as open-set multi-
target speaker detection. While most speaker recog-
nition studies focus on the single-target problem,
in recent years there have been efforts to develop
methods used for multi-target speaker recognition
(Singer and Reynolds, 2004; Zigel and Wasserblat,
2006; Malegaonkar and Ariyaeeinia, 2011; Gunson
et al., 2015) For example, MCE 2018 (Shon et al.,
2019) is a challenge designed specifically to pro-
mote methods for multi-target cohort detection and
multi-target identification: the former, also known
as Top-S detction, is aimed to only detect whether
the input speech is spoken by a member of the NL
cohort; the latter, referred as Top-1 detection, not
only detects membership in the NL cohort but fur-
ther identifies the specific speaker within the NL.
In this paper we focus on the Top-S detection only,
and use the call center industry term Negative List
detection to distinguish it from Top-1 detection or
open-set speaker identification.

The techniques used by NL detection are mostly
common with that of single-target speaker recog-
nition and are depicted in Figure 1. During the
training phase (Figure 1(a)), a front-end Gaussian
Mixture Model with Universal Background Model
(GMM/UBM) (Reynolds et al., 2000; Dehak et al.,
2011)) or a Deep Neural Network (DNN) model

Figure 1: Steps in speaker identification
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(Snyder et al., 2018) is trained to extract the speaker
embedding i-vector or x-vector, respectively. (For
brevity, Figure 1 only shows x-vector.) Subse-
quently, a back-end model such as Probabilistic
Linear Discriminant Analysis (PLDA) is trained
to produce a matching score between a pair of
input i-vectors or x-vectors representing the log-
likelihood ratio of the two vectors belonging to the
same speaker.

Next, during the speaker enrollment phase (Fig-
ure 1(b)), i-vectors or x-vectors are extracted
from a known speaker’s utterances and stored in
the database as voice biometric signature of that
speaker. Finally, for speaker recognition (Figure
1(c)), the i-vector or x-vector extracted from an
out-of-sample test utterance is paired with the en-
rolled i-vector or x-vector of a known speaker for
the PLDA model to compute the matching score
in order to determine whether the test utterance
matches the enrolled speaker (Prince and Elder,
2007). Score normalization (Fortuna et al., 2004,
2005; Zigel and Wasserblat, 2006; Matějka et al.,
2017) is typically performed on the PLDA output
before it is compared with a pre-determined thresh-
old for the match/no-match decision.

Since single-target and multi-target speaker
recognitions share the same techniques described
above, a multi-target speaker recognition problem
can be effectively treated as multiple single-target
recognitions. However, for call center services,
there are often thousands of fraudulent speakers
in the NL, which poses some unique challenges:
with the increase in the NL size, the detection error
as measured by equal error rate (EER ) becomes
higher (Shon et al., 2019), and the computing cost
in the form of detection latency for each test grows
as well. These challenges impede an effective real-
time NL detection implementation. In this work,
we propose enhancements to back-end processing
for multi-target applications with the twin objec-
tives of lowering EER and achieving a faster time
for NL detection in the face of an increasing num-
ber of speakers in the NL list.

Our contributions are:

• A normalization technique (NL-Norm) to
calibrate consistent scores for NL detec-
tion. We describe a normalization technique
that considers similarity scores between the
normalization cohort and all enrolled NL
speakers as a single distribution; this helps
to better calibrate test scores and select a con-

sistent threshold for NL detection;

• Reduction of the computation cost at infer-
ence time. Locality Senstive Hashing (LSH
(Indyk and Motwani, 1998)) is used to find a
subset of NL speakers and a subset of the nor-
malization cohort that are most similar to the
test utterance, so that the similarity scores are
evaluated between the test utterance and these
two subsets only, which reduces the compu-
tation cost at inference time. The advantage
of LSH is further amplified when different
adaptive lengths for Z-Norm and T-Norm are
allowed within AS-Norm.

2 Preliminaries
In existing literature, the PLDA model is often
combined with score normalization to create an
effective backend processing of a speaker recogni-
tion system (Fortuna et al., 2004, 2005; Zigel and
Wasserblat, 2006; Matějka et al., 2017). Once the
PLDA score, s(e, t), between a test utterance t and
an NL-enrolled utterance e is generated, various
normalization techniques can be applied for score
calibration in order to derive a consistent matching
threshold. For NL detection, t is determined as an
NL match if the highest normalized score between
t and all NL utterances is above the threshold; this
results in a Top-S set from which the EER metric is
drawn to measure the accuracy of the model (Shon
et al., 2019; Singer and Reynolds, 2004).

2.1 Score Normalization
All score normalizations require a normalization
cohort consisting utterances from speakers that are
neither in NL nor part of the test cohorts. We de-
note NL-enrolled utterance set and the normaliza-
tion cohort as E and C, respectively:

E = {ei | 1 ≤ i ≤ E}
C = {ci | 1 ≤ i ≤ N}

(1)

where E and N are the size of NL and the normal-
ization cohort, respectively.

Z-Norm (Li and Porter, 1988) utilizes the scores
between an NL speaker utterance e and every utter-
ance ci in the normalization cohort:

Se = {s(e, ci) | 1 ≤ i ≤ N} (2)

resulting in the normalized score:

s(e, t)z−norm =
s(e, t)− µ(Se)

σ(Se)
(3)
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where µ(Se) and σ(Se) are the mean and standard
deviation of Se, respectively. For NL detection,
Eq.(2) needs to be evaluated for every enrolled
speaker e ∈ E . However, these evaluations can
be carried out during NL enrollment instead of at
inference time. At each NL detection, the most
computationally expensive task is to calculate E
similarity scores {s(ei, t) | 1 ≤ i ≤ E}, which is
required regardless of score normalization.

T-Norm (Auckenthaler et al., 2000) uses the
scores between t and every utterance ci in the nor-
malization cohort:

St = {s(t, ci) | 1 ≤ i ≤ N}

s(e, t)t−norm =
s(e, t)− µ(St)

σ(St)

(4)

In contrast to Z-Norm, Eq.(4) is evaluated at infer-
ence time for a given t, therefor there are (N +E)
similarity scores to be computed at each NL detec-
tion using T-Norm.

AS-Norm (Karam et al., 2011; Cumani et al.,
2011) is often found to have the best performance,
especially for multi-target recognitions. It is de-
fined as the average of adaptive Z-Norm and T-
Norm, namely, for an adaptive length K:

s(e, t)as−norm =
1

2

(
s(e, t)− µ(S(K)

e )

σ(S
(K)
e )

+
s(e, t)− µ(S(K)

t )

σ(S
(K)
t )

) (5)

where S(K)
e and S(K)

t denote the subsets consisting
of the highest K scores in Se and St, respectively.
For NL detection, Se (thus S(K)

e ) can be evaluated
as soon as the NL is constructed, however St (thus
S
(K)
t ) can only be calculated when the test utter-

ance t is present. Therefore at inference time for
each t the number of similarity scores to be gener-
ated is (N + E).

2.2 MCE 2018 dataset description
The work reported in this paper is conducted on
the MCE 2018 dataset, a public dataset curated
from recordings of customer-agent conversations
to an operational call center (Shon et al., 2019).
The dataset, consisting of negative list speakers
and background speakers (i.e. not on the negative
list), is summarized in Table 1.

The MCE 2018 dataset is provided in the form
of i-vectors corresponding to each of the negative
list and background speaker utterances. Using this
dataset has several advantages: NL detection (Top-
S detection) is one of the tasks in MCE challenge;

Table 1: MCE 2018 dataset description

Set Subset No. of
speakers

Total
utterances

Negative list 3,631 10,893Train Background 500 30,952
Negative list 3,631 3,631Dev. Background 5,000 5,000
Negative list 3,631 3,631Test Background 12,386 12,386

the dataset consists of 600-dimension i-vectors ex-
tracted from call center conversations, the domain
of interest in our study; and the large number of
enrolled NL speakers E = 3631 is within range of
real-world NL sizes. In addition, the techniques in-
vestigated in this work are part of the speaker recog-
nition backend process, therefore using a set of
i-vectors that has been validated by previous stud-
ies (Khoury et al., 2019; Font, 2019; Wilkinghoff,
2020) eliminates the need for vector extraction, and
prevents introducing unnecessary variabilities for
the purpose of this work.

2.3 Using LSH for low-latency search at
inference time

PLDA model is the preferred method for similarity
score generation due to its accuracy as measured in
EER (Prince and Elder, 2007; Matejka et al., 2011).
However, PLDA is computationally expensive for
NL detection as it requires computing a large num-
ber of pairwise scores to determine the membership
of a test utterance in the NL set. While Linear Dis-
criminant Analysis (LDA) (Matejka et al., 2011)
can be applied prior to PLDA to reduce dimensions
and speed up computation of the score, the limiting
factor will be the size of the NL. In commercial
call-center applications it is not uncommon for the
NL to contain thousands of entries, making the
PLDA approach unfeasible for real-time detection.

To speed up the search, we propose using LSH, a
family of functions used to solve the nearest neigh-
bor problem by finding approximate — instead of
exact — matches (Indyk and Motwani, 1998). LSH
hashes the data and a query point in a way that max-
imizes the probability of a collision for points that
are close to each other than for those which are
farther apart. This approximation allows efficient
solutions to exist when the dimensionality, m, is
large. Further, Indyk and Motwani (Indyk and Mot-
wani, 1998) show that LSH requires O(mn1+1/c)
processing time and O(mn1/c) query time, where
c is a constant that constrains the radius around
which points should match. A crucial parameter
in LSH is the choice of a distance function; exist-
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ing literature (Charikar, 2002; Schmidt et al., 2014)
demonstrates that the cosine similarity measure can
be approximated well with locality sensitive hash
functions.

LSH minimizes run time at the expense of accu-
racy, however, as our results in Section 6 demon-
strate, the approximate matches retrieved by LSH
have a high probability of being correct as reflected
in the lowered EER.

3 Related Work
Open-set speaker recognition techniques using
PLDA are often enhanced with score normaliza-
tion. Li and Porter (Li and Porter, 1988) propose Z-
Norm, which normalizes the PLDA score between
the test and target utterances to the distribution
of scores between the target and a normalization
cohort. Auckenthaler et al. (Auckenthaler et al.,
2000) present T-Norm, which applies the score
distribution between the test utterance and the nor-
malization cohort. S-Norm (Kenny, 2010) is de-
fined as the average of Z-Norm and T-Norm, while
Karam et al. (Karam et al., 2011) and Cumani et
al. (Cumani et al., 2011) suggest AS-Norm, which
constrains the S-Norm computations to subsets that
contain the highest normalization scores from the
T-Norm and the Z-Norm in order to produce the
most relevant PLDA score distributions (Eq.(5)).

Our contribution, NL-Norm, is fashioned after
AS-Norm with one distinction unique to the Neg-
ative List detection. Instead of normalizing to the
score distribution of a single target utterance as
Z-Norm, NL-Norm constructs the normalization
distribution using the collection of PLDA scores
between the normalization cohort and all enrolled
utterances in the NL. In addition, by allowing dif-
ferent adaptive lengths for T-Norm and (modified)
Z-Norm terms in AS-Norm and NL-Norm, we can
take full advantage of LSH for optimal speed and
accuracy in NL detection. The detailed description
is provided in Section 4.

There exists a large body of literature on the use
of LSH for audio data, especially in discovering
similar songs and de-duplicating remixes. How-
ever, our literature review restricts itself to those
works that use LSH in the context of NL detection.
The most closely related work on using LSH for NL
detection is Schmidt et al. (Schmidt et al., 2014),
which uses LSH to quickly approximate the cosine
distance in their retrieval process. They eschew
the use of PLDA because “this method performs a
more complicated hypothesis for i-vector matching,

which impedes its use with LSH." (Schmidt et al.,
2014). While the computationally expensive nature
of PLDA precludes its use as a distance function
in LSH, our work demonstrates that PLDA can
nonetheless be used effectively by allowing LSH
to constrain the number of PLDA operations re-
quired to determine a match from the NL. Ma et al.
(Ma et al., 2015) create clusters of low dimensional
i-vectors and restrict PLDA score computation to
the top-n closest clusters. They compare their ap-
proach to LSH, but unlike our work, they do not
use LSH to restrict the PLDA score computations
to a small set. Other surveyed works use LSH,
however, unlike our work, they do not consider in
in the context of PLDA computations: Jeon et al.
(Jeon and Cheng, 2012) use kernelized LSH for
speaker identification, while Leary et al. (Leary
and Andrews, 2014) substitute the Hamming dis-
tance for cosine distance in LSH; and finally, Shon
et al. (Shon et al., 2018) use random projects gener-
ated from a speaker variability space to derive the
characteristic matrix in LSH.

4 Negative List Specific Techniques
In this section we propose novel techniques devised
for NL detection, including: using NL-Norm, a NL-
specific score normalization, to improve detection
accuracy; taking advantage of different adaptive
lengths for Se and St in AS-Norm (Eq.(5)) and
NL-Norm; and applying LSH in conjunction with
NL-Norm to reduce detection latency at inference
time.

4.1 NL-Norm
Z-Norm in Eq.(3) is designed to compensate sim-
ilarity score variations against a single target
speaker e, so that the scores between e and all
test utterances can be normalized to the same dis-
tribution in order to apply a consistent threshold
for speaker verification. For NL detection, since all
enrolled speaker utterances are present at testing
time, and a single threshold for normalized scores
is needed for all speakers in NL, it is reasonable to
introduce a normalization over the entire NL cohort
which we refer as NL-Norm. Formally, the scores
used for NL-Norm consists of pairwise scores be-
tween every normalization cohort member ci and
every NL member ej :

SNL = {Sej | 1 ≤ j ≤ E} (6)

where Sej is a rewrite of Eq.(2):

Sej = {s(ej , ci) | 1 ≤ i ≤ N} (7)
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Practically, we define NL-Norm with an adaptive
length K that is analogous to AS-Norm in Eq.(5):

s(e, t)nl−norm =
1

2

(
s(e, t)− µ(S(K)

NL )

σ(S
(K)
NL )

+
s(e, t)− µ(S(K)

t )

σ(S
(K)
t )

) (8)

where
S

(K)
NL = {S(K)

ej | 1 ≤ j ≤ E} (9)

with S
(K)
ej denoting the subset consisting of the

highest K socres in Sej .

4.2 Different Adaptive Lengths
Even though Eq.(5) is commonly used for AS-
Norm, there is no theoretical constraint that the
same adaptive length K must be used for Z-Norm
and T-Norm terms. By allowing different adap-
tive lengths Ke and Kt for Z-Norm and T-Norm,
respectively, Eq.(5) can be modified as:

s′(e, t)as−norm =
1

2

(
s(e, t)− µ(S(Ke)

e )

σ(S
(Ke)
e )

+
s(e, t)− µ(S(Kt)

t )

σ(S
(Kt)
t )

) (10)

Similarly, Eq.(8) for NL-Norm can be modified
with different adaptive lengths Kt and Ke:

s′(e, t)nl−norm =
1

2

(
s(e, t)− µ(S(Ke)

NL )

σ(S
(Ke)
NL )

+
s(e, t)− µ(S(Kt)

t )

σ(S
(Kt)
t )

) (11)

While employing different Ke and Kt in AS-
Norm is not a novel approach (it was previously
used in (Wilkinghoff, 2020)), here we explicitly ex-
plore its advantages when applied to NL detection:
decoupling Ke and Kt not only enables further op-
timization of detection accuracy, it also allows the
selection of a small Kt value without sacrificing
the benefit of Z-Norm that may require a larger
Ke. The combination of LSH with a small Kt can
significantly improve the speed of NL detection by
reducing the number score computations between
the test utterance t and the normalization cohort,
which is described further in the next section.

4.3 Reducing inference latency through LSH
In NL detection, for a given test utterance t, its
similarity scores with all members of the NL are
computed and ranked, with or without score nor-
malization. The top ranked score is then compared

with the pre-determined threshold to reach a deci-
sion. The search time here will be dominated by
O(E), where E = |E|.

As discussed in Section 2.3, LSH is used to
speed up the search process. For the work de-
scribed here, this means the following: First, the
LSH pipeline is “trained” on the i-vectors or x-
vectors associated with the E and C. (Recall from
Section 2 that C is the normalization cohort.) Here,
“training” implies deriving shorter characteristic
vector for each of the 600-dimension vectors in E
and C using a set of random hyperplane-based hash
functions (Charikar, 2002). Given a collection of
vectors in Rm, we choose a random vector ~r from
the m−dimension Gaussian distribution and define
a hash function h~r as follows:

h~r(~u) =

{
1 ~r · ~u ≥ 0
0 ~r · ~u < 0

(12)

Then, for any vectors ~u and ~v,

Pr[h~r(~u) = h~r(~v)] = 1− θ(~u,~v)

π
(13)

where θ(~u,~v) is the angle between vectors u and
v. Further, for n vectors, the hash functions can be
chosen by picking O(log2n) random bits, thereby
restricting the random hyperplanes to be in a fam-
ily of size 2O(log2n) (Charikar, 2002). For a given
test i-vector t, we use LSH twice: once to discover
Ke nearest neighbors to t from E , and the second
time to discover Kt nearest neighbors to t from
C (the Kt mentioned in Section 4.2). Therefore,
in Eq.(10) and Eq.(11), S(Kt)

t is constructed by
identifying Kt members in C using LSH followed
by the generation of Kt scores, instead of gener-
ating all N scores followed by the identification
of top Kt scores. (Recall that N = |C|.) Using
such an approach, for each t, the number of PLDA
score evaluations is reduced from O(E + N) to
O(Ke +Kt). Because LSH search time is negligi-
ble comparing with PLDA score evaluation, this ap-
proach can significantly reduce the computational
cost and latency of NL detection.

5 Experimental Setup
The training set of MCE dataset, consisting of
3,631 NL speakers and 5,000 background (non-
NL) speakers, is used for PLDA model training.
There are three utterances from each NL speaker,
the mean of the three i-vectors is enrolled in NL as
the utterance of the corresponding fraudster. Fur-
thermore, similar to Khoury et al. (Khoury et al.,
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2019), a normalization cohort of 4,000 augmented
i-vectors is generated by applying at random a
weighted sum between non-NL speaker i-vectors
and NL speaker i-vectors, limiting the maximum
weight for NL speakers to 20%. The Development
set, consisting of one utterance from each of 3,631
NL speakers and 5,000 non-NL speakers, is used
to verify the baseline approach of PLDA with AS-
Norm, including the tuning of adaptive length K
in AS-Norm for baseline EER computation on the
Test set.

A stratified 50/50 random split of MCE Test
set, consisting of one utterance from each of 3,631
NL speakers and 12,386 non-NL speakers, pro-
duces equal-sized Validation set and Evaluation
set. The Validation set is used for tuning of hyper-
parameters including LSH depth L, adaptive length
K in NL-Norm Eq.(8), and Kt and Ke in Eqs.(10)
and (11). Evaluation set is reserved for holdout
testing only. Unless specified otherwise, all re-
sults presented in this paper are obtained using the
Evaluation set. The motivation for generating the
Validation and Evaluation sets from MCE Test set
is that the 50/50 stratified split preserves the ratio
of non-NL to NL speakers of the Test set, which is
significantly higher than that of the Development
set. It is worth noting that in real-world call center
applications this ratio is much higher (Khoury et al.,
2019). In addition, it is desirable that Validation
and Evaluation sets have similar distributions and
behaviors, whereas MCE Development set exhibits
much lower EER than the Test set (Shon et al.,
2019).

In contrast to MCE 2018 Challenge participating
studies where the goal is to achieve the lowest EER,
the aim of this work is to examine the effectiveness
of the novel NL detection techniques outlined in
Section 4. Therefore we adopt a minimal base-
line approach: PLDA followed by AS-Norm, in
order to remove potential variations introduced by
nonessential steps. For example, LDA is elimi-
nated even though it is often used prior to PLDA
for dimension reduction. With this baseline, we ob-
served NL detection EER of 1.25% and 5.66% for
MCE Development and the entire Test set, respec-
tively, which are comparable to published results
in MCE 2018 Challenge (Shon et al., 2019).

PLDA implementation in the Kaldi toolkit
(Povey et al., 2011) is used to generate similar-
ity scores s(e, t), s(e, ci) and s(t, ci). After score
normalization, for each test utterance t the high-

est score among its normalized scores with NL
utterances is used for the overall EER calculation
(Singer and Reynolds, 2004). In our work, LSH
is applied prior to PLDA to reduce the number of
similarity score computations. We use the NearPy
Python framework1 as the LSH implementation
with random hyperplane-based hash functions.

All computation times (i.e., detection latency)
indicated in this paper were measured on an Intel
Core i7-7700HQ 2.8GHz CPU with 16GB RAM.

6 Results and Discussion
6.1 NL-Norm
Applying Eq.(8) of NL-Norm, the resulting EER
of NL detection is 5.57%, reduced from 5.69% for
AS-Norm. To verify the stability and consistency
of this result, a cross validation is performed by
repeating 10 times the stratified random 50/50 split
of MCE Test set into validation and evaluation sets,
the outcome is shown in Table 2, where an aver-
age of 0.11% reduction in EER absolute value is
observed.

Table 2: NL-Norm vs AS-Norm EER
AS-Norm NL-Norm

EER (Evaluation Set) 5.69% 5.57%

EER (Cross Validation)
mean 5.64% 5.53%
std 0.26% 0.28%

It is worth noting that because NL-Norm con-
siders the scores between the normalization cohort
and the entire NL cohort as a single distribution, it
can diminish the distinctions among individual NL
speakers. Therefore we postulate that NL-Norm
may not improve multi-target speaker identifica-
tion (i.e. Top-1 identification). This is beyond
the current NL detection study and remains to be
examined in the future.

6.2 Adaptive Length Ke and Kt

Comparing AS-Norm of Eq.(10) with Eq.(5), with
the additional tuning parameter, a lower EER can
be reached when separate adaptive lengths Ke

and Kt are employed. Table 3 shows the tuning
progress on the Validation Set, where the first row
represents AS-Norm that requires Ke = Kt, and
the second row represents the best result found with
Ke = 1600 and Kt = 600. In addition to the gain
in accuracy, more importantly, this approach of-
fers the flexibility of selecting a low Kt value that
yields a close-to-optimal EER, as demonstrated by
the last row of Table 3, whereKt = 200. A lowKt,

1https://github.com/pixelogik/NearPy
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combined with LSH, enables a significant reduc-
tion in the number of score computations between
the test utterance t and the normalization cohort,
which in turn increases the NL detection speed.
The detail is presented in the next section.

Table 3: AS-Norm with Different Adaptive Lengths
Ke Kt EER (%)
300 300 5.69

1600 600 5.61
3800 200 5.62

6.3 The utility of LSH
Consider a test vector, t, which must be compared
against a NL of sizeE = 3, 631. As Table 4 shows,
the fastest distance algorithm for comparison is co-
sine distance, which takes 4ms to compare t against
all of the NL entries. However, its speed is achieved
at the cost of accuracy: the cosine distance yields
an EER of 7.40%. PLDA improves on the EER
but at the expense of an increased latency. LSH
followed by PLDA allows us to not only derive an
EER similar to that of PLDA only, but it also does
so at a fraction of time: 28ms compared to 864ms
for PLDA. For the test vector t, LSH search is first
conducted to find L members of NL that are most
similar to t, then PLDA scores between t and these
L utterances are computed, with the highest score
selected for EER calculation.

Table 4: Accuracy and Latency
Algorithm EER (%) Time (ms)

Cosine distance 7.40 4
PLDA 6.49 864

LSH + PLDA (L=30) 6.46 28

When the LSH depth L increases, it is expected
the resulting EER will approach the EER exhibited
by PLDA if a greedy score calculation strategy is
used across the entire NL. Such an expectation is
demonstrated empirically in Figure 2, where the
red line represents the EER obtained from PLDA
(without score normalization). For the NL dataset
with size E = 3, 631, an LSH depth L = 30 is
already sufficient to match the EER of PLDA only.

It should be noted that even though EER =
6.46% at L = 30, which is slightly better than
the EER of 6.49% without LSH, it is not an indi-
cation that LSH can help improve NL detection
accuracy. The reason for the occasionally lower
EER when performing LSH first is that for a test
utterance not spoken by any NL speaker, LSH may
fail to find the NL member that would have pro-
duced the highest PLDA score, thus eliminating
a false-match instance from the EER evaluation.

Figure 2: EER vs.LSH depth L without score normal-
ization

As seen in Fig. 2, this effect quickly disappears
with increasing LSH depth L. The results in Fig.
2 are obtained without score normalization. Score
normalization improves EER, we thus examine the
effect of combining LSH, PLDA and score normal-
ization next.

6.4 Putting it together: LSH and NL-Norm
Algorithm 1 presents our use of LSH and NL-Norm.
Lines 1-12 establish the normalization over the en-
tire NL cohort as discussed in Section 4.1; this step
is done only once, during initialization. Each en-
rolled speaker’s utterances are scored against all of
the normalization cohorts and the top Ke matches
for that speaker and the normalization cohort are
saved (line 10). At the end of the loop on line 11,
S
(Ke)
NL is populated and will be used to compute the

NL-Norm later. As part of populating S(Ke)
NL , it is

possible that the eventual top-ranked NL speaker
which induces the highest normalized PLDA score
is not among the top Ke NL members identified
by the LSH search, resulting in a decrease in the
NL detection accuracy. This deficiency can be mit-
igated by expanding LSH search depth Ke. Line
12 invokes the NL-Norm computation function that
returns true if a match is found.

For a given target vector t, we first find the top-L
nearest neighbours of t from the NL E (line 14).
To apply normalization, PLDA scores between t
and utterances in the normalization cohort C are
also needed; LSH can be utilitized once more to
find Kt utterances in C that are most similar to
t (line 15). By the end of the loop on line 19,
both the sets S(Kt)

t and S(Ke)
NL are available, the

latter populated during initialization as described
in the preceding paragraph. Finally, lines 21-25
computes the normalized PLDA score between t
and each NL list member, saving the results in a list
(Line 25) that is checked against the threshold to
determine an NL match. With Algorithm 1 the total
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number of PLDA evaluations are reduced from
O(E +N) without LSH to O(L+Kt) with LSH,
where L� E and Kt � N .

Algorithm 1: LSH and NL-Norm
Data: t: Test vector to be matched in E
Data: T : Threshold for NL detection
Data: L,Kt,Ke: LSH depth and adaptive lengths,

selected using Validation set (Sec. 5)
Data: C: The normalization cohort
Data: E : The negative list

1 initialized← False;
2 if (!initialized) then
3 initialized← True;
4 S

(Ke)
NL ← ∅;

5 for (e ∈ E) do
6 Se ← ∅;
7 for (c ∈ C) do
8 Se ← Se ∪ score(e, c);
9 end

10 S
(Ke)
NL ← S

(Ke)
NL ∪ top_n(Se,Ke) // Eq.9

11 end
12 return NL_norm(E , C, S(Ke)

NL , t, L,Kt, T )

13 function boolean NL_norm(E: list, C: list, S(Ke)
NL :

list, t: vector, L: int, Kt: int, T: float):
14 t_E_set← LSH_lookup(t, E , L);
15 t_C_set← LSH_lookup(t, C,Kt);
16 S

(Kt)
t ← ∅;

17 for (q ∈ t_C_set) do
18 S

(Kt)
t ← S

(Kt)
t ∪ score(t, q) // Eq.4

19 end
20 result_set← ∅;
21 for (e ∈ t_E_set) do
22 s← score(e, t);
23 snl_norm ←

1
2

(
s−µ(S(Ke)

NL
)

σ(S
(Ke)
NL

)
+

s−µ(S(Kt)
t )

σ(S
(Kt)
t )

)

// Eq.11

24 result_set← results_set ∪ {snl_norm};
25 end
26 return max(result_set) > T? True False;

Table 5 lists the results obtained using various
approaches, including the NL detection time per
test utterance along with parameters L, Ke and Kt

which, as described in Section 5, are selected via
a grid search for the lowest EER on the Valida-
tion set, then applied to the Evaluation set . As
demonstrated in Section 4.2, if multiple {Ke,Kt}
pairs yield near-lowest EERs for the Validation set,
then the one with a low Kt is selected to take full
advantage of LSH.

The first two rows in Table 5 are results of the
baseline model, with and without score normaliza-
tion. By applying LSH without score normaliza-
tion, the NL detection time per test utterance is
reduced from 864ms to 28ms, with little change
in EER. When adopting Eq.(11) for score normal-
ization, EER is lowered to 5.48% by taking advan-

Table 5: EER and NL Detection Time (per utterance)

Method
EER
(%)

L Ke Kt
Time
(ms)

PLDA, no score norm 6.49 - - - 864
AS-Norm (Eq.(5)) 5.69 - 300 300 1975
NL-Norm (Eq.(8)) 5.57 - 500 500 1981
AS-Norm (Eq.(10)) 5.52 - 3800 200 2051
NL-Norm (Eq.(11)) 5.57 - 400 500 1976
LSH + PLDA, no score norm 6.46 30 - - 28
LSH + AS-Norm (Eq.(10)) 5.66 50 2000 250 114
LSH + NL-Norm (Eq.(11)) 5.48 50 3700 200 102

tage of NL-Norm and allowing different adaptive
lengths Kt and Ke, at the same time the NL detec-
tion time is shortened significantly from 1975ms
to 102ms, a beneficiary of LSH search. As noted
previously, these results are obtained using the 600-
dimension i-vector as input to PLDA model di-
rectly. A dimension reduction step such as LDA
can be inserted before PLDA to reduce the infer-
ence time further for all approaches listed in Table
5, with or without LSH search. Nonetheless the use
of LSH already make real-time NL detection feasi-
ble for applications such as call center services.

7 Conclusion

Negative list detection is an important application
for fraud detection in various industries such as
call center services. This work explored novel tech-
niques specifically devised for NL detection, with
the aim of improving both accuracy and speed. NL-
Norm considers similarity scores between the nor-
malization cohort and all enrolled NL speakers as a
single distribution, which helps calibrate test scores
and select a consistent threshold over the entire NL.
LSH is applied to find NL speakers as well as ut-
terances in the normalization cohort that are most
similar to a test utterance, so that PLDA scoring
is performed only on a small subsets of utterances,
which significantly lowers the computation cost
and latency of the NL detection. The effectiveness
of LSH is further amplified when using different
adaptive lengths for Z-Norm and T-Norm terms in
AS-Norm and NL-Norm, so that evaluating a rela-
tively small number of similarity scores between a
test utterance and the normalization cohort is suffi-
cient to reach optimal accuracy.

While the experiments are conducted on i-
vectors, none of the techniques proposed in this
paper is specific to i-vector, therefore we expect
these approaches can be applied to x-vectors as
well, which will be the subject of a future study,
along with more direct comparisons with results
from other NL detection methods.
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2017. Analysis of Score Normalization in Multi-
lingual Speaker Recognition. In Proc. Interspeech
2017, pages 1567–1571.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukáš
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlíček, Yanmin Qian, Petr
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Abstract

In speech recognition, it is essential to model
the phonetic content of the input signal while
discarding irrelevant factors such as speaker
variations and noise, which is challenging in
low-resource settings. Self-supervised pre-
training has been proposed as a way to improve
both supervised and unsupervised speech recog-
nition, including frame-level feature represen-
tations and Acoustic Word Embeddings (AWE)
for variable-length segments. However, self-
supervised models alone cannot learn perfect
separation of the linguistic content as they are
trained to optimize indirect objectives. In this
work, we experiment with different pre-trained
self-supervised features as input to AWE mod-
els and show that they work best within a su-
pervised framework. Models trained on En-
glish can be transferred to other languages with
no adaptation and outperform self-supervised
models trained solely on the target languages.

Keywords— Unsupervised ASR, Transfer Learn-
ing, Acoustic Word Embeddings

1 Introduction

With supervised speech recognition systems get-
ting more robust and accurate due to the avail-
ability of large amounts of labeled data and com-
putational power (Gulati et al., 2020; Baevski
et al., 2020b), more attention is now given to low-
resource languages for which training data are lim-
ited or non-existent (Aldarmaki et al., 2022). Un-
supervised pre-training using unlabeled speech can
be leveraged to improve both supervised and un-
supervised models; for instance, speech represen-
tations pre-trained on large amounts of unlabeled
speech from multiple languages have been shown
to improve ASR performance for low-resource lan-
guages (Kawakami et al., 2020; Conneau et al.,
2020).

While most supervised ASR models operate at
the level of phones, word-level segmental ASR

where variable-length segments are modeled and
embedded into fixed-dimensional vectors have also
been explored with relative success (Abdel-Hamid
et al., 2013; He and Fosler-Lussier, 2015). In a
similar vein, Acoustic Word Embeddings (AWEs)
have been proposed as a way to efficiently compare
variable-length speech segments in low-resource
settings (Peng et al., 2020; Kamper et al., 2020).
Unlike written words, spoken words naturally con-
tain speaker and phonetic variability that makes
them more difficult to model in a latent space with-
out supervision. Self-supervised pre-training and
cross-lingual transfer are two possible approaches
to make unsupervised models more robust to non-
linguistic variations in the input signal.

In this work, we investigate the performance of
self-supervised training of AWE models versus su-
pervised training with zero-shot cross-lingual trans-
fer. We experiment with different types of acoustic
features and measure their performance separately
and within the AWE models. While we find that
pre-trained acoustic features improve the perfor-
mance of self-supervised AWE models to some
extent, a larger improvement can be achieved when
the AWE models are trained in a supervised manner
using small amount of labeled data from a different
language. This zero-shot cross-lingual transfer is
observed consistently across different languages,
and particularly with the use of pre-trained feature
representations. Our results suggest that supervised
training with zero-shot cross-lingual transfer is a
more effective approach for low-resource speech
models compared with purely self-supervised train-
ing1.

2 Background & Related Work

Spoken language is often modeled using short
fixed-length frames of 10 to 30 ms duration, which

1We provide python training and evaluation scripts
for replicating our experiments: https://github.com/h-
aldarmaki/acoustic_embeddings
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results in variable-length word segments. Dynamic
Time Warping (DTW) is an early technique that
uses dynamic programming to compare variable-
length segments by finding optimal frame-wise
alignment. DTW is rather inefficient, which mo-
tivates embedding variable-length segments into
vectors of fixed size that can be compared using
more efficient metrics such as cosine or Euclidean
distance (Levin et al., 2013). Different types of
Acoustic Word Embeddings (AWE) have been pro-
posed. As these techniques are generally meant for
low-resource languages, they are typically trained
in a self-supervised manner, most commonly us-
ing an auto-encoder network with reconstruction
loss (Chung et al., 2016; Holzenberger et al., 2018).
Compared with direct comparison via DTW, these
AWEs generally result in similar or slightly supe-
rior performance while being far more efficient
(Holzenberger et al., 2018). Peng et al. (2020)
describes an alternative training strategy using cor-
respondence auto-encoders, which relies on word
pairs extracted via unsupervised spoken term dis-
covery, and further improvements can be achieved
using contrastive learning and multi-lingual adap-
tation (Jacobs et al., 2021).

The above models use static acoustic features
(e.g. MFCCs) as input. van Staden and Kam-
per (2021) shows that using pre-trained features
like CPC (van den Oord et al., 2018) improves the
performance of unsupervised AWE models. Pre-
trained features have been repeatedly shown to im-
prove performance in supervised downstream tasks
(Yang et al., 2021). In addition, pre-trained features
have been shown to transfer across languages. For
instance, a modified version of CPC (MCPC) is de-
scribed in Riviere et al. (2020), which demonstrates
that pre-training these features on Egnlish results
in improved phone classification accuracy for other
languages. Other types of pre-trained features, such
as wav2vec 2.0 (Baevski et al., 2020a) have been
shown to improve both supervised and unsuper-
vised ASR performance (Baevski et al., 2021), and
multi-lingual training of these features (i.e. XLSR-
53) can lead to improvements across many lan-
guages compared to monolingual pre-training (Con-
neau et al., 2020).

3 Objectives & Methodology

The objective of this study is to investigate the effec-
tiveness and trasnsferability of pre-trained acoustic
features when used as input to acoustic word em-

beddings. To that end, we compare self-supervised
AWEs trained directly on the target languages ver-
sus zero-shot cross-lingual transfer of supervised
AWEs trained on a different source language. To
our knowledge, the combination of pre-trained fea-
tures with AWE models has not been fully investi-
gated; most AWE models are trained with stan-
dard acoustic features like MFCCs, while self-
supervised features are typically evaluated within
supervised models fine-tuned for the target lan-
guages. Furthermore, zero-shot cross-lingual trans-
fer of supervised AWEs has not been the focus of
previous works in this area, which mainly focused
on improving self-supervised AWEs.

For the purpose of this evaluation, we use a rela-
tively simple architecture for the embedding model
and we fix the hyper-parameters based on prelimi-
nary validation results for English self-supervised
AWEs2. We do not do any further tuning of the
self-supervised or the supervised models. We use
English as the source language, and evaluate zero-
shot transfer on four other languages: French, Ger-
man, Spanish, and Arabic, with the latter used as
a challenge set since it contains more variability
and noise. No labeled data were used for the target
languages with the exception of word boundaries
which were obtained via force alignment. We eval-
uate mainly using minimal-pair ABX error rates
to measure phonetic discriminability and speaker
invariance. We also cluster the embedded words
and measure how often different occurrences of the
same words end up in the same cluster.

4 Experimental Settings

4.1 Model Architecture

Our AWE model consists of a multi-layer bidirec-
tional LSTM encoder, followed by a uni-directional
LSTM decoder, similar to Chung et al. (2016) and
(Holzenberger et al., 2018). The encoder takes a se-
quence of T acoustic features representing one spo-
ken word. The forward and backward states of the
last hidden layer of the encoder are concatenated
and used as an embedding of the given word, call
it hT . The decoder generates the target sequence
one step at a time, conditioned on hT and the out-
put at the previous time step, similar to Chung and

2We observed that self-supervised models were very sen-
sitive to the choice of architecture and hyper-parameters, so
we fixed these in favor of self-supervised models. As shown
in later sections, we still got better results with the supervised
models, which shows that they are more robust and easier to
optimize on top of being more effective.

213



Glass (2018). In the self-supervised setting, the
target sequence is the same as the input sequence,
so the model is trained as an auto-encoder with
MSE loss. In the supervised setting, the target is a
sequence of phonemes representing the input word,
and the model is trained by minimizing the nega-
tive log-likelihood. We used 2-layer networks with
100 hidden units for most models, which results
in embeddings of size 200. We also used dropout
with probability 0.3 on the input features, similar to
the denoising networks used in Chung et al. (2016).
More details of the parameters and training process
can be found in the Appendix.

4.2 Feature Extraction

For easier reproduciblity, we used the s3prl toolkit3

for extracting all features. We used the pre-trained
s3prl upstream models; among the many pretrained
self supervised speech representations available,
modified CPC, Wav2Wec2 and XLSR-53 were cho-
sen based on superior DTW-based ABX scores4.
All pre-trained models, with the exception of
XLSR, have been exclusively pre-trained on En-
glish data. XLSR-53 was pre-trained on unlabeled
speech from 53 languages, including all target lan-
guages in our experiments. As observed by other
researchers (Bartelds et al., 2022), the performance
of features extracted from transformer-based mod-
els is largely dependent on the choice of layer; we
used the last hidden layer for modified CPC, the
second to last hidden layer for Wav2Vec2 and the
central hidden layer (layer 12) for XLSR-53. Aver-
aging all layers gave reasonable results, but these
choices led to the best performance. For MFCC fea-
tures, we also used the s3prl implementation, which
includes 13 static features as well as dynamic delta
and delta-delta coefficients.

4.3 Data

We used the Librispeech (Panayotov et al., 2015)
and Multilingual Librispeech (Pratap et al., 2020)
datasets for English (en), French (fr), German (de),
and Spanish (es). We used the dev sets for train-
ing, and test sets for evaluation (dev-clean and test-
clean for English). We obtained the word bound-
aries automatically by forced alignment. For Ara-
bic (ar), we used the dev and test sets of MGB2

3https://github.com/s3prl/s3prl
4We did experiment with other features like APC, VQ-

APC, and VQ-Wav2Vec, and got similar or inferior perfor-
mance to MCPC and Wav2Vec2. We opted to omit these for
brevity.

(Ali et al., 2016). This dataset is expected to be
more challenging as it contains a diversity of di-
alects as well as various noise conditions. See the
Appendix for more details on the datasets and the
word alignment process.

4.4 Evaluation Scheme

We constructed Minimal-Pair ABX tasks, as de-
scribed in Schatz et al. (2013). ABX tasks are
typically used to measure phoneme discrimination
in zero-resource settings, and they consist of two
segments, A and B, that differ by a minimal con-
trast (e.g. one phoneme difference), and a third
segment X that matches either A or B. A distance
measure such as DTW or cosine is used to find
the closest match. We used two variants of this
task: within-speaker ABX, where all three words
are spoken by the same speaker, and cross-speaker
ABX, where X is spoken by a different speaker.
We automatically extracted the words from each
test set; we selected A and B by finding word pairs
that have the same length5 and Levenshtein edit
distance of 1 or 2, which roughly corresponds to a
difference of one or two phonemes most of the time.
For Arabic, the dataset did not have speaker ids, so
all three words could be from different speakers.
In addition, due to the lower quality of the sound
recordings and the presence of noise in this dataset,
the word alignment quality is much lower than the
other languages, so the automatic process resulted
in many invalid segments. To have a more reliable
test set for Arabic, we manually checked the valid-
ity of the extracted words and kept 954 validated
word pairs for evaluation.

We also used clustering for complementary eval-
uation. We clustered the embeddings using K-
Means with K being the number of unique words
in the test set. We calculated the accuracy of clus-
tering as the percentage of words that match their
cluster label, which is the word id of the majority of
segments in each cluster. This allows us to measure
if the embeddings of the same words are similar
enough to be clustered together.

5 Results

Table 1 shows ABX error rates using the input
features directly (with DTW as distance metric),
self-supervised AWEs trained on each language,

5Since automatic word alignments tend to be inaccurate
around the boundaries, we only used words that have at least
five characters.
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en fr de es ar
within across within across within across within across across

Using DTW
MFCC 9.98 19.85 12.59 24.82 11.46 25.03 11.83 25.27 40.98
wav2vec 8.51 11.15 9.95 15.61 9.01 15.08 10.13 15.46 37.42
MCPC 7.80 11.74 9.96 17.09 9.22 15.85 11.14 18.03 38.99
XLSR-53 9.45 13.72 10.97 16.77 10.89 15.76 14.31 19.31 40.15
Self-Supervised AWEs in each language
MFCC 12.30 19.12 16.63 25.06 16.71 25.99 16.58 25.21 43.92
wav2vec 6.63 9.27 9.94 13.19 10.56 15.09 12.25 15.23 38.16
MCPC 7.66 9.53 11.64 16.19 10.24 15.30 13.25 16.29 41.09
XLSR-53 10.61 12.19 13.72 16.19 12.59 15.73 17.10 20.14 37.00
Supervised AWEs trained on English
MFCC 3.83 4.57 10.77 15.32 9.16 13.06 11.49 16.56 38.15
wav2vec 1.38 1.14 6.59 9.44 4.98 7.32 7.32 10.12 34.80
MCPC 2.49 2.51 8.13 12.23 6.66 10.68 9.89 13.99 39.20
XLSR-53 0.93 0.79 4.12 5.71 1.92 2.83 5.05 6.21 31.76

Table 1: ABX error rates (%) within and across speakers for each language

en fr de es ar
Self-Supervised AWEs for each language
MFCC 47.3 48.4 45.0 54.3 30.9
wav2vec 66.1 59.9 59.5 67.5 35.9
MCPC 57.2 53.6 53.9 60.4 33.5
XLSR-53 52.0 52.2 54.9 55.0 31.0
Supervised AWEs trained on English
MFCC 68.5 52.7 56.7 61.1 33.4
wav2vec 82.3 64.8 69.3 71.1 38.8
MCPC 74.5 56.4 62.7 66.2 35.6
XLSR-53 84.3 69.1 78.1 75.8 41.8

Table 2: K-Means Clustering Accuracy (%)

and supervised AWEs trained on English. Cosine
similarity is the metric used in the latter two set-
tings. Confirming previous results (Riviere et al.,
2020), we do observe that pre-trained acoustic fea-
tures like Modified CPC and Wav2Vec2, which are
trained exclusively on English unlabeled speech,
transfer well across languages. These pre-trained
features consistently outperformed MFCC features
for all languages, particularly in cross-speaker eval-
uation. Unsurprisingly, the English language has
the best ABX scores overall simply because the
pre-trained features used are all trained on English.
The results for self-supervised AWE models are
mixed, but generally they are in the same range
as DTW performance, which also conforms with
previously published results (Holzenberger et al.,

2018).
With supervised training, we see significant re-

duction in errors rates for all languages. The lowest
error rates are achieved on the English test set, as
expected. More notably, the largest reduction in
error rates is achieved with the XLSR features. It is
also interesting to note that XLSR features were not
impressive in the self-supervised setting compared
with other features; Wav2Vec2 and MCPC, which
were trained on English only, gave better results
in the self-supervised framework for all test lan-
guages. The advantage of using these cross-lingual
features was only evident in the supervised and
transfer learning setting, where they consistently
outperformed all other features. For Arabic, the
error rates are higher overall due to the nature of
the dataset, but we still observe the lowest error
rate in the transfer learning setting.

Finally, we see in table 2 that the clustering ac-
curacy results are consistent with the ABX results,
where supervised models trained on English con-
sistently gave higher accuracy compared with self-
supervised models trained on the target languages.

6 Conclusions

Our results demonstrate the superior effectiveness
of zero-shot transfer learning of acoustic word em-
beddings compared with self-supervised training
in the target languages. This is particularly use-
ful for low-resource languages for which data may
not be available for supervised or self-supervised
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training. The mechanism of this transfer is mainly
through the reduction in speaker variability which
is far easier to achieve via supervised training. In
addition, supervised training makes the most out
of pre-trained features, where we see further re-
duction in error rates that far exceed the reduction
observed in self-supervised settings. The presence
of noise naturally results in larger error rates; fur-
ther investigations are needed to demonstrate the
transferability of noise robustness in a similar man-
ner.
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A Appendix

A.1 Dataset Details

A.2 Model Architecture & Hyper-Parameters

The architecture described in section 4.1 was mod-
eled after other acoustic word embedding mod-
els (Chung et al., 2016; Chung and Glass, 2018;
Holzenberger et al., 2018) with slight variations
in details. We found that this particular configura-
tion worked best across different acoustic features,

Dataset test dev
English 52,576 54,402
French 90,958 83,560
German 121,713 122,903
Spanish 88,417 87,417
Arabic 62,745 57,532

Table 3: Total number of words in each dataset

whereas other choices gave mixed results. For ex-
ample, using GRUs instead of LSTMs worked well
with pre-trained features but was worse for MFCCs.
The decoding process described in Holzenberger
et al. (2018), where positional encodings are used
instead of previous outputs also resulted in infe-
rior performance. We also found that using teacher
forcing instead of the model’s previous output as
input to the decoder hurt the performance. Finally,
using two layers was crucial to get results in line
with DTW perforamnce for most self-supervised
models. The only exception is the self-supervised
model with XLSR features which resulted in un-
stable training with 2 layers. We found it to work
much better with a single layer network and slightly
larger embedding size. Generally, larger embed-
dings sizes improved performance to some extent,
but the improvements were smaller beyond the
values that we have chosen; furthermore, using
smaller sizes is more advantageous in terms of
computational efficiency. We did not perform any
hyper-parameter tuning for the target languages
since we are working within the premise of low-
resource settings where validation data may not be
available.

Table 4 shows the number of parameters for each
model. Since the decoder is only used for training
and can be discarded after that, we only show the
number of encoder parameters.

A.3 Training Details

The supervised models were trained with NLL loss,
and the training targets are sequences of phonemes
obtained using the Phonemizer package 6 (Bernard
and Titeux, 2021). This choice seemed more sen-
sible at first, but we found that using sequences
of characters instead of phonemes worked equally
well.

The model was implemented using PyTorch and
trained on NVIDIA K80 GPU as provided in AWS
p2.xlarge instances. For optimization, we found

6https://github.com/bootphon/phonemizer
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Model input hidden no.of parameters
Self-Supervised
MFCC 39 100 354,400
Wav2Vec 768 100 937,600
MCPC 256 100 528,000
XLSR-53 1024 250 1,411,200
Supervised
MFCC 39 100 354,400
Wav2Vec 768 100 937,600
MCPC 256 100 528,000
XLSR-53 1024 100 1,142,400

Table 4: Input size, hidden layer size, and total number
of encoder parameters for each model.

that adam optimizer worked for all features except
MFCCs, for which SGD with cyclical or step learn-
ing rate schedule was more stable.

Table 3 shows the number of words in each
dataset. The word alignments were obtained
via force alignment using The Montreal Forced
Aligner7 (McAuliffe et al., 2017) for English, Ger-
man, French, and Spanish. The Montreal aligner
uses an ASR engine, and since these datasets are
relatively clean, the alignments are generally accu-
rate. For Arabic, the best option was the aeneas
toolkit8, which relies on a TTS engine to align the
synthesized words with the actual audio segments.
We used Amazon Polly TTS for higher quality, but
overall the alignments were not as accurate as the
other datasets, which we believe is due to the low
quality of the recordings, presence of noise, and
high variability in accents. The low clustering accu-
racy could be partially attributed to the inaccurate
labeling of the segments as a result of this. For
ABX evaluation on the Arabic set, we manually
filtered the segments that had somewhat accurate
boundaries; the chosen pairs still contained high
level of noise conditions, such as background mu-
sic and interfering speech.

7https://github.com/MontrealCorpusTools/Montreal-
Forced-Aligner

8www.readbeyond.it/aeneas
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Abstract 

Humor detection is a complex and 
ambiguous task in natural language 
processing. This has made automatic 
humor detection challenging, particularly 
for languages with limited resources such 
as Arabic. In this paper, we attempt to solve 
this task by collecting and annotating 
Arabic humorous tweets in dialects and 
Modern Standard Arabic (MSA) text then 
performing automatic humor detection on 
the collected data. We experimented on the 
collected dataset by fine-tuning seven 
Arabic Pre-Trained language models 
(PLMs) which are: AraBERTv02, 
Arabertv02-twitter, QARIB, MarBERT, 
MARBERTv2, CAMeLBERT-DA, and 
CAMeLBERT-MIX to establish a baseline 
classification system. We concluded that 
CAMeLBERT-DA was the best-
performing model and it achieved an F1-
score and accuracy of 72.11%. 

1 Introduction 

Humor is defined as the attempt of practices to 
provoke laughter and provide a sort of 
amusement. Humor permeates human life in both 
dimensions’ reality and virtually (Zhang and Liu, 
2014). Humor has become a frequent subject of 
research due to its coercive power in 
communication and other fields (Meyer, 2000). 
For instance, computational and linguistic 
research in humor have been going for more than 
twenty years, and according to (Amin and 
Burghardt, 2020), they mainly focus on Humor 
Recognition, Humor Adoption Systems, 
Computational Humor Evaluation, 
Computational Humor Applications and 
Computational Humor Datasets and Corpora. In 
fact, the power of social media and the popularity 
of humor in it encouraged some Natural Language 

                                                           
1 https://github.com/iwan-rg/Arabic-Humor 

Processing (NLP) researchers to conduct their 
studies about humor on Twitter and other social 
media platforms such as (Zhang and Liu, 2014), 
(Khandelwal et al. 2018) and (Meaney et al. 
2021). Drawing on the humor context, Arabic 
linguistic research on humor is sparse, some of it 
focused on certain Arabic dialects and humor 
aspects e.g. (Nayef and El-Nashar, 2014), (Omar, 
2017), (Banikalef, 2014) and (Bzour, 2021) 
conducted an analysis of Arabic humor. 
According to (Altin 2019), the main benefit of 
detecting humor is to improve human machine 
communication, as the machines are not fully 
capable to understand humor as humans do. 
Therefore, detecting humor is very essential to 
make progression in human alike and intelligent 
systems. 
The lack of high quality annotated data for 
conducting various experiments is one of the main 
obstacles to developing any detection models in 
low-resource languages. In order to address this 
issue, this study is the first to our knowledge to 
detect humor in text written in Arabic language, 
whether it is MSA or Arabic Dialect. The study 
includes details about the process of collecting, 
preprocessing, analyzing the data, and the 
encountered challenges during the process. The 
dataset we collected is publicly available1.  
The rest of the paper is organized as follows: 
Section 2 presents previous work in the area of 
humor detection. Section 3, provides detailed 
description of the dataset. Section 4, briefly 
describes the used experiments and analysis of 
results. Finally, Section 5 concludes the paper with 
future work. 

2 Related work 

The task of detecting humor in text has drawn the 
attention of many researchers in different 
languages. Although there is no single definition of 
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humor, most systems focus on identifying jokes, 
irony, and other forms of verbal play. Early humor 
detection systems were based on rule-based 
approaches, which relied on hand-crafted rules to 
identify humor. However, these systems were 
limited in their ability to generalize to new types of 
humor (Rajakumar et al., 2010). 

More recent systems have employed machine 
learning techniques to automatically learn rules for 
identifying humor. These approaches have shown 
promise, but still face challenges in accurately 
detecting humor. For instance, Hossain et al.(2019) 
analysed regular English news headlines to predict 
whether or not an edited headline is funny. Kao et 
al. (2016) did a humor detection in puns in English 
text at a fine-grained level.  Similarly, a novel 
annotation scheme in Chinese text contained 
annotated humorous text and keywords that 
triggered humor, with 9,123 Chinese jokes and 
39,977 sentences in total (Zhang et al. 2019). 
HEMOS (Humor-EMOji-Slang-Based) is a deep 
learning system for sentiment classification of 
Chinese language in two collected lexicons (slang 
expression and converted Weibo2 emojis). It has a 
binary annotation (optimistic humorous and 
pessimistic humorous) which added to the standard 
positive and negative sentiments. The carried 
experiment was implemented on both lexicons to 
an attention-based bi-directional long short-term 
memory recurrent neural network (AttBiLSTM). It  
resulted in a substantial improvement in predicting 
sentiment polarity on Weibo (Li et al. 2020). 
Furthermore, a Spanish based task by  (Castro et al. 
2016) to detect humor on a crowdsourced corpus 
of labelled data classified by implementing number 
of features such as adult slang, dialogue, hashtag, 
keywords, etc. Likewise, a neural network for 
humor recognition using (biLSTM) models used to 
classify tweets in Spanish as humorous or not. 
Additionally, it scored the level of funniness in the 
context based on Human annotation from one to 
five where one (not funny) and five (excellent) 
(Altin et al. 2019).  

To tackle the problem of humor detection the 
attention of research has shifted to deep learning 
approaches as seen in the two previous studies and 
as in (Annamoradnejad and Zoghi 2020), who used 
sentence embeddings and utilized the linguistic 
structure of humor in designing their proposed 
model. Their model outperforms the baseline 

                                                           
2 is the largest Chinese social network. 
3 https://www.kaggle.com/ 

models and achieved high accuracy in detecting 
humor in their ColBERT experiment on labelled 
dataset, which is technically injecting BERT 
sentence embedding into a neural network model 
that processes sentences separately in parallel 
hidden layers. Also, Fan et al.(2020) proposed an 
internal and external attention neural network 
(IEANN) for the humor detection task by merging 
two types of attention mechanisms to capture the 
incongruity and ambiguity in humorous text. An 
experiment conducted on two humor datasets to 
test the proposed model and the results showed that 
their model has better interpretability as they 
claimed. Researchers have shown an increased 
interest in automatic humor detection. A data 
collected from Twitter and Kaggle3 was evaluated 
using several models to the purpose of detecting 
and rating humor and offensive language, 
interestingly, they also originally predict humor 
controversy which result from the variance of 
annotators rating of certain jokes (Meaney et al. 
2021).  

Other than text-based detection of humor, 
multimodal language dataset were used in (Hasan 
et al. 2019) and (Bertero and Fung, 2016). The first 
one, determined the effects of using (text, vision 
and audio) all in one dataset called UR-FUNNY for 
humor detection task and present the performance 
results of the task. The latter proposed a deep 
neural network framework of integration of audio 
and language features for their dataset that 
collected from three TV shows that have canned 
laughter which used as indication of the humor 
occurrence. 

Finally, related works for humor detection in 
Arabic language is scarce. They are usually 
considered as part of sarcasm detection task, 
therefore, we aim in this study to build the first 
Arabic humor dataset and evaluate it using 
different Arabic PLMs, to establish a baseline 
classification system for this downstream task.  

3 Arabic Humor Dataset 

3.1   Data Collection 

To collect humorous text in Arabic language 
different tools were used. Twint 4  and Sketch 
Engine5 are used to create a corpus of more than 
10,000 entries. Firstly, tweets were scrapped from 
Twitter using Twint by following two approaches. 

4 https://github.com/twintproject/twint 
5 https://www.sketchengine.eu/ 
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The first approach, scrapping using username 
where multiple accounts known for their humorous 
content were selected. The second approach, 
scrapping using trending hashtags such as 
 .which are related to humor aspect ”نكت“ and”نفسيه“
The list of used usernames and hashtags are given 
in Table 1. 
Secondly, Sketch Engine was used for scrapping 
humorous text by using the web search tool that 
was provided by the Sketch Engine. By entering a 
set of keywords that are likely used for triggering 
humor to collect data that are relatively contain 
humorous text. The list of used keywords is given 
in Table 1.  

 

3.2 Data Cleaning and Preprocessing 

The collected text for the dataset are unstructured 
with slang terms, abbreviations, and orthographic 
errors that should be cleaned and pre-processed 
before performing the corpus analysis properly. 
Thus, the unstructured text must be converted to a 
structured format using pre-processing techniques, 
which are an important step in natural language 
processing (Aljabri et al. 2021).  

 Arabic normalization: 
The unification of some characters that 
have many forms, was employed on the 
dataset by replacing (ئ،ى) with (ي), letter 
 (گ) and (ا) to ( أ،إ،آ) to (ة) letter ,(و) with (ؤ)
to (ك).  

 Deleted unrelated and unwanted text: 
The extracted data from the web was not 
limited to certain tags; it extracted all the 
content from the web pages that match the 
search keywords. As a result, the data 
contained unrelated information such as 
information about the topic writer, number 

of contributions and contact information; 
hence most of the collected web data were 
from forums. 

 Moreover, the data cleaning steps that were 
applied on web data were as follow: 

 Remove unrelated information: 
 A dictionary of unrelated words was 
created. The dictionary contains the 
following keywords: “ ”، المحتويات”، “عضو

عدد ، “”عدد المساهمات”، “كاتب الموضوع“
بيانات ”،”معلومات الاتصال”، “الرسائل

مساهمة”،”العضو ”. After that a special query 
is created to search through the data frame 
to drop any row that contains one or more 
of the keywords in the dictionary.  

 Remove diacritics or Arabic Tashkeel: 
Diacritics is a vowel mark used to indicate 
short vowels which are: fatha, damma, and 
kasra, in addition to sukun and shadda 
which indicates the absence of a vowel. 
Diacritics are removed to reduce data 
sparsity.  

 Remove numbers, English letters, special 
characters, symbols, emojis, and newlines. 

 Remove all words that contain underscore 
and hashtag sign from the data. 

  Remove repeated characters such as 
  .”هههه“

 Remove duplicate rows from the dataset. 
 
Finally, after applying the preprocessing and 

cleaning of the data, we performed tokenization 
where we split the text into small pieces called 
tokens. A simple tokenizer was implemented 
which is space-based. This tokenizer splits the text 
into chunks by its spaces using regular expression 
(regex). Table 2 demonstrated an example from the 
dataset and how it changed during the data 
preprocessing and cleaning process. 

Twitter  Web Search 

Usernames Hashtags Keywords 

7amadQalam, _3urf, 
Fake_SteveJobs1 
iiim7mdz, mnm2900, 
Jokes_HD, 
Jokes_LoooL, 
nektah_time 

 وليد_مع_اكشن#
 نفسيه#
 

مرة محشش، في محشش، 
محشش، مرة واحد، في 

مصري،  عجوز، غبي،
حضرمي، حضرميه، فيه 
واحد، واحد تزوج، فيه 
سوداني، فيه مجنون، 
قصيمي، كان فيه قصيمي، 
جحا، فيه صعيدي، حوطي، 
حواطى، فيه جنوبي، 
جيزاني، غمد وزهارين، 
   مسطول، منسم

Table 1: Lists of Usernames, Hashtags, and 
Keywords 

Table 2:  Pre-processing and Data Cleaning in Tweet. 

Process Change 

Raw Tweet 
 محشش حط على السيارة برقع لييييييييييييش علشانها

�� باسم امه  نكت#  ��

Normalization 
علشانها محشش حط علي السياره برقع لييييييييييييش 

�� باسم امه  نكت#  ��

Remove Hashtags 
 محشش حط علي السياره برقع لييييييييييييش علشانها

�� باسم امه 😅 

Remove Emojis 
م محشش حط علي السياره برقع لييييييييش علشانها باس

 امه
Remove Repeating 

Char 
 محشش حط علي السياره برقع ليش علشانها باسم امه

Simple Tokenization 
using regex (space-

based) 

['  محشش'، 'حط'، 'علي'، 'السياره'، 'برقع'، 'ليش'،
 [''علشانها'، 'باسم'، 'امه
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3.3 Dataset Description 

The purpose of the collected dataset is to detect 
humor in Arabic text which contains different 
Arabic dialects like Gulf, Egyptian, Levantine and 
Maghrebi besides MSA (Modern Standard 
Arabic). The size of the dataset was 10039 entries 
collected from Twitter and the web. The text length 
varied from 3 words minimum up to 446 words 
maximum. Additionally, the dataset contains 
201,095 tokens and 36814 word types. The word 
type is defined here by counting the number of 
vocabularies (distinct words) in the corpus. 

 

3.4 Dataset annotation 

The annotation guidelines were explained to the 
annotators through online and face to face 
meetings. The given guidelines were as follows:  
 The labels are defined to the annotators as:  

Humor - The author has written a comic or 
amusing text. Non-Humor - The author has not 
written comic or amusing text. 

 Perspective: The text should be considered 
humorous or not from the annotator’s 
perspective.  

 Ambiguity: If the text is not understandable or 
you cannot get the joke, check non-humor, also 
if it does not have any keyword related to 
humorous aspects.  

 Incomplete text is caused by retrieving tweets 
without their corresponding memes, so if the 
text conveys any funny, amusement or 
humorous meaning check humor. 

 The context of the text could be understood 
from certain keywords in the text that are 
related to certain groups or subjects that are 
known to be subjected to humor examples 
such as ( محشش، قروي، صعيدي، فيه واحد بخيل واحد ). 
Table 3 shows examples of each label. 
 
We tried as much as possible to help annotators 

in their decision of labelling the data by providing 
certain guidelines. However, it is difficult to 
identify something that has no standard definition 
and ambiguously stated (Castro et al. 2016). In 
general text comprised of any tales, imaginative, 
jokes, and abusive are explained as humorous 
unless it doesn’t convey any delightful, 
entertaining or amusement as in (Khandelwal et al. 
2018).  

As mentioned above people have different 
sense of humor so deciding whether the text is 
humorous or not will be best if it is from the 
annotator perspective as in (Castro et al. 2016). 
Since the text collected in MSA and DA (Dialectal 
Arabic) are different and some of them cannot be 
understandable by the annotators especially if they 
were in Magrabi dialect, so we think that the text 
can be cracked by some known keywords that 
mostly used in humorous context.  

 

Table 3: Examples of Humor and non-Humor text in 
the dataset. 

Many tweets contain an image (memes) with a 
corresponding label that results in losing the full 
context, here the decision can be made depending 
on the available text (label or caption) if it conveys 
any humorous aspect or not, or if it can be 
understood without the image so it is considered 
humor, if it is not, it will be non-humor. 
Inter-Annotator Agreement (IAA) is a 
measurement used for the reliability and credibility 
of the annotators to ensure the quality of the 
annotation process. It compares the annotators’ 
labels of the text and shows how much annotators 
agreed upon a particular text or disagreed. 

Labels  Examples in Arabic English 
Translation 

Humor: 
Something 

written to be 
comical or 

funny 

فيه قروي شاف نافورة -
  جاب لها سباك

 

   
صعيدي راح ل ماكدونالدز  -

وقال لهم عندكم حلقات بصل 
قالوا  ايه قال عطوني الحلقة 

   الأخيرة
  
  
  

في واحد محشش جالس  -
امام المكيف يقوله لا تنفخ لا 

 اكسر راسك
  

فيه واحد بخيل قال الي  -
وريكم  اولاده ادا نجحو با

 سيارة الآيسكريم
  

- A villager saw a 
fountain and brought 
it a plumber. 
 
- An upper egyptian 
went to McDonald's 
and asked them do 
you have onion 
rings? ”, They said -
yes- he said: give 
me the last episode. 
  
- A stoned sitting in 
front of the air-
conditioner saying: 
Do not blow or ,  I 
will smash your 
head. 
 
  -There is a miser 
told his children 
that: If you succeed, 
I will show you the 
ice cream car. 

Non-
Humor: 

Something 
written not 

to be 
humorous or 

funny 

للي جابو لنا امراض نفسيه ا
 عاملين فيها دكاترة نفسيين

Those who brought 
us Psychiatric illness 
act like psychiatrists 
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Moreover, it gives insights into how challenging it 
was to identify each text label and the reasons 
behind this labeling decision. Also, it indicates 
whether the annotators fully understand the 
guidelines given to them or not (Khandelwal et al. 
2018).  
Since we have three annotators for each text, we 
choose Fleiss’s Kappa (Fleiss, 1971) to measure 
IAA in our annotated corpus. We calculated 
Fleiss’s Kappa for the 10039 texts and the result of 
Kappa was 0.73 which is considered substantial 
according to Kappa statistics (Landis and Koch, 
1977) .   
Table 4 shows the statistics of the annotated dataset 
which indicates that the dataset is almost balanced 
because there is no significant difference between 
the two classes. 

Table 4: Distribution of Humor and non-Humor text 
in the dataset. 

4 Experiments and Results 

4.1  Model selection 

In this study we selected seven Arabic Pre-Trained 
Language Models based on their performance on 
other text classification tasks for Arabic language 
and also being pre-trained on dialectal Arabic 
(DA). The models are: 

 
1. AraBERTv026  is a transformer-based model 

for Arabic language based on the BERT-Base 
model. 
AraBERTv02 was trained on the Arabic 
version of the Books Corpus and the Arabic 
Wikipedia. The model achieves a state-of-the-
art performance on a number of Arabic natural 
language understanding tasks, including 
question answering and natural language 
inference. 

                                                           
6 https://huggingface.co/aubmindlab/bert-base-arabertv02 
7 https://huggingface.co/aubmindlab/bert-base-arabertv02-
twitter 
8 https://huggingface.co/qarib/bert-base-qarib 
9 https://huggingface.co/UBC-NLP/MARBERT 
10 https://huggingface.co/UBC-NLP/MARBERTv2 

2. Arabertv02-twitter 7 same as AraBERTv02 
and trained on ~60M Arabic tweets (filtered 
from a collection on 100M). 

3. QARIB8 : QCRI Arabic and Dialectal BERT 
(QARiB) model, was trained on a collection of 
~ 420 Million tweets and ~ 180 Million 
sentences of text. 

4. MarBERT 9 : is a large-scale pre-trained 
masked language model based on the BERT-
Base model and focused on both Dialectal 
Arabic (DA) and MSA. 

5. MARBERTv2 10 : same as MarBERT with 
further pre-training the stronger model, on the 
same MSA data as ARBERT in addition to 
AraNews dataset. 

6. CAMeLBERT-DA11 : is a BERT model pre-
trained on 54GB of dialectal Arabic (DA). 

7. CAMeLBERT-MIX12: is a BERT model pre-
trained on 167GB of mix text including 
Modern Standard Arabic (MSA), dialectal 
Arabic (DA), and classical Arabic (CA). 

 
The selected models were fine-tuned to perform a 
binary classification task to detect a given text if it 
is Humor or Non-Humor.   
The dataset was split 85:15 for training and testing 
respectively using scikit-learn library13.  

 

4.2 Models’ Results 

The selected models were evaluated using 
different metrics which are accuracy, precision, 
recall and F1 scores as shown in Table 5. The 
results of the four metrics show the performance of 
each model on the testing set. CAMeLBERT-DA 

11 https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-
da 
12 https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-
mix 
13 https://scikit-learn.org 

Class Number of 
entities 

Number of 
Tokens  

Percenta
ge 

Humor (1) 4455 86989 44.38% 

Non-Humor (0) 5584 114171 55.62% 

All 10039 201095 100% 

PLM Model  Accuracy Precision Recall F1-score 
AraBERTv02 68.72 69.06 69.19 68.71 

Arabertv02-twitter 70.91 72.13 71.86 70.89 

QARIB 67.72 68.03 68.16 67.71 

MarBERT 70.91 72.13 71.86 70.89 
MARBERTv2 71.71 72.94 72.67 71.69 

CAMeLBERT-DA 72.11 72.75 72.79 72.11 

CAMeLBERT-MIX  70.31 72.55 71.64 70.20 

Table 5: Results of various models trained and tested 
on our dataset 
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obtained the highest scores in all specified metrics 
followed by MARBERTv2, this is mainly due to 
the increase of the vocabulary size and the amount 
and type of the training data i.e. dialectal Arabic 
(DA). The performance of Arabertv02-twitter and 
MarBERT were the same in all metrics. The 
CAMeLBERT-MIX model came next with 
relatively small difference, lastly QARIB came 
with the lowest scores in all metrics.  
Comparing our task to other similar works are not 
feasible as they use different datasets and different 
languages. Since our task is the only one using this 
dataset which was collected for this task with the 
goal of classifying humor in Arabic. Therefore, we 
developed a baseline model using different 
measures. 

5 Challenges and Issues 

As mentioned early the task of humor detection is 
challenging in general and it is even harder in 
Arabic language due to the nature of the language. 
In general, detecting humor needs more 
knowledge to fully understand it (Khandelwal et al. 
2018). The nature of humor also is a challenge by 
itself as people perceived humors differently, what 
might be funny to one might not be for another. 
Lacking a benchmark for humor detection make it 
difficult to evaluate models’ performance. 
Moreover, one of the main causes of the lag in 
progress on humor research is the scarcity of public 
datasets (Hossain et al. 2019). 
For Arabic language, (Biniz et al. 2018) stated that 
analyzing and automating tasks in Arabic is 
difficult than other languages due to: its 
morphological richness, its complex syntax, and its 
difficult semantics. The main challenge of our 
work was having multiple dialects that are different 
in syntax that make the detection harder. 

6 Conclusion 

 This study discussed the methods we used to 
collect and construct humor dataset of different 
Arabic dialects and MSA. The dataset contained 
10039 tweets and was annotated with two labels 
humor and non-humor. Three annotators have 
manually annotated the corpus, and Fleiss’s Kappa 
was calculated to ensure the quality of the 
annotation process. Also, we carried out a set of 
experiments using a number of PLMs on the 
dataset to test it. The best model was 
CAMeLBERT-DA with an accuracy and an F1 

score of 72.11%, which indicates potential for 
improvement and reflects the problematic nature of 
the humor dataset and the challenge of humor 
detection in general. 
As a future work, we plan to understand and 
identify which features are essential for humor 
detection that contribute to enhancing the models 
prediction and troubleshooting unexpected model 
outputs. 
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Abstract

With the emergence of social media, the
Tunisian Dialect (TD), as the other Arabic di-
alects, started having a wide representation in
the written form. It has switched from a purely
oral language to a written form without normal-
izing or utilizing any orthographic convention
or standard. Therefore, it is necessary to in-
vestigate these opinions and analyze them in
order to extract useful knowledge. For this we
propose in this paper an approach to create a
richly annotated corpus. Then, by exploiting
this corpus, we compare the effectiveness of
machine learning and transfer learning models
to build fine grained sentiment analysis models.
The BERT model, Fine tuned with TD data,
achieved the best result.

1 Introduction

Opinion Mining (OM) or Sentiment Analysis (SA)
can be defined as the task of detecting, extracting
and classifying opinions on some issues/facts (Vin-
odhini and Chandrasekaran, 2012). Indeed, the
proliferation of social media has allowed collecting
data for low-resourced languages. Facebook, Insta-
gram and YouTube have become very popular tools
for sharing videos and communication. Nowadays,
these social networks are intensively used by differ-
ent kinds of companies to develop their activities
and this is through analysing the opinions of in-
ternet users. This analysis is constrained by the
availability of adequate tools and resources. The
dilemma is accentuated when it comes to dealing
with a poorly endowed language.

In this work, we process comments posted on
content related to news and companies in Tunisia.
These comments are mainly written in Tunisian
dialect but they could integrate other languages
namely Arabic dialects, standard Arabic or other
foreign languages and sometimes applying a code
switching between two or more languages, which

generates a huge orthographic heterogeneity. Thus
a word belonging to a such corpus may be an emoji,
a word written in Latin script or a word written in
Arabic script. Each form allows designating more
than one language. Indeed, a word in Latin script
can be a word in French (or also in English). Ta-
ble 1 illustrates an example of comment forms. In
this case, the automatic identification of the words
written as TD is not trivial. The lexicon in Arabic
script can also be either written a standard Arabic
word, dialect word or a TD word. We wish through
this work to propose a deep analysis for different
types of comments present in different social me-
dia platforms. For this we propose a method which
consists of building a fine-grained annotated corpus
and to train different machine-learning and deep-
learning models with the resulted corpus. These
resources could be later useful and beneficial for
other NLP tasks.

The remainder of this paper is organized as fol-
lows. Section 2 discusses some related works. Sec-
tion 3 describes the proposed approach for TD opin-
ion analysis. Section 4 details the Tunisian Dialect
sentiment analysis resources. Section 5 presents
sentiment analysis models for TD comments. Fi-
nally, section 6 concludes and points to possible
directions for future work.

Forms Comment
Latin script t3jbny //I like you//
Arabic script �è 	PA�JÜØ //Excellent//

Emoji ♥ ✌

Latin script in French trés bonne //very good//
Latin script in dialect mo7tarem //respectable//

Table 1: Comment forms.
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2 Related work

Studies on sentiment analysis of Arabic dialect in
social networks have rapidly grown in recent years.
Several researchers have attacked the treatment of
this field on several aspects and levels.(Alahmary
et al., 2019) for example, in order to develop sen-
timent and emotion annotation Twitter corpus for
Saudi dialect, have created SDCT a corpus in Saudi
dialect by annotating 32,063 tweets into two classes
containing 17707 positive tweets and 14356 nega-
tive tweets. Using these resources, the authors have
compared the effectiveness of the LSTM, Bi-LSTM
models and the SVM model. The experimental re-
sults have showed that, in their context, the use of
Bi-LSTM (F score 94%) is more efficient than the
use of LSTM and SVM.

Also, (Mohammed and Kora, 2019) have applied
three Deep Learning models (DL): CNN, LSTM
and RCNN in a network that combines some of
the characteristics of both CNN and LSTM neu-
ral networks in the sense that CNN is used as a
strong feature extractor and LSTM layer applies
the recurrent neural network architecture on those
extract features on 40k Arabic tweets for Arabic
sentiment analysis. The best accuracy achieved
was 88% by LSTM model. In addition (Al-Smadi
et al., 2019) proposed a method for Arabic senti-
ment analysis. Authors have used LSTM imple-
mentation. Experiments have been done on Ara-
bic hotels’ reviews dataset as (19,226) for training
and (4802) for testing and recorded an F1-Score of
82.6%. Similarly, (Dahou et al., 2019) used CNN
algorithm to perform Arabic sentiment analysis,
experimental results were evaluated on five differ-
ent Arabic sentiment datasets. The best accuracy
achieved was 93.28%. Recently, research has gone
beyond deep learning approaches and explored the
advances offered by transfer learning using trans-
former architectures based on the encoder-decoder
pattern. (Moudjari et al., 2020) evaluates deep
learning models (LSTM, CNN and BERT), to clas-
sify if an Algerian tweets (9000 tweets) as either
positive, negative or neutral. The best results in
term of accuracy were obtained with the CNN and
LSTM models with 76% and 75%, respectively.
On the other hand, BERT gave the worst results in
term of accuracy with 68%.

In (Abdul-Mageed et al., 2020) implementing
ALBERT and MARBERT models: i) ARBERT is
a large scale pre-training masked language model
focused on Modern Standard Arabic (MSA). ii)

MARBERT is a large scale pre-training masked
language model focused on both Dialectal Arabic
(DA) and MSA. Both models implemented for mul-
tiple text classification tasks: (1) sentiment analysis
(SA), (2) social meaning (SM), (3) topic classifi-
cation (TC), (4) dialect identification (DI), etc in
Arabic. The sentiment analysis model achieved the
F-score of 71.50% when applied with MARBERT
model. Similarly, (Abuzayed and Al-Khalifa, 2021)
proposed sentiment detection for Arabic dialect lan-
guage by augmenting data proposed by the shared
task in (Abu Farha et al., 2021) to analyse the senti-
ment of tweets. By using the MARABERT model,
they obtained an F1-score of 86%. (Abdel-Salam,
2021) have also fine-tuned MARBERT for senti-
ment classification tweets in Arabic dialect: MSA,
Egyptian, Maghrebi dialect, etc and MARBERT
model achieved an accuracy of 69.57%.

Sentiment analysis for Tunisian dialect: To
develop sentiment analysis model for Tunisian Di-
alect (TD), many efforts have been made to de-
velop resources such as annotated corpus, lexicon
and models. (Mdhaffar et al., 2017) have created
the Tunisian Sentiment Analysis Corpus (TSAC)
from Facebook official pages of Tunisian radios
and TV channels. TSAC contains 17k comments
written only with Arabic letters and extracted from
Facebook. This corpus has been annotated by a na-
tive speaker with 8215 positive and 8845 negative
comments. An MLP classifier was then applied
to build a sentiment analysis model that achieved
an F1-score of about 78%. The TunBERT (Mes-
saoudi et al., 2022) was trained on a TSAC dataset
(Mdhaffar et al., 2017) including 7452 comments
on Tunisian dialect in Social media and Tunisian
Election Corpus (TEC) (Sayadi et al., 2016) 3042
tweets obtained from twitter about Tunisian elec-
tions in 2014. It is composed of MSA and Tunisian
content. It achieved great results on the TSAC
corpus with an accuracy of 96.98% compared to
81.2% on the TEC corpus.

3 Proposed approach

Given the orthographic heterogeneity of the
Tunisian dialect in social networks we propose
in this work, a process to build deeper Sentiment
Analysis (SA) models. For this we exploited, at
first, the resources publicly available in the state
of the art and we endowed them with more anno-
tations. Using these resources we tried to learn
different sentiment analysis models with the aim of
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Corpus TSAC TSAC+ TSAC+
Facebook YouTube Instagram

Number of comments 17060 16000 49000 7000
Number of words 113196 45536 126288 11962
Number of vocabulary items 42123 40809 97460 9940

Table 2: Statistics about the corpus.

LEX1 LEX2 LEX3 LEX4
Simple words 227 312 3213 4041
Phrasal 331 643 7385 7673
Foreign words 11 12 19 45
Foreign phrasal 7 26 34 66
Emoticons 0 0 0 61
Positive opinion indicator 283 419 3638 4581
Negative opinion indicator 293 589 6960 7775
Total 576 1035 10651 12356

Table 3: Statistics of TD sentiment analysis lexicon.

providing comments with more analysis tags. In ad-
dition, to treat Arabic dialects comments that may
be presented to comment publications intended for
Tunisian people, we tested and compared the per-
formance of the TD model and the model learned
on a corpus augmented with such content. We
detail in what follows the different stages of this
process.

Figure 1: The proposed process to develop fine grained
SA models

4 Tunisian Dialect Sentiment Analysis
Resources

TSAC: We exploited the TSAC (Tunisian Sen-
timent Analysis Corpus) proposed by (Mdhaffar
et al., 2017). This corpus contains 17k comments
written with Arabic letters. It has been annotated

into 8212 positive comments and 8854 negative
comments of opinions expressed on Facebook and
taken from Tunisian TV and radio pages during the
period from January 2015 to June 2016.

TSAC+: It is a corpus developed by (Fsih et al.,
2022). It contains 65K comments scraped from
Tunisian TV channels during a period spanning
over January 2016 through March 2019. In or-
der to broaden the spectrum of sentiment analysis,
we gathered by 7k comments containing opinions
on content presented by influence’s from different
fields on Instagram. TSAC+ has been annotated
into positive (42k) and negative (30k) comments. It
has been annotated using TD lexicon. More statis-
tics on the corpus are shown in table 2.

Corpus of Arabic dialect: Arabic Tweets Sen-
timent Analysis Dataset (ATSAD) presented
in (Abu Kwaik et al., 2020) collected from
Twitter consists of 42k tweets which are
classified as positive and negative, which is
available at https://github.com/motazsaad/

arabic-sentiment-analysis. Table 4 shows the
statistics of the corpus.

TD Sentiment analysis lexicon: These resources
have also been developped by (Fsih et al., 2022).
They contain 12356 entries classified into two main
categories: simple words and phrases associated
with their inflected forms (LEX2) and also with
the corresponding ambiguous forms (LEX3). The
following example shows the different forms corre-
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Number of tweets 42693
Number of words 439518
Number of vocabulary items 64629
Number of emoji’s 455
Number of positive tweets 18106
Number of negative tweets 24588

Table 4: The statistics of the Arabic dialect tweets.

sponding to the lexical entry “ lk. A 	K” //successful//
(See Figure 2). Based on this process, we enriched
the lexicon with new entries taken from TSAC+
(LEX4). Table 3 shows details about the TD senti-
ment analysis lexicon.

Figure 2: Example of lexicon forms

4.1 Fine grained sentiment analysis
annotation

Polarity Opinion annotation: The idea of this
paper is to provide a deep analysis to the TD com-
ments, for this and using the TD sentiment analysis
lexicon we have annotated the corpus of TSAC+
using the following logic : we calculate for each
comment the number of occurrences of positive
and negative words. If the number of occurrences
of positive words is greater than the negative words,
the comment will be annotated as very positive and
vice versa as very negative. For example, the com-
ment “magnifique bravo stevy aymen” //wonderful
bravo stevy aymen// contains two positive opinion
indicators (“magnifique” //wonderful//, bravo) and
zero negative indicators, the number of occurrences
of positive words is greater than negative, the com-
ment is then annotated as very positive. The table
below illustrates the opinion annotation statistics
with degree of polarity.

TSAC+
Number of positive comments 20170
Number of negative comments 18115
Number of comments very positive 20794
Number of comments very negative 13630

Table 5: Statistics of the annotation with polarity.

Target annotation: We also sought to annotate
the target of the opinion, for this, we extracted,at
first, different target indicators like “ �é �® Ê g
”//Episode//, “ l .×A 	KQK. ” //Program//, “ �èA 	J �̄” //Chan-
nel// from TSAC+ corpus. Five target categories
“episode, program, person, subject and channel”
were distinguished. Each category has its corre-
sponding indicators. For instance, the category
person has two types of indicators: 305 of them
are named entities and 901 are adjectives used to
designate a person such as “¡ �� 	�Ó” //A television
presenter//, “ 	J
 	�” //A guest//, “©K


	YÓ” //Broad-
caster//. Comments having no indicators were clas-
sified as neutral. Table 6: reveals the number of
comments in each target category.

Categories Number of comments
Episode 755
Program 1349
Subject 183
Channel 614
Person 36570
Neutral 33250

Table 6: Statistics of target comments.

Comments Polarity Target
ya m3alem ya sami bravo Positive Person
//Great sami bravo//�éJ
ÖÏ A« �é�®Êg Positive Episode

//Great episode//�éëA 	®�K CÓ Negative Natural

//What is this nonsense//
É ��A 	̄ l .×A 	KQK. Negative Program

//Failed program//

Table 7: Examples of TD comments.

5 Sentiment Analysis Models for TD
Comments

5.1 Standard sentiment analysis model
(M1 PN TD):

Most of the works cited in the state of the art have
focused on the construction of the usual sentiment
analysis models, i.e they only detect Positive (P)
and Negative (N) polarities. For this, we first used
59K comments of the corpus cited in the previous
section to build a model able to detect Positive and
Negative TD comment (M1 PN TD). For this, we
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M1 PN TD
Polarity Precision Recall F-measure
Positive 72% 91% 81%
Negative 81% 53% 64%
Accuracy 75%
M4 PN AD
Polarity Precision Recall F-measure
Positive 83% 92% 87%
Negative 87% 75% 81%
Accuracy 85%

Table 8: Evaluation of BERT model for Arabic dialect tweets classification.

M1 PN TD Machine-learning model
Classifiers Polarity Precision Recall F-measure
SMO Positive 84% 96% 89%

Negative 88% 61% 72%
NB Positive 82% 98% 89%

Negative 93% 54% 69%
DT Positive 81% 94% 87%

Negative 81% 55% 66%
Accuracy SMO=84.66% NB=83.85% DT=81.13%
M1 PN TD Deep-learning model
Polarity Precision Recall F-measure
Positive 84% 96% 90%
Negative 89% 63% 74%
Accuracy 86%

Table 9: Evaluation of Machine-learning and Deep-learning models for Positive-Negative classification.

examined at first the effectiveness of three differ-
ent text mining algorithms including SMO, Naive
Bayes (NB) and Decision Tree (DT) model. More-
over, given the efficiency of transformer architec-
ture on different NLP tasks, we fine tuned a BERT
(Bidirectional Encoder Representations from Trans-
formers) model learned on dialectal data (Fsih et al.,
2022). The different models were based on a test
corpus containing 13000 sentences. Results in ta-
ble 9 show that the BERT model gives the best
result with an accuracy of 86%.

5.2 Fine grained sentiment analysis models

Deep sentiment analysis model
(M2 PN VPVN TD): We used the corpus
annotated with 4 sentiments tags: Very Positive
(VP), Very Negative (VN), positive and negative
tags to study a sentiment analysis model. The
same algorithms as before have been adopted. The
best result was obtained using the BERT algorithm
with an accuracy of 77% (Table 10).

Target of opinion detection model
(M3 Targ TD): On the corpus annotated
with Target (Targ) tags, we also learned, using
the same algorithms as the other experiments,
a machine and deep-learning models for the
detection of the target of the opinion. The resulted
models have been projected on the same test
corpus used in the experiments presented in this
paper. The obtained results are given in table 11.
The BERT model achieves the higher results with
an accuracy of 96%.

multi-Arabic Dialect Deep sentiment analysis
model (M4 PN TD AD): We wish through this
experiment, studying the effect of the models de-
signed for the TD on a mixed content including
TD comments and dialectal comments. For this we
introduced at first to the test corpus 21k comments
(8k comments belonging to the different Arabic
dialects and 13k comments in TD) on which we
projected the model (M1 PN TD). Then we intro-
duced to the training data, dialectal comments con-
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M2 PN VPVN TD Machine-learning model
Classifiers Polarity Precision Recall F-measure
SMO Positive 58% 79% 67%

Negative 64% 35% 46%
Very-Positive 73% 61% 66%
Very-Negative 54% 66% 60%

NB Positive 59% 36% 45%
Negative 61% 51% 56%
Very-Positive 50% 83% 63%
Very-Negative 70% 42% 52%

DT Positive 54% 80% 64%
Negative 53% 35% 42%
Very-Positive 72% 51% 60%
Very-Negative 54% 48% 51%

Accuracy SMO=62.56% NB=55.33% DT=57.85%
M2 PN VPVN TD Deep-learning model
Polarity Precision Recall F-measure
Positive 74% 86% 80%
Negative 71% 45% 55%
Very-positive 86% 89% 87%
Very-negative 67% 71% 69%
Accuracy 77%

Table 10: Evaluation of Machine-learning and Deep-learning models for VeryPositive-VeryNegative classification.

taining 14k positive and 19k negative comments
and then we compared the results. Table 8 shows
the obtained results. We noticed that the augmenta-
tion performed with the dialect data improves the
results. The model trained on this corpus achieves
an accuracy of 85%.

6 Conclusion

In this paper, we presented an approach to build
resources to analyse opinions written in Tunisian
dialect. Indeed, we built a corpus containing 72k
commentaries annotated in polarity and opinion
target. Then, we developed four automatic opinion
analysis models. The first allows to predict if the
opinion is positive or negative. The second predicts
whether the opinion is positive, very positive, nega-
tive or very negative. The third makes it possible
to predict the target of the opinion. We expanded
the spectrum of lexical coverage at the level of the
fourth model. All these resources will be open for
access once the paper is published. In future work
we aim to test the effectiveness of other transformer
models and to further extend the lexical coverage
of the model to cover more ambiguities such as
code switching or other languages.
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Abstract

Speech Emotion Recognition (SER) has be-
come an important component for Human-
Computer interaction. It is generally used in
job interviews, caller-agent calls and streaming
videos, etc. In the speech emotion recognition
literature, many languages have tackled this
topic to extract emotions from signals. The pur-
pose of this work is to build a Speech Emotion
Recognition model that predicts the emotional
state of Tunisian speakers. We explore differ-
ent pre-trained acoustic models, we detail the
process of building the first Tunisian Speech
Emotion Recognition dataset (TuniSER) and
we describe the training and testing phases. Our
experiments’ results show that fine-tuning the
pretrained multilingual wav2vec 2.0 model on
the Automatic Speech Recognition downstream
task then building a classifier on top of fit out-
performed all the tested models achieving an
Accuracy of 60.6%.

1 Introduction

In a conversation, non-verbal communication con-
tains important information such as the speaker’s in-
tentions or emotions. This information needs to be
processed and recognised. Indeed, speech systems
should be able to understand this non-linguistic
information. In the recent years, the interest in
Speech Emotion Recognition (SER) has increased
due to the role that this task plays in improving both
the naturalness and efficiency of human-machine
interactions. Voice assistants and conversational in-
terfaces have become omnipresent through technol-
ogy devices such as smartphones and smart home
interaction systems. Once these systems capture
the emotional content of speech aside from seman-
tics, their capability will increase.

SER is a non-trivial task on account of many
reasons such as the ambiguity of defining emotions
itself and the non-obvious ability of detecting the
natural from the acted emotions. Also, it requires
large annotated emotional datasets. Yet, creating

such data is cost prohibitive because of the large
human efforts involved.

Moreover, SER becomes extremely a compli-
cated task with an under-resourced language like
the Tunisian dialect (Fourati et al., 2020) because
of the lack of resources and the non-existence of
the emotional Tunisian dataset. There are various
existing researches in the field of Arabic Speech
Emotion Recognition. But, they are basically re-
stricted to MSA (Hifny and Ali, 2019).

The primary research questions we wish to in-
vestigate in the paper are:

• Question 1: How to build a labeled speech
emotional dataset when it comes to under-
resourced dialect?

• Question 2: Can the SER model identify the
emotional state of a person regardless of the
language or dialect used?

• Question 3: Can we use large multilingual pre-
trained acoustic models to classify Tunisian
dialectal emotional states?

• Question 4: Which mathematical model for
creating reliable recognizers in the case of
Tunisian dialect?

The paper structure is described as follows. In
Sections 2 we introduce the related work on En-
glish and Arabic Sentiment Emotion Recognition.
In Section 3 we describe the different steps to build
a SER Tunisian dataset. In Section 4, we present
the proposed methods to build a SER model. In
Section 5 we detail the different experiments and
present the outcomes, and finally, the paper is con-
cluded in Section 6.

2 Relation to prior work

For Speech Emotion Recognition problems, dif-
ferent methods have been used such as SVM
(Seehapoch and Wongthanavasu, 2013), HMM
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(Schuller et al., 2003), decision-trees (Lee et al.,
2011) etc. These methods explored different fea-
tures that detect the emotion held in speech in-
cluding pitch, shimmer, jitter and MFCCs (Mel-
Frequency Cepstral Coefficients) (Ghosh et al.,
2016) (Liu et al., 2018). However, one of the major
drawbacks of these techniques is that they require
a previous knowledge of all the mandatory features
that had a direct impact on the emotion recognition
task like energy and fundamental frequency (F0).
A work done (Sahu, 2019) has revealed that tradi-
tional machine learning methods still can reach a
high performance as the latest Deep learning mod-
els (such as LSTM) in this field.

Deep neural networks represent the latest models
in Speech Emotion Recognition. They were used
to automatically extract high-level features from
audio and have successfully achieved high perfor-
mances (Han et al., 2014). Since then, different
neural network architectures have been used for
Speech Emotion Recognition. An innovative study
(Zheng et al., 2015) was done by applying CNN for
speaker independent emotion recognition systems.
They came up with the conclusion that deep learn-
ing methods outperform machine learning methods
for SER.

Other successful methods were deployed such
as RNN and bidirectional long-short term mem-
ory (BLSTM) (Lee and Tashev, 2015). Another
attempt was to combine a CNN model with a RNN
model (Trigeorgis et al., 2016) and it has shown a
success as well and an efficient speech emotion
recognition. Artificial Neural Networks (Shaw
et al., 2016), Deep Convolutional Neural Networks
(Zhang et al., 2017) and other deep learning ap-
proaches (Abbaschian et al., 2021) were used to
bring out the best result for the SER task.

Recently, wav2vec 2.0 (Baevski et al., 2020) has
been used in emotion classification task (Pepino
et al., 2021) and results in state-of-the-art results
for both IEMOCAP and RAVDESS datasets with a
recall of 0.67 and 0.84 respectively.

When it comes to Arabic Speech Emotion
Recognition (ASER), there are few available
datasets for Arabic language. The Basic Arabic
Vocal Emotions Dataset (BAVED) (Aouf, 2019)
contains Arabic words spelled in three levels of
emotions recorded in an audio format, low emo-
tion (tired or exhausted), neutral emotion, and high
emotion positive or negative emotions (happiness,
joy, sadness, anger). The dataset contains 1935

recordings that are recorded by 61 speakers (45
males and 16 females).

(Mohamed and Aly, 2021) introduced a recog-
nition model for Arabic speech dialogues based
on deep learning . The developed model employs
the state of the art audio representations including
wav2vec2.0 and HuBERT (Hsu et al., 2021). They
reached an accuracy of 89% and 87% respectively
for wav2vec 2.0 and HuBERT.

(Meddeb et al., 2016) present the main steps
to extract and recognize basic emotions (Neutral,
Happiness, Sadness, Anger and Fear) in the Ara-
bic speech. They created an Emotional speech
database called REGIM_TES (Meddeb et al., 2014)
containing 720 speech samples. The length of
speech samples is up to 5 Seconds. The selected
features in the study are: Pitch of voice, Energy,
MFCCs, Formant, LPC and the spectrogram. Re-
sults showed that pooling together features ex-
tracted at different sites improved classification
performances.

As far as we know, there is no Speech Emotion
Recognition dataset for the Tunisian Dialect. In the
next section, we present our methodology to build
a SER dataset for an under-represented language.

3 Tunisian Speech Emotion Recognition
Dataset

Speech datasets used for building Speech Emotion
Recognition systems are divided into three types
namely:

• Simulated: Simulated databases are created
by reading the same text by different trained
speakers with different emotions. The num-
bers of distinct emotions are important, as
they have synthesized emotions, they are dis-
posed to have over-fitted models around emo-
tions a little bit different than what is hap-
pening in real life and day-to-day conversa-
tions. Those databases make comparing re-
sults very easy due to the standardized col-
lections of emotions. Berlin Database of
Emotional Speech1 and the Ryerson Audio-
Visual Database of Emotional Speech and
Song (RAVDESS) (Livingstone and Russo,
2018)2, are some simulated datasets used for
SER (Abbaschian et al., 2021).

• Induced: Semi-natural databases are very
1http://emodb.bilderbar.info/start.html
2https://smartlaboratory.org/ravdess/
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similar to the natural utterances of speech,
even if they are made based on scenarios
with a contextual setting. The emotions are
artificial because speakers know that they
are recorded. Unfortunately, those data sets
have a limited number of emotions due to the
limited cases of the scenarios compared to
other types of data sets (Abbaschian et al.,
2021)(Zheng et al., 2015).

• Natural: The natural datasets are made of
fully natural emotions which eliminate the
problem of being artificially made. They are
very effective because they perfectly repre-
sent our daily life due to the contentiousness
of emotions and the existence of the back-
ground noise and concurrent emotions and
the dynamic variation of the speech. How-
ever, those characteristics make the detection
and the modeling of the emotions more com-
plicated. The number of emotions is limited
due to the limited sources (Abbaschian et al.,
2021). VAM3 is one of the most famous natu-
ral databases used for SER tasks.

Universal emotions are defined as six categories:
happiness, sadness, disgust, fear, surprise, and
anger (Collet et al., 1997). Nevertheless, in this
study, we focus only on four categories: Happy,
Sad and Angry in addition to Neutral because it is
largely used in the state of the art (Han et al., 2014)
(Zheng et al., 2015).

3.1 Tunisian dialect

Tunisian Arabic (Tunisian), is the set of dialects
of Maghrebi Arabic spoken in Tunisia known lo-
cally as Derja (Sayahi, 2014). It is used in the
daily life and turn out to be the language of on-
line communication since the 1990 like the social
media, SMS, and emails etc. Considering Tunisia
as a multilingual country, code-switch and mixing
Tunisian with other languages as French, English
and Modern Standard Arabic in daily speech is
a common thing for the Tunisian people (Daoud,
2007). Tunisian dialect contains many varieties
differing from a region to another.

Emotions does not feel the Same across different
Cultures, they can differ across cultures through
our use of language to understand and express our

3https : //sail.usc.edu/V AM/vamrelease.htm

emotions. Tunisian emotional states are quite dif-
ferent to the other non Tunisian speakers, being
angry as a Tunisian is not the same as a German or
as an Algerian.

3.2 TuniSER Dataset
In order to build the first Tunisian Speech Emotion
Recognition dataset (TuniSER), we divide emo-
tions into two categories:

• Primary emotions: These emotions occur the
most and they are the most used for the emo-
tion recognition task. These emotions are:
Happy, Sad, Angry, Neutral.

• Secondary emotions: Due to the rarity of
these emotions and for long term purposes,
we chose to keep them for annotation, the
emotions are: Fear, Disgust and Surprised.

The first step is to choose the data sources. We
focus on Tunisian series and TV programs publicly
available online. We are seeking suitable, useful
audios that are rich of emotions. Due to the non ef-
fectiveness of natural databases on emotion speech
recognition, our dataset is then semi-natural (In-
duced). We select different audios for actors play-
ing their roles in a sequence and manually extract
the ones that contain explicit emotional states. We
focus on the quality and diversity of the sources.
Audios have to be quite clear and contain both male
and females, different ages, situations and contexts.

Once audio sequences containing emotions are
collected, we convert them to the required format.
To take out the best emotional scenes from the
audio, we choose to apply segmentation which sep-
arates the input audio sequence into small utter-
ances of a range from 0.41 to 15.31 seconds with
an average around 1 seconds (figure 1), with a clear
expression (the whole word or sentence) that con-
tains a significant emotional state without ignoring
parts of the words and without overlap between the
speakers.

We do a manual validation step before the anno-
tation process. We only keep audios based on the
following criteria:

• Each utterance should contain only one sub-
ject talking and contain only one scene.

• Sound should be clear without noise so that
you can hear the speaker clearly talking.

• utterances should not contain music, silence
or be with a bad quality.
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The annotation process is divided on three Tunisian
native speakers. Two female annotators are at a
higher education level (Master/PhD), aged 23, and
one female, aged 27, working as research Engineer.
Labels are divided into the two emotions categories
(Primary and Secondary emotions), according this
guideline:

• Happiness: an upbeat, pleasant way of speak-
ing/laughing.

• Sadness: Crying/Dampened mood/lack of en-
ergy and enthusiasm.

• Anger: such as speaking harshly or yelling.

• Neutral: lack of emotional state/ nothing in
particular.

If an annotator finds an utterance that have an-
other emotional state, it can be annotated as one
of these secondary emotions: Fear (Such as rapid
breathing and trembling voice.), Disgust (Voice ex-
pression that shows disgust.) and Surprise (Such
as yelling, screaming or gasping).

We also mark the gender of the speaker in a
segment (Male or Female) for long term purposes.

In Table 1, we present the number of clips per
label.

Emotion Female Male Total
Happy 153 172 325
Angry 230 387 617
Sad 247 127 374
Neutral 426 896 1322
Fear 27 7 34
Surprised 46 42 88
Disgust 2 2 4
Total 1136 1635 2771

Table 1: Statistics of the Tunisian SER dataset.

The obtained dataset is composed of 2771 utter-
ances, with 1136 female utterances and 1635 male
utterances. Our data carries semi-natural emotions
that contain contextual and situational information.
Every utterance holds a single emotion.

Using an unbalanced dataset will generate an
over-classification problem for the larger classes.
To solve this, we manually balance the data by
extracting the same number of samples for each
class. Data preparation was done to facilitate the
use of our dataset to train the models. Finally, we
obtain a final balanced dataset with 1300 samples

Figure 1: Distribution of the clips length

distributed equally between the four main classes
(happy, angry, sad and neutral).

4 Training models

In this section, we will present the architectures of
the models used to build our Tunisian SER. In fact,
we explored different Machine Learning and Deep
learning models for both features extraction and
classification steps.

First, we wanted to investigate the influence of
languages in SER. We trained using an SVM archi-
tecture a SER model on the RAVDESS dataset (Col-
let et al., 1997) which is an English SER dataset.
It includes 1440 audio files of 24 speakers which
includes half of male and half female actors and
each of them has 60 recordings. The speech is in
North-American accent. Then, we used the model
to test our in-house Tunisian dialectal dataset. Due
to the unsatisfactory results, we deduce that the
interpretation of the sense of a word and the emo-
tional states change from a language to another and
this is due to multiple factors, such as culture.

Second, we experiment the Long short term
memory model (LSTM) with different techniques
of feature extraction (Chroma, Mel spectrogram,
and Mel-frequency ceptral coefficients). We
wanted to investigate which feature works best for
the Tunisian SER. We noticed that even if the com-
bination of the 3 features give good results, using
only MFCC gives us the best results.

Finally, we introduced two large pre-trained
models (The VGGish and wav2vec 2.0 models) as
feature extractors followed by classifiers to predict
emotions.

4.1 VGGish Model
The google VGGish is a variant of the VGG model
(Sahoo et al., 2019) and they have a very similar

237



architecture. The VGGish model was pre-trained
on the AudioSet (Gemmeke et al., 2017) database,
which is a collection of more than 2 Million human
labeled audio clips collected from Youtube videos
with 10 second length each. This database contains
over 600 sound classes: Music, Speech, Vehicle,
etc. Before feeding the audio clip to the VGGish
model, the following steps are applied:

• All audios are resampled to 16 kHz.

• Spectrogram is extracted using magnitudes of
the Short-Time Fourier Transform, with three
windows: a window size of 25ms, a window
hop of 10ms and a periodic Hann window.

• By mapping the spectrogram to 64 mel bins
covering the range 125-7500 Hz, a mel spec-
trogram is computed.

• A stabilized log mel spectrogram is obtained
by applying log using the offset to avoid tak-
ing a logarithm of zero.

• These features are then framed into non-
overlapping examples of 0.96 seconds length,
where each example covers 64 mel bands and
96 frames of 10ms each.

Speech segments that are longer than 0.25 carry
enough information about the emotional state of
the speaker. Therefore, detecting emotion from
consecutive segments of the same audio clip will
be more efficient (Sahoo et al., 2019). So, we apply
overlapping segmentation to catch better correla-
tion between the segments of the same clip and at
the same time it is considered as a data augmenta-
tion because it increases the number of data points.
We extract one-second duration of overlapping seg-
ments and fill the last segment with silence to make
it one second long. For all segments the overlap-
ping duration is 0.5. This is the first component
of our model representing the feature extractor, in
which it takes a 96 × 64 dimensional mel spec-
trogram as input. VGGish network architecture is
constructed of four blocks, two convolution and
max-pooling layers followed by 2 fully connected
(FC) layers of 4096 units each and finally a FC
layer of 128 units that gives the embedding vector.
VGGish gives a high-level 128-D embedding from
audio input features. Those embedding could be
fed to the downstream classification model as input.
The VGGish embedding is semantically meaning-
ful and compact than classic and raw audio features

Figure 2: Visual Representation of the VGGish-based
model.

so they allow downstream models to be shallower
than usual.

For the classification, we applied different ap-
proaches based on feeding the 128-dimensional
embedding vector to n fully connected layers with
N hidden units, with n=1,2 and N =[100,200,400].
Finally, the logit layer is used to predict the emo-
tion for each segment of the same utterance. The
full architecture is presented in Figure 2.

Figure 3: Confusion Matrix with 1 FC layers and num-
ber of units=400

4.2 Multilingual wav2vec 2.0
Wav2vec 2.0 (Baevski et al., 2020) is a framework
for self-supervised learning of representations from
raw audio. It has 2 stages: pre-training and fine-
tuning. In pre-training, the speech input is masked
in the latent space and a contrastive task with pre-
dictions from the transformer and quantized latent
speech representations is solved to learn contextu-
alized information. This enables learning powerful
representations from speech audio alone. The ar-
chitecture of wav2vec 2.0 represents three stages,
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a local encoder, which contains several convolu-
tional blocks, a contextualized encoder, and a quan-
tization module. To pre-train the acoustic model,
we use a multi-layer convolutional feature encoder
which takes raw audio as input and outputs latent
speech representations. They are then fed to a
Transformer to build representations capturing in-
formation from the entire sequence. The output
of the feature encoder is discretized with a quanti-
zation module to represent the targets in the self-
supervised objective. The model builds context
representations over continuous speech represen-
tations and self-attention captures dependencies
over the entire sequence of latent representations.
We masked a certain proportion of time steps in
the latent feature encoder space similar to masked
language modeling in BERT (Devlin et al., 2019).

Pre-trained models are then fine-tuned for down-
stream tasks like Automatic Speech Recognition
by adding a classifier with C classes representing
the output vocabulary of the respective downstream
task on top of the model and training on the labeled
data with a Connectionist Temporal Classification
(CTC) loss (Graves et al., 2006).

To train our SER model, we used fine-tuned mod-
els on both MSA and Tunisian dialect Automatic
Speech Recognition downstream task to better de-
termine the context representations for the input
audios, since ASR datasets are more available and
larger than the SER ones. Finally, we built a neural
network as classifier (Table 2) on top of it to predict
the class of each audio. The workflow is presented
in Figure 4.

Figure 4: Multilingual Wav2vec 2.0-based model work-
flow.

5 Experimental Setup and Results

For the VGGish model, we start training our model
with the following configuration: 16 as batch size,
Adam optimizer with epsilon equal to 10−8 and
a Learning rate of 10−6. We start our training

Architecture
Dropout
Single layer feed forward network
Tanh
Dropout
Single layer feed forward network

Table 2: Neural Network classifier architecture.

by applying the segmentation process after split-
ting our data into 70% train set, 15% validation
set and 15% test set. We trained the model for
261 epochs, with three different numbers of hidden
units N=[100,200,400] and different numbers of
FC layers [1,2]. The best result is obtained with
400 numbers of hidden units and 1 Fully connected
layer.

For the second approach, we used the multi-
lingual wav2vec 2.0 model. As a first step, we
fine-tuned it for the Automatic Speech Recogni-
tion downstream task on two languages: Modern
Standard Arabic (MSA) and Tunisian dialect. For
MSA, the model is trained using the Mozilla Com-
mon Voice dataset. For the Tunisian dialect, we
used the STAC (Zribi et al., 2015) which is a small
Tunisian ASR dataset. Table 3 presents the results
of fine-tuning wav2vec on the ASR downstream
task on both MSA and Tunisian dialect datasets.

Language Dataset WER (%)
MSA Common voice 52.53
Tunisian Dialect STAC 62

Table 3: Results of fine-tuning multilingual wav2vec
2.0 on the Automatic Speech Recognition downstream
task with MSA and Tunisian Dialect data.

Finally, we built a classification layer on top
of the two fine-tuned models to perform the emo-
tions classification. For both models, we adjust the
number of epochs and the value of learning rate
intuitively to find the best results. We split our bal-
anced data into 80% as training and 20% validation
set. 1035 samples for the training and 256 samples
for the validation.

6 Discussion

Using the VGGish model as a feature extractor fol-
lowed by a classifier trained on our constructed
Tunisian dialect dataset, we achieved 58,2% as
frame accuracy and 60.05% as Average logits clip
accuracy, with 1 Fully Connected layer and number
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Model Acc. (%)
LSTM 52.63
VGGish 60.05
multilingual wav2vec MSA 52.10
multilingual wav2vec TD 60.60

Table 4: Comparing different models.

of hidden units = 400. We noticed that changing the
number of units gives closer results. The training
loss decreased continuously over epochs and the
validation loss decreased until the epoch number
151 and started to increase so an early stopping
was applied to avoid over-fitting and keep the best
result of the model. The confusion matrix, Figure
3, represents the performance of the model for each
label of the test dataset. We noticed that adding
two Fully Connected layers instead of one layer
decreased the results from 58,2% to 54% for the
frame accuracy and from 60.05% to 53.1% for the
Average logits clip accuracy.

For the second approach, fine-tuning the multi-
lingual wav2vec 2.0 model with MSA and Tunisian
dialect gives satisfactory results. In the first try, in-
tuitively running the model with a different number
of epochs and learning rate gives 52,1% accuracy
with MSA language and 60,6% accuracy with the
Tunisian dialect. The training and validation losses
for both attempts were decreasing with remarkable
fluctuations. These are explained by the fact of us-
ing a large neural network with a lot of parameters
with small datasets such as our case. This could be
solved by increasing the batch size or reducing the
parameters of the model.

7 Conclusion and future work

In this paper, we described our methodology to
build a Tunisian Speech Emotion Recognition
dataset. We detailed the process of using LSTM,
and two large pre-trained models: the VGGish and
the multilingual wav2vec 2.0 as feature extractors
for the Speech Emotion Recognition task. We ex-
plained the implementation part for each approach
and the different steps followed to train the mod-
els. The best result was obtained by fine-tuning the
multilingual wav2vec 2.0, which reaches a WER
of 60.6%. Our work is an important step for the
SER task on the Tunisian dialect, since our satis-
factory results could be improved in a future work
by augmenting the datasets size and applying en-
hancement techniques.
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Abstract

The automatic prediction of emotional re-
sponses to music is a task of inherent inter-
est to the field of music information retrieval.
These efforts are often hindered by the absence
of large datasets available for this task. In
this work, we investigate the use of sentiment
analysis on online social media conversations
as an alternate data source to train computa-
tional models to predict the emotive responses
to a piece of music. Using two datasets an-
notated with valence and arousal values, we
create a corpus of social media commentary
for these songs extracted from YouTube, Twit-
ter, and Reddit. We evaluate our approach
with transformer models to predict the affec-
tive values of the 2402 songs in our dataset.
We achieve a moderate Pearson’s correlation
of 0.62 and 0.72 for valence and arousal, re-
spectively, for discourse from YouTube. These
promising results demonstrate that discourse
about music may carry semantic information
useful to making determinations about the mu-
sic itself. Such an approach could potentially
supplement music information retrieval sys-
tems to estimate emotion for pieces of music
for which the audio is restricted by copyright
or otherwise unavailable.

1 Introduction

The task of music emotion recognition employs
computational methods to attempt to predict the
emotions elicited by a listener while listening to
a piece of music. Estimating the cultural average
response of an audience to a song is of interest
to the music information retrieval community. A
system for automatic music emotion recognition
would enable large music libraries to be rated for
estimated emotive responses. Online music stream-
ing platforms could then better tune their music
recommendation algorithms by filtering by mood
or emotion.

Although researchers have investigated many dif-
ferent approaches for music emotion recognition,
such efforts have been hindered by the paucity of
large datasets suited for this task. These datasets
are expensive to create as they require multiple
human listeners to manually annotate musical ex-
cerpts. Complicating matters, there is no standard
definition of this task. Some studies consider four,
six, or eight discrete labels used to approximate
human emotion. More recent datasets favor the
valence-arousal model which treats emotions as
a set of continuous values in a multidimensional
space (Russell, 1980).

Furthermore, most musical recordings are copy-
righted and this usually precludes the release of
audio data as part of the dataset. In an attempt to
bypass this limitation, the Million Song Dataset1

released pre-computed acoustic features instead of
raw audio. However, this approach limited the abil-
ity of researchers to explore certain algorithms or
discover innovative features. In the area of music
emotion recognition, researchers have struggled
with an apparent upper bound in the ability of low-
level acoustic features to predict human affective
responses to music (Panda et al., 2020). Some re-
searchers have turned to multimodal approaches,
such as incorporating natural language analysis of
song lyrics to make predictions about the song itself
(Laurier et al., 2008).

We hypothesize that social media discussions
surrounding a song contain semantic information
which can be used to help predict a song’s affective
qualities. In this work, we present an approach
for estimating affective responses to music based
solely on commentary from social media. We cre-
ate datasets of social media discourse for the songs
contained in two music emotion datasets. We then
compare the efficacy of two popular transformer

1http://millionsongdataset.com/
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models in the task of predicting affective responses
to music trained solely on natural language without
the use of signal processing or acoustic features. To
our knowledge, this is the first attempt to estimate
affective responses to music indirectly based on
social media conversations.

2 Background and Related Work

In this section we briefly review some of the ap-
proaches for music emotion recognition. We also
describe the transformer architectures that we em-
ploy in our experiments.

2.1 Acoustic Features

Traditionally, approaches for automatic music emo-
tion recognition have relied on learning informa-
tion from acoustic features derived from the raw
audio of a song. One early approach tasked domain
experts to annotate 250 pieces from the Classical
repertoire with four broad categories: contentment,
depression, exuberance, and anxiety. The authors
achieved a classification accuracy of 86.3% against
expert ratings by training a Gaussian mixture model
on acoustic and temporal features (Lu et al., 2006).

Another such study crowdsourced online anno-
tations for 30-second excerpts from film scores.
Importantly, each of the 200 songs was tagged by
multiple listeners, 28.2 annotators on average, with
one of eight mood categories: sublime, sad, touch-
ing, easy, light, happy, exciting, and grand. The
authors empirically selected 29 acoustic features
and trained a Support Vector Machine, reporting
a cosine similarity of 0.73 between predicted and
user-annotated labels (Wu and Jeng, 2008).

More recently, there have been efforts to develop
mid-level features that may be better understood by
a knowledgeable listener. These explainable fea-
tures include perceptual concepts such as tonal sta-
bility, articulation, and rhythm. The authors trained
a convolutional neural network using such features
extracted from a set of 110 movie soundtracks
to achieve a correlation of 0.71 compared to ex-
pert emotion annotations (Chowdhury et al., 2019).
This approach encourages feature-importance anal-
ysis on these mid-level features, perhaps enabling
future recommendation systems to provide context
for its mood-based suggestions.

2.2 Incorporating Song Lyrics

Approaches using acoustic features alone have not
yet proven entirely effective in predicating affective

responses of music. The semantic gap between low-
level audio features and human affective responses
potentially limits the ability of systems using only
raw acoustic information to predict emotional re-
sponse to music (Panda et al., 2020). It is likely
that music emotion prediction systems must be
augmented with additional data in order to improve
emotion recognition performance in any meaning-
ful capacity (Yang and Chen, 2012).

Subsequently, researchers turned to a song’s
lyrics as a potential source of data to aid in the pre-
diction of a song’s emotional qualities. For 1000
pop songs, one study generated synthetic labels by
comparing the similarity of Last.FM2 tags to one
of four mood category descriptors (angry, happy,
sad, relaxed) using the WordNet3 database. The
authors then were able to predict mood categories
with 62.5% accuracy using only lyrics, compared
to their baseline accuracy of 89.8% using acoustic
features. When the authors combined acoustic and
lyric features, they improved classification accu-
racy to 92.4% (Laurier et al., 2008).

Another study reported that their lyric-only
model (63.7%) outperformed its audio-based coun-
terpart (57.9%) (Hu and Downie, 2010). A mul-
timodal model using both feature sets marginally
increased performance to 63.7% using a dataset
covering 18 mood categories.

2.3 Direct Prediction from Lyrics

Recently, investigators have explored emotion
recognition models based only on the text in the
lyrics. One such study determined the valence and
arousal values of individual words in the lyrics us-
ing established word lists. These values were then
aggregated to create a song-level prediction of va-
lence and arousal. The authors achieved a 74.25%
classification accuracy relative to the All Music
Guide4 mood tags (Cano and Morisio, 2017).

Agrawal et al. applied a transformer approach
based solely on song lyrics to achieve a 94.78%
classification accuracy on a large dataset of lyrics
and four emotion categories (Agrawal et al., 2021).
This promising result demonstrates the ability to ex-
tract meaningful semantic information from music
lyrics without the need for acoustic analysis.

2https://www.last.fm/
3https://wordnet.princeton.edu/
4https://www.allmusic.com/
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2.4 Transformers

Transformers are deep learning models based on
the principle of self-attention. This mechanism al-
lows each token in an input to be weighted based
on the context provided by surrounding tokens in
order to capture an internal representation of the
dependencies between elements. First introduced
in 2017 (Vaswani et al., 2017), this architecture has
proved especially successful with natural language
processing tasks. More recently, transformer mod-
els have been adapted for emotion recognition of
natural language (Chiorrini et al., 2021). Trans-
former models have also been recently applied in
the area of music mood categorization, using lyrics
as model input (Agrawal et al., 2021).

Bi-directional Encoder Representations from
Transformers, or BERT (Devlin et al., 2019), is
a popular transformer model for natural language
understanding. This model comes pre-trained on
a large dataset of English literature and Wikipedia
articles. Although pre-training allows BERT-like
models to be fine-tuned relatively quickly, train-
ing can still require immense compute resources,
especially in the case of many NLP tasks where
datasets can be quite large.

The RoBERTa model improves upon the original
BERT model, adding additional model parameters
and increasing the size of the training dataset by
an order of magnitude (Liu et al., 2019). Although
RoBERTa is able to exceed BERT’s performance
on many benchmark NLP tasks, this performance
comes at the cost of significantly greater resources
required for model training.

In an alternate approach, the DistilBERT model
aims to lower the computational cost of training
transformer models on large datasets by reducing
the size of the model, and thereby significantly im-
proving training and inference times (Sanh et al.,
2019). The DistilBERT model reduces the num-
ber of model parameters by almost a factor of
two while retaining competitive performance when
compared to BERT.

In this work, we compare RoBERTa and Distil-
BERT models in the task of predicting emotion of
songs directly from social media discussions.

3 Datasets

In this section we describe our selection of songs
to consider in our experiment. We then detail our
procedure for collecting musical discourse from
social media platforms.

3.1 Music Emotion Datasets

Although music emotion recognition has been of
particular interest in recent years in the field of mu-
sic information retrieval, research is limited by a
lack of available datasets suited for this task. These
datasets require listeners to annotate musical ex-
cerpts. These experiments must be carefully con-
trolled and usually occur in a lab environment or
using an online crowdsourcing platform. Further-
more, these studies must employ large sample sizes,
since the interpretation of music is highly subjec-
tive. We identified only four such datasets that
provide continuous affective measurements in the
valence-arousal space.

The DEAM dataset consists of 1,803 songs se-
lected from royalty-free platforms and are songs
likely unknown to the participant (Aljanaki and
Soleymani, 2018). Listeners provided continuous
annotations over the duration of the 45-second ex-
cerpt. Unlike other datasets, DEAM is able to pro-
vide the accompanying audio for each song, since
these are not restricted by copyright. However, this
also meant that these songs are relatively unknown.
We were unable to consider this dataset because of
an insufficient presence of social media commen-
tary.

The Deezer dataset is a large set of 18,644 songs
with synthetically generated affective annotations
(Delbouys et al., 2018). These annotations were
created with affective modeling based on the song’s
set of user tags on the website Last.FM. Although
the large size of the Deezer dataset makes it a po-
tentially valuable tool in this area of research, we
exclude its consideration here as its emotion labels
were estimated from natural language rather than
human annotation.

In this work, we consider two datasets of songs
with valence-arousal annotations. The first is the
AMG1608 dataset, 1608 songs selected from the
All Music Guide (Chen et al., 2015). In a crowd-
sourced task, listeners annotated 30-second ex-
cerpts. The study employed 665 annotators and
achieved between 15 and 32 annotations per song.
The second, the PmEmo dataset, contains annota-
tions for 794 songs selected for their popularity on
record industry charts (Zhang et al., 2018). The
study recruited 457 undergraduate students to an-
notate 30-second excerpts. Because this study took
place in a controlled lab setting, the authors also
collected measurements of electrodermal activity.

Each of these datasets provides an artist name,
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Dataset Songs Label Type Scaling

AMG1608 1608 Crowdsourced [−1, 1 ]
PmEmo 794 Lab Study [ 0, 1 ]

Table 1: Comparison of the music emotion datasets

song title, and accompanying valence and arousal
labels for each song. However, the scale used in
each approach varies, as shown in Table 1. These
differences reflect the differences in the method-
ology used in the data collection. We scale these
values to [−1, 1] for use in this study, but we con-
cede that these differences limit the utility of cross-
dataset comparisons. We show the distribution of
valence and arousal labels as Figure 1.

From these two datasets, we extract the artist
names and song titles to be used in our queries.
In total, we consider 2402 songs, however dupli-
cates were not removed, so that each dataset can be
evaluated independently of one another.

Figure 1: Box-and-whisker plots for the distribution of
music emotion dataset labels in each dataset.

3.2 Social Media Data Collection

To explore the use of social media conversations as
a feature space for music emotion prediction, we
first must create a dataset of online discourse. We
collect comment threads from social media for the

songs featured in our two music emotion datasets:
AMG1608 (Chen et al., 2015) and PmEmo (Zhang
et al., 2018). Reddit, Twitter, and YouTube are
large, popular social media platforms with active
music subcultures, where individuals often con-
verse about artists, songs, and concerts. In the case
of YouTube, many use it as a platform to share and
listen to music as well.

We collected our data over the course of two
months in late 2021, harvesting all relevant com-
mentary posted to date. For each song in our
dataset, we query the platform for the artist name
and track title. For YouTube and Reddit we extract
the 10 highest rated submissions, based on likes
and upvotes, respectively. We include all nested
comments that appear as a response to a top-level
comment. As a platform focused on short text
posts, Twitter posts differ from the other two sites.
Instead of a traditional reply chain, users retweet a
post while potentially adding optional commentary.
To avoid duplicating comments, we instead retrieve
the top 100 tweets referencing the given song, ex-
cluding retweets. If a query for a song yields no
submissions, we exclude that song from our dataset.
In Table 2 we summarize our dataset of retrieved
comments for each social media source.

Across both datasets, YouTube achieved the
highest retrieval rates, finding more than 95% of the
songs. This shows that YouTube supports a robust
community for music-related discourse. The song
retrieval rate for Reddit was also high, succeed-
ing in finding at least 86% of the songs in either
dataset. The retrieval rate for Twitter is notably
lower, finding only 43% and 51% of songs in the
two datasets. Because we could not find discussion
of many songs, we conclude that Twitter is a less
active medium to discuss opinions about music.

We show the distribution of retrieved comments
as Figure 2. Overall we found more comments per
song for songs in the PmEmo dataset across these
three platforms than songs from AMG1608. This
likely reflects the popularity of songs on record
industry charts. We also observe that comments
on Reddit tend to contain more words than those
on YouTube, indicating that these discussions are
frequently longer and perhaps more detailed than
similar conversations on YouTube. As expected,
given the 280-character limit, Twitter conversations
are much shorter.
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Songs Comments Words

n yield n µ σ µ σ

AMG1608
Reddit 1431 89% 129,722 80.7 154.3 2400.8 69.1
YouTube 1592 99% 217,093 135.0 57.7 2128.7 33.66
Twitter 822 51% 5726 3.6 7.9 51.1 14.5

PmEmo
Reddit 627 86% 103,398 136.6 218.7 3810.5 56.8
YouTube 730 95% 121,546 160.6 63.9 2172.1 44.1
Twitter 331 43% 2699 3.6 7.3 46.0 15.2

Table 2: Summary statistics describing our dataset of social media commentary by social media source.

Figure 2: Comment and word distributions of our dis-
course datasets.

4 Experiment and Results

To test the utility of social media discourse towards
the prediction of emotion in music, we conduct a
deep learning experiment. We compare two pow-
erful pre-trained transformer models for natural
language understanding − DistilBERT (Sanh et al.,
2019) and RoBERTa (Liu et al., 2019). In this sec-
tion, we describe our model architecture, explain
our experimental design, and present our results.

4.1 Model Architecture

Our model architecture consists of a pre-trained
transformer model augmented with a densely con-
nected neural network to predict regression tar-

gets from the last hidden state of the transformer,
referred to as the regression head. We use the
TFDistilBertBase and TFRobertaBase
model implementations provided by the Hugging-
face deep natural language processing library5.

Each input to the model consists of one text
comment, with corresponding music valence and
arousal labels. Sentences are tokenized using Hug-
gingface’s TokenizerFast library. We use the
default input size of 128. Comments longer than
128 words will be truncated, and comments shorter
than this sequence length will be right-padded with
0-tokens. For each model, we use the default lan-
guage model architecture: six layers and twelve
self-attention heads in the case of DistilBERT, and
twelve layers with twelve self-attention heads for
RoBERTa.

Deep learning models, such as transformers, nat-
urally support multi-target regression through the
use of a set of output nodes. This approach al-
lows our model to predict valence and arousal as
co-dependent values instead of independent labels
as has often been done in prior approaches. As a
regression head for each pre-trained transformer
model, we append two fully connected layers and
an output layer of two nodes, representing valence
and arousal. We use mean-squared error as our loss
function and a learning rate of 1× 10−5.

4.2 Experimental Design
We randomly partition our dataset into training
(0.70), validation (0.15), and test (0.15) sets. We
split our dataset at the song-level, rather than the
comment-level to prevent potential information
leakage from our test set. Valence and arousal
labels are normalized and scaled to [0, 1].

We filtered the raw social media comments to
remove URLs and HTML tags. Since transformer

5https://huggingface.co/models
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models are pre-trained on large corpora of English
text, they expect the input to adhere to standard
grammatical structure. Therefore we do not filter
stop-words or words with neutral sentiment.

The model outputs consist of a valence and
arousal prediction for each comment. To aggregate
a prediction at the song-level, we take the mean of
the predictions across all comments for a particular
song. We evaluate our models’ performance using
the Pearson’s correlation between our predictions
and ground truth values for valence and arousal.

4.3 Results

We begin by comparing the RoBERTa and Dis-
tilBERT models. We train each model using the
combined social media commentary from Reddit,
Twitter, and YouTube. We considered any song
in the AMG1608 and PmEmo datasets as long as
they are included in at least one of the three social
media sources.

4.3.1 Model Comparison
BERT-like models are known to require minimal
additional task-specific training due to their pre-
trained nature (Devlin et al., 2019). In preliminary
experiments we trained each model for 10 epochs
and observed that our models converged between
one and three epochs, depending on the dataset.
In order to compare the performance of these two
models while controlling for overfitting, we train
each model for two epochs. We compare the results
for each model and dataset in Table 3.

DistilBERT RoBERTa

AMG1608
Valence 0.49 0.51
Arousal 0.64 0.63

PmEmo
Valence 0.72 0.71
Arousal 0.64 0.64

Table 3: Comparison of DistilBERT and RoBERTa per-
formance after two epochs of training.

The performance between the two models is
comparable and the differences are not statistically
significant. However, the difference between com-
putational cost for these models is considerable. In
our experiments, the DistilBERT model completed
training in less than half the runtime as RoBERTa.
Because the models are comparable in predictive
performance, we use DistilBERT in our subsequent
experiments.

4.3.2 Source Comparison
Next, we train individual models for each social
media source, Reddit, Twitter, and YouTube. Be-
cause not every song was found on each platform,
the number of songs used to train each model varies
(see Table 1). We compare these three source-
specific models with another model that combines
comments from all three sources. We show the
results of this experiment for the AMG1608 song
list using DistilBERT as Table 4.

AMG1608
Reddit Twitter YouTube All

Valence 0.32 0.23 0.62 0.49
Arousal 0.56 0.34 0.72 0.64

PMEmo
Reddit Twitter YouTube All

Valence 0.56 0.26 0.68 0.72
Arousal 0.60 0.16 0.52 0.66

Table 4: Results of DistilBERT trained for two epochs
for each social media source and song list.

We observe the highest overall performance on
the YouTube subset achieving valence and arousal
correlations of 0.62 and 0.72, respectively, on
the AMG1608 dataset. Across both datasets the
YouTube model tends to outperform the Reddit
model, even though both data sources contain a
comparably large number of comments. Although
we matched fewer songs and collected fewer com-
ments from Twitter, we still observe weak corre-
lations between Twitter discourse and the song’s
valence and arousal annotations.

In addition to the source-specific models, we also
examined the performance of the combined model.
For the AMG1608 song list, the combined model
demonstrated improvement over either the Reddit
or Twitter model alone. However, aggregating all
sources together reduced performance compared
to the YouTube model alone by 21% for valence
and 11% for arousal. Conversely, we observe the
combined model outperformed any of the three
source-specific models for the PMEmo songs.

Ultimately, these conflicting trends likely reflect
the differences between the specific songs present
in the two datasets, rather than differences in util-
ity between the social media sources. This again
underscores the field’s need for much larger and
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diverse datasets of music annotated with human
affective responses.

5 Discussion

In this work, we present a novel approach to es-
timate the emotional qualities of a song solely
through analysis of discussion of that song on so-
cial media. We create large datasets of conver-
sations discussing music from three social media
platforms. We train natural language transformer
models to predict affective measurements of the
song, directly from this discourse alone. Over-
all, we observe moderate correlations between our
predictions across the three social media sources.
These results indicate that the semantic informa-
tion embedded in these comments can potentially
be used to help predict affective responses to music.

5.1 Limitations and Future Work

We found that the distributions of our model’s pre-
dictions tend to cluster closely to the center of the
valence-arousal space. We show the distribution of
our predictions and the actual value as Table 3.

We hypothesize that this occurs for two reasons.
First, our unfiltered data may be too noisy for mean-
ingful sentiment analysis at scale without some
initial filtering of the comments. As future work,
we will investigate approaches to clean the dataset
while managing selection bias. We will consider
dropping comments that may have adverse effects
on our model performance, such as those of an
insufficient length, those containing a low or neg-
ative score, or those generated by bots. We will
also investigate dropping any comments which do
not contain an affective word, using established
affective word lists.

Secondly, we predict values for each comment
and aggregate these comment-level predictions to
estimate a value for the entire song. This approach
was convenient to facilitate our exploration of ex-
isting pre-trained transformer architectures for this
task. However, this aggregation risks losing valu-
able semantic information. For example, the senti-
ment contained within one comment may be can-
celled by another with opposing sentiment, reduc-
ing them to an average neutral sentiment. As fu-
ture work, we will investigate model architectures
which may allow us to better retain inter-comment
dependencies, such as Relation-Aware Transform-
ers (Wang et al., 2021). We will also explore new
architectures that support longer input sequences,

such as the xl-net model (Yang et al., 2020) that
has been recently applied to music mood classifica-
tion from lyric analysis (Agrawal et al., 2021).

Our model is bounded by the requirement of a
sufficient corpus of social media conversation per-
taining to a song. This restricts this approach’s
efficacy in cases of newly released music or niche
genres. An acoustic or lyrical approach, in con-
trast, would handle these scenarios equally to more
popular song examples. In future experiments we
will compare the performance of multimodal music
emotion recognition systems when augmented with
a social media input.

All our models trained exclusively on Twit-
ter data performed poorly compared to the other
source-specific models. However, our data collec-
tion method differed between social media plat-
forms. We intend to repeat our Twitter data collec-
tion process in order to retrieve far more comments
than available in this work. Also, we will revise our
data-mining approach to include responses while
explicitly filtering out reduplicated text. Despite
these improvements, the combination of comment
length restrictions and low yield rates for mentions
of a song on the platform lead us to anticipate
finding less available data on Twitter compared
to YouTube or Reddit.

Additionally, we will explore other potential
sources for social media commentary. For example,
the community annotated tags on the site Last.FM
have been used to generate features for music emo-
tion recognition (Bischoff et al., 2009; Delbouys
et al., 2018). Last.FM has recently added “Shouts”,
which allows users to post free-form comments in
response to a song. To our knowledge no existing
work has attempted to use sentiment analysis on
Last.FM conversations for music emotion predic-
tion. We will investigate commentary on the web-
site SoundCloud6 as well. SoundCloud is unique
in that it associates posts with specific timestamps
in the recording. This temporal information could
be useful in determining changes of sentiment over
the course of a piece of music. As we continue
to collect additional data, we plan to make our
dataset publicly accessible to facilitate further re-
search into the use of social media commentary for
music emotion recognition.

6https://soundcloud.com/
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Figure 3: Distribution of DistilBERT predictions on songs in our test set for AMG1608 and PmEmo.

5.2 Contributions

In this work we assess the feasibility of predicting
music emotion indirectly from social media dis-
course. By leveraging freely available social media
commentary, we explore alternate modalities to
make determinations about a musical affect when
the raw waveform may not be available.

We create a novel dataset of conversations re-
lated to music from Reddit, YouTube, and Twitter.
These comments correspond to the songs annotated
in two music emotion datasets frequently cited in
the literature. This correspondence allows compar-
ison of the results of our supervised deep learning
approach with human annotated labels of musical
affect as well as to existing audio-based methods
for estimation of musical affect.

Our results demonstrate that the conversations
from social media platforms like Reddit, YouTube,
and Twitter do contain semantic information which
may be relevant to the task of music affect predic-
tion. Although these correlations are moderate at
best, they show the potential utility of this approach
in music emotion recognition, especially if em-
ployed in a multimodal system that also compares
audio and lyric-derived features. To our knowl-
edge, this is the first approach to predict valence

and arousal of musical songs using only conversa-
tional information from social media platforms.

5.3 Conclusion
Research investigating the automatic detection of
the emotional qualities of music is often hindered
by the absence of large-scale datasets annotated
with affective responses to music. Such datasets
are difficult to create and copyright concerns of-
ten limit the release of the raw audio needed by
many machine learning approaches. Motivated by
the use of song lyrics to predict emotion in music,
in this work we explore the novel task of lever-
aging social media discourse to predict affective
responses to music. We trained natural language
transformer models using only discourse from three
social media sites to predict the valence and arousal
of pieces of music. We found moderate correlations
between discourse about songs on Reddit, Twitter,
and YouTube and the human annotated values of
affective responses to those songs. Therefore, it is
possible to predict the affective qualities of some
songs directly from online conversations.
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Abstract 

In view of the recent interest of Saudi banks 

in customers’ opinions through social 

media, our research aims to capture the 

sentiments of bank users on Twitter. Thus, 

we collected and manually annotated more 

than 12,000 Saudi dialect tweets, and then 

we conducted experiments on machine 

learning models including: Support Vector 

Machine (SVM), Random Forest (RF), and 

Logistic Regression (RL) as well as state-

of-the-art language models (i.e. MarBERT) 

to provide baselines. Results show that the 

accuracy in SVM, LR, RF, and MarBERT 

achieved 82.4%, 82%,81%, and 82.1% 

respectively. Our models code and dataset 

will be made publicly available on GitHub. 

1 Introduction 

Over the last decade, social media sites generated 

enormous content online which conducts 

challenges to decision making and manual content 

analysis (Almuqren & Cristea, 2021). The Saudi 

banks sector has undergone essential changes over 

the decade. They have taken advantage of 

expanding their operations of product 

diversification as well as the features of scale and 

scope economies. The changes affected the 

feelings and sentiments of customers and their 

dealings with banks as well as the choice of the 

bank based on the features and services they 

provide. In addition, appropriate treatment of the 

customer is a milestone in the selection of a bank, 

and good treatment is characterized by quick 

 
1 https://www.semrush.com/website/top/saudi-

arabia/banking/ 

interaction, offers and satisfactory customer 

service. 

Social media sites are one of the platforms where 

customers’ opinions can be collected and 

analyzed. Our research aims at capturing 

customers’ sentiments of Saudi banks, by 

analyzing their feelings and revealing their 

opinions.  

Although there are several banks in Saudi Arabia, 

yet, for the purpose of this study, only four Saudi 

banks were selected namely (AlRajhi bank, 

Alinma bank, Saudi National Bank (SNB), and 

Saudi Investment Bank (SAIB)) as they are 

considered the top Saudi banks according to 

Semrush website1.  

We collected a corpus of more than 12,000 Arabic 

tweets and manually labeled them with three 

sentiments (positive, negative, and neutral). Then 

we applied three machine learning models on the 

corpus, namely: Support Vector Machine (SVM), 

Logistic Regression (LR), and Random Forest 

(RF) as well as MarBERT pretrained model for 

sentiment analysis.  

The rest of this paper is organized as follows. 

Section 2 presents the state-of-the-art and related 

work on banking sentiment analysis. Section 3 

demonstrates the corpus construction steps and the 

annotation process. Section 4 presents the analysis 

results which include model selection and corpus 

evaluation. Section 5 concludes the paper with 

discussion of the results, limitations and future 

work. 
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2 Related work 

One of the research areas in sentiment analysis is 

to capture customer sentiments regarding vital 

services such as Banking, by knowing and 

classifying customer opinions, this will help 

improve the titled services.  

In this section, we will highlight previous work in 

sentiment analysis for banks. The study by 

Kazmaier and Vuuren (2020) conducted a 

sentiment analysis as unstructured customer 

reviews that related to services and products for a 

retail bank in South Africa. They used a machine 

learning model to detect sentiment with a high 

level of qualified performance. The result shows 

that custom learning-based models are better than 

previous models that used commercial tools and 

were pre-trained for sentiment classification. 

Eksa Permana et al. (2020) present a study to 

determine the customer sentiment on mobile 

banking applications to specify the aspects that 

need to be maintained or improved  

in the application. They used Naive Bayes models 

to discover the sentiment analysis. The results 

displayed high accuracy at the value of k=5, which 

is accuracy with a value of 86.762% and precision 

with 92.482% also 93.474% for recall. 

(Gavval et al., 2019) proposed a visual sentiment 

analysis for customer complaints related to 

services and products of four superior Indian 

banks. The author leverages the available bank's 

compliant responses dataset which consists of 

749k consumer opinion on four Indian banks 

namely: Axis Bank, HDFC Bank, ICICI Bank, and 

SBI. They used a Self-organizing feature map 

(SOM) and CUDA-based Self Organizing Feature 

Map (CUDASOM) algorithm. They mentioned 

that the performance of CUDASOM algorithm 

increased the speed of CPU up to 44 times which 

improved the result of experiment.  

Krishna et al. (2019) applied sentiment analysis on 

Indian bank’s customer complaints. They used 

machine learning techniques such as Support 

vector machines (SVM), Naive Bayes (NB), 

Logistic Regression (LR), Decision Tree (DT), and 

Random Forest (RF) towards applying 

preprocessing the raw textual data. The findings 

showed that the ML models with three banks 

dataset performed the best result where LR 

obtained (77%), RF (77%), SVM (75%), and NB 

(74%). 

From the previous work, we noticed that several 

research used machine learning methods such as 

(Kazmaier and Vuuren, 2020), (Eksa Permana et 

al.,2020), (Gavval et al., 2019), and (Krishna et al., 

2019). 

As shown in Table 1, we present some of studies 

with the name of the bank or region, the applied 

model and results. In our research, the main 

contribution is to construct a gold standard dataset 

for the Saudi banks customers’ sentiment. 

Finally, the corpus will be evaluated using 

machine learning and pretrained models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Dataset 

This section contains two parts related to 

constructing the Saudi Bank Corpus. The first part 

is to collect the data and a description of the corpus. 

While the second one represents the corpus 

annotation phase and statistics about the corpus. 

3.1 Data Collection 

The Saudi banks' corpus data were collected 

from Twitter using Tweepy python library. We used 

the banks' Twitter account mentions of the four 

Saudi banks to retrieve the tweets. 

The data were collected for a whole month, 

starting from the 1st of September 2021 until the 

30th of September 2021, throughout the COVID-

19 outbreak when all bank institutions switched 

their services online. During that period, most 

people encountered online issues when using their 

bank services. Therefore, due to the COVID-19 

constraints, social media platform such as Twitter 

was the main channel to communicate with the 

bank's organizations. The retrieved tweets were 

focusing on getting customers' feedback or opinion 

on the banks. A total of 52,254 tweets were 

collected during the whole month.  

Study  Bank Method Result  

Kazmaier 

and Vuuren 

(2020) 

Retail bank 

in South 

African 

Naive Bayes, 

SVM, CNN, 

ANN, and LR 

LR: 84.00% 

Eksa 

Permana et 
al. (2020) 

Mobile 

banking 
applications 

Naive Bayes NB:86.76% 

Gavval et al. 

(2019) 

Four 

superior 
Indian 

banks 

CUDASOM 

algorithm 

Speed up the 

CPU 
performance 

44 times 

Krishna et al. 
(2019) 

Indian bank SVM, NB, LR, 
DT, RF 

LR: (77%), 
RF: (77%), 

SVM:(75%), 

NB: (74%) 

 
Table 1: Summary of relevant studies 
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As we scrapped the tweets using the official 

bank account (@bank_account) on Twitter, as a 

result, the number of tweets crawled was depend 

on the number of bank customers, whether the 

Twitter account is active or not, and if there is 

another account for customer complaints. 

Moreover, the bank that has a separate customer 

care account received too many tweets from their 

customers than the bank that has one official 

account. Moreover, the bank that is 24/7 active and 

responds quickly has many user replies and 

comments. The special occasions such as National 

day and the recent collaboration between banks 

plays a crucial role in increasing customer response 

accordingly. 

 

3.2 Data Preprocessing 

Since the data is collected from Twitter, it 

could contain noises and unwanted symbols, which 

could eventually affect the model's performance. In 

this section, several normalization and cleaning 

steps were applied on the collected data using 

regular expression patterns. The pre-processing 

steps are listed below: 

• Normalizing Letters: Some of the letters 

got changed to have fixed shape for 

example "إأآ" would be "ا".  

• Normalizing numbers: All the numbers 

have standard representation in our case, 

we used Arabic numbers for example 

“9۹𝟡” would be “9”. 

• Remove duplicate letters: All the letters 

that occur for more than two times get 

limited to two times since some words 

could have the same letter twice, this 

process has a special case where the laugh 

such as “هههههه” replaced by “ضحك” 

• Remove duplicate tweets: Any 

duplicated tweet is kept only once to 

make sure we don't annotate the same 

sentence more than once. 

• Removing punctuation marks: All the 

punctuation marks got deleted except the 

“!?.” Since it could have meaning for the 

sentiment.  

• Removing duplicate whitespace: White 

spaces between words were eliminated to 

one space only. 

• Remove hyperlinks or URLs: This 

process consists of removing all the 

URLs (HTTP or HTTPS). 

• Remove hashtags and mentions: For 

example, #something" and "@someone” 

will be deleted. 

• Remove special characters: Special 

characters include “.,$,%,&,*, etc.” were 

deleted. 

• Remove Arabic diacritics: Deleting 

Tashkeel including “      ًٌٍَِّْ” 

• Remove Tatweel words: Refers to 

removing the stretching word space that 

is represented as (-) symbol. 

• Remove non-Arabic words: Any non-

Arabic words got deleted, for example, 

English words will get deleted. 

• Remove sentences with less than five 

words: Sentences with less than five 

words could be too short to represent any 

type of sentiment so, we deleted them. 

• Eliminate tweets with neutral 

sentiment: we used Camel and Mazajak 

tools that is designed for Arabic SA. We 

used it to eliminate the neutral tweets, 

since we wanted to make sure that the 

tweets would contain positive or negative 

sentiment. 

3.3 Data annotation 

Based on the type of analysis that will be 

performed on the corpus "sentiment analysis," it 

was decided that the annotation will be a single 

level annotation, where each sentence will be 

annotated into either positive, negative, or neutral. 

In order to annotate the data, the data was split 

equally into two divisions. Specifically, each 

division was annotated by two annotators from the 

authors. Furthermore, the annotation was made 

blindly, which means that each annotator did not 

have access to the other annotators' annotation. At 

the end, the opinion of the two annotators got 

compared. If there was no agreement on the label, 

the tweet was eliminated. 

The manual annotation process required quality 

assurance since human opinion varied in nature 

according to several aspects such as education, age, 
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culture, and more. Therefore, it is important to 

measure the level of agreement between different 

annotators. The inter-annotator agreement (IAA) is 

a measure that is used if there were multiple 

annotators who selected the same decision for a 

particular category. The IAA is used to validate and 

interpret the labeling result. Three common metrics 

are used the percent agreement, Cohen kappa, 

Fleiss' kappa to compute the IAA for the annotation 

process. Percent agreement is the simplest method, 

but it doesn’t consider the possibility of random 

guesses annotation. Cohen kappa and Fleiss' kappa 

solve the drawbacks of Percent agreement. Cohen 

kappa is more suitable for two annotators while 

Fleiss' kappa is suitable for more than two 

annotators. So, the selection of the metrics is 

according to the number of individuals who 

annotate the corpus. Therefore, We used the Cohn 

kappa metric in this research since two annotators 

annotated each record. The metric obtains a result 

above 0.65, which consider as a substantial 

agreement and it means that the result of the 

annotation is suitable to train the classification 

models. 

The final corpus was saved as a CSV format that 

contains five columns as shown in figure 1. the first 

column shows the cleaned text. the second column 

contain the name of the bank either AlRajhi, 

Alinma, Saudi Investment bank (SAIB) or the 

Saudi National banks (SNB). The third and fourth 

columns contain the tokenized words of each 

sentence, one with stop words and the other 

without stop words. The last column has the 

annotation label made by the annotators of the 

tweet. After the corpus pre-processing and 

annotation, we performed some statistical analysis 

on the corpus. The analysis shows that our corpus 

contains 1,567,628 tokens and 82,015 word types. 

In addition, according to the bank names: we 

gathered 7,775 tweets for AlRajhi bank, 2,705 for 

SNB, 920 for Alinma bank, and 648 for SAIB. 

Moreover, the results of the corpus annotations 

show that among the gathered tweets, 8,669 of 

them were labeled as "Negative", 2,143 were 

labeled as "Positive", and 1,236 tweets were 

labeled as "Neutral". 

 

 
 

 

4 Experiments and Results 

4.1 Model Selection 

The second stage in conducting the sentiment 

analysis on Saudi banks was the model selection. 

We had many experiments in order to find the best 

model that gains the highest accuracy in detecting 

sentiments. These experiments involved 

implementing three machine learning techniques 

which are: Support vector machine (SVM), 

Logistic regression (LR), Random Forest (RF). In 

addition, we implemented a fourth model using 

MarBERT model. The feature representation was 

implemented using the term frequency-inverse 

document frequency (TF-IDF). According to (Al-

Twairesh et al., 2017), the TF-IDF representation 

shows a good performance on Arabic text.  To train 

the model, we split the corpus into 80% for training 

and 20%for testing. The decision for selecting 

these models was based on the Arabic research 

community in which the result of the selected 

model showed good predictions especially for 

sentiment analysis. Different appropriate 

parameters were used for each model to obtain the 

desired performance. 

The first machine learning model is the Support 

Vector Machine (SVM) which is a supervised 

machine learning algorithm. The second machine 

learning model is the logistic regression (LR) 

which is a supervised machine learning algorithm 

and used widely for binary classification problems. 

However, LR can be used to perform a multilabel 

classification task such as sentiment analysis. In 

the current work, we evaluated the corpus with 

multilabel logistic regression classification for 

sentiment analysis namely positive, negative, and 

neutral. The logistic regression has shown a 

successful result in sentiment analysis in diverse 

languages such as English and Arabic (Bessou and 

Aberkane, 2019). Thus, motivated by the promised 

result achieved in the previous study, we will 

Figure 1: Sample of the dataset file 
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conduct a corpus evaluation using logistic 

regression and perform fine-tuning with 

regularization parameters using a grid search to 

obtain the best result. The model has been 

evaluated with the predefined parameters using 5-

fold cross-validation. The logistic regression 

model has shown improvement in performance 

with 82% accuracy. 

The third machine learning model is the 

Random forests algorithm. The Random forests 

algorithm is a supervised machine learning 

algorithm that builds many individual decision tree 

classifiers. The main advantage of using the 

Random forests algorithm is that the generated 

decision trees are not correlated, therefore the 

classification error made by one tree is not seen by 

the other decision trees. On the other hand, random 

forest algorithm suffers from the slowness 

disadvantage. We apply this algorithm by using 

Random Forest Classifier module, Randomized 

SearchCV() method, and 5-fold cross-validation. 

Randomized SearchCV()   apply tunning on the 

parameters to choose randomly the optimal 

parameters. 

The last experiment was conducted using the 

MarBERT model, which is a pre-trained language 

model based on the Arabic dialectical data from 

social media.  We fine-tuned the model based on 

the model provided by Abdul-Mageed et al. on 

GitHub page2 . The model hyperparameters were 

selected based on the original model where the 

learning rate equals to 2×10-6, the batch size 

equals to 32, the maximum sequence length equals 

to 128, and the epoch equals to 5. 

4.2 Model Evaluation 

For evaluating the models’ performance, the 

following metrics were used: Accuracy, Precision, 

Recall, and F-measure. 

For all classifiers, we have computed the TF-

IDF method which plays a crucial role in the 

training stage to select the most important words 

among the dataset. 

Table2 shows the performance of all models 

using the metrics: accuracy, precision, recall, and 

F1 score. Overall, the evaluation results were quite 

close among all models. However, the best 

performing result was achieved by SVM with 

82.4% accuracy and an F1 score of 79%. On the 

 
2 GitHub - UBC-NLP/marbert: UBC ARBERT and MarBERT 
Deep Bidirectional Transformers for Arabic 

contrary, logistic regression reported the most 

stable results in accuracy and F1 score with 82% 

and 81% which represent the highest result 

compared with other classifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Error analysis 

To demonstrate the model accuracy and justify 

the performance of the results. An error analysis 

process was performed on our best used model 

which is LR model; to show where the model 

succeeds and failed to classify the data and set 

observation for the model limitations.  

Figure 2 shows the confusion matrix of the 

classification error rate for each category 

(sentiment labels) for the LR model. After walking 

through the confusion matrix for the model, it is 

clearly noticeable what categories were 

misclassified and identified errors made by the 

classifiers. To demonstrate more, we grouped all 

these errors and created an observation for 

common errors in the prediction against the 

original dataset. We observed that the most 

misclassified class is NEU label, it is mostly 

misclassified as NEG. We found this case 158 

times out of 244 NEU label tweets. This represent 

64% of the actual NEU data that means that most 

of the NEU data has been misclassified, we 

attributed the reason of the misclassification to the 

imbalanced dataset. The second most error was 

POS label misclassified as NEG; it occurred 133 

times which represent 29.7% of the POS tweets. 

The least error cases were for the NEG where nit 

Model 

name 

Accuracy Precision Re-call F-measure 

MarBERT 82.1 70.2 66.3 68.0 

Logistic 

regression 
(LR) 

82.0 80.0 82.0 81.0 

Random 

Forest 

(RF) 

81.0 78.0 81.0 77.0 

Support 

Vector 
Machine 

(SVM) 

82.4 80.0 82.0 79.0 

 
Table 2: models’ results 
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was misclassified as NEU; it appeared only 50 

times which represent 2.9% of NEG tweets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We conclude that the misclassification errors 

occur as a result of imbalanced dataset. We noticed 

that because the NEG class represents about more 

than 70% of the dataset, that leads to 

misclassification of POS and NEU as NEG label. 

To deal with this issue we are using F-measure for 

evaluation. As a future work, this issue should be 

solved by increasing the size of the dataset to avoid 

dataset imbalance.    

5 Discussion and Conclusion    

In this study, we analyzed customers’ sentiments 

on Twitter toward four Saudi Banks. A total of 50K 

raw tweets were scrapped using Twitter web 

scrapping tool. After data cleaning and 

preprocessing we ended up with 12k tweets. The 

dataset was manually annotated into three 

categories positive, negative, and neutral where we 

observed that among all classes the dominant 

tweets were pertained to negative sentiment. 

Additionally, as shown in Figure 3 we found that 

AlRajhi bank has the highest number of negative 

tweets followed by Saudi National Bank (SNB). 

Likewise, the positive and neutral tweets were the 

lower one.  

We have utilized the annotated data to train three 

baseline classifiers namely Support vector machine 

(SVM), Random Forest (RF) and Logistic 

regression (LR) and fine-tuned one pretrained 

language model MarBERT. The baseline models 

were trained and tested on the same dataset which 

has been evaluated using 5-fold validation. 

Whereas MarBERT transformer model was trained 

and evaluated using the same evaluation method. 

The evaluation results show that the best accuracy 

result was achieved by logistic regression (LR) 

with 81.0 F1 score which outperforms the pre-

trained model MarBERT that had achieved F1 

score of 68%. Technically speaking, the accuracy 

result for all observed classifiers were very close to 

82%. Other metrics have large differences between 

classifiers performance where the highest precision 

and recall results were 80% and 82% respectively 

which was achieved by two classifiers LR and 

SVM. Furthermore, we can conclude that overall 

SVM and LR models outperform the pre-trained 

model MarBERT in precision and recall as well as 

F1 score.  

In the future, we plan to increase the dataset and 

try to prevent the overfitting problem using some 

techniques such as data augmentation as well as 

investigate the performance of deep learning 

models (e.g. BiLSTM and CNN) on the proposed 

dataset. We might also try to use ensemble models 

to improve the experiments results. 
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Abstract

Many academics are becoming more inter-
ested in Spoken Arabic Dialect Identification.
Nonetheless, most under-resourced languages
suffer from a lack of data, such as the com-
mon Algerian dialect, which provides an in-
triguing case study. As a result, the purpose
of this research is to compare the performance
of two techniques for the automated identifica-
tion of Algerian dialects. The first is based on
acoustic features whereas the second is based
on spectral components extracted from audio
sequences collected from YouTube. The ex-
periments were carried out in two setups: raw
data and noiseless data (applied noise filter) on
23 Algerian dialects using machine, deep, and
transfer learning models while selecting three
duration: 5s, 10s, and 20s. The CNN classi-
fier performed the best, enabling us to generate
an average F1score of 97.09% with raw data
and 96.5% with noiseless data, independent
of duration. However, the 20s duration result,
which had an F1score of 98.09%, was the best
duration that produced the best results for us.

1 Introduction

In all communication technologies, speech is the
most natural mode for individuals to make direct
contact. With the progress of technology, the scien-
tific community has grown increasingly interested
in the field of speech processing, seeking to explore
and examine language and the process of voice gen-
eration. These tasks are very interesting, especially
for low-resourced languages like Arabic and its
dialects.

Algeria’s dialect, with its richness and diversity,
does not correspond to linguistic criteria since it
differs from standard Arabic and is composed of
a vocabulary with several sources. As a result, we

have chosen a phonetic idea of the language rather
than a linguistic one. Thus, automatic dialect recog-
nition is the initial stage in performing numerous
tasks in NLP (speech translation, opinion mining,
etc.), and this study will be the first step in break-
ing down communication barriers between several
Algerian areas.

The contribution of this paper is the develop-
ment of an automatic spoken language identifica-
tion system, employing a variety of machine and
deep learning approaches to cover 23 classes of
Algerian dialects acquired from YouTube videos.

This paper is organized as follows: we present
an overview of both speech-based dialect identifi-
cation and recognition of dialectal speech, and the
related work in sections 2. In section 4, we present
the system architecture. In section 3, we describe
the corpus used to run different experiments. Sec-
tions 5 and 6 is devoted to experiments and results
regarding dialect identification. The conclusion is
presented in section 7.

2 Related Work

Many different sorts of studies have been con-
ducted on spoken dialect identification; some have
employed traditional approaches based on statis-
tical classification (Korkmaz and Boyacı, 2022),
while others have been enticed to apply deep learn-
ing techniques (Garain et al., 2021). However, rel-
atively little study has been conducted on Arabic
dialects (Biadsy et al., 2011; Bougrine and Abde-
lali, 2018; Lounnas et al., 2022).

In the case of Arabic spoken dialect identifica-
tion, we refer to the research published in (Biadsy
and Hirschberg, 2009), the authors used prosodic
cues and demonstrated their efficacy across four
main Arabic dialects, including Gulf, Iraqi, Lev-
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antine, and Egyptian, to demonstrate how employ-
ing these descriptors to train the Gaussian Mixture
Model (GMM) in conjunction with the Universal
Background Model (UBM) may greatly enhance
the identification of these dialects of 2-minute ut-
terances. In keeping with their same area of study,
the authors tackled the identification of the Arabic
accent and dialect in (Biadsy et al., 2011). To do
this, they employed phonetic segmentation supra-
vector, which entails creating a kernel function that
computes phonetic similarities in order to train the
Support Vector Machine classifier. Their Equal Er-
ror Rate (EER) was 12.9 %.In (Ali et al., 2015),
where researchers looked at several methods for
dialect identification in Arabic broadcast speech
based on phonetic and lexical characteristics re-
ceived from a voice recognition system and bot-
tleneck features created using the i-vector frame-
work. They achieved 100% accuracy by employ-
ing a binary classifier to distinguish between Mod-
ern Standard Arabic (MSA) and dialectal Arabic.
While they were able to distinguish between five
Arabic dialects—Egyptian, Gulf, Levantine, North
African, and MSA—with an accuracy of 59.2%.
Authors in (Eldesouki et al., 2016) were concerned
with recognizing spoken Arabic dialects from five
regions, namely Egyptian, Gulf, Levantine, North-
African (Maghrebi), and MSA. Despite the modest
quantity of data employed, the researchers claimed
that the Linear Support Vector Machine (LSVM)
classifier trained with a feature vector incorporating
textual features beat the other systems, achieving
an accuracy of 51.36%. (Shon et al., 2020) sup-
plied vast dialectal Arabic corpora encompassing
17 dialects to provide more resources for Arabic
and its dialects. A total of 3000 hours of speech
were provided for training a fine-grained Arabic di-
alects recognition system, which was divided into
three groups based on time (< 5 sec, 5 sec ∼ 20 sec,
and >20 sec). Furthermore, several cutting-edge
approaches were developed utilizing the aforemen-
tioned dataset, the results reveal that the longer the
duration of the speech (in this case more than 20
seconds), the better its identification. Concerning
the same issue, and to emphasize the use of the
X-Vector approach in the identification of Arabic-
spoken dialects, Hanani et al. (Hanani and Naser,
2020) created an X-Vector model utilizing a col-
lection of relevant characteristics (acoustic, lexical,
and phonetic) derived from VarDial 2018 and Var-
Dial 2017 and shown that it outperforms existing

state-of-the-art models, such as those based on i-
vectors, Bottleneck features, and GMM-tokens.

However, for a vernacular Arabic dialect like the
Algerian dialect, there are not many works have
been done on it. We can cite the contribution of
Bougrine et al. (Bougrine et al., 2016) in which she
introduced the first Algerian spoken dialect corpora
where six Algerian dialects have been modeled in
(Bougrine et al., 2018) utilizing prosodic informa-
tion, which is comprised of rhythm and intonation,
and SVM based on the Universal Pearson VII Ker-
nel function (PUK). The authors discovered that
prosodic cue was appropriate even for brief utter-
ances with a precision of over 69%. In (Terbeh
et al., 2018), the authors suggested a statistical
method based on phonetic modelling to determine
the relevant Arabic dialect for each input acoustic
signal by computing the necessary phonetic model,
which was then compared to all referred Arabic
dialect models using cosine similarity. (Lounnas
et al., 2018) conducted a series of tests using vari-
ous feature configurations to distinguish between
Standard Arabic and one of the Berber dialects
known as Kabyl 1. They demonstrated that a com-
bination of acoustic (Mel Frequency Cepstral Co-
efficients) and prosodic (melody and stress) char-
acteristics are the best way to distinguish these
dialects. A further extension of this work is the
one developed in (Lounnas et al., 2019b), in which
The difficulty of recognizing languages such as Per-
sian, German, English, Arabic, and Kabyl has been
handled by using the Voxforge voice corpus where
different systems have been built to identify Per-
sian, German, English, Arabic, and Kabyl dialects.
Despite the small size of the data, the system pro-
duced an encouraging accuracy of 84.6%.

3 Comparison methodology

As described before, in this paper we focus on
identifying Algerian dialects(Bougrine et al., 2016)
using our own private dataset. To begin, we con-
verted the videos into audio files. Following the
conversion, the audios are pre-processed to reduce
noise; this step is only performed for the acous-
tic approach. The audio files will be divided into
5s, 10s, and 20s segments. We use the segmented
data to execute two distinct methods: the first en-
tails extracting the dialects’ acoustic parameters
and assigning them to a single numerical vector
(Lounnas et al., 2020) in order to classify them

1Kabyl is an Algerian Berber dialect
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Figure 1: Architecture of our proposed spoken Algerian dialect identification system

using two models, a Support Vector Machine and
a Convolutional Neural Network model. The sec-
ond technique entails transforming the audios of
each segment duration into spectrograms (Loun-
nas et al., 2022), and the resulting image will be
pre-processed before being classified using a pre-
trained Transfer Learning model VGG16, which
has a high accuracy for image classification. Fi-
nally, we use assessment metrics to evaluate the
trained model.

The schematic presented in Figure 1 depicts the
overall design of our approach for the automated
identification of Algerian dialects. The architecture
is structured as a pipeline of multiple processes
which are run sequentially: (1) collection of data;
(2) preprocessing; (3) segmentation; (4) features
extraction (acoustic vs spectrogram); (5) model
training and finally (6) system evaluation. All these
processes will be presented in the following sec-
tions.

4 Corpus presentation

We selected YouTube as a source for our work
since it contains videos on a range of topics cre-
ated by authors from all across the country. This
allowed us to create an Algerian voice datasets
with accentual and dialectal variations with around
30 hours of spoken audio. After selecting some
YouTube channels that are related to food recipes,
daily life, education, and monologue videos, we
downloaded all the videos and saved them in MP4
format. The choice is explained by the nature of
this video where they don’t contain music in the
background and with low noise levels. Because our
corpus only has 23 cities, there are only 23 sub-
dialect. We have various dialects from the center,

west, and east that are presented in Table 1 with
clips ranging in length from 2h7min to 2h42min
for each dialect.

It should be noted that this is one of the fewer
works, to our knowledge, that build an Algerian
speech corpus for dialect identification, where
the first corpus is named KALAM’DZ (Bougrine
et al., 2016). In Table 2, which highlights the
number of sub-dialects, overall duration, duration
per sub-dialect, preprocessing processes, source
of data, number of speakers per file, and use
cases of each corpus, we compared our corpus to
KALAM’DZ. Even though our corpus is smaller
than KALAM’DZ’s, there is one difference: our
emphasis was on YouTube videos with extremely
little background noise and no music.

Region Departments

The North Centre
Algiers, Blida, Tipaza,
AinDefla, Tizi Ouzou,
Ténès

The North West Tlemcen, SidiBelabbes,
Oran, Maghnia

The North East Jijel, Annaba, Guelma,
Constantine

Central Highlands M’sila , Laghouat,
Bousaada

Eastern Highlands Batna, Tebessa, Setif,
Khenchela

Hoggar-Tassili Tamanrasset

Table 1: Collected Algerian speech corpora department
classification by geographical region (ONS, 2011)
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Corpus KALAM’DZ Our Corpus

# sub-dialect 43 23

Duration H 104.4 around 47

DpSd H 13.05 (average) around 2

Preproc Non-speech segments removal; Speaker Diarization Noise Reduction
Source Algerian radio; Algerian TVs; YouTube; Podcast YouTube

# speaker Multi speaker Monologue

Use cases NLP Dialect Identification

Table 2: A comparative study between our proposed corpus and the most useful and existing one KALAM’DZ
DpSd: Duration per Sub dialect; Preproc: Preprocessing

4.1 Pre-processing the corpus

In Machine Learning, data pre-processing is an im-
portant step that helps improve data quality and pro-
motes the extraction of relevant information from
data. It is the process of preparing (cleaning and
organizing) raw data so that it may be used to build
and train Machine Learning and Deep Learning
models. Simply stated, data preprocessing is a data
mining approach that converts raw data into a com-
prehensible and legible format.

4.1.1 Audio preprocessing

We eliminate noise by utilizing Python’s "NoiseRe-
duce" library 2, which lowers noise in temporal data
such as voice. It is based on a mechanism known
as a "spectral gate," which is a type of Noise Gate.
It works by computing a signal’s spectrogram and
predicting a noise threshold (or gate) for each fre-
quency band of this signal/noise. This threshold
is used to create a mask that filters out noise be-
low the frequency variation threshold (Sainburg
et al., 2020). As seen in Figure 2, the NoiseReduce
library removes a considerable number of contami-
nants from our signal.

5 Experimental Setup

Our classification tasks begin with annotated audio
data. There are several forms of audio classifica-
tions, but for the sake of our research, we are only
interested in two: classification based on acoustic
characteristics and classification based on spectro-
grams.

2https://pypi.org/project/noisereduce/

Figure 2: Removing noise from an audio file using the
NoiseReduce library (Sainburg, 2019)

5.1 Acoustic-based approach

Acoustic information is commonly regarded as the
initial level of processing in speech production. It
is one of the simplest types of information that
may be collected straight from raw speech during
the speech parameterization process. Higher level
speech information, such as phonotactic and word
information, may also be retrieved from acoustic
data. Linear Prediction, Mel Frequency Cepstral
Coefficient (MFCC), Perceptual Linear Prediction
(PLP), and Linear Prediction Cepstral Coefficient
(LPCC) are the most often utilized parameteriza-
tion approaches. We utilized a process based on
Librosa (McFee et al., 2015), which incorporates
spectral and rhythm properties. As in our previous
work in (Lounnas et al., 2019a), we will use the
same characteristics, with a total of 193 compo-
nents:

1. MFCC coefficients (40)

2. Mel spectrogram (128) & Chroma Vector (12)

3. Spectral contrast (7) & Tonnetz(6)
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These features served as the training data for
both an SVM model as well as CNN.

5.2 Spectogram-based approach

We chose to implement the spectrogram method
in order to compare the efficiency of the acousti-
cal features extraction approach with that of the
spectrogram feature extraction approach for audio
clips. The goal is to learn how to classify audio
and predict which category they belong to (dialect).
We classify the audio from the image by looking
at the spectrogram, which relates an intensity or a
power to each frequency. The classification task
in this situation seems as an image classification.
This issue can be applied to a variety of practical
applications, such as classifying music videos to
determine the genre of music (Nirmal and Mohan,
2020; KM et al., 2021) or classifying short utter-
ances by a group of speakers to identify the speaker
based on voice (Liu et al., 2018).

6 Results and discussions

We used the Sklearn package with the default pa-
rameters to build our first SVM model. Concerning
the CNN we will initialize our model as follows
(Figure 3):

Figure 3: CNN model architecture

6.1 Acoustic features-based classification
results

After collecting the video samples, we converted
them to ".wav" format using the fffmpeg function
with a sampling rate of 16k. For noise suppression,
we utilized the NoiseReduce tools(Sainburg, 2019)
at the preprocessing stage. In order To compare
three different case studies, we divided our speech
data into segments of three different duration (5s,
10s, and 20s), which would serve as the input data
for three different models. We utilize the functions
presented in Librosa library to extract the afore-
mentioned characteristics. Each audio file of our
corpus will go through this procedure, with the
features being stacked vertically in one array vec-
tor and the labels in another. Both vectors will be
stored in two files, "Features.npy" for the features

and "Labels.npy" for the labels, at the end of the
feature extraction procedure for later use. After the
feature extraction stage, we divide our data into
training data and test data, each comprising 80%
and 20% of the corpus respectively. Finally, we
were able to compare our 12 categorization mod-
els, and the following table presents the obtained
accuracy and F1score (see Table 3).

For 5s segments, we see that both algorithms’
(SVM and CNN) raw data results (95.55% and
96.89%) are actually superior to those obtained
from preprocessed data (90.37% and 95.33%). For
the 10-second segments, we see that the CNN
model’s predictions for preprocessed data (96.49%)
are marginally better as compared to the raw data
(96.31%). However, the SVM model with raw
data surpasses the preprocessed data results by 5%
(96.65% vs 91.71%). The raw data results outper-
form the preprocessed data for the 20s segments
for both algorithms. We find a minor decline in
performance for the preprocessed data, which is
related to the fact that it is not as good as the raw
data, which is due to noise removal loss.

6.2 Spectogram features-based classification
results

The corpus utilized is identical to the one men-
tioned in the preceding section. We next turn the
segmented audio into their spectrograms template.
Given that we were working with spectrograms
representation, we couldn’t utilize SVMs as it is;
otherwise, we’d have to add a feature vector extrac-
tion phase, so we opted to work with a pre-trained
model called Transfer Learning (TL). As there are
many TL models, we selected one of the smaller
models in term of parameters numbers which is the
visual geometric group (VGG16).

According to the results described in Table 4,
identifying dialects using spectrograms achieved
its best performance with 20s duration data with a
macro F1score of 88%, while the scores for 10s and
5s audios are 84% and 57%, respectively. These
results are appropriate since the 20s audios include
more information than the 5s and 10s. We noted
that the duration of the audio file may affect the
number of epochs needed for the CNN, where the
5s, 10s, and 20s have required epochs 3, 5, and 20,
respectively. To summarize, the pre-trained VGG-
16 model didn’t achieve the results that were at-
tended, if we take into account that it is well-known
for its great accuracy in image classification. We
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Model\Data Raw data Preprocessed data
5s 10s 20s 5s 10s 20s

Accuracy SVM 95.52 96.63 95.77 90.36 91.7 91.94
CNN 96.84 96.27 98.08 95.29 96.48 97.67

F1score SVM 95.55 96.65 95.79 90.37 91.71 91.92
CNN 96.89 96.31 98.09 95.33 96.49 97.69

Table 3: Algerian Dialect Identification Based Acoustic features: Reported Result Before and After Processing
(noise reduction). The best F1score obtained are in bold.

5s 10s 20s
F1score 54 84 88
Epoch 3 5 20

Table 4: Results obtained by the classification of
spectogram images using VGG16 pretrained model.

The best epoch for each duration is reported.

think that the problem resides in the architecture
of the network that we used to retrain the VGG-16
(2-layer network).

By comparing the performance of both the acous-
tic and spectrogram approach based on the obtained
findings, we noted that the acoustic-based approach
performs way better than the spectrogram-based
approach (with an increase of about 10%). This
suggests that auditory features are more trustwor-
thy descriptors for distinguishing various dialects,
reducing confusion, and producing better outcomes.
The acquired findings are quite good when com-
pared to what is available in the literature; our addi-
tion to this work is that we worked with 23 Algerian
dialects.

7 Conclusion

This research focuses on the creation of an auto-
matic system for recognizing Algerian dialects. To
attain our aim, we employed two approaches. The
first is based on acoustic features derived from au-
dio, while the second is based on spectrogram fea-
tures. The two approaches have been evaluated
using SVM and CNN for the first one whereas a
transfer learning technics (VGG-16) was applied
for the second approach, respectively.

These models were evaluated using audio du-
rations of 5s, 10s, and 20s. The results for the
20s duration data using CNN were extremely good,
with an accuracy of 98.09% for the raw data. How-
ever, it should be highlighted that while employing
a spectrogram to train a VGG deep learning model,
our proposal performed best when the size of the

audio voice was significant (the 20s). The previous
experience with the 23 Algerian dialects stresses
the relevance of acoustic parameters and the use of
spectrograms in differentiating Algerian dialects.
Future research might try to add new dialects and
cities to our current corpus in order to eventually
encompass all Algerian dialects. In addition, we
will investigate deep learning methods to improve
the modeling of Algerian dialects. Finally, we will
look for the optimal duration that will allow our
system to generalize more effectively.
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Abstract

Combining the annotation strengths of PDTB
and RST, this study constructs a specialized
Chinese discourse corpus on “run-on” sen-
tences. “Run-on” sentences are a typical and
prevalent form of discourse/text in Chinese.
Despite their widespread use in Chinese, pre-
vious studies have only explored “run-on” sen-
tences by using small-scale examples. In or-
der to carry out computational tasks in realis-
tic context and increase diversity of discourse
corpora resources, we establish this discourse
corpus. The present study selects 500 “run-
on”sentences and annotates them on the levels
of discourse, syntax and semantics. We mainly
adopt an integrated annotation pipeline com-
bining with RST and PDTB to process these
sentences. After that, three state-of-the-art dis-
course parsers are employed to test the feasi-
bility of this corpus, and the result shows that
this corpus performs stably and can be used as
a benchmark for evaluating discourse parsing.

1 Introduction

Discourse corpora annotated with discourse rela-
tions have become important in many down-stream
NLP tasks including machine translation (Guzmán
et al., 2014), machine reading comprehension (He
et al., 2017) and automatic summarization (El-
Kassas et al., 2021). Several discourse corpora
have been proposed in previous work, grounded
with various discourse theories. Currently there
have been two influential discourse annotation sys-
tems: PDTB (Penn Discourse Treebank) and RST
(rhetorical structure theory) (Mann and Thompson,
1988; Carlson et al., 2003; Webber, 2004; Web-
ber et al., 2019). The two systems have their own
strengths. However, few discourse corpora could
have annotated using the strengths from the two
systems. The two annotation systems have been
adopted to annotate discourse structure in a few
languages. However, for example, few Chinese cor-
pora were both annotated for discourse properties

and publicly available (Zhou and Xue, 2015; Jiang
et al., 2018). The available annotated texts are pri-
marily newspaper articles. The other problem is
that these annotated Chinese discourse corpora sel-
dom annotated other relevant information consider-
ing the characteristics of the Chinese language.

The Chinese language is known to be a
discourse-oriented language (Tsao, 1979; Chu,
1998; Li, 2005). It is characterized by a very
common but special linguistic phenomenon that is
called “run-on” sentences. Native Chinese linguists
usually refer to this type of sentence as liu shui ju,
a “flowing-water sentence” (流流流水水水句句句), in which
the metaphor “liu shui” (flowing water) vividly
describes the physical feature and the logical re-
lationships between the segments of such a sen-
tence. Linguists working on the Chinese language
often boast about the special characteristics of “run-
on” sentence as such sentences may be seen as
grammatically unacceptable in English but they are
nonetheless widespread in Chinese (Sheng, 2016;
Wang and Zhao, 2017). However, the term “run-on”
does not describe the characteristics of these Chi-
nese sentences in a precise way. Instead, this term
simply helps those unfamiliar with the Chinese
language to understand what they are. A “run-on”
English sentence is like this: “My cat meowed an-
grily, I knew she wanted food, I hurried to go to
shop and make her food.” By contrast, a Chinese
“run-on” sentence would read as follows “My cat
meowed angrily, I hurried to go to shop and make
her food.” In other words, when the middle clause
in the English sentence is missing, it feels that there
is a semantic leap and it resembles a “run-on” sen-
tence in Chinese.

Linguists working on Chinese have been aware
of this phenomenon for a long time (Lu and Zhu,
1979; Hu and Jingsong, 1989; Chao, 1968; Shen,
2012). According to previous research, this means
the general characteristics of “run-on” sentences
can be summarized phonetically, syntactically, and
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semantically. By contrast, English, Japanese, and
Korean do not have “run-on” sentences. The com-
pound sentence structures are closed in these lan-
guages and usually consist of multiple clauses.
The clauses are linked through logical relation-
ships such as parallelism, causation, and conces-
sion. That means there are clear boundaries be-
tween single, complex, or compound sentences in
these languages. This is not the case with Chinese
run-on sentences. “Run-on” sentences seem to be
“sentences”. However, a “run-on” sentence is actu-
ally a discourse although it is composed of several
segments enclosed by a full stop. The reason for
this is that there is no clear boundary between the
sentence and the text in many cases.

Further quantitative/computational research on
“run-on” sentences and realistic Chinese discourse
requires annotating a corpus and thus obtaining
data. This study targets to construct the corpus
of Chines textual “run-on” sentences (CCTRS).
Clearly, discourse relations are the core characteris-
tics of textual “run-on” sentences. As discussed at
the outset, borrowing the annotation styles from the
two mature discourse corpora (PDTB, RST), we
annotated the discourse relations for “run-on” sen-
tences. Although some discourse parallel corpora
were created using PDTB and RST piplelines sep-
arately (Potsdam Commentary Corpus, Stede and
Neumann, 2014; GUM corpora, Zeldes, 2017), no
discourse corpora have merged the two pipelines
into one integrated system to annotate discourse
relations previously. The CCTRS is the first to do
this.

This corpus (CCTRS) is to provide a benchmark
of realistic datasets in Chinese computational dis-
course analysis. Compared with the past discourse
corpora, the CCTRS accommodates an integrated
method to annotate discourse relations and makes
multilayer annotations regarding other semantic
and discourse information. We believe that these
annotation data are to promote further development
on discourse relation recognition and discourse-
level NLP tasks in realistic context. Further, the
CCTRS can increase diversity of discourse corpora
resources. The data from the CCTRS can help
investigate linguistic problems quantitatively and
promote the improvement of algorithms for zero
anaphora resolution from the perspective of dis-
course relations.

2 Related Work

The question of how discourse units are effectively
incorporated into a unified meaningful text has
been addressed from a variety of perspectives, such
as Hobbs’s theory of coherence relations (Hobbs,
1979), the rhetorical structure theory (Mann and
Thompson, 1988), the centering theory (Grosz
et al., 1995), the discourse representation theory
developed by (Asher et al., 2003), and the frame-
work of lexicalized tree-adjoining grammar (L-
TAG, Webber (2004)). Annotations on aspects
of discourse structure have been made in text cor-
pora on the basis of these theories.

L-TAG theory holds that discourse relations can
be lexicalized, implying that two clauses linked
by a connective contribute to two distinct argu-
ments. Adopting this lexically-grounded predicate-
argument approach, the Penn discourse treebank
(PDTB3.0, Webber et al., 2019) provides annota-
tions of discourse structures for English. How-
ever, Chinese discourse uses very few conjunc-
tions and connectives (75% discourse connec-
tives are implicit). Zhou and Xue (2015) followed
the PDTB guidelines in establishing Chinese dis-
course treebank (CDTB). The other two Chinese
discourse corpora were established following the
PDTB styles (Zhou et al., 2014; Long et al., 2020).
RST(rhetorical structure theory), another influen-
tial discourse theory, assumes there is a hierarchy
of discourse segments that collectively span a full
text. The RST discourse treebank (RST-DT, Carl-
son et al., 2003) has been adopted to annotate dis-
course in a variety of languages. Nevertheless, in
attempting to apply RST to the annotation of Chi-
nese discourse, we find that there is in many cases
no way of distinguishing between a nucleus and its
satellite.

We illustrate the characteristics of a “run-on”
sentence in Chinese using an example, which con-
sists of a sequence of clauses, with its English trans-
lation (see Example 1 in the Appendix). Example
1 helps us understand why an integrated annotation
system combining PDTB and RST was taken in the
CCTRS. The subsection 3.2.1 will give a detailed
account of why and how the two systems were
taken to integrate into an annotation pipeline. This
Chinese example is a typical “run-on” sentence.
First, the sentence has no connectives that clar-
ify the temporal and logical relations between the
clauses. With the semantic relationships between
clauses left implicit, interpreting the sentence may
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sometimes require a considerable creative effort
on the part of the reader. For example, after intro-
ducing the cry from a child, the sentence directly
moves ahead to the clouds in the sky without men-
tioning the missing link of “I felt bored and raised
my head to find”, leaving a gap in the logical pro-
gression from cause to effect. The semantic leap
between (3) and (4) leaves the reader/listener much
more leeway in filling the gap. By contrast, an
English translation usually provides the missing
information for the semantic leap between (3) and
(4), such as “Strangely enough, when raising my
head, I found that...”. Nevertheless, in English,
we can find a similar phenomenon in discourse.
It is possible that neither a discourse relation nor
entity-based coherence can be inferred between the
adjacent sentences. The phenomenon in English is
actually the same as the semantic leap in Chinese
“run-on” sentences. In the Penn Discourse Treebank
(PDTB, Webber et al., 2019), such semantic leap in
English discourse is annotated as “NoRel”(no rela-
tionship), which occurs with a very low frequency
(0.67%).

Considering the uniqueness of “run-on” sen-
tences, we also annotated the other types of in-
formation at grammatical, semantic and discourse
levels. For example, topic chain plays a key role in
discourse coherence. Semantic information, such
as animacy also is very helpful in recognizing run-
on sentences. It is the first time to annotate them
in Chinese corpora. In the following, we will intro-
duce them separately.

3 Annotation Scheme

3.1 Text and “run-on” sentence selection

The criterion of “run-on” sentences chosen for the
corpus is easy to define and annotate while tak-
ing into account various research contributions.
Take the following as an example, which is a di-
rect translation from Chinese (in order to save the
paper length, and the original example is in the
Appendix).

[Example 2] The river was full of people (1), four
long vermilion boats were sliding in the pool(2), the
water of the dragon boat had just risen(3), the wa-
ter in the river was all bean green(4), the weather
was so bright(5), the drums were sounding(6),
[semantic leap (≈ NoRel in the PDTB)]
Cuicui pursed her lips without saying a word(7),
her heart was full of unspeakable joy(8).

Clearly a semantic leap occurs from the sixth

clause to the seventh clause, i.e., from the scene of
dragon boat racing on the river to Cuicui directly
and we do not know what relationship defines the
discourse semantic relationship between (6) to (7).
Although the definitions of “run-on” sentences are
different, they all acknowledge the existence of
semantic leaps between segments, which means
this is an appropriate standard for selecting “run-
on” sentences. Semantic leap is quite similar to
NoRel in PDTB. We investigate these sentences
both formally and semantically. Such a procedure
is conducive to annotation and obtaining data. The
second criterion is that all segments must be en-
closed by a sentential-final period. In Example 2,
clause (8) ends with a period. Although semantic
leaps often occur between different sentences, these
are not considered in this study. This is because
we only interested in how semantic leaps occur
within a block of clauses that native Chinese speak-
ers/readers perceive as having a complete mean-
ing. In short, we followed the two criteria to select
“run-on” sentences. Note that the two criteria were
selected from the characteristics described by pre-
vious related studies, and not from our own.

Further, in many cases, it is not easy to dis-
tinguish which clause is head or which clause
is subordinate given that we attempt to establish
head/subordinate between two clauses. For exam-
ple, among the former six clauses in Example 2,
it is hard to confirm which clause is a head. This
indicates that the distinction between nucleus and
satellite in the RST may not be applied in many
cases, particularly in fiction genre.

As is well-known, multiple clauses can be joined
by using commas without conjunctions in Chinese
texts, with the period occurring at the end of the
block of clauses and indicating the completeness
of the meaning or idea therein rather than the com-
pleteness of a sentential structure (Lu and Zhu,
1979:322; Huang and Xiao, 2016; Xue and Yang,
2011, Sun and Lu, 2022). In this study, the selec-
tion of “run-on” sentences is limited to the fiction
genre. 500 “run-on” sentences (equal to 500 texts)
were carefully selected from ten well-known con-
temporary Chinese fiction (with 2.6 million Chi-
nese characters in total).

3.2 Annotations at different levels

Combining the theoretical study of “run-on” sen-
tences and the observation of examples, we venture
the hypothesis that the factors contributed to the
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characteristics of run-on sentences involve verb va-
lence, clause structure, discourse semantics, topic
chain, and other kinds of semantic information
surrounding the clause with a semantic leap. As
mentioned above, “run-on” sentences are actually
treated as text/discourse. The discourse structure
should be highlighted. The semantic leap is one
of the most important traits of “run-on” sentences,
which means we need to pay particular attention to
the semantic status of the clause containing the se-
mantic leap. We took these aforementioned factors
into account and annotated them. These annota-
tions can be classified into three separate types that
represent the core features of “run-on” sentences,
namely, discourse, grammatical and semantic. The
following details these annotations in this corpus.

3.2.1 Discourse relations
The annotations of discourse structure and dis-
course relations for the current corpus combine two
of the most successful annotation systems (PDTB
and RST-DT) and they take into account the char-
acteristics of Chinese discourse. The following
provides a detailed account of them respectively.

The English PDTB annotation system is a shal-
low discourse annotation, which is reasonable, neat,
and easy to operate. RST semantic labels are more
numerous and repetitive, while PDTB semantic la-
bels are hierarchical and consistent. However, the
PDTB cannot capture the global coherence. The
CCTRS uses the semantic tagging of the PDTB
and CDTB. However, unlike PDTB and CDTB,
we did not explicitly annotate the discourse con-
nectors (e.g., “because of”, “despite”). There are
two reasons for this: first, the number of explicit
discourse connectors in “run-on” sentences is quite
small. Second, the discourse connectors are sup-
posed not to influence discourse relations becuase
of few discourse connectives used in Chinese dis-
course (75.7% discourse connectives are implicit
in Chinese).

Specifically, given the unbalanced data on PDTB
relations, the samples are sparse. For instance, in
the PDTB, temporal has three classes, but contin-
gency includes eight classes. The CCTRS anno-
tation system therefore has at most four specific
labels under each sense. The high-frequency se-
mantic relations in previous Chinese discourse are
selected as tags. Due to the semantic peculiarities
between the segments of the “run-on” sentences,
two new semantic tags such as leap, and continu-
ation. were taken in the annotation system. This

Sense Class
Temporal Succession (Su)

Precedence (Pr)
Simultaneous (Si)

Contingency Cause-effect (Ce)
Conditional (Co)
Purpose (Pu)

Comparison Contrast (Cn)
Concession (Cc)
Conjunction (Cj)
Leap (Le)

Expansion Continuation (Cu)
Progression (Pg)
List (Lt)

Table 1: The hierarchy of discourse structure for an-
notation tags in the CCTRS. There are only two-class
hierarchy tags: sense and class.

makes it easier to compare this with the CDTB and
with the PDTB corpora of other languages.

The majority of specific semantic labels were
adopted from the PDTB rather than RST-DT. We
also added two tags which do not occur in PTDB
or CDTB. Table 1 shows the tags for discourse
relations in our corpus. For example, here Le as
tag is used to represent the discourse semantic leap
relationship. Once Le appears, this means there is a
semantic leap, so we can posit that a flow sentence
is formed. The semantic leap (Leap) in “run-on”
sentence is similar to NoRel(no relationship) in
the PDTB. When talking about semantic leaps, we
mean that no proper discourse relation can be em-
ployed to describe the semantic relation between
the two segments. An English example from the
PDTB illustrates the similarity between these phe-
nomena between English and Chinese (See Exam-
ple 3 in the Appendix). In Example 3, there is a
semantic leap in the place of NoRel. NoRel in-
dicates that a semantic leap occurs between two
discourse units. According to the PDTB, these
are cases where no discourse relation or entity-
based coherence relation can be inferred between
adjacent sentences. As a matter of fact, NoRel
indicates that a semantic leap occurs between two
discourse units. However, there are some differ-
ences between a semantic leap in Chinese and a
NoRel in English. The first difference is that a se-
mantic leap occurs within a “sentence”, at least in
a unit enclosed by a full stop in Chinese. However,
NoRel in English seldom occurs within a sentence.
According to PDTB3.0 manual, there is not any
case where NoRel occurs within a sentence. The
other difference is that the frequency of NoRel use
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in English discourse is quite low. There are 254
NoRel cases in the PDTB, out of a total of anno-
tated 40600 discourse relations. This suggests that
NoRel cases only account for quite a small propor-
tion of English discourse (about 0.63%). Although
there is no direct statistical evidence concerning
semantic leaps in Chinese, we believe that seman-
tic leaps in discourse occur much more frequently
than English according to our observation and the
relevant studies. This claim is based on our ob-
servations and on a number of studies concerning
Chinese “run-on” sentences.

The other new tag is continuation. It describes
successive actions, or several events in succession.
The tag of continuation was annotated when ex-
plicit time adverbials do not occur. Otherwise, the
relation with explicit time adverbial was taken as
succession. The relation of continuation is similar
to progression in which one discourse unit repre-
sents a progression from the other, in extent, in-
tensity, scale, etc. In contrast, there is no progres-
sion in extent, intensity etc. for continuation. In
Chinese, they are defined by two different terms
respectively,承承承接接接 and递递递进进进 .

We used RST constituent tree structure to an-
notate discourse structure for “run-on” sentences
such that we can obtain the global coherence infor-
mation. However, in view of the characteristics of
Chinese discourse structure, we did not use the con-
cepts of nucleus and satellite in the RST style an-
notation, because the relationship between nucleus
and satellite is not very significant in some cases of
fiction genre. Hence we did not annotate which is
the nucleus and which is the satellite. For example,
in Example 2, clauses 1-6 form a node (“1-6”) and
clauses 7-8 forms the other node (“7-8”). The first
node (“1-6”) has a “conjunction” relation with the
other node (“7-8”). However, we almost cannot
distinguish which node is the nucleus. More details
can be seen in subsection 4.2.

According to Demberg et al. (2019), 76% of
PDTB relations can be mapped with RST ones in
the same English texts (53% directly mapped). This
provides evidence that RST could be closely cor-
related with PDTB, that is, RST and PDTB could
be merged together to make annotations for Chi-
nese discourse. In short, our corpus used RST and
PDTB strengths to annotate discourse structure and
relations. We used RST tree to represent discourse
structure but abandoned the concept of neclearity
and satellite. We used two-class PDTB tags to an-

notate discourse relations but did not depend on
discourse connectives.

3.2.2 Topic chain
When a clause does not have an argument before
the predicate verb, it is recognized as co-referential
zero amphora. The topic chain is considered as hav-
ing a topic followed by several comment clauses,
but usually the topic in the comment clauses is in-
visible, that is, is a co-referential zero anaphora.
Within a topic chain, the topic controls and man-
ages its comment clauses and the comment clauses
are linked coherently, being dependent on some
mechanism (Sun, 2019). Topic chain can help im-
prove the performance of zero anaphora resolution
in Chinese discourse (Kong et al., 2019). Accord-
ing to our observation, we feel that topic chain is
closely related with discourse relations. Our follow-
up study shows that topic chain is a good predictor
for the occurrence of semantic leap in discourse.
Here we annotated the number of clauses between
the implicit topic and zero anaphor. This is called
the topic distance, and it is mutually affected with
discourse relations.

3.2.3 Grammatical status
The grammatical structure and the number of the
valence of predicate verb in each clause was an-
notated. In English, a clause is the combination
of a subject and a verb. There are two types of
English clauses. Independent clauses consist of a
subject and verb that make up a complete thought
and they make sense on their own. In a dependent
clause, the subject and verb don’t make up a com-
plete thought. Dependent clauses always need to
be attached to an independent clause as they are
too weak to stand alone. However, Chinese is very
likely to use some VPs or NPs independently in dis-
course and these phrases can work independently
as finite clauses in some cases. These indepen-
dent VPs or NPs in Chinese are similar to English
dependent clauses. The difference is that without
the use of any grammatical device, these VPs and
NPs can work independently. We use the follow-
ing tags to annotate the grammatical status of each
clause: SVO (subject + predicative verb + object),
SV (subject + predicative verb), SVC (subject +
predicative verb + complement), VP (verb phrase),
NP (noun phrase), and AP (adjective phrase).

The valence indicates the number of arguments
that are associated with a particular verb in a sen-
tence. Most verbs are at least mono-valence. This
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means they have one argument, which is the sub-
ject of the sentence that performs the action stated
by the verb. There are also divalent verbs, which
require both a subject and a direct object upon
which the action is performed, and trivalent verbs
that also need an indirect object that is part of the
action. Valence is related to transitivity of verbs,
although these are not identical concepts as the
transitivity is based purely on objects and not the
subject (Gao et al., 2014). We used the numeric
value to record the valence information, which is
based on the number of arguments of the predicate
verb in a clause.

3.2.4 Semantic information
The animacy information and action information
were annotated. The term animacy was explicated
by Comrie (1989), who listed the hierarchical se-
quence for nominative entities according to the de-
gree of animacy. Comrie (1989) outlined how the
grammatical or semantic characteristics of nouns
are dependent on how sentient or ‘alive’ the refer-
ent of a noun is. Animacy can have different effects
on the grammar of a language, such as the choice
of pronoun (what/who), case endings, word order,
or the form a verb takes when associated with a
noun. These constitute the animacy degree. How-
ever, using the traits of a semantic leap between
two clauses as our criteria, we use only three ani-
mate features in making the annotations: human,
nonhuman, and inanimate.

4 Annotation Methods

4.1 Annotation procedures

We then divided a “run-on” sentence into multi-
ple segments. A segment is discourse unit, that
is, roughly a unit of discourse that makes sense
in pairs and individually. Generally the first thing
to look at is the unit separated by commas. If it
contains a verb, then this unit can be treated as a
sentence or clause segment. If the segment sepa-
rated by commas does not contain a verb, it may be
a noun phrase that must be based on the situation,
that is, the noun phrase is part of the content of
the small sentence behind or in front. If this is the
case, it cannot be divided independently. Sentence
segment here is similar to discourse units or ele-
mentrary discourse units (EDU) in RST or PDTB.
Generally, segment division is not easy, so two of
the three annotators first divide the segments.

In fact, there are three levels of sentence an-

notation: grammatical, semantic, and discourse.
Among them, a discourse relation between seg-
ments is used to mark not only the semantic rela-
tionship between two adjacent segments, but also
the relationship between cross-segments (i.e., con-
stituency structure), as described above. Grammati-
cal annotation focuses on the syntactic form of each
segment, whether it is a subject-predicate structure,
a noun phrase, and also on the valence of the verb
from the number of elements in the argument. The
semantic annotation mainly focuses on the animacy
of the subject noun of the segment before and after
the semantic leap relation and whether or not the
verb is dynamic or static. It is explained below
using sample examples.

The three annotators are native Chinese speakers
with linguistics background (two are MA students
majoring in linguistics and the third one has ob-
tained PhD degree in linguistics). The three annota-
tors received training from the authors and achieved
over 80% agreement on six pilot passages. They
then independently annotated all sentences and met
to resolve all discrepancies. We used standard cor-
pus annotation methods to check the reliability of
our annotations, which will be presented in the
following subsection.

4.2 Sample example

After a “run-on” sentence was segmented (into
EDU), we annotated each segment (EDU). The fol-
lowing example illustrates how to annotate a “run-
on” sentence. All 500 “run-on” sentences (texts)
were annotated in the same manner. An example
(Example 4) is used to illustrate annotations (here
is the English translation, and the original example
is in the Appendix).

[Example 4] At this time an airplane flew over(1),
and a white band trailed behind the airplane (2),
and lasted for a long time(3), and the sky was cut
open (4), or the sky cracked (5), and leaked(6), and
the fish disappeared (7).

This sentence in Example 4 is divided into seven
sentence segments (EDU). The grammatical struc-
ture is used to mark the structure of each segment.
For example, the first segment, “the plane flew
over”, is a “subject-predicate” structure, which
is represented by “SV”; the third segment, “long-
lasting”, is a verb phrase, which is represented by
“VP”. The semantic sequence, which semantically
relates two segments or groups of segments to each
other, is indicated by “1*2” for the first segment
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and the second segment and “1-3*4” for the first
to third segment and the fourth segment. All these
segments can construe an RST tree structure where
head or nucleus for each node is not distinguished,
shown in Figure 1 in the Appendix. The semantic
relation label adopted from the PDTB was intro-
duced above. Here we need to introduce a new
concept, that is, the relation distance is the linear
distance between the segments forming a discourse
semantic relationship (Sun and Xiong, 2019), e.g.,
“1*2” is “2-1=1”, and “1-3*4” is “4-1=3”. When
a segment group is present, it is indicated by “1-
3*4”. When a number of sentence segments are
linked by “-”, such as “1-3”, it indicates that these
sentence segments are formed into one integrated
unit, which is similar to RST structure.

The verb valence is the number of valences of
the verb in the segment, for example, the verb ”fly
over” in the first segment has only one subject,
so the number of valences is “1”. The verb "not
loose" in the third segment has a valence of 0. The
topic distance is the number of segments between
the occurrence of a subject that is omitted but that
may occur in subsequent segments. Animacy and
action are specifically true of the state of the subject
and verb in the two segments where a semantic
leap occurs. Animacy refers to whether the subject
is a living being or a human being, “ina” stands
for “inanimate”, “nonhum” for “nonhuman”, and
“hum” for “human”. Only three most distinctive
features on animacy were chosen for simplicity
and convenience. The action refers to the state
in which the verb appears, whether it is dynamic
or stative (Bach, 1986; Mcintosh, 1977), “dyn” is
dynamic, and “sta” is stative. The main annotation
information in Example 4 is shown in Table 2. 1

4.3 Annotation reliability
A consistency assessment can be used to measure
the objectivity of the corpus annotations. The as-
sessment of the consistency of annotations provides
a more objective picture of the quality of the anno-
tation. The CDTB and the PDTB can assess the
consistency of certain metrics such as discourse
relations. To eliminate inconsistent annotations,
we also used Kappa values (Siegel and Castellan,
1981) to assess the consistency of annotations eval-
uated using protocol rates. The final assessment of
the degree of agreement between three annotators

1The corpus is available at: https://github.com/
fivehills/CCTRS-corpus-/tree/main.

regarding the 500 sentences is shown in Table 3.
The agreement ratio of the corpus is greater than
80% and the kappa value is greater than 0.6 for
discourse structure, kernel, and relations. Krippen-
dorff (1980) states that a k value greater than 0.6
for annotated data indicates good quality annota-
tion. Table 3 shows that the annotations of the three
annotators were very consistent as was the kappa
perspective. This suffices to prove the reliability of
our annotations.

5 Corpus Statistics

5.1 Frequency distribution

We look at simple statistics, mainly the frequency
distribution of the various types of annotations in
the CCTRS. With 500 sentences (texts) from the fic-
tion genre, the CCTRS annotated 2286 discourse re-
lations and 650 topic chains. Moreover, 954 clauses
and 990 clauses were annotated by animacy and
action information respectively. 2281 verbs were
annotated by valency information. Figure 1 in the
Appendix shows the distribution of frequencies for
different discourse relations in the three discourse
corpora. “Leap” occupies the largest proportion in
the CCTRS, by contrast, “conjunction” takes the
largest share in both the CDTB or the PDTB.We
compare the distribution of frequencies among the
three corpora. As shown in Figures 2 & 3 in the
Appendix, the distribution of the three groups of
data is basically similar. Generally speaking, such
distribution of frequencies abides by the power law
(Kello et al., 2010; Sun and Zhang, 2018).

5.2 Corpora comparisons

So far there have been four discourse corpora in
Chinese, annotated in terms of PDTB and RST
respectively. The four existing Chinese discourse
corpora were annotated just with discourse rela-
tions. Compared with the four discourse corpora,
the CCTRS annotations contain discourse relation,
semantic information, grammatical structure and
topic chain. This is the only multilayer annotation
corpus. The differences among these corpora are
seen in Table 4. A great deal of semantic and dis-
course information cannot be implemented through
automatic annotation. In particular, there are very
few corpus resources for the annotations of seman-
tic and discourse information concerning aspects
of Chinese language characteristics. For example,
topic chain and animacy information annotations
have never been annotated in previous Chinese cor-
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ID EDU grammatical
structure

tree
structure

discourse
relation
labels

relation
distance

verb
valency

topic
distance animacy

95-1 飞机飞过 SV 1*2 cu 1 1 NA NA
95-2 飞机拖白带 SV 2*3 pr 1 2 2 NA
95-3 不敢 VP 1-3*4-7 ce 3 0 NA NA
95-4 天被隔开 SV 4*5 cj 1 1 3 NA
95-5 天裂 SV 4-5*6 ce 2 1 NA NA
95-6 漏水 VP 6*7 le 1 1 NA ina
95-7 鱼不见了 NA NA NA 1 0 NA nonhum

Table 2: Sample annotation sheet.

indicators segments RST spans semantic
relations animacy action

agreement .92 .93 .92 .99 .98
Kappa .82 .83 .81 .87 .86

Table 3: Consistency of annotation by the three annota-
tors.

Corpus Style Genre Multilayer
annotations

CDTB (Zhou and Xue, 2015) PDTB newpaper NO
CUHK (Zhou et al., 2014) PDTB newpaper NO
TED-CDB (Long et al., 2020) PDTB TED talks NO
MCDTB (Jiang et al., 2018) RST newspaper NO
CCTRS (ours) RST& PDTB fiction YES

Table 4: comparison of the CCTRS to related Chinese
discourse datasets.

pora but they are closely related with discourse
relations. Topic chain and animacy are closely
related zero amphora (co-reference) (Kong et al.,
2019). Moreover, although Jiang et al. (2018) an-
notated the macro discourse information in Chinese
discourse using RST tree structure they adopted dif-
ferent tags from both RST tags and PDTB tags. In
this way, it could be a little difficult to compare
their tags with other similar discourse corpora (in-
cluding discourse corpora in other languages). Our
CCTRS used PDTB tags so that we can easily com-
pare with either RST-style or PDTB-style corpora.

6 Benchmark for Discourse Parsers

We further apply the CCTRS as a benchmark for
comparing and evaluating discourse parsers. For
the 500 texts in the CCTRS, 71 are used for devel-
opment set and 73 for test set, and the remaining
356 texts for training. We implement two pars-
ing sub-tasks. RST parsing usually includes the
following sub-tasks: span prediction, nuclearity in-
dication, and relation classification. As mentioned
above, there are two different kinds of nodes in
the RST tree: nucleus and satellite. The nuclear-
ity indication task aims to predict the nucleus or

satellite given two EDUs or spans. However, our
corpus does not contain the information on nuclear-
ity. This way, the subtask of nuclearity indication
was not be included in RST tree building. Addi-
tionally, we used PDTB tags to annoate discours
relations. As a result, we can divide RST building
into two tasks: span prediction and PDTB relation
recognition.

6.1 Methods

We applied the standard micro averaged F1 scores
on Span (Sp.) between EDUs, and discourse re-
lation (Rel.). The micro-averaged F-1 scores over
labelled attachment decisions is applied to make
valid comparison (Morey et al., 2017). Span de-
scribes the accuracy of RST tree structure construc-
tion, while discourse relation assesses the ability
to categorize the discourse relations. A typical
RST parser also needs to distinguish nuclearity and
satellite. However, we did not require this task. Fol-
lowing previous PDTB relation recognition stud-
ies, we adopted the 13 relations defined in Table
2. We modified three typical RST parsers recently
developed using three different methods: bottom-
up (Feng and Hirst, 2014), top-down (Zhang et al.,
2020), and LSTM (Koto et al., 2021). The three
methods were employed to test the feasibility of
our corpus.

6.2 Results

After using three RST parsers in the training data
(356 texts), we required the three parsers to recog-
nize span and discourse relations. Table 5 shows
the average performance of the three RST parsers
on development/test data. The human agreement
from the annotators is presented for comparison.
It seems that Koto et al. (2021) gets better perfor-
mance than the other two systems. However, the
three parsers perform quite similarly in span and
relation recognition. According to the performance
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Method Sp Rel F-1
Feng and Hirst (2014) 63.2 43.6 42.9
Zhang et al. (2020) 62.8 44.2 43.1
Koto et al. (2021) 64.3 45.1 43.6
human 83 81 71.3

Table 5: Results over the test set calculated using micro-
averaged F-1.

data, we can judge that the performance in the three
parsers is very stable in analying the CCTRS. We
can also see that human performance is still much
higher than the three parsers, meaning there is large
space for improvement in future work. Overall, due
to the performance, we can conclude that the CC-
TRS is highly capable of using as a benchmark of
discourse parsing.

7 Conclusion

“Run-on” sentences are both typical of and preva-
lent in Chinese discourse. This study collected 500
“run-on” sentences that were annotated at different
levels. The main idea is to integrate the strengths
of RST and PDTB with the Chinese discourse char-
acteristics. This paper presented the annotation
framework, construction workflow and statistics.
Further, this multilayer discourse corpus can serve
as an evaluating benchmark of realistic Chinese
discourse parsing. Moreover, the CCTRS can pro-
vide us with valuable language sources to explore
in computational linguistics and linguistics, such
as co-referential zero anaphora resolution, and pre-
dicting semantic leaps in sentence.
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Appendix

A. Examples
[Example 1]
(1) 夏天义是进了夏天智家的院子，

Xia Tianyi enter PFV Xia Tianzhi’s yard,
(2)我没有进去，

I Not enter,
(3)只听见白雪的孩子一声比一声尖着哭，

only hear Baixue’s kids one M louder than cry
(4)原本天上还是铁锈红的云，

previously sky up already rust-red clouds,
(5)一时间黑气就全罩了。

one time black air all over the cover PFV
[Free translation:] Xia Tianyi walked into Xia Tianzhi’s courtyard, but I did not go in, and then I only
heard the sound of the kid crying, and crying louder and louder. Strangely enough, when raising my head,
I found that the original sky is still rust-red clouds, a time when the black gas is all over.

[Example 2]
(1)河边站满了人，

river stand fully people
(2)四只朱色长船在潭中滑着，

four M red long boats in river floating
(3)龙船水刚刚涨过，

dragon boats water just rise
(4)河中水皆豆绿，

river middle water all green
(5)天气又那么明朗，

weather so sunny
(6)鼓声蓬蓬响着，

drums sounds PFV
(7)翠翠抿着嘴一句话不说，

Cuicui purse PFV one word Not say
(8)心中充满了不可言说的快乐。

in heart filled with indescribable happiness
[Free translation] The river was full of people (1), four long vermilion boats were sliding in the pool(2),
the water of the dragon boat had just risen(3), the water in the river was all bean green(4), the weather was
so bright(5), the drums were sounding(6), [semantic leap] Cuicui pursed her lips without saying a
word(7), her heart was full of unspeakable joy(8).

[Example 3]
Jacobs Engineering Group Inc.’s Jacobs International unit was selected to design and build a
microcomputer-systems manufacturing plant in County Kildare, Ireland, for Intel Corp. Jacobs is
an international engineering and construction concern. [NoRel] Total capital investment at the site
could be as much as $400 million, according to Intel. (WSJ_1081)

[Example 4]
(1)这时候一架飞机飞过,

this time a M airplane flew over
(2)飞机后拖了条白带,

airplane behind trailed PVF M white band
(3)经久不散,
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long-standing,
(4)天就被割开了,

sky Bei cut open PFV
(5)或者是天裂了,

or sky cracked PFV
(6)漏了水,

leaked PFV water
(7)鱼也不见了。

fish also disappeared.
[Free translation] At this time an airplane flew over, and a white band trailed behind the airplane for a
long time, and the sky was cut open, or the sky cracked and leaked, [semantic leap] and the fish
disappeared.

[Abbreviations of glosses]
PFV – perfective aspect
M – measure word

B. Figures
In this section there are three figures. Root(1-7)

1-3

1 2 3

4-7

4-5

4 5

6 7

Figure 1: An RST constituent tree for Example 4 and Table 2 in the CCTRS
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276



Utilizing BERT Intermediate Layers for Unsupervised
Keyphrase Extraction

Mingyang Song, Yi Feng and Liping Jing∗

Beijing Key Lab of Traffic Data Analysis and Mining
Beijing Jiaotong University, China
mingyang.song@bjtu.edu.cn

Abstract

Extensive pre-trained language models such as
the transformer-based BERT have been com-
pelling at language modeling, achieving im-
pressive results on numerous natural language
downstream tasks. It has also been demon-
strated that they implicitly retain factual knowl-
edge in their parameters after pre-training. Un-
derstanding what the pre-training procedure
of language models learns is critical to uti-
lizing and enhancing them for Unsupervised
Keyphrase Extraction (UKE). However, most
existing BERT-based studies about UKE only
use the single intermediate layer of BERT (e.g.,
the last layer) and ignore the latent knowledge
in the intermediate layers. Therefore, in this
paper, we analyze and explore the potential of
utilizing BERT intermediate layers to enhance
text representations and improve the perfor-
mance of the state-of-the-art BERT-based un-
supervised keyphrase extraction model. Specif-
ically, we first verify and analyze the effect
of adopting different BERT intermediate lay-
ers on the recent state-of-the-art unsupervised
keyphrase extraction model. Then, based on the
analysis, we propose a simple and effective fea-
ture aggregation strategy. Experimental results
on several benchmark datasets demonstrate the
effectiveness of aggregating intermediate lay-
ers of BERT to enhance text representations on
the unsupervised keyphrase extraction task.

1 Introduction

Keyphrase extraction (KE) aims to extract a set
of words or phrases from a given document that
represents the salient information and main topics
of the document (Hasan and Ng, 2014). KE mod-
els typically can be divided into supervised and
unsupervised. Supervised approaches (Song et al.,
2021) need large-scale annotated training data and
perform poorly when transferred to different do-
main or type datasets. Unsupervised keyphrase

∗Corresponding author.

extraction (UKE) approaches (Mihalcea and Ta-
rau, 2004; Liang et al., 2021) are more universal
and adaptive by extracting phrases based on infor-
mation from the source document itself than the
supervised method. This paper focuses on the un-
supervised keyphrase extraction model.

A critical breakthrough in natural language pro-
cessing is the use of heavily pre-trained transform-
ers for natural language modeling, such as BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019).
These Pre-trained Language Models (PLMs) are
powerful for many downstream tasks in natural lan-
guage processing and information retrieval, which
have thus become an essential part in most cases.
Therefore, research has also been done on BERT,
especially to reveal what linguistic information is
available in different parts of the model (Jawahar
et al., 2019; de Vries et al., 2020). It has been
noted that BERT progressively learns linguistic
information roughly in the same order as the clas-
sic language processing pipeline: surface features
are expressed in lower intermediate layers, syn-
tactic features more in middle intermediate lay-
ers, and semantic ones in higher intermediate lay-
ers. Based on the above phenomenon, much recent
work (Song et al., 2020, 2022) focuses on explor-
ing the potential of utilizing BERT intermediate
layers to enhance the fine-tuning performance of
BERT. They demonstrated that each layer has dif-
ferent specializations, so combining information
from different layers may be more beneficial in-
stead of selecting a single one based on the best
overall performance.

With the development of the pre-trained lan-
guage models, recent unsupervised keyphrase ex-
traction approaches (Sun et al., 2020; Liang et al.,
2021; Ding and Luo, 2021) adopt the last layer
of BERT as the embedding layer to obtain phrase
and document representations instead of using the
traditional pre-trained word vector, which signifi-
cantly improves the performance of unsupervised
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keyphrase extraction. However, as mentioned ear-
lier, the pre-trained language models (e.g., BERT
(Devlin et al., 2019)) store rich language knowl-
edge in the intermediate layers. Therefore, only
using the single layer of BERT wastes the latent
knowledge hidden in BERT. Meanwhile, judging
a candidate phrase as a keyphrase also requires
considering various features of natural languages
(Hasan and Ng, 2014; Song et al., 2021), such as
syntax, semantics, etc.

Motivated by the above phenomenon, we first
probe the effectiveness of the intermediate layers
of the pre-trained language model BERT on unsu-
pervised keyphrase extraction. Then, we investi-
gate several feature integration strategies for ag-
gregating the middle layers of BERT to improve
the performance of the state-of-the-art baseline (Jo-
ingGL (Liang et al., 2021)). Experimental results
on DUC2001, Inspec, and SemEval2010 datasets
show that combining intermediate layers of BERT
as the embedding layer obtains better performance
than using the single one.

2 Methodology

Given the sequence x = {x1, x2, ..., xm, ..., xM}
with M tokens, we adopt BERT to encode it and
obtain the hidden states for the i-th token from all
L intermediate layers, hL

i = {h1i , h2i , ..., hLi }. Typ-
ically, L is set to 12. In this paper, based on the
recent state-of-the-art model (JointGL (Liang et al.,
2021)), we first probe the performance of differ-
ent intermediate layers of BERT as the embedding
layer on the current state-of-the-art model JointGL.
Then, we test several feature integration strategies
for combining the middle layers of BERT as the
embedding layer on the baseline JointGL.

2.1 A Model-dependent Analysis

Existing embedding-based unsupervised keyphrase
extraction models rely on the pre-trained language
models (e.g., BERT) to achieve significant progress.
Still, there is no work to probe in detail the impact
of the features of different BERT intermediate lay-
ers on the unsupervised keyphrase extraction task.
Therefore, to better utilize the pre-trained language
models, we give a model-dependent analysis. Fig-
ure 1 shows the effectiveness of the baseline model
JointGL by adopting different intermediate layers
as the embedding layer on DUC2001, Inspec, and
SemEval2010 datasets.

First of all, as can be seen from the results, the

last layer of BERT is not always the one that gives
the best performance of keyphrase extraction. Sec-
ond, we found that the dependence on natural lan-
guage features is different for different keyphrase
extraction datasets when obtaining text represen-
tation. For DUC2001 and SemEval2001, the syn-
tactic information in the middle intermediate layer
is more critical. For Inspec, surface information is
more critical. The above phenomenon is that the
choice of features at different intermediate layers
of BERT determines the effectiveness of phrases
and documents representation. Overall, keyphrases
in various datasets may rely on different linguistic
features. Finally, an interesting phenomenon is that
the 11-th intermediate layer achieves the worst F1,
precision, and recall results. It is interesting to in-
vestigate why the 11-th layer obtains such results
in future work.

2.2 Selective Feature Aggregation
We introduce a simple selective feature aggrega-
tion strategy to comprehensively use the linguistic
knowledge stored in the pre-trained language mod-
els. Based on our model-dependent analysis, the
intermediate layers with the higher evaluation met-
rics are selected as candidate layers in the first step.
We generally choose the top K scores with their
corresponding layers. For the second step, we use a
weighted pooling operation to integrate the selected
K layers as follows:

h
′
i = γhk=1

i + (1− γ)
K∑

k=2

hki (1)

where γ is the balance factors and h
′
i indicates the

final representation of i-th input token. Through
the above strategy, different feature information
contained in different layers in BERT is fused to
assist unsupervised keyphrase extraction.

3 Experiments

3.1 Datasets
To better verify the effectiveness of the proposed
strategy, we evaluate our model on three benchmark
keyphrase extraction datasets: DUC2001 (Wan
and Xiao, 2008), Inspec (Hulth, 2003), and Se-
mEval2010 (Kim et al., 2010).

3.2 Evaluation
We follow the common practice and evaluate the
performance of our models in terms of f-measure

278



1 2 3 4 5 6 7 8 9 10 11 12

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

DU
C2

00
1

F@5 F@10 F@15

1 2 3 4 5 6 7 8 9 10 11 12

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

P@5 P@10 P@15

1 2 3 4 5 6 7 8 9 10 11 12

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R@5 R@10 R@15

1 2 3 4 5 6 7 8 9 10 11 12

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

In
sp

ec

1 2 3 4 5 6 7 8 9 10 11 12

0.300

0.325

0.350

0.375

0.400

0.425

0.450

1 2 3 4 5 6 7 8 9 10 11 12

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

1 2 3 4 5 6 7 8 9 10 11 12
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Se
m

Ev
al

20
10

1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.12

0.14

0.16

0.18

0.20

1 2 3 4 5 6 7 8 9 10 11 12

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Figure 1: Results of the different intermediate layers of BERT for the baseline model JointGL on DUC2001, Inspec,
and SemEval2010 test sets. The x-axis represents the index of the intermediate layers of BERT.

at the top N keyphrases (F1@N), and apply stem-
ming to both extracted keyphrases and gold truth.
Specifically, we report F1@5, F1@10 and F1@15
of each model on three benchmark keyphrase ex-
traction datasets.

3.3 Implementation Details

We follow the previous baseline work (Liang et al.,
2021) and adopt the same settings on the DUC2001,
Inspec, and SemEval2010 datasets. For the selec-
tive layer aggregation strategy, γ is set to 0.95, 0.9,
and 0.5 for DUC2001, Inspec, and SemEval2010.
Specifically, K is set to 4, which means four inter-
mediate layers with higher evaluation scores (F@5)
are used in our strategy. Therefore, the 12, 8, 6, 7-
th intermediate layers are selected for DUC2001;
the 12, 3, 2, 1-th intermediate layers are selected
for Inspec; the 12, 5, 6, 7-th intermediate layers are
selected for SemEval2010 (as shown in Table 1).

3.4 Results

Table 1 shows the results of F1, precision, recall,
and @5, 10, and 15 using the embedding-based
baselines and JointGL with different layer aggrega-
tion strategies on all datasets.

From the results in Table 1, we can see that the
proposed feature aggregation strategy outperforms
existing embedding-based unsupervised keyphrase
extraction methods in most cases. The main reason
is that the two most essential procedures of un-
supervised keyphrase extraction methods are text
representation and semantic similarity calculation.
Our strategy obtains more comprehensive phrase
and document representations by considering dif-
ferent linguistic knowledge stored in the pre-trained
language models, which naturally improves the per-
formance of the keyphrase extraction model.

Compared with different layer aggregation meth-
ods, our method has achieved significant improve-
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Model
DUC2001 Inspec SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical Models
TF-IDF (Jones, 2004) 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91
YAKE (Campos et al., 2018) 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19

Graph-based Models
TextRank (Mihalcea and Tarau, 2004) 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65
SingleRank (Wan and Xiao, 2008) 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58
TopicRank (Bougouin et al., 2013) 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54
PositionRank (Florescu and Caragea, 2017) 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33
MultipartiteRank (Boudin, 2018) 23.20 25.00 25.24 25.96 29.57 30.85 12.13 13.79 14.92

Embedding-based Models
EmbedRankd2v (Bennani-Smires et al., 2018) 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23
EmbedRanks2v (Bennani-Smires et al., 2018) 27.16 31.85 31.52 29.88 37.09 38.40 5.40 8.91 10.06
SIFRank (Sun et al., 2020) 24.27 27.43 27.86 29.11 38.80 39.59 - - -
SIFRank+ (Sun et al., 2020) 30.88 33.37 32.24 28.49 36.77 38.82 - - -
KeyGames (Saxena et al., 2020) 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62
AttentionRank (Ding and Luo, 2021) - - - 24.45 32.15 34.49 11.39 15.12 16.66
MDERank (Zhang et al., 2021) 23.31 26.65 26.42 27.85 34.36 36.40 13.05 18.27 20.35
JointGL (Liang et al., 2021) 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72

JointGL (Using the First Layers) 22.88 29.51 33.34 31.91 39.81 41.57 10.76 17.46 20.38
JointGL (Sum the 1-4 Layers) 23.60 30.44 33.78 32.06 40.33 41.64 11.63 17.73 20.28
JointGL (Sum the 5-8 Layers) 25.96 32.53 34.94 30.60 39.81 40.92 13.00 19.31 21.36
JointGL (Sum the 9-12 Layers) 24.31 28.26 29.94 27.25 34.71 37.56 10.66 15.64 17.69
JointGL (Sum the 1-12 Layers) 25.57 32.03 34.09 30.22 39.25 40.43 11.98 17.67 20.57
JointGL (Selective Feature Aggregation) 28.92 35.71 36.54 32.40 40.71 41.92 13.25 19.93 22.23

Table 1: Performance on DUC2001, Inspec and SemEval2010 test sets. F1 scores on the top 5, 10, and 15
keyphrases are reported. The best results of our model are bolded in the table.

ments, demonstrating the effectiveness of the pro-
posed layer aggregation strategy.

Furthermore, it can be seen that different layer
integration strategies have different effects on dif-
ferent datasets, which also shows the importance
of potential knowledge mining in the pre-trained
language model BERT.

4 Related Work

Unsupervised keyphrase extraction models mainly
can be grouped into the traditional models (Jones,
2004; Mihalcea and Tarau, 2004; Bougouin et al.,
2013) and embedding-based models (Sun et al.,
2020; Bennani-Smires et al., 2018; Saxena et al.,
2020; Liang et al., 2021). With the proposal and
vigorous promotion of pre-trained language mod-
els, language models have become the backbone
of most downstream natural language processing
tasks, and significant progress has been made. Re-
cent unsupervised keyphrase extraction models
(Sun et al., 2020; Ding and Luo, 2021; Liang et al.,
2021) adopt the last intermediate layer of the pre-
trained language models as the embedding layer.

Different from the previous studies, this paper
focuses on probing and aggregating the intermedi-
ate layers of the pre-trained language models for

improving the performance of UKE.

5 Conclusions and Future Work

In this paper, we probe and analyze the effec-
tiveness of aggregating the intermediate layers of
BERT for unsupervised keyphrase extraction. To
the best of our knowledge, we are the first work to
probe BERT for unsupervised keyphrase extraction.
Based on the findings of our non-parametric prob-
ing task, we propose a simple and effective feature
integration strategy, which combines the interme-
diate layers of the pre-trained language models to
improve the performance of UKE.

The main goal of this paper is to provide an em-
pirical study of the existent models. Since we do
not propose new models, there are no potential so-
cial risks to the best of our knowledge. Our work
may benefit the research community by providing
more introspection to the current state-of-the-art
keyphrase extraction models. In future work, ex-
tending our work for self-supervised keyphrase ex-
traction can also provide more insights into the
utility of BERT for keyphrase extraction. Further-
more, it will be interesting to investigate why using
the 11-th intermediate layer as the embedding layer
leads the performance collapse.
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Abstract

We present a cross-lingual approach for the
extraction of Vossian Antonomasia, a stylistic
device especially popular in newspaper articles.
We evaluate a zero-shot transfer learning ap-
proach and two approaches that use machine-
translated training and test data. We show that
our proposed models achieve strong results on
all test datasets in the target language. As an-
notated data is sparse, especially in the target
language, we generate additional test data to
evaluate our models and conclude with a ro-
bustness study on real-world data.

1 Introduction

Automatic detection and extraction of stylistic de-
vices is an important task for understanding natural
language, especially for understanding figurative
language. However, most research focuses on En-
glish corpora, since labeled data is, to our knowl-
edge, only available in English. Often those ap-
proaches cannot be applied to other languages for
various reasons, for example, the lack of labeled
data, syntactic variations, or semantic differences.
In this paper, we study the cross-lingual extraction
of the stylistic device Vossian Antonomasia (VA).

VA is a specific kind of antonomasia closely re-
lated to metonymies and metaphors. In short, it is
used to describe an entity (target) by mentioning
another entity (source) and a context (modifier) that
refers to the target. Usually, the source entity is
famous and well-known to the reader in order to
understand the author’s intentions. Particularly, a
set of characteristics of the source is used implic-
itly to describe the target. The modifier shifts the
source’s characteristics to the target’s environment.
The title of this paper may serve as an example.
In a German newspaper article (elm, 2013) Elmar
Gunsch (nicknamed “Die Stimme”1) is called the
“Frank Sinatra of weather forecasting”. It is also

1“The Voice”, our translation

explained why: “Elmar Gunsch’s sonorous bass
brought glamor to ill-humored German television
in the seventies.” The popular American singer
and actor Frank Sinatra serves as the source of
this VA. Through the formulation, some of Sina-
tra’s characteristics (voice, entertainment qualities,
and popularity) are transferred to the target, Elmar
Gunsch. The dependent genitive construction (“of
weather forecasting”) represents the modifier.

The automated detection and extraction of VA
is a non-trivial task as the syntax can be ambigu-
ous. Take, for instance, “the Galileo of welfare
reform” (Roberts, 1992) vs. “the Galileo of the
Fantasy line” (gal, 1990). While the first exam-
ple is a VA expression referring to a senator, the
latter is the name of a cruise from a cruise line
company. This is also one of the reasons why
rule-based approaches fail, as seen in Schwab et al.
(2019) where a trained neural network outperforms
the rule-based approaches. While the extraction of
VA from English corpora has already been studied
Schwab et al. (2019, 2022), there are no studies
on automated approaches to find VA in other lan-
guages, yet. This is the starting point for this paper:
we study the automated extraction of VA in another
language – German.

As the lack of annotated data is one of the
main problems for the study in different languages,
we will use three different sequence tagging ap-
proaches: The first is based on zero-shot transfer
learning, the second and third on machine trans-
lation and word alignments of the annotated data.
All models employ pre-trained language models
because they achieved the best results on English
VA extraction, see Schwab et al. (2022).

Despite the sparse occurrence of VA in text cor-
pora, it can assist several NLP applications. Co-
reference resolution can be supported as the source
entity should not be a single co-reference chain
but together with the modifier part of the target
chain. The generation of fruitful and interesting
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Lanz, der OBAMA des deutschen Fernsehens
Lanz, the OBAMA of German television

Ein spanischer LIONEL JOSPIN müsse her.
A Spanish LIONEL JOSPIN was needed.

Statine, der BENTLEY unter den Kardioprotektiva
Statins, the BENTLEY of cardioprotectants.

Table 1: Three examples of German VA expressions
together with their translation and alignment.

text is another reason, especially the generation of
headlines. It also assigns attributes to entities and
connects entities together which can lead to inter-
esting question-answering tasks. In general, it is
a use case for similar cases where there is a lack
of large annotated datasets and can therefore show
ways to tackle similar downstream tasks that are
not as rich as common NLP tasks as named entity
recognition.

In the following, we want to answer whether
1) our models can compete with mono-lingual ap-
proaches, 2) machine translation based models can
compete against new zero-shot models, and 3) our
models are robust against real-world data. Our
code and data are freely available.2

2 Related Work

The automated extraction and detection of VA has
not been studied deeply. There exist rule-based
approaches (Fischer and Jäschke, 2019; Schwab
et al., 2019), the latter also trained a neural network
based on non-contextualized word-embedding and
bi-directional LSTM layers to classify sentences
into whether they include VA expressions or not.
Schwab et al. (2022) constructed neural network
models from scratch but their best models are based
on pre-trained language models, BERT (Devlin
et al., 2018). In addition to a binary sentence classi-
fier, the authors tackled the problem of detecting all
chunks of a VA expression inside a sentence. They
created an annotated dataset and showed that their
models are robust on real-world data. They also
showed that adding unlabeled random sentences to
their training data as negative instances improved
the model. Adding such sentences helped to diver-
sify the syntactic variations of negative instances
and also generated a class imbalance that is closer
to real-world data without the cost of annotation.

Cross-lingual approaches for detecting simi-
lar stylistic devices, for instance, cross-lingual
metaphor detection, have also not been studied
deeply: Tsvetkov et al. (2014) used lexical se-

2https://vossanto.weltliteratur.net/

training data test data

before after before after

the of die/der/das der/des
a/an for ein/e von/vom

among diese/r/m unter
Art aus
als für
den/dem -

Table 2: Most common syntactic variations around the
source in the training and test data. The column ‘before’
shows the words appearing before, ‘after’ the words
following the source in the sentence. ‘-’ signals that
there is no boundary word after the source but either the
end of the sentence or the modifier.

mantic features and word embeddings (ENG-{ESP,
FAS, RUS}), whereas Vı́ta (2020) studied the prob-
lem of cross-lingual metaphor paraphrase detection
(ENG-CZE). They used machine translation, but
also multilingual word embeddings, MUSE (Lam-
ple et al., 2018). Aghazadeh et al. (2022) presented
models that employ the layers of pre-trained lan-
guage models in a zero-shot probing scenario.

3 Datasets

In this section, we describe the datasets and the
annotation process. The training data is in English
whereas the test data consist of German texts. Com-
paring the diversity of the datasets, we can clearly
see that the test data is richer in terms of the syntac-
tic variations of VA, see Table 2. The table shows
the most frequently used boundary words around
the source. Whereas the training data has a limited
collection of boundary words, the test data shows a
great diversity. This is because of the manual col-
lection of one of the test data which did not follow
any syntactic restrictions like the training data.

3.1 Training Data

NYT-0: The dataset originally emerged from a
semi-automatic rule-based approach from Schwab
et al. (2019) on The New York Times Annotated
Corpus (Sandhaus, 2008). Schwab et al. (2022)
expanded the dataset and tagged all VA chunks
inside a sentence on the word level. We updated
the target annotations to improve consistency (cf.
Section 3.3) and corrected mislabeled annotations.
The dataset contains 3,065 sentences with VA ex-
pressions (which we call positive in the sequel) and
2,930 without (negative). All VA expressions in
this dataset follow a specific syntax, that is, the/a/an
SOURCE of/for/among, see Table 2.
NYT-50: Like Schwab et al. (2022) we add 50,000
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random sentences from the New York Times Cor-
pus (Sandhaus, 2008) to the NYT-0 dataset to di-
versify the negative instances in the dataset and to
tackle the biased share of positive instances in the
NYT-0 dataset (≈ 50%).

3.2 Test Data

UMBL: This VA collection3 was manually gath-
ered from German newspaper articles but also in
radio, TV, or videos between 2009 and 2014. It
only contains sources and modifiers of VA expres-
sions, but not the targets and the original sentences.
We tried to collect the sentences from the original
articles, but could not use all instances as some
of the articles the expression appeared in were be-
hind paywalls or did not exist anymore. Out of 470
positive instances, we could get full information
in 362 cases which we annotated as explained in
Section 3.3. The collection is not based on any
syntactic rules, thus, the VA expressions contain
broader syntactic variations compared to the NYT
dataset, as can be seen in Table 2. Also, in this
dataset the modifier may appear before the source,
see Table 1, Ex. 2 which does not appear in the
NYT dataset.
ZEIT: A dataset where Jäschke et al. (2017) used
a complex rule-based approach to collect VA in-
stances from German weekly “Die Zeit” (covering
1995 to 2011). In total, they found 1,456 candi-
date sentences of which 224 are positive. The 224
instances together with the sentence they appear
in are publicly available and fit as a test dataset.
Source and target were already annotated which
left us to annotate the modifier.
Generation of negative data: As both datasets
only contain positive instances, we generated addi-
tional samples that consist of negative instances to
evaluate our model accurately. We use the sparse-
ness of the phenomenon to create one random sam-
ple and two focused samples that contain instances
similar to those in the training data in terms of syn-
tax or the choice of entities to make sure that none
of these reasons are biasing our models. Each of
those samples includes 3,000 sentences.
NEG1: The dataset contains sentences which in-
clude phrases that are syntactically similar to the
VA expressions in the NYT-0 dataset regarding
source and modifier. That is, the modifier appears
behind the source, mostly separated by a delimiter

3https://umblaetterer.de/datenzentrum/
vossianische-antonomasien.html

word (e.g., “der/des” - “of”), see Ex. 1, Table 1.
So, we extracted all Wikidata entities that have
a German label which contains one of the delim-
iter words between two other words, for example,
“Königin von England”. We then took a sentence
from the corresponding German Wikipedia web
page that included the label and use this sentence
as an instance in our test dataset.
NEG2: Most of the source entities in all three
datasets are humans. Thus, we want to analyze
whether the choice of entities in test instances has
an impact on the prediction. We use a corpus of a
German newspaper, “taz, die tageszeitung” (TAZ)
(200, 2005) to create the sample. This corpus con-
tains more than one million German news articles
from 1985 to 2005. For each of the 1,691 distinct
source entities in the NYT-0, UMBL and ZEIT
datasets, we extracted three random sentences in
the TAZ corpus that include the entity’s name. In
total, we could extract 3,940 sentences and again
we used a sample of 3,000 sentences. Due to dif-
ferent reasons, for example, different spellings, we
could not find sentences for all entities.
NEG3: is generated by a random selection of sen-
tences from the TAZ corpus mentioned above.

3.3 Annotation Process

In the UMBL and ZEIT corpus, we annotated dif-
ferent chunks, whereas in the NYT-0 dataset, we
only updated the targets due to consistency, see be-
low. For NEG-1, NEG-2 and NEG-3, all found VA
expressions were replaced by negative instances to
keep those samples consist without any VA expres-
sions.

We follow the IOB annotation scheme from
Schwab et al. (2022) with one exception: For target
annotations, we annotate the whole noun phrase in-
stead of the entity only (leaving out relative clauses
due to length) as this has not been annotated con-
sistently before. The annotations of NEG1, NEG2,
and NEG3 were conducted by one trained anno-
tator. The annotator found 43 VA expressions in
NEG-2, 3 in NEG-3 and none in NEG-1. Those
were replaced by negative sentences following the
generation process for each sample to have con-
sistent negative samples. Additionally, two other
trained annotators annotated 100 random instances
of each sample for the quality assessment of the
annotations which resulted in a full agreement of
all instances except one which was discussed and
annotated accordingly.
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4 Methods

We model the problem as a sequence tagging task
(Schwab et al., 2022): For each word wi of sen-
tence S predict a tag ti which indicates whether wi

is part of target, source, or modifier, or not a VA
part at all.

We study a zero-shot cross-lingual transfer sce-
nario as well as models that use machine-translated
test or training data. The fine-tuning step in all
three methods is conducted by adding a linear layer
on top of the pre-trained model architecture that
outputs a tag for each token of the input.
0shot: Zero-shot approaches on multilingual lan-
guage models have recently shown great advances.
They are often used in cases like ours, that is, there
exists no or only few annotated data in the target
language. In short, a language model is pre-trained
on a multilingual corpus and then fine-tuned only
with the annotated data from one language (source
language). Without seeing any annotated data from
the target language, it has been shown that those
fine-tuned models are able to transfer their learning
to languages that they have been pre-trained with,
see Conneau et al. (2020). We fine-tune the XLM-
RoBERTa model (Conneau et al., 2020) with the
NYT training data and evaluate it on the test data.
de2en: We translate the German test data to En-
glish using machine translation, in particular the
FAIRSEQ toolkit (Ott et al., 2019). We align the
original translated sentence pairs with a word align-
ment tool (Jalili Sabet et al., 2020) and project the
corresponding tags to the translated sentences.4

Then, we fine-tune a BERT model (Devlin et al.,
2018) with the NYT datasets and evaluate it on the
translated and aligned test data.
en2de: We use the architecture as in de2en but the
other way round: We translate the training data to
German using FAIRSEQ and project the tags with
the word aligner.4 Then, we fine-tune a German
pre-trained language model, DBMDZ BERT,5 with
the translated data and evaluate it on the test data.

5 Experiments

5.1 Experimental setup
Hyperparameter optimization is applied on epoch
(e), learning rate (lr), and batch size (b) for all mod-
els. For the implementation, we use the Hugging
Face transformers framework (Wolf et al., 2020).

4We post-process the results and automatically correct
minor alignment errors, for example, false tag orders.

5https://github.com/dbmdz/berts

model train test precision recall F1

0shot

NYT-0
UMBL 0.911 0.675 0.776
ZEIT 0.926 0.726 0.814
COMB 0.881 0.695 0.777

NYT-50
UMBL 0.890 0.306 0.456
ZEIT 0.867 0.429 0.573
COMB 0.869 0.354 0.503

de2en

NYT-0
UMBL 0.809 0.599 0.689
ZEIT 0.822 0.642 0.721
COMB 0.780 0.616 0.688

NYT-50
UMBL 0.824 0.550 0.660
ZEIT 0.836 0.624 0.714
COMB 0.818 0.579 0.678

en2de

NYT-0
UMBL 0.915 0.835 0.873
ZEIT 0.931 0.864 0.896
COMB 0.865 0.846 0.855

ROB 0.532 1.000 0.695

NYT-50
UMBL 0.907 0.803 0.852
ZEIT 0.936 0.843 0.887
COMB 0.887 0.818 0.851

ROB 0.574 0.794 0.667

Table 3: Performance on all test datasets using micro-
average over all VA tags. “COMB” shows the scores
for all test datasets (including NEG1, NEG2 and NEG3)
combined. “ROB” shows the scores of the robustness
study which is only conducted for the en2de model.

0shot: We fine-tune the XLM-RoBERTa base
model that has 12 transformer blocks, 12 attention
heads, a hidden size of 768 and ca. 270 million
parameters (e = 4, b = 16, lr = 5 · 10−5).
de2en: We apply the German-to-English model
from Ng et al. (2019) to translate the test datasets
using FAIRSEQ. We align the words with SimA-
lign (Jalili Sabet et al., 2020), a word aligner which
uses static and contextualized embeddings. We
fine-tune the multilingual BERT base model (De-
vlin et al., 2018) (mBERT) (e = 4, b = 64, lr =
3 · 10−5).
en2de: We use the same tools as for de2en, but
apply the English-to-German model from Ng et al.
(2019) to translate the training data and apply
SimAlign to project annotations. We fine-tune a
German model (dbmdz/bert-base-german-cased)
(e = 3, b = 16, lr = 3 · 10−5).

5.2 Experimental Evaluation

5.2.1 Evaluation on annotated data
Table 3 shows the results. The en2de model out-
performs the other two models by large margins
on all test datasets. This comes as a surprise, we
expected larger errors in the translation and the tag
alignments of the training data. The results show
only little differences compared with monolingual
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approaches from Schwab et al. (2019) and Schwab
et al. (2022). This is remarkable as the test datasets
are much more diverse in terms of syntax and entity
usage. For all models, it holds that they had better
results on the ZEIT dataset compared to the UMBL
dataset. One reason is the syntactic diversity of
VA expressions UMBL contains. Most false nega-
tive errors were VA expressions that had different
syntactic structure, like Example 2 in Table 1. In
the negative samples, en2de predicted most false
negative errors, but no more than 61 false tags in
all 9,000 instances. Most tags were falsely pre-
dicted in sample NEG2. The addition of unlabeled
data had a huge impact on the 0shot model where
the performance dropped heavily. The other two
models showed almost no difference.

5.2.2 Robustness study

We conduct a study of our best performing model,
en2de, trained with NYT0 and NYT50, respec-
tively, on a sample of unlabeled real-world data.
1,000,000 random sentences of the TAZ corpus (in-
troduced in Section 3) are tagged by the model.
We analyze the predictions following Schwab et al.
(2022): For each predicted tag, the tagger returns
a prediction score. The tag with the highest score
is the prediction. We compute the difference of the
highest and second highest score which we inter-
pret as a confidence score for the respective pre-
diction. For all words of a sentence the confidence
scores are averaged to represent the confidence of
the prediction for a sentence. As in (Schwab et al.,
2022), we take the 30 most confident predictions
including at least one source and one modifier pre-
diction tag (positive, i.e., a predicted VA expres-
sion) and 30 without those predictions (negative),
as well as the 30 most unconfident (15 pos, 15 neg)
to get the same share in the evaluation which we an-
notated manually. Table 3 indicates that the model
has more problems on tagging real-world texts, it
looses around .16 (NYT-0) and .18 (NYT-50) in F1

compared to the COMB dataset. Still, the results
are reasonable referring to the complexity of the
task.

5.2.3 Error Analysis

Analyzing the false positive prediction errors of our
best model, en2de, it stands out that the model over-
fits to sentences that show syntactic patterns simi-
lar to the syntax of VA expressions in the training
data. For example, in the sentence “Mike Stern ist

das Raubein unter den Jazzgitaristen.”6 the model
falsely tagged ‘Mike Stern’ as target, ‘Raubein’ as
source and ‘Jazzgitaristen’ as modifier. A similar
example is “AIDS – Super-Gau der Gentechnolo-
gie?”7 where ‘Super-Gau’ was tagged as source
and ‘Gentechnologie’ as modifier. In both exam-
ples, syntax and even semantic dependencies are
close to the definition of VA. In particular, a com-
mon noun like ‘Raubein’ (or ‘Super-Gau’) is used
in a specific environment, ‘Jazzgitaristen’ (‘Gen-
technologie’, respectively). But as those nouns are
no named entities and only the literal meaning of
the words is used, the phrases cannot be VA expres-
sions.

On the other hand, the false negative errors ap-
peared mainly when the syntax of the VA expres-
sions was new to the model, that is, it did not appear
in the training data. Specifically, the modifier of
VA expressions in the test data appeared before the
source, for example, in “Wir brauchen einen neuen
Don Quijote.”, “Der russische James Bond heißt
Stierlitz.”, or “Eine griechische Cathy Freeman zu
haben wäre nicht schlecht.”8. In these cases, the
model did not tag any word as part of a VA chunk
but it should have tagged ‘new’, ‘Greek’ and ‘Rus-
sian’ as modifiers, ’Don Quijote’, ‘James Bond’
and ‘Cathy Freeman’ as source, and ‘Stierlitz’ as
target in the second sentence, whereas the other
sentences do not have a target. This is a limita-
tion of the model, even though in some other of
these specific expressions, it tagged the chunks cor-
rectly.

6 Discussion

We analyzed cross-lingual VA extraction using En-
glish as source language and German as target lan-
guage with limited annotated data. Our models
achieve strong results which are even compara-
ble to monolingual approaches like Schwab et al.
(2022), also in the robustness study. Translating the
training data to the target language worked best.

One goal for the future is to make more use of
the semantics, even though this is a whole new
problem as the examples have to be analyzed much
deeper. Also, the generation of VA is a task we
want to follow.

6“Mike Stern is the roughneck of jazz guitarists.”
7“AIDS – Worst-case scenario of Genetic Engineering?”
8“We need a new Don Quijote.”, “The Russian James Bond

is called Stierlitz.”, “Having a Greek Cathy Freeman would
not be bad.”
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Abstract

Evaluation is a fundamental step in the de-
velopment of novel automatic summarization
methods. The correlation between commonly
used automatic evaluation metrics and golden
standard human evaluations is often modest at
best. Automatic evaluation metrics have thus
not proven an alternative to human evaluation.
This presents a problem to the progress of auto-
matic summarization because evaluations con-
ducted by people are time-consuming, inconsis-
tent, and costly. We introduce the Elementary
Scenario Component Metric (ESCM), which
draws on the creative arts and scenario mod-
elling literature. This metric does not require
reference summaries, but uses twelve elemen-
tary scenario components, or a sub-selection
thereof, to estimate the relevance of summaries
instead. We show that the ESCM achieves a
correlation of 0.89 with human evaluations and
is less time-consuming than the creation of ref-
erence summaries.

1 Introduction

Although automatic summarization has a long his-
tory (Luhn, 1958), it remains a key challenge
within Natural Language Processing (Fabbri et al.,
2019). The aim of automatic summarization is to
shorten a source text into a condensed version, con-
serving both the information content and the overall
meaning (Kiyani and Tas, 2017). Automatic sum-
marization methods can be classified among two
axes: the summarization method and the number
of input texts.

Irrespective of the automatic summarization
method, an essential step in the development of
a summarization system is the evaluation of gener-
ated summaries. Evaluation, however, is not with-
out issues. Evaluation protocols differ from one
paper to the next (Hardy et al., 2019) and evalua-
tion metrics such as ROUGE are often used well
beyond their intended scope (Liu and Liu, 2008).
Moreover, (Fabbri et al., 2021) demonstrate that the

system-level correlations between fourteen com-
monly used evaluation metrics and golden standard
human evaluations for coherence, consistency, flu-
ency, and relevance are mostly weak to moderate.

A commonality among most evaluation tech-
niques is the need for reference summaries, referred
to as gold-standard summaries. Most evaluation
techniques calculate a score based on the compar-
ison of the system generated summaries with the
reference summaries. A drawback of employing
reference summaries is that objectively establish-
ing them is difficult (Steinberger and Ježek, 2009b).
These reference summaries are human-written and
therefore introduce a considerable level of subjec-
tivity, since there is not a single perfect way of writ-
ing a text summary (Saziyabegum and Sajja, 2016).
Moreover, writing these reference summaries by
humans can be time-consuming and costly for large
corpora (Giannakopoulos and Karkaletsis, 2013).

This paper presents the Elementary Scenario
Component Metric (ESCM) which is grounded in
work on scenarios in the creative arts and scenario
modelling literature (De Kock, 2014). The ESCM
does not require reference summaries, but utilizes
elementary scenario components to estimate the
relevance of summaries instead. The contribution
of this study to the automatic summarization liter-
ature is twofold: ESCM reduces the dependence
on people as human-written reference summaries
are no longer a requisite for the evaluation of auto-
matic summarization methods. More importantly,
the ESCM is grounded in the creative arts literature
and has a correlation of 0.89 with human evalua-
tions, suggesting it may be a better proxy than other
metrics currently in use. This paper is structured
as follows: First we provide a brief overview of
the literature on evaluation metrics for automatic
summarization. Next we discuss the concept of
scenarios as used in the creative arts and scenario
planning literature. This informs discussion of the
twelve Elementary Scenario Components. We then
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introduce the ESCM and apply a sub-selection of
five elementary scenario components in an experi-
ment of multi-document crime case summarization.
We conclude by offering some reflections and lim-
itations of our work and offer avenues for further
development of the ESCM. Our code can be found
in the paper’s GitHub page1.

2 Related work

2.1 Evaluation protocols

Although much progress has been made, there is
no consensus on how automatic summarization sys-
tems should be evaluated (van der Lee et al., 2019).
A variety of metrics and procedures exist, Stein-
berger and Ježek (2009a) put forward a taxonomy
of automatic summarization evaluation techniques.
They suggest evaluation techniques can be broadly
classified in two categories: intrinsic and extrinsic.

2.1.1 Intrinsic Evaluation
Intrinsic methods are based on how well the sum-
mary information content matches the information
of a reference summary (Murray et al., 2008). In-
trinsic evaluation can be further broken down into
text quality evaluation and content evaluation. Eval-
uating the quality of the text is usually done by peo-
ple, who rate different aspects of the summary on a
predefined scale. These aspects of linguistic quality
include grammatically, non-redundancy, reference
clarity, and coherence and structure (Steinberger
and Ježek, 2009a).

Content evaluation consists of co-selection mea-
sures such as precision, recall, and F-score, which
ignore the fact that sentences can contain the
same information even if written different and
content-based measures which do not have that
limitation. Content-based measures compare the
words in a sentence, rather than the entire sen-
tence, examples include cosine similarity (Louis
and Nenkova, 2008), longest common subsequence,
n-gram matching, pyramids (Nenkova and Passon-
neau, 2004), and Latent Semantic Analysis (LSA)
based measures (Steinberger and Ježek, 2009a).
The disadvantage of such measures is that they do
not discriminate very well between summaries that
involve differences in meaning (Mani, 2001). In
effect, these measures are likely to work with ex-
tractive systems better than abstractive ones (Aries
et al., 2019).

1https://github.com/
ESCM-summarization/ESCM-evaluation

The most notable example of n-gram matching is
the ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) metric introduced by Lin (2004)
which has been the de-facto standard for automatic
evaluation of summarization in recent years (Yao
et al., 2017). It works by measuring similarity be-
tween system generated summaries and reference
summaries. Depending on the implementation, it
can measure the overlap of uni-grams (ROUGE-1),
bi-grams (ROUGE-2), Longest Common Subse-
quence (ROUGE-L), and others.

Aside from ROUGE, there are other metrics that
have been used for summary evaluation like BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and BLANC (Lita et al., 2005). How-
ever, unlike ROUGE, these metrics were originally
developed for evaluation of machine translation
systems. Consequently, the use of these metrics
in the automatic summarization literature is very
limited.

A key problem with intrinsic evaluation is that
these methods need to match the result summary
with an "ideal summary", which is difficult to es-
tablish for a number of reasons (Steinberger and
Ježek, 2009a). When people have to pick the most
relevant sentences from documents in order to pro-
duce summaries, they frequently disagree in which
sentences best represent the content of a document
(Spärck-Jones et al., 2007). There is thus an in-
herent subjectivity to summarization evaluation
(Lloret et al., 2018). Moreover, manual evaluation
is expensive and the obtained results may be diffi-
cult to reproduce (Giannakopoulos and Karkaletsis,
2013).

More recently, researchers have developed var-
ious novel evaluation approaches which do im-
prove upon the well-established intrinsic evaluation
methods. For instance BERTScore (Zhang* et al.,
2020), originally aimed at other tasks such as ma-
chine translation and image captioning. Or QAE-
val (Deutsch et al., 2021) and QuestEval (Scialom
et al., 2021), which are both based on question-
answering (QA) approaches. The latter might even
be comparable to the ESCM, since it also doesn’t
require any ground-truth reference. Nonetheless,
all three of these metrics require the use of addi-
tional models only for the evaluation of summaries.
This, undoubtedly, would introduce a lot more un-
knowns within a summarization pipeline, and make
it significantly more complex.
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2.1.2 Extrinsic Evaluation

Extrinsic evaluation techniques determine the qual-
ity of a summary based on how it affects other tasks
- a summary is considered good if it helps with solv-
ing these tasks (Gambhir and Gupta, 2017). These
techniques are also known as task-based methods.
Extrinsic evaluations have the advantage of assess-
ing the utility of summarization in a task, so they
can be of tremendous practical value to users of
summarization technology (Mani, 2001). On the
other hand, they are less helpful in providing in-
sights on how the system actually performs the sum-
marization. According to (Steinberger and Ježek,
2009a), the three most relevant tasks for extrinsic
evaluation are document categorization, informa-
tion retrieval, and question answering.

In the case of document categorization, the eval-
uation seeks to determine whether the generic sum-
mary is effective in capturing whatever information
in the document is needed to correctly categorize
the document (Steinberger and Ježek, 2009a). A
document corpus and the topics of each document
are needed in order to apply this method. The re-
sults of categorizing summaries are compared to
results of categorizing full texts and random sen-
tence extracts (Steinberger and Ježek, 2009a). The
main metrics used in this case are the precision and
recall of the categorization (or also their F-1 score)
(Steinberger and Ježek, 2009a).

In the context of Information Retrieval (IR), sum-
maries and full documents are used as input to
an IR system. The similarity between how well
the system works with the summaries as opposed
to the full documents should serve as an indica-
tor of the quality of summaries (Steinberger and
Ježek, 2009a). Steinberger and Ježek suggest sev-
eral methods to measure this similarity, namely
Kendall’s tau, Spearman’s rank correlation, and
linear correlation.

Question-answering is the third relevant task sug-
gested by (Steinberger and Ježek, 2009a). The task
is generally about reading comprehension — a hu-
man reads original documents or summaries and
then answers a multiple-choice test (Mani, 2001).
The idea is that if reading a summary allows a
human to answer questions as accurately as they
would by reading the original document, the sum-
mary is highly informative (Mani, 2001).

2.2 Elementary Scenario Components

Intrinsic evaluation techniques have a simple idea
in common, they all compare two elements: the
subject of evaluation (a text summary) and some
kind of reference object (a reference summary).
Scholars often use automatic summarization eval-
uation techniques that need either reference sum-
maries, or some kind of specific task in order to
measure the quality of a system generated sum-
mary.

With the Elementary Scenario Component Met-
ric (ESCM), we employ a different approach that
does not require reference summaries. Instead, our
method is based on the idea that all relevant as-
pects of a some narrative can be described by the
means of twelve elementary scenario components
(De Kock, 2014). In the creative arts literature, a
narrative is generated by a scenario that describes
the interactions between characters (ibid.).

There is a rich literature on the nature and role of
scenarios throughout history which can be traced
back to Artisotle’s Poetics. Aristotle is credited
for being the first to distinguish between different
components of scenarios and many have followed
in his footsteps (Janko et al., 1984). Based on
an extensive review of the literature on scenarios
components in the creative arts, De Kock (2014)
identified twelve Elementary Scenario Components
(ESC-12) as the building blocks for any scenario.
A list of all the components with a description is
provided in Table 1. In this paper we suggest that
these elementary scenario components can provide
the foundation for a new automatic summarization
system evaluation metric.

Our work is most closely related to intrinsic eval-
uation techniques based on "factoids". Such tech-
niques attribute a score to text fragments based on
their informativeness. These fragments are consid-
ered single coherent semantic units, such as “the
Netherlands”, “glass of water”, and “the car ar-
rived” (Van Halteren and Teufel, 2003). Radev
et al. (2004) emphasized that it is necessary to de-
termine not only what factoids should be included
in the summary, but also how important they are.
The pyramid method introduced by Nenkova and
Passonneau (2004) builds on this idea to leverage
multiple manually generated summaries. It demon-
strates that factoids can be assigned weights based
on those references summaries and how highly
weighted units can be considered as more essential
for a summary than not so highly weighted ones.
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Component Type Description
Arena Objective The location where the story takes place.
Time(frame) Objective The time(frame) in which the story takes place.
Context Objective The set of circumstances that surround the story.
Protagonist Objective The main character of the story around whom the plot evolves.
Antagonist Objective The opposition against whom/which the protagonist must contend.
Motivation Subjective The psychological features that drive the protagonist.
Primary objective Subjective The way by which the protagonist attains his motivation.
Means Objective The methods or instruments by which the protagonist achieves his primary objective.
Modus operandi Objective The method of operation of the protagonist.
Resistance Objective The obstacles the protagonist has to overcome to be able to achieve his objective.
Symbolism Interpretable When a component carries a symbolic value for the protagonist, antagonist, or the audience.
Red herring Interpretable A misleading occurrence or indicator used to lead someone in the wrong direction of thought.

Table 1: A list of the ESC12 (De Kock, 2014)

In terms of these contributions, the ESCM provides
a more general framework for determining rele-
vant factoids, which could then be ranked using the
pyramid method.

The ESC-12 are divided into three categories
- objective, subjective, and interpretable compo-
nents: Objective components comprise observable
phenomena and are not related to the protagonist’s
individual feelings and interpretations, Subjective
components reflect the protagonist’s individual in-
terpretation of experiences and interpretable com-
ponents do not have a meaning until interpreted by
a third party (De Kock, 2014).

3 Elementary Scenario Components
Metric

We propose a new evaluation metric based on the
ESC-12. Below we introduce the procedure for ap-
plying the ESC-12 to an automatic summarization
system.

1. Determine relevant ESC and operationalize
variable mapping. De Kock (2014) argues that
ESC-12 represent general categories that oc-
cur in any type of scenario. However, careful
tuning of the variables making up the compo-
nents is necessary to fit a particular domain.
For instance, although the Arena may be rele-
vant to a narrative on historic geography and
a narrative pertaining a criminal case, their
operationalization would be different.

2. Annotate data. The metric requires an an-
notated dataset, with labels for (sub)set of
ESCs-12 for each article or story (one or more
documents can be referring to one story). Af-
ter a system generates summaries for the in-
put dataset, the evaluation metric is calculated
based on the presence of the corresponding
ESCs for each story in each summary relative
to the presence of these components in the

input texts. The formula which is used to cal-
culate this can vary depending on fine-tuning
for optimal results.

3. Compute ESCM. In the third step, the ESCM
is computed. This requires ESC labeled texts,
and summaries generated on these texts by the
summarization system.

3.1 Elementary Scenario Component Metric
Calculation

The first step is to determine which of the labelled
components are available in the pre-processed in-
put texts. This is of importance, because some
components might be missing from the input texts
after certain levels of pre-processing. For instance,
if the inputs are truncated to 500 tokens, some com-
ponents might not be included. Another possibility
- for multi-document summarization- is that a com-
ponent is present in one source text, which has
been discarded in the selection step (e.g. if the
Protagonist is mentioned only in document #3, but
documents #1 and #2 are selected for truncation).

The second step consists of determining which
of the components in the input texts are present in
the summaries. This is a fairly complicated process
in the context of automatic summarization, there-
fore we illustrate it with an example. Suppose that
the algorithm is trying to match the name of the
antagonist obtained from the dataset and present in
the input text (e.g. John Doe). In case the character
string "John Doe" is also in the summary, there
is a 100% match. The problem arises when the
summary contains some variant of the antagonist’s
name, for instance "John D." or "J. D.". There-
fore, we include an approximate string matching
technique in the evaluation metric algorithm. This
allows the algorithm to distinguish between com-
plete and partial string matching.

In the final step, the algorithm calculates a sum
of the individual scores of the components of inter-
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est. Each individual score can vary between 0 and
100, where 100 means that the two components are
identical, and the smaller the score gets, the more
different the components are. Equation 1 illustrates
how the evaluation score is calculated:

ESCM =

∑
(M,R)∈C

∑
x∈M
y∈R

FuzzyScore(x,M)

FuzzyScore(y,R)

K

N
(1)

Where N is the total number of cases, M and R
are a pair of model generated summary and ref-
erence input text for a single case from the set
of all cases C. Furthermore, x and y are pairs
of ESCs from the model generated summary M
and the reference input text R respectively. K
is the number of components that are considered
when calculating the metric, which in this case is
5. FuzzyScore(arg1, arg2) is a function that re-
turns a number between 0 and 100 depending on
how accurately is the ESC label arg1 represented
in the text arg2.

Finally, a specific threshold is introduced for
each of the components. The idea behind these
thresholds is to determine if the matched compo-
nent is referring to the same n-gram as the label,
or it is a completely different n-gram. Again, an
example may help illustrate how this works: sup-
pose the Protagonist’s name is "George S.", but the
best match the algorithm is able to find is the string
"was reported" with a score of 60. However, if the
Protagonist’s name was "Brian Nijhof", then the
best match would be "Brian N." with a score of 74.
The introduction of thresholds helps the algorithm
to discard the first example, but keep the second.

The thresholds are used as follows: For each
case the algorithm checks if all of the ESCs have a
score above the threshold in the input texts for that
case. If any of the ESCs have a lower score, the
whole case is discarded from the calculation of the
evaluation metric. This is necessary to ensure that
all cases used in the calculation have all ESCs in
the input texts. However, the thresholds are used in
a different way when handling the summary texts.
For each case, if the summary ESC score is below
the threshold it means that it is wrong, and is thus
set to 0. This process is illustrated with a few
examples in Table 2.

In the first example, the name of the protagonist
is mentioned with a score of 70 in the input texts,
which is just on the threshold, and consequently, it
is also checked in the summary text. However, in

the summary, the fuzzy matching returns a score
of 46, which is below the threshold. Then the al-
gorithm sets the ESC summary score to 0, and
the ESC relative score becomes 0/70 = 0%. The
second example shows that if the fuzzy score of
an ESC is below the threshold for the input texts,
the ESC does not receive a relative score, and the
whole case is discarded. For the last two examples,
both of the input texts and summary text fuzzy
scores are above the thresholds, and therefore the
relative score can be calculated as a fraction be-
tween the fuzzy scores.

3.2 Fuzzy String Matching

For multi-document summarization there is higher
chance of discrepancies between the data labels and
the actual strings these labels refer to in the articles.
Information in some news articles might be miss-
ing or different compared to other news articles.
For example, let us say "John Doe" is the antag-
onist label for a case, while some of the articles
only contain the name "John D.". Consequently,
it would be required to measure how similar these
two strings are. Directly matching strings is not
a viable option, because there are many examples
where the difference is only a few characters, and
it is evident that they are referring to the same
thing. Thus, there is a need for a method which
would allow for the implementation of fuzzy string
matching. Such a method is Levenshtein distance
(Levenshtein, 1966), of which we used the Token
Sort Ratio method for our FuzzyScore.

4 Experiment

To demonstrate the effectiveness of the ESCM,
we conduct an experiment with automatic sum-
marization of crime cases. There are plenty exam-
ples in literature for application of NLP techniques
for crime data analysis (Ku and Leroy, 2014; van
Banerveld et al., 2014; Ku et al., 2008; Iriberri
and Leroy, 2007; Wang et al., 2007). The vast
majority of such studies focus on information ex-
traction (e.g. Named-entity recognition), crime
classification, and crime analysis (Ku and Leroy,
2014). However, there is a lack of research about
automatic summarization in the crime domain. The
only example of a summarization system for crime
texts that was found at the time of writing is the
SALOMON project (Moens et al., 1997; Moens,
2000). For our experiment we implement three
models: Hi-Map (Fabbri et al., 2019), Transformer
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ESC label Input texts Summary text ESC Relative score
ESC match Fuzzy score ESC match Fuzzy score

Rudolf Käsenbier Rudolf K. 70 of Enschede 46 0%
Anouar B. book and 50 - - -
Henk Haalboom Henk Haalboom 100 Haalboom 76 76%
Michael E. Michel E. 94 Michel E. 94 100%

Table 2: Examples of different combinations of fuzzy scores and their corresponding relative score for the Protagonist
ESC in the Homicide dataset.

(Vaswani et al., 2017), and TextRank (Mihalcea,
2004). For the first two models we tried a trunca-
tion of 500 and 1000 tokens. For TextRank we only
implemented a 500 token model. These truncation
lengths are chosen to be inline with the setting of
relevant studies such as Fabbri et al. (2019)

4.1 Homicide dataset

The original version of the Homicide dataset has
been created by Pandora Intelligence. It consists of
100 manually chosen homicide cases that occurred
in the Netherlands. For each case there are rele-
vant data about some of the ESCs (usually not all),
as well as multiple source articles about the case.
These articles were web-scraped from manually se-
lected URLs. The methodology of selecting these
URLs is mainly based on the results of Google
Search queries for the most popular Dutch homi-
cide cases from the last few decades. The dataset
comes in a Dutch and English version. The Dutch
version is created from web-scraping these URLs
of mostly Dutch news websites. The English ver-
sion is made by domain experts, who automatically
translated the Dutch version via Google Translate
API2, and manually reviewed all translations.

On average, the number of articles per case
is 13.86 and there are no cases with less than
five sources. This high number of source articles
makes the Homicide dataset very suitable for multi-
document summarization. A more detailed infor-
mation about the distribution of the source articles
can be found in Table 4.

4.2 Application of the ESCM procedure

The ECSM procedure offers an effective and
durable set of components to describe, characterise
and model a criminal incident (De Kock, 2014).
We follow the procedure outlined in section three.
For means of illustration, and to limit the degree of
subjectivity in the labelling, we exclude both sub-
jective and interpretable components. In Step 1 of
the procedure, we thus select the following objec-

2https://cloud.google.com/translate

tive components: Arena, Timeframe, Protagonist,
Antagonist, and Modus operandi.

Next, we provide the operationalization of these
concepts in the context of our experiment. More
specifically, we specify the variable or set of vari-
ables for each ESC that we have selected. Table 3
provides an overview of this mapping. A subset
of the Homicide dataset was then made, only con-
sisting of cases, which contain annotations about
all 5 pre-selected objective components mentioned
in Step 2. As a result, this yielded 26 cases which
were suitable for the application of our ESCM eval-
uation. In Step 3 we compute the ESCM using
the following thresholds for fuzzy string matching:
Arena 65, Timeframe 75, Protagonist 70, Antago-
nist 75, Modus operandi 75. The thresholds were
manually fine-tuned upon basic data exploration
and characteristics of the ESC annotations.

4.3 Evaluation

We evaluate our procedure and the ESCM using
a questionnaire administered to several expert re-
spondents. We followed the guidelines for expert
evaluation proposed by van der Lee et al. (2019).
Although evaluation by a more general audience
is sometimes preferred, we opted for expert eval-
uation in an effort to collect the highest quality
data.

The survey for the human evaluation experi-
ment was distributed among police offcers from
the Dienst Regionale Informatieorganisatie (DRIO)
department of Police Oost-Brabant. In total, 21
participants filled in the survey. This can be re-
garded as a high number of participants for an
expert-focused study, which typically use up to
four experts (van der Lee et al., 2019). The cases
presented in each variant were randomly selected
from the 26 available.

4.3.1 Text quality criteria
It is very common for automatic summarization
studies which perform human evaluation to report
text quality. However, text quality criteria differ
across tasks, and there is a significant variety in
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Component Operationalization
Arena The city where the homicide took place.
Timeframe The date on which the crime took place, which is provided in a DD-MM-YYYY format.
Protagonist The name of the murderer or murderers.
Antagonist The name of the victim or victims.
Means The murder weapon.
Modus operandi The type of murder (e.g. manslaughter or first degree murder).

Table 3: The operationalization of the ESCM for the Homicide dataset

Number of sources Frequency
Up to 5 2
From 6 to 10 23
From 11 to 15 44
From 16 to 20 23
More than 20 8

Table 4: Distribution of source articles in the Homicide
dataset.

naming conventions for measures of text quality
(van der Lee et al., 2019). There is also absence of
common evaluation guidelines for NLG tasks (Belz
and Hastie, 2014), which means that the measured
criteria should be explicitly defined when imple-
menting a human evaluation experiment (van der
Lee et al., 2019). Although the ESCM is primarily
intended to measure accuracy, following van der
Lee et al. (2019) also measure relevance, and flu-
ency as text quality criteria.

4.3.2 Questionnaire design
The survey consisted of three parts. Participants
were presented with an introduction to the research
topic, the ESC framework, and the goals of the
survey. The second part was comprised of five dif-
ferent text summaries, each followed by a set of
ESC-related questions and two text quality ques-
tions. The third and final part included general
demographic questions and concluded the survey.

Based on the goals of this evaluation experiment,
it was decided to include three types of questions
– text quality questions, questions evaluating the
accuracy of ESCs in various text summaries, and
general demographic questions. For the first two
types, we use a 5-point Likert scale, the full survey
can be found on GitHub.

4.4 Results

4.4.1 Human evaluation
The average scores for each case-summary com-
bination are reported in Table 5. Let X be the
variable containing ESCM scores of multiple case
summary variants. More specifically, X contains
the 15 scores labelled as ESCM in Table 5. Let
Y be the variable containing the average scores

per case and summary variant obtained from the
survey results. Y contains the 15 scores labelled
with Survey in Table 5. Upon calculating Pear-
son’s Correlation Coefficient, the variables X and
Y were found to be strongly positively correlated
(r(13) = .89, p < .001). A scatter plot with a
trend line is illustrated in Figure 1.

The results of the text quality, averaged per cri-
terion are presented in Table 6. As with the first
part of the questionnaire, we used a 5-point Likert
scale. Expectedly, the Transformer models score
best in terms of subjective fluency and relevance,
even though the results for all model combinations
are quite close to the average on the scale.

Figure 1: Scatter plot of the average survey and ESCM
scores.

van der Lee et al. do recommend to always report
inter-rater reliability (IRR). IRR measures degree
of consensus among ratings provided by various
human evaluators. Krippendorff’s alpha Krippen-
dorff (1970) is a frequently used IRR measure and
can be used regardless of the number of observers,
levels of measurement, sample sizes, and presence
or absence of missing data Krippendorff (2004).
Three distinctive groups of summaries were pre-
sented to three different groups of participants, we
report Krippendorff’s alpha for each in Table 7.
The coefficients show positive agreement among
the participants in the human evaluation.
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Case ID Score
type

Summary variant (model, truncation, selection)
Hi-MAP
500; 3

Transformer
500; 3

TextRank
500; 3

Hi-MAP
1000; 2

Transformer
1000; 2

Case 44
ESCM 77.80 100.00 80.00 40.00 97.80
Survey 64.57 85.14 87.43 53.71 81.14

Case 12
ESCM 80.00 60.00 100.00 93.80 56.60
Survey 69.71 62.29 93.14 69.71 56.57

Case 31
ESCM 40.00 80.00 80.00 80.00 40.00
Survey 53.71 75.43 72.57 75.43 46.29

Table 5: Average scores of the ESCM and the survey results.

Criterion
Summary variant (model, truncation, selection)

Hi-MAP
500; 3

Transformer
500; 3

TextRank
500; 3

Hi-MAP
1000; 2

Transformer
1000; 2

Fluency 2.52 3.14 2.67 2.67 3.05
Relevance 2.57 3.14 3.10 2.86 2.29

Table 6: Text quality criteria average scores for each of
the summary variants presented in the human evaluation
experiment.

Case ID Number of
annotators

Number of
questions

Krippendorff’s alpha

Case 44 7 25 .38
Case 12 7 25 .60
Case 31 7 25 .36

Table 7: Inter-Rater Reliability coefficients for the hu-
man evaluation experiment.

4.4.2 Robustness check
To further explore the robustness of our findings we
asked independent annotators to write golden stan-
dard summaries for the same homicide cases used
in our previous experiments, namely 12, 31, and
44. We calculated four different ROUGE measures
per case and averaged all ROUGE F-1 scores for
all cases per ROUGE type. We calculated the Pear-
son’s Correlation Coefficient of these values in re-
lation to the average ESCM and Human evaluation
scores. The results are presented in Table 8. The
correlation of the best match-up (R-SU4 and human
evaluators) is considerably lower than that of the
ESCM and the human evaluation scores. R-SU4
performs best out of the ROUGE metrics which
in line with early findings (Lin, 2004) and thus is
further proof of the robustness of our experiment.

R-1 R-2 R-L R-SU4
ESCM 0.60 0.49 0.53 0.67
Human 0.64 0.58 0.63 0.72

Table 8: Correlation coefficients for the ESCM, human
evaluation scores, and various ROUGE scores.

5 Conclusion

We presented a novel automatic evaluation metric
for automatic summarization based on the ESC

framework: the ESCM. The ESCM is a recall-
based metric and we recommend it be used along-
side precision-based metrics. With our exper-
iments, we demonstrate the capabilities of the
ESCM. However, our metric is subject to some
limitations. With only 26 cases, the dataset we
used is relatively small. Furthermore, in relation to
the calculation of the ESCM, we used a threshold
to determine if an ESC is contained in a text or not.
These thresholds were determined based on the re-
sults from the fuzzy string matching. It is unclear
whether these thresholds would be generalizable to
other (non)homicide-related datasets.

Our findings show the potential of the ESCM,
but more research is necessary to explore its useful-
ness. Future work could experiment with the ESCs
by including more components from the subjective
or interpretable type. Furthermore, the selected
components could be utilized better by increasing
the level of detail (e.g. using the full date instead of
just the year). A next step in the validation of the
ESCM could be done using the dataset from Text
Analysis Conference (TAC) 2010 summarization
track. Part of the TAC 2010 dataset consists of
texts and summaries of criminal attacks, that are
labelled in a similar manner to the ESCM.

Although the primary focus of the ESCM is rel-
evance, it achieved a strong correlation with the
average of human evaluations for relevance, accu-
racy, and fluency. Moreover, those that labelled the
texts and wrote summaries reported that labelling
for the ESCs was considerably less time consum-
ing. Although this is merely anecdotal evidence, it
echoes findings by Lloret et al. (2013) who suggest
that producing reference summaries takes 8 – 10
times longer than answering a series of questions
about a text. Based on this and the high correla-
tion with human evaluation, we believe the ESCM
may present a useful alternative to existing met-
rics, especially in applications domains that are
under-resourced or where writing and evaluating
summaries requires domain expertise.
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Abstract

Native language identification (NLI) is the
task of automatically identifying the native lan-
guage (L1) of an individual based on their lan-
guage production in a learned language. It
is useful for a variety of purposes including
marketing, security and educational applica-
tions. NLI is usually framed as a multi-class
classification task, where numerous designed
features are combined to achieve state-of-the-
art results. Recently deep generative approach
based on transformer decoders (GPT-2) outper-
formed its counterparts and achieved the best
results on the NLI benchmark datasets. We in-
vestigate this approach to determine the practi-
cal implications compared to traditional state-
of-the-art NLI systems. We introduce trans-
former adapters to address memory limitations
and improve training/inference speed to scale
NLI applications for production.

1 Introduction

Native Language Identification (NLI) is the task of
automatically identifying the native language (L1)
of an individual based on their writing or speech
in another language (L2). It is used for a variety
of purposes including marketing, security and edu-
cational applications. The growing interest in NLI
from various research fields can be partly attributed
to the outstanding performance of automated NLI
systems against human annotators. A study of hu-
man performance in NLI (Malmasi et al., 2015)
showed that NLI systems perform in the 80%–90%
accuracy range while humans achieved 37.3% av-
erage accuracy. The experimentation also con-
strained the number of considered languages and
texts to enable human competition.

NLI is most commonly framed as a multi-class
classification problem. For text-based NLI, fea-
tures are extracted from written resources produced
by non-native speakers to train a classification

model. The underlying hypothesis is that the L1
influences learners’ second language writing as a
result of the language transfer effect (Odlin, 1989).
A variety of feature types have been explored to
capture distinct features of the language interfer-
ence phenomenon: spelling errors (Koppel et al.,
2005; Chen et al., 2017); word and lemma n-grams
(Tetreault et al., 2013); character n-grams (Kul-
mizev et al., 2017), dependency parsing and mor-
phosyntax (Cimino et al., 2013). As seen by the
two shared tasks on the NLI task organized in 2013
and 2017, the combination of such features pro-
duces the best outcomes for NLI (Tetreault et al.,
2013; Malmasi et al., 2017). The top ranked sys-
tems made use of Support Vector Machine (SVM)
models trained on a diverse set of linguistic features
that can capture word, sentence and document level
characteristics. (Markov et al., 2017; Cimino and
Dell’Orletta, 2017)

Deep neural network based approaches were
also considered for the NLI task. Bjerva et al.
(2017) experimented with deep residual networks
(DNN), long short-term memory networks (LSTM)
and continuous bag-of-words embeddings to create
meta classifiers. Li and Zou (2017) built an ensem-
ble of single-feature SVMs fed into a multi-layer
perceptron (MLP). Habic et al. (2020) integrated
multi-task learning into convolutional neural net-
works (CNN) to create shared representations from
multiple datasets. The studies concluded that tradi-
tional methods, i.e., SVM with engineered features,
appear to work better than deep learning-based
standalone and meta-classification approaches. Re-
cently Lotfi et al. (2020) introduced the deep gen-
erative modelling approach to NLI which consists
of fine-tuning a GPT-2 model to identify each lan-
guage. Their method outperforms traditional ma-
chine learning approaches and currently achieves
the best results on the benchmark NLI datasets.
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The contributions of the work presented here
are the following: (i) We investigate the resource
requirements and inference performance for the
deep generative approach in comparison to tradi-
tional state-of-the-art NLI systems, and (ii) we in-
troduce ProDAPT, transformer adapters based on
deep generative model to optimize memory and
storage space, and (iii) we evaluate our approach
on the NLI task and explore the tradeoffs.

2 Related Work

Deep Generative Approach. OpenAI’s Genera-
tive Pre-trained Transformer-2 (GPT-2) is a unidi-
rectional transformer-based language model pre-
trained on 40 GB of text data with the objective of
predicting the next word given the context (Radford
et al., 2019). It can generate coherent paragraphs
of text and achieves state-of-the-art performance
on many language modelling benchmarks without
any task-specific training. Instead of training a
classifier, the deep generative approach finetunes a
generative model (GPT-2) on texts written by native
speakers of each language (L1) to capture peculiar-
ities of language transfer (Lotfi et al., 2020). After
training N (number of target languages) models to
learn the characteristics of each L1, they can be
used to discriminate between unseen text samples
based on the language model (LM) loss. The least
LM loss is expected from the model that is trained
on the same class (L1). Although there are exam-
ples of the LM loss as a ranking feature for other
tasks such as substitute selection for text simplifica-
tion (Uluslu, 2022), the deep generative approach
is the first method to use such value as the only
discriminator for text classification.

Figure 1: An example inference of an unseen text writ-
ten by a Turkish native speaker.

Transformer Adapters. Adapters have been in-
troduced as an alternative lightweight fine-tuning

strategy that achieves equal performance to full
fine-tuning on most tasks (Houlsby et al., 2019).
They consist of a small set of additional newly ini-
tialized weights at every layer of the transformer.
While the rest of the pretrained parameters of
the large model are kept frozen during the fine-
tuning process, these new parameters are actively
trained on the target task. Efficient parameter shar-
ing between tasks is possible by training several
task-specific and language-specific adapters for the
same model, which can be exchanged and com-
bined afterwards. The code base for different state-
of-the-art adapter architectures was integrated into
the transformers library and released under the
name adapter-transformers (Pfeiffer et al., 2020a).
Recently, their adapters implementation started to
support generative and seq2seq models such as
GPT-2 (Sterz et al., 2021).

3 Data

We evaluate our approach on the most commonly
used dataset in NLI research: the ETS Corpus of
Non-Native Written English (TOEFL11) (Blan-
chard et al., 2013). The dataset contains 1,100
essays in English written by native speakers (L1)
of 11 different languages: Arabic (ARA), Chinese
(CHI), French (FRE), German (GER), Hindi (HIN),
Italian (ITA), Japanese (JPN), Korean (KOR), Span-
ish (SPA), Telugu (TEL), and Turkish (TUR). In
total there are 12,100 essays with on average 348
tokens per essay. The essays were written in re-
sponse to eight different writing prompts, all of
which appear in all 11 L1 groups, by authors with
low, medium, or high English proficiency. The
dataset is considered a benchmark dataset for NLI
and was used in two shared tasks on the NLI task
(Tetreault et al., 2013; Malmasi et al., 2017).

4 Methodology

We investigate the resource requirements and in-
ference speed for the deep generative approach in
three different subsections: storage requirements,
memory requirements and inference speed.

Storage Requirements. The full deep genera-
tive approach from Lotfi et al. (2020) finetunes 11
gpt2-medium models to cover every language in
the TOEFL11 dataset. A fine-tuned gpt2-medium
model requires 1.4 GB of storage space. The train-
ing process with the early stopping of three valida-
tions is expected to take up to 61.6 GB of storage
space upon completion. The inference (test) stage
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only requires the best-performing models for every
language to be kept. Therefore, 15.4 GB of storage
space in total is needed to fully store the system.

Memory Requirements. To reach the final in-
ference (target native language), each model needs
to calculate the LM loss value for the given input.
To fully load the parameters of 11 models in mem-
ory, 16.6 GB of GPU memory is required.

Speed Constraints. The deep generative ap-
proach does not inherently support parallelism. Fur-
ther configuration in multi-threading and memory
management is needed to accommodate different
models in the GPU. The final inference still needs
to be calculated in CPU time (argmin) and requires
all model calculations to be completed beforehand.
The number of models loaded simultaneously is
constrained by the GPU requirements. In case all
models are not available simultaneously, the mem-
ory operations to load/unload language models are
part of the inference process and directly interfere
with the performance.

Adapter Configurations. Two different con-
figurations have been proposed for transformer
adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020b). Rücklé et al. (2020) investigated the effi-
ciency of two adapter architectures at training and
inference time and found that they achieved compa-
rable performance. Sterz et al. (2021) compared the
performance of two architectures for adapter-based
GPT-2 models on the GLUE benchmark and re-
ported on-par results on different tasks. We also ex-
perimented with both architectures and found that
Houlsby et al. (2019) produced better results for
standalone GPT-2 models trained on NLI data and
decided to implement our full architecture based
on this configuration.

Figure 2: The ProDAPT architecture

The number of target languages for the NLI task
can increase depending on the use case. In forensic

linguistic investigations, particularly in the area of
cybercrime, it may be necessary to cover up to 20-
30 languages depending on the region and nature
of crime, all of which may be in non-standardised
forms, requiring the development of further models.
To create a scalable NLI system, the memory bottle-
neck caused by the model size and the non-parallel
nature of the deep generative approach should be
addressed.

We implement ProDAPT architecture with trans-
former adapters to address these issues. We train
an adapter for every L1 for 15 epochs with a learn-
ing rate of 1e-4. The original pretrained weights
for the GPT-2 are kept intact, and the L1 (tar-
get language) information is compressed into the
newly initialized parameters and the classification
head. The storage space required for every lan-
guage model (adapter + head) decreases to 218.7
MB. All adapters and their classification heads are
loaded into a single gpt2-medium model and share
the pretrained weights. To support parallel infer-
ence, the input is replicated at the first layer with
L1 adapters. For every adapter, calculations are
completed in parallel until the classification head
is reached. The GPU memory required to load the
ProDAPT architecture is 4.1 GB and the storage
space requirement is 2.4 GB.

5 Results and Discussion

To compare the performance of our system with
the state-of-the-art deep generative approach (Lotfi
et al., 2020), we report the results in terms of classi-
fication accuracy on the TOEFL11 test set, as well
as on the TOEFL11 dataset under 10-fold cross-
validation (10FCV). We also report the storage and
memory requirements to deploy our model in com-
parison to their approach. We use Titan T4 16 GB
graphics card for the deep generative models and
AMD EPYC 7702 64-Core CPU for Support Vec-
tor Machine (SVM) baselines where the GPU is
not required. We think this is an acceptable choice
since our work focuses on creating scalable NLI
systems that can be easily deployed with widely
available GPUs. We measure the inference speed
with the time spent between CUDA events until
the inference is finalized. We warm up the GPU
before the test and repeat the experiment 100 times
to enable robust results. Since the deep generative
approach does not require feature engineering, we
create a unigram SVM baseline to ensure a fair
comparison. We compare the performance against
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the default deep generative approach where one
model at a time can be loaded into the GPU and
the LM loss for the batch (4) is computed linearly.

Model Storage Space GPU Memory Inference Speed
Unigram SVM 79.6 MB [CPU] 84x
Lotfi et al. (2020) 15.95 GB 16.6 GB x
ProDAPT 2.4 GB 4.1 GB 13x

Table 1: Results in terms of the storage space, GPU
memory and inference speed.

Model
TOEFL11
(test set)

TOEFL11
10FCV

Unigram SVM 75.8 76.6
Lotfi et al. (2020) 89.0 86.8
ProDAPT 84.2 82.4

Table 2: Results in terms of classification accuracy (%)
on the TOEFL11 dataset.

The results presented in Table 1 demonstrate how
the ProDAPT architecture optimises the state-of-
the-art hardware requirements. The full paralleliza-
tion support enables a considerable increase of 13x
in the inference speed in comparison to the deep
generative approach. As the number of supported
languages (L1) increases, we predict that this per-
formance gap will widen and become more sig-
nificant. The unigram SVM baseline proves to be
the most lightweight approach, and it provides the
best results in terms of the inference speed. How-
ever, in order to achieve comparable performance
to that of the deep generative approach, other ap-
proaches need to make use of ensemble learning
and feature engineering. The extensive feature en-
gineering in state-of-the-art systems, which can
include hundreds of linguistic features, also comes
at the expense of inference and training speed. The
results shown in Table 2 indicate that our system
outperforms the baseline and achieves an on-par
performance with the deep generative approach.
We found that the performance decline in our ap-
proach was caused by the difficulty of distinguish-
ing between similar language pairs, such as Hindi-
Telugu and Japanese-Korean, also noted by Lotfi
et al. (2020). We did not observe convergence
problems based on the LM loss for any of the L1
models, but we speculate that the restricted number
of parameters in the adapters results in a reduced
capacity to capture discriminative features that can
distinguish between similar languages compared to
full model fine-tuning.

6 Conclusion

We proposed an efficient and scalable NLI sys-
tem based on the state-of-the-art deep generative
approach. The method consists of training a trans-
formers adapter for every L1 which can be attached
simultaneously to a GPT-2 model for parallel in-
ference. We showed that it is possible to optimize
the hardware requirements and the inference speed
at the cost of a slight decrease in the model perfor-
mance.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020b. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.
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Pfeiffer. 2021. Adapters for generative and seq2seq
models in nlp. Blog Post.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A report on the first native language identi-
fication shared task. In Proceedings of the eighth
workshop on innovative use of NLP for building ed-
ucational applications, pages 48–57.

Ahmet Yavuz Uluslu. 2022. Automatic lexi-
cal simplification for Turkish. arXiv preprint
arXiv:2201.05878.

302



Arguments to Key Points Mapping with Prompt-based Learning

Ahnaf Mozib Samin Behrooz Nikandish Jingyan Chen

University of Groningen
Groningen, The Netherlands

{asamin9796, behrooz.nikandish, chenjingyan0722}@gmail.com

Abstract
Handling and digesting a huge amount of in-
formation in an efficient manner has been a
long-term demand in modern society. Some
solutions to map key points (short textual sum-
maries capturing essential information and fil-
tering redundancies) to a large number of ar-
guments/opinions have been provided recently
(Bar-Haim et al., 2020). To complement the
full picture of the argument-to-keypoint map-
ping task, we mainly propose two approaches
in this paper. The first approach is to incor-
porate prompt engineering for fine-tuning the
pre-trained language models (PLMs). The sec-
ond approach utilizes prompt-based learning
in PLMs to generate intermediary texts, which
are then combined with the original argument-
keypoint pairs and fed as inputs to a classifier,
thereby mapping them. Furthermore, we ex-
tend the experiments to cross/in-domain to con-
duct an in-depth analysis. In our evaluation, we
find that i) using prompt engineering in a more
direct way (Approach 1) can yield promising
results and improve the performance; ii) Ap-
proach 2 performs considerably worse than Ap-
proach 1 due to the negation issue of the PLM.

1 Introduction

With internet technology getting more accessible
to the general public, a flood of information in the
digital space can be observed. On online social
media, people tend to provide arguments/counter-
arguments on various topics, including government
policies, movie reviews, and controversial issues
such as gun control, abortion, and global climate
changes, etc. This kind of information is valuable
for government policymakers, business people, and
academicians who conduct research on societal
changes over time. However, due to the abundance
of arguments, it becomes nearly impossible to go
through each one manually and make a decision.
Moreover, manually reading the arguments does
not allow systematic categorization, making it un-
likely to quantify them.

To address the issue, (Bar-Haim et al., 2020) first
proposed a method to categorize the arguments by
mapping them to a set of pre-defined key points
set by the domain experts. They fine-tuned a pre-
trained language model (PLM) using the ArgKP
dataset they built. Fine-tuning PLMs has been
proved to achieve superior results over the con-
ventional approach of training a neural network
model from scratch. However, there are several
limitations to directly fine-tuning PLMs. First, fine-
tuning a PLM requires a substantial amount of data
and computational resources for each downstream
task. Second, the typical way of directly fine-tuning
the PLMs does not simulate how the human brain
performs NLP tasks. Humans need to be prompted
by providing additional task-specific information
at first. For example, if we want to know whether
a review is positive, negative, or neutral from a
human, we would prepare a question like ”Do you
think the review is positive, negative, or neutral?”
to prompt the human to accomplish the task.

Prompt-based learning, built on language mod-
els that model the probability of text directly, has
been a recent revival in NLP and has shown great
potential to address the above limitations. (Brown
et al., 2020) indicated that developing a very large
PLM with 175 billion tokens and prompting the
PLM alleviates the need for additional data for fine-
tuning. Thus, it allows us to perform zero-shot and
few-shot learning for several NLP tasks. Motivated
by this, we exploit prompt-based learning to ac-
complish the argument-to-keypoint summarization
task. More precisely, we would like to shed light
on the following research questions:

• Does prompt-based learning allow better uti-
lization of the PLMs for the argument-to-
keypoint mapping task? In other words, can
it outperform the typical direct fine-tuning
PLMs approach?

• What are the challenges that arise with imple-
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menting prompt-based learning for this task?

Our contributions are mainly two-fold:

• First, we implement prompt-based learning
for the argument-to-keypoint mapping task
for the first time, to the best of our knowl-
edge, and compare the results with conven-
tional fine-tuning approaches. To this end,
we fine-tune the T5-base PLM with five dif-
ferent prompt templates and report their final
F1-scores.

• Second, we propose a novel architecture that
takes an argument as input using prompt-
based learning and generates an intermediary
text after fine-tuning the PLMs. Then, we em-
ploy several machine learning classifiers to
decide whether the argument, key point, and
the intermediary text triple are a match. We
demonstrate and analyse the promising results
and shortcomings of the proposed architec-
ture.

2 Related Work

Some researchers have done well-executed and
rigorous studies and provided thoughtful methods
in the field of argument-to-keypoint summariza-
tion. (Bar-Haim et al., 2020) established the ArgKP
dataset which is the first large-scale dataset for this
task and proposed a method to automatically map
many arguments to a small number of given key
points. They analysed and evaluated some unsuper-
vised methods with TF-IDF and word embeddings
and supervised methods like fine-tuning Bidirec-
tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018). This study made an
excellent basis for next research in this field and is
also the foundation of our project. To improve the
performance of this task, (Kapadnis et al., 2021)
leveraged existing state-of-the-art PLMs along with
incorporating additional datasets (IBM Rank 30k
and STS) and features like the topic of arguments.
But the main shortcoming of these two studies is
that the key points are pre-defined by expert anno-
tators, which is an obstacle to making the process
fully automatic.

Later, (Bar-Haim et al., 2020) made a more in-
depth study to promote the previous line of re-
search, and developed a method for extracting key
points automatically from a set of comments, which
allows fully automatic key point analysis. And

they compared more PLMs including BERT-large-
uncased (Devlin et al., 2018), XLNett-large-cased
(Yang et al., 2019), RoBERTa-large (Liu et al.,
2019), and ALBERT-xxlarge-v1 (Lan et al., 2020),
in terms of run time and accuracy, which showed a
significant improvement above their previous best
results in (Bar-Haim et al., 2020). However, dur-
ing the step of the automatic key point extraction
process, they considered only single sentences and
filtered out long sentences as well as those sen-
tences that start with pronouns. Consequently, the
model likely misses some potential key points.

Prompt engineering has recently become an
emerging field of study in NLP. (Liu et al., 2021)
introduced the basics of this new paradigm in de-
tail, and (Brown et al., 2020) confirmed the advan-
tages of adopting prompt-based learning on various
NLP tasks such as question answering, translation,
and probing tasks for common sense reasoning.
And prompt engineering techniques also work well
on probing factual knowledge in language models
(Jiang et al., 2020). Nonetheless, the suitability of
using prompt-based learning for a wide variety of
NLP tasks has yet to be proven, and prompt-based
learning has not been explored deeply in argument
to key point summarization. In this work, we em-
ploy this promising paradigm to improve the task
of argument-to-keypoint mapping further and pro-
vide two approaches to examine the performance
of prompt-based learning.

3 Methods

We explore two approaches for this task and
compare them with our baselines without any
prompt engineering technique. Approach 1 aims to
make classification using prompt-based learning.
And Approach 2 consists of text generation and
text classification with the help of prompt engi-
neering. We use three different Transformer-based
(Vaswani et al., 2017) PLMs (BERT (Devlin et al.,
2018), BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020)) to implement these approaches. The
following subsections describe how these PLMs
work and why they are appropriate for this task.
Moreover, we introduce prompt engineering and
the structure of the two approaches in this section.

3.1 Pre-trained Language Models

BERT Unidirectional pre-train architectures
limit the choice of architectures during pre-training.
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For instance, utilizing left-to-right architecture like
in OpenAI GPT (Radford et al., 2018), each to-
ken can only attend to previous tokens in the self-
attention layer of the Transformer. (Devlin et al.,
2018) proposed BERT to alleviate the limitations
of unidirectional architectures using a masked lan-
guage model. The architecture of the model is a
multi-layer bidirectional Transformer encoder. The
model is pre-trained utilizing two unsupervised
tasks: Masked Language Models and Next Sen-
tence Prediction (NSP). In many downstream tasks
as well as the argument-to-keypoint task, under-
standing the relationship between two sentences is
critical. The BERT model is pre-trained for a bina-
rized NSP task to train the model to understand sen-
tence relationships, which makes the BERT model
a good choice for the key point analysis task.

BART BART (Lewis et al., 2020) is a PLM
that combines Bidirectional and Auto-Regressive
Transformers. The denoising autoencoder is built
using a sequence-to-sequence model and it can
be applied to various downstream tasks. It uses a
standard Transformer-based neural machine trans-
lation architecture with a bidirectional encoder and
a left-to-right decoder. During the pre-training
process, an arbitrary noise function is applied to
the input text, and then a sequence-to-sequence
model is responsible for reconstructing the original
text. Section 3.3.2 describes Approach 2 in which
our model generates an intermediary text. BART
can be a reasonable choice for this task because it
performs effectively in text generation (Yuan et al.,
2021) and text summarization (Huang et al., 2020)
tasks.

T5 (Raffel et al., 2020) proposed a unified text-to-
text Transformer-based model to explore the limita-
tions of transfer learning using an encoder-decoder
architecture. It comprises an encoder that maps
the input words from the source language to an
output representation. The decoder is a conditional
language model that attends to the encoder repre-
sentation and generates target words one by one,
based on the source word and previously generated
target language words at each time step. The main
idea behind this model is to consider all text pro-
cessing tasks as a text-to-text problem, feeding the
model a text as input and generating new text as
output. This provides the ability to apply the model,
loss function, hyperparameters, and other parame-

Figure 1: The architecture of baseline (left) and Ap-
proach 1 (right)

ters to various tasks, including machine translation,
text summarization and classification, and question
answering. We plan to use T5 in both Approach 1
and 2.

3.2 Baseline

The architecture of our baseline which is shown in
Figure 1 on the left is similar to (Bar-Haim et al.,
2020)’s work. We build a classifier to identify
whether a pair of (argument, key point) is matched
or not. To this end, we fine-tune four PLMs, BERT-
base, BERT-large, T5-base, and T5-small. We train
the models with the train set first and adjust the pa-
rameters like epoch with the dev set, and the trained
model is evaluated using the unseen data from the
test set finally. We do not employ any prompt en-
gineering in the baselines to compare our results
with other prompt-based learning approaches in
this work.

3.3 Prompt Engineering

To train a model in traditional supervised learning,
it is required to have large amounts of supervised
data for the task at hand. Prompt-based learning ap-
proaches are an attempt to get around this problem.
We will first explain the basic form of prompting,
and then show how we adopt prompting techniques
in the argument-to-keypoint mapping task.
(Liu et al., 2021) described the basic prompting
process in three steps: The first step is prompt ad-
dition, in which a prompting function is defined to
pre-process the input text. This step consists of two
processes:

1. Creating a template, which consists of some
fixed extra tokens and two slots: input slot [X]
for input text and answer slot [Z] for predicted
output that will be used in the answer mapping
step.
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Figure 2: The architecture of Approach 2

2. Filling input slot [X] with the input text.

The output slot [Z] could be either in the middle
of the template (cloze prompt) or at the end (prefix
prompt). Depending on the task, the number of
input and output slots can vary freely. The second
step is answer search. In this step, the output slot
[Z] in the prompt will be filled by a potential an-
swer, which is the highest scoring answer. In the
last step, answer mapping, the highest-scoring an-
swer will be mapped to the highest-scoring output.
This is the case in text generation tasks, but in some
tasks like text classification, each potential answer
has a corresponding output to be mapped to.
To answer the research question, we use prompt
engineering techniques in two separate approaches
for cross/in-domain to investigate if prompt-based
learning can outperform our baselines. The archi-
tectures of our approaches are discussed in the fol-
lowing subsections.

3.3.1 Approach 1
In Approach 1, we use prompt-based learning in
conjunction with fine-tuning a PLM. As the ar-
chitecture illustrated in Figure 1 on the right, the
(argument, key point) pairs are transformed to the
given prompt template and fed to the T5-base as
input. We try various templates shown in table 2
to see how different templates influence our results.
In these templates, taking (argument, key point)
as input texts, [X1] and [X2] represent the argu-
ment and the key point respectively. The answer
space of [Z], which is the output text, can be either
matched/not matched or Yes/No, depending on the
chosen template. The following example shows the
process of creating an input text using a prompt
template:

• Argument [X1]: Urbanization destroys the
enviroment, and mankind should be finding
ways of utilising the space already occupied
more efficiently instead

• Key point [X2]: Urbanization harms the en-
vironment

• Answer space [Z]: matched, not matched

• Template: The argument: [X1] is [Z] with
the key point: [X2]

• Input text: The argument: urbanization de-
stroys the enviroment, and mankind should
be finding ways of utilising the space already
occupied more efficiently instead, is matched
with the key point: Urbanization harms the
environment.

3.3.2 Approach 2
For Approach 2, we want to explore the effect of
adding additional context based on the prior knowl-
edge of the PLMs. Figure 2 illustrates the archi-
tecture of Approach 2. First, the input argument
is transformed into the given prompt template as
[X] and then is fed to the trained PLM (T5-small or
BART-large), which is used for text summarization.
The output slot [Z] is filled by a generated summary
that is called as intermediary text in this paper. To
note that we use different templates displayed in
Table 4 for matching/non-matching pairs to gener-
ate the corresponding intermediary texts, and the
templates for two types of pairs have totally op-
posite connotations (e.g., mean-not mean and
correct-wrong). Lastly, different classifiers
are built to determine whether the generated in-
termediary text, argument, and keypoint triple is
matching or not. In this step, we fine-tune BERT-
base and T5-small PLMs and apply three machine
learning algorithms (Naive Bayes (McCallum et al.,
1998), Support Vector Machine (SVM) (Cortes and
Vapnik, 1995), Decision Tree(Quinlan, 1986)) with
TF-IDF features.

4 Experiments

This section will introduce the ArgKP dataset we
use and elaborate on how we processed the data
and carried out the experiments.

4.1 Data
We use the established ArgKP dataset (Bar-Haim
et al., 2020) in this project. The arguments in
ArgKP revolve around 28 disputed topics, and
they are a subset of the IBM-Rank-30k dataset
(Gretz et al., 2020). The key points were authored
by an expert on those topics. Crowd annotations
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Topic Argument Key point Stance Label

We should abandon
the use of school uniform

we should not abandon the use
of school uniforms because
it allows children to not be
concerned with competitiveness
while attempting to learn.

Children can still
express themselves
using other means

-1 0

We should adopt atheism
we should adopt atheism
because religion causes too
much tension and disagreements.

Atheism should be
adopted since we cannot
prove that God exists

1 0

We should end mandatory
retirement

mandatory retirement is a good
way of refreshing the workforce,
motivating those lower in the
pecking order and creating
employment opportunities.

A mandatory retirement
age creates opportunities
for other workers

-1 1

Table 1: Examples from the ArgKP dataset. Stance means the argument support(1) or oppose(-1) the topic; Label
represents the key point is matching (1) or non-matching (0) with the argument.

Number of samples per set
Experiment Class Train Dev Test Total samples

Count (%) Count (%) Count (%) Count (%)

Cross-domain
All 17,019 70.6 2,903 12.1 4,171 17.3 24,093 100.0

Matching 3,510 14.5 728 3.0 760 3.1 4,998 20.7
Non-matching 13,509 56.1 2,175 9.1 3,411 14.2 19,095 79.3

In-domain
All 17,021 70.6 2,904 12.1 4,168 17.3 24,093 100.0

Matching 3563 14.8 593 2.5 842 3.5 4998 20.7
Non-matching 13458 55.8 2311 9.6 3326 13.8 19,095 79.3

Table 2: Dataset distribution for cross/in-domain experiments

were gathered to see if a keypoint represented or
matched an argument, which resulted in (argument,
key point) pairs. As shown in the Table 1, each pair
is assigned a matching or non-matching label and
a stance towards the topic.

There are 24,093 labeled argument-keypoint
pairs, and 20% of them are matching/positive pairs.
Table 2 displays the distribution of each data split
set for cross/in-domain experiments. For the cross-
domain experiments, we split the whole dataset
according to the number of topics, and each topic
only occurs once. We assign 19 topics to the train
set, and the dev and test sets contain 4 and 5 topics,
respectively. The argument-keypoint pair ratio of
the three sets is 71:12:17. For the in-domain exper-
iments, we use the same pair ratio of three split sets
as the cross-domain experiments, and each split set
includes all of those 28 topics.

4.2 Pre-processing
The ArgKP dataset is well-structured and clean
enough so that we do not do much pre-processing
except for some basic steps. Some arguments and
all key points in the dataset do not contain full stops
at the end of the sentence, so our first step is to add
full stops for each full sentence if they are missing.
The second step is tokenization. The PLMs (BERT,
BART, T5) we mainly utilize expect a sequence of
tokens as an input, so the tokenizers those PLMs
were trained on are employed to tokenize the texts.
For the machine learning algorithms (SVM, Naive
Bayes, Decision Tree), we tokenize the texts and
remove stop words using NLTK python package
(Bird et al., 2009).
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4.3 Experiment Setup
We implement Approach 1 using OpenPrompt
(Ding et al., 2021) framework1, which is an extensi-
ble and open-source toolkit for prompt engineering.
We replicate their code to train T5-base using the
ArgKP dataset for this task. The code associated
with this paper is available on a GitHub repository.2

Table 3 contains the some of the hyperparame-
ters of each PLM that is fine-tuned in the baselines
and Approach 1 and 2.

PLM Learning Rate Epoch Optimizer
BERT-base
BERT-large

2e-5 3 Adam

T5-base 1e-3/1e-4 3 Adam
T5-small 3e-4 4 Adam
BART-large 2e-5 5 Adam

Table 3: Hyperparameters used for finetuning different
PLMs

4.4 Evaluation
Only about 20% pairs in the dataset are match-
ing/positive pairs, which means the class distribu-
tion is quite imbalanced, and standard metrics such
as classification accuracy would be misleading in
our case. Therefore, we adopt the macro-averaged
F1-score, which takes the arithmetic mean of all
the per-class F1-scores as the evaluation method.

In addition, we also attempt threshold metrics in
order to handle the imbalance problem. Thresholds
are learned from the dev set by maximizing the
macro-averaged F1-score. Pairs whose matching
score exceeds the learned threshold are considered
matched. However, we think it is unfair to com-
pare the results of Approach 1/2 and the baselines
with different thresholds. Furthermore, most of the
learned thresholds are 0.5, which is the same as the
default threshold of binary classification. Account-
ing for these reasons, we ignore threshold metrics
finally.

5 Results & Discussion

5.1 Comparison between baseline and the two
approaches

Table 4 shows the comparison between our base-
lines and the two approaches for both in-domain

1https://github.com/thunlp/OpenPrompt
2https://github.com/samin9796/

arg2keypoint

and cross-domain experiments. We have four base-
lines that do not incorporate prompt engineering.
BERT-base outperforms the rest of the four mod-
els, getting an F1-score of 88.4% in the in-domain
experiment and 72.0% in the cross-domain experi-
ment. For Approach 1, which utilizes prompt engi-
neering and fine-tuning T5-base with the templates,
we get higher F1-scores for each of the five prompt
templates examined in this study compared to our
baselines. Using the five templates, we achieve
almost similar F1-scores for the in-domain exper-
iments, while variations in the F1-scores can be
observed for the cross-domain evaluation. T1 tem-
plate obtains the highest F1-scores with 91.4% for
the in-domain and 76.1% for the cross-domain ex-
periments. T2 also achieves the second-best F1-
score of 91.0% and the equal F1-score to T1. How-
ever, T3 and T4 (template with a definition of the
key point) can get F1-scores below 74%.

As mentioned in section 3.3.2, our Approach 2
explores T5-small and BART-large by fine-tuning
them with two prompt templates (T6 and T7) to
get the intermediary texts. Then a classifier de-
cides whether this is a match or non-match based
on the argument, intermediary text, and key point
as inputs. In the case of the T6 template, with
fine-tuning the BART-large for getting the interme-
diary texts and using BERT-base as a classifier, we
achieve the highest F1-scores of 89.2% and 71.2%
for in-domain and cross-domain experiments, re-
spectively. But the best-performing system using
the T7 template utilizes T5-small to get the interme-
diary texts and BERT-base and T5-small as classi-
fiers for in-domain and cross-domain experiments,
respectively. The final F1-scores from the best-
performing model using the T7 template are 90.0%
and 69.8% for in-domain and cross-domain exper-
iments, accordingly. This experiment shows that
the T6 template is more suitable for BART-large,
whereas the T7 template works well with T5-small.
The F1-scores using the Naive Bayes, SVM, and
Decision Tree as classifiers are poor compared to
T5-small and BERT-base.

Comparing the best-performing models of the
baselines, Approach 1 and Approach 2, it is evident
that Approach 1 outperforms the baseline for both
in-domain and cross-domain datasets. Approach 1
also gets substantial improvement in F1-score get-
ting 76.1%, compared to Approach 2, which gets
69.8% for the cross-domain experiment. While the
difference in F1-scores between Approach 1 and 2
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Prompt Template
PLM for

Intermediary
Text

Model F1-score
in-domaincross-domain

Baseline - -

T5-small 0.866 0.700
T5-base 0.842 0.682

BERT-base 0.884 0.720
BERT-large 0.880 0.709

Approach 1

T1: The argument: [X1] and
the keypoint [X2] are [Z].

- T5-base

0.914 0.761

T2: The argument: [X1] is [Z]
with the keypoint: [X2]

0.910 0.761

T3: Does the argument: [X1]
comprise the fact that [X2]? [Z]

0.908 0.732

T4: A keypoint is a summarization
of the corresponding argument.

In other words, an argument
comprises a keypoint. Does

the argument: [X1], comprise the
keypoint [X2]? [Z]

0.913 0.737

T5: Argument: [X1] Keypoint: [X2]
”soft” : ”Does”

”soft” : ”the”, ”softid” : 1
argument matches ”softid” : 1

keypoint? [Z]

0.911 0.754

Approach 2

T6: [X1] This means [Z1].
[X1] This does not mean [Z1]

T5-small

Naive Bayes 0.493 0.450
SVM 0.535 0.480

Decision Tree 0.543 0.498
T5-small 0.845 0.678

BERT-base 0.856 0.671

T6: [X1] This means [Z1].
[X1] This does not mean [Z1]

BART-large

Naive Bayes 0.502 0.527
SVM 0.674 0.513

Decision Tree 0.629 0.512
T5-small 0.830 0.677

BERT-base 0.892 0.712

T7: The correct keypoint for
the argument: ”[X1]” is [Z1]

The wrong keypoint for
the argument: ”[X1]” is [Z1]

T5-small

Naive Bayes 0.485 0.451
SVM 0.573 0.499

Decision Tree 0.549 0.501
T5-small 0.835 0.698

BERT-base 0.900 0.679

T7: The correct keypoint for
the argument: ”[X1]” is [Z1]

The wrong keypoint for
the argument: ”[X1]” is [Z1]

BART-large

Naive Bayes 0.500 0.520
SVM 0.667 0.529

Decision Tree 0.614 0.477
T5-small 0.810 0.678

BERT-base 0.896 0.664

Table 4: Results of baselines and Approach 1 and 2 for cross/in-domain experiments

for the in-domain experiment is minimal, with Ap-
proach 1 getting 91.4% and Approach 2 90.0%. We
obtain a higher F1-score using Approach 2 (90%)

compared to the baselines (88%) on the in-domain
dataset, but on the cross-domain dataset, the F1-
score from Approach 2 (69.8%) is lower than the
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baseline (72.0%).

5.2 Error Analysis of Approach 2
Table 4 shows that the overall performance of Ap-
proach 2 is poor in comparison with Approach
1 for cross/in-domain experiments. We dive into
the reason hidden behind this result and make two
assumptions. The first assumption is that the lan-
guage models used for getting the intermediary
texts suffer from negation issue. As explained in
section 3.3.2, we use slightly different templates for
matching/non-matching argument-keypoint pairs
to generate their intermediary texts. The templates
for non-matching pairs contain a negative connota-
tion like not or wrong, but the problem is that the
PLMs (T5-small and BART-large) cannot capture
negation which is demonstrated by the generated
intermediary texts being almost the same regard-
less of whether the template is positive or nega-
tive, and thus it results in lower F1-scores from
Approach 2. To make it clear, the two following
intermediary text examples are extracted from the
train set. Given an argument and matching and
non-matching key points corresponding to the ar-
gument, we can see that their intermediary texts
are the same irrespective of using two versions of
prompt templates (e.g. positive and negative).

• Argument: by copying something you can
not get a pure copy. each copy that is made
is worse then the other meaning that no one
knows what can happen with cloning.

• Keypoints:
matching - Cloning is not understood enough
yet
non-matching - Cloning is unethical/anti-
religious-

• Intermediary texts for both matching/non-
matchin pairs: Cloning is unnatural

The second assumption is a decision-making pro-
cess during the evaluation time. Alluded to previ-
ously, the corresponding template is selected based
on matching/non-matching labels for each pair in
the train set to generate intermediary texts. How-
ever, the labels are hidden in the test set, and the
specific template can not be chosen. On this ac-
count, we always use the non-negative templates
(This means and The correct key point) to get the
intermediary text during the inference time.

Even though the overall results of Approach 2
are not as good as we expect, there are still some

promising aspects. If the negation issue is solved
successfully, Approach 2 could alleviate the need
for predefined key points since it can automatically
generate texts/key points.

6 Conclusions and Future Work

In this work, we first build the baseline models for
the argument to keypoint mapping task by fine-
tuning PLMs without implementing prompt en-
gineering. Then, we take advantage of prompt-
based learning and utilize it while finetuning PLMs
with two different approaches. From the compar-
ison between the baselines and the two specific
approaches, prompt engineering substantially im-
proves the performance of the task. However, it still
includes some challenges and limitations that need
to be investigated more in the case of Approach
2. To be more specific, in Approach 1, we attempt
five different prompt templates with T5-base, and
all of the results are better than the baselines for
both cross/in-domain experiments. While in Ap-
proach 2, the intermediary texts generated from
T5-small and BART-large using two prompt tem-
plates reduce the overall performance compared to
baselines.

The mapping of arguments to key points can be
viewed as an intermediate step toward fully auto-
matic argument summarization. Therefore, in fu-
ture work, we plan to tackle the negation problem
of PLMs in Approach 2, which would be promis-
ing for generating key points automatically. Fur-
thermore, experimenting with other sequence-to-
sequence models using prompt-based learning is
another interesting future direction.
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Abstract

Surface Realization in Natural Language Gen-
eration (NLG) is the task of deriving the surface
form of a sentence (the actual words) from an
underlying representation. Following recent ad-
vances in deep learning, several models have
been proposed for different NLG sub-tasks in-
cluding surface realization. Most of these mod-
els require a large amount of training data, how-
ever, acquiring accurately labeled data is labo-
rious and expensive. In this work, we study
how synthetically generated labeled data can
be leveraged to improve the performance of a
surface realization model. By pre-training a lan-
guage model on automatically labeled data and
then fine-tuning it on manually labeled data,
our approach improved the state-of-the-art per-
formance on the standard English datasets from
the deep track of the Multilingual Surface Re-
alization (MSR) workshop (Belz et al., 2020)
by more than 10% BLEU score.1

1 Introduction

The goal of Natural Language Generation (NLG) is
to generate text in human languages (e.g. English)
for a wide range of applications such as report
generation, text summarization, and conversation
modeling. NLG involves both content planning
(selecting the content to communicate) and sur-
face realization. Surface realization (SR), the last
step of the NLG pipeline, aims to derive the sur-
face form of a sentence (the actual words) from an
underlying representation by choosing the proper
word forms (inflection, punctuation, and format-
ting) and determining their correct order (syntactic
realization) (Hovy et al., 1996; Reiter and Dale,
2000).

Recent advances in Natural Language Process-
ing (NLP) and Deep Neural Networks (DNN) have
led to drastic improvements in many NLP systems,

1The code is available at https://github.com/
CLaC-Lab/SR_LM

some of which have even achieved human-level
performance (Läubli et al., 2018). Similarly to
many NLP models, surface realization models
have also benefited from these advancements.
DNN models usually require a large amount
of labeled data for training; however, creating
accurate and reliable training data is an expensive
and time consuming task. In this work, we show
how we can improve the performance of surface
realization by pre-training a language model
on a large synthetically generated dataset and
then fine-tuning it on a smaller manually labeled
dataset.
To measure the effectiveness of our approach, we
followed the protocol of the Multilingual Surface
Realization (MSR) Workshops (Mille et al., 2018,
2019; Belz et al., 2020), and generated the surface
form of sentences from their dependency parse
trees. To create the synthetic data, we used
the automatic dependency parser Stanza (Qi
et al., 2020) to parse the unlabeled WikiText
corpus (Merity et al., 2017). Using different
sizes of manually labeled and synthetic data, we
investigated the effects of the proposed pre-training
phase. Although the synthetic data may contain
noisy annotations compared to manually labeled
data and may come from a different distribution
(e.g. different textual genre or discourse domain),
results show that its sheer size allows the model to
learn the general gist of the task in the pre-training
phase and leads to an increase in performance in
SR achieving state-of-the-art performance on the
deep track with the English datasets of the MSR
workshops.

2 Background

2.1 Multilingual Surface Realization (MSR)

The Multilingual Surface Realization (MSR) work-
shops have organized shared tasks aimed at bring-
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ing together researchers interested in surface ori-
ented Natural Language Generation problems and
share resources to that end (Mille et al., 2018, 2019;
Belz et al., 2020). The shared task aimed to gener-
ate the surface form of sentences given their Uni-
versal Dependency (UD) structures. Two tracks
were proposed: the shallow and the deep tracks.
For the shallow track, word order information and
the inflected form of words were removed from the
UD structure and the task aimed to determine the
correct order of words and inflect them. In the deep
track, in addition to word ordering and inflection,
functional words (in particular, auxiliaries, func-
tional prepositions and conjunctions) and surface-
oriented morphological information were removed
from the UD structure and had to be recovered by
the models.

2.2 Previous Work

Participants in the Multilingual Surface Realization
(MSR) workshops proposed different models to ad-
dress the surface realization task. Many of these
models use dedicated sub-modules for each sub-
task. For example the ADAPT center (Elder, 2020)
proposed a biLSTM sequence-to-sequence model
with a copy mechanism to generate the surface
form of sentences. They augmented the training
set with 4.5M sentences from two sources, Wiki-
Text (Merity et al., 2017) and CNN stories (Her-
mann et al., 2015), and chose sentences that had
at least 80% word overlap with the labeled dataset
to ensure that they have a similar distribution. The
BME-TUW system (Recski et al., 2020) used an In-
terpreted Regular Tree Grammar to retrieve the cor-
rect order of tokens then used a biLSTM sequence-
to-sequence model to inflect the words. The IMS
system (Yu et al., 2020) tackled the surface realiza-
tion problem as a Traveling Salesperson Problem,
and used a biaffine attention model to calculate the
bigram scores for the output sequence. Finally, they
used a biLSTM for the inflection module. Simi-
larly to the ADAPT center, IMS also used Wiki-
Text and CNN stories to augment their training
data with 200K synthetic samples, however, by
considering the branching factors of the tree, they
tried to keep the distribution of the augmented data
close to the labeled datasets. The data augmenta-
tion that ADAPT and IMS used differ from our
proposed solution as they both tried to keep the
distribution of the augmented data as similar as
possible to the manually labeled data by applying

filtering rules. In contrast, our approach does not
enforce the distributions to be similar, and lets the
domain adaptation to be performed automatically
during the fine-tuning phase.

Because of their simplicity and effectiveness,
several approaches have used language models for
surface realization. The NILC system (Cabezudo
and Pardo, 2020) proposed to use GPT-2 (Radford
et al., 2019) and linearization using the parenthe-
ses approach. We argue that when the number of
nodes grows, the model has difficulties in captur-
ing the relations between them. The Concordia
system (Farahnak et al., 2020) used BART (Lewis
et al., 2020) for surface realization, however, the
relation between nodes was represented with the
actual words. This approach may cause problems
when a word appears more than once in a sentence
as the model cannot capture the exact structure of
the tree. Our approach is also based on language
models, however, it differs from theirs as indices
are used to encode the edges in the UD structure
instead of the actual tokens (see Section 4).

a large team of writer handle the script

root

det

amod

nsubj

case

nmod

det

obj

Figure 1: Example of UD dependency parse tree for the
sentence A large team of writers handled the script.

3 Data

In this section, we first present the MSR manually
labeled datasets we used for our experiments and
then discuss how we created the synthetic dataset.

3.1 Manually Labeled Datasets

For our experiments, we used the English datasets
provided by the MSR workshop (Belz et al., 2020).
These datasets are modified versions of the Univer-
sal Dependency (UD) datasets (de Marneffe et al.,
2014) where the order of the tokens is shuffled
and the inflected form of the tokens are removed.
Table 1 presents statistics of these datasets. As
Table 1 shows, the largest dataset (EWT) contains
only ≈12K training samples which makes it hard
to train an DNN model based solely on these sam-
ples.
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Dataset train dev test

EWT 12,543 2,002 2,077
GUM 2,914 707 778
LinES 2,738 912 914
ParTUT 1,781 156 153

Table 1: Number of samples in the English MSR
datasets.

3.2 Synthetically Generated Dataset
In order to generate synthetic data, we used the
WikiText dataset (Merity et al., 2017), extracted
from Wikipedia articles. The WikiText dataset
comes from a different domain compared to the
MSR datasets2 which makes it a suitable candidate
to study the domain adaptation between the two
text genres. We extracted the first 500K sentences
after filtering non-English sentences and sentences
longer than 150 characters3 to create our synthetic
dataset. We used Stanza (Qi et al., 2020) to parse
the sentences and create their UD structure. Using
the script provided by the MSR workshop (Belz
et al., 2020), we generated the synthetic dataset
in the same format as provided by the workshop.
Figure 1 shows a visual representation of the depen-
dency tree structure of a sample from the dataset.

4 Model

Following the success of pre-trained language mod-
els (LMs) for data-to-text generation tasks (Kale
and Rastogi, 2020; Harkous et al., 2020; Farah-
nak et al., 2020), we used an encoder-decoder LM
for surface realization. The input and output of
an encoder-decoder LM is in linear form (text-to-
text); however, surface realization is a data-to-text
task. In order to use LM, the input UD structure
had to be linearized. Among the features avail-
able in the UD structure, we considered lemma
(the lemmatized form of tokens), FEATS (morpho-
logical information), HEAD (the parent in the tree
structure), and deprel (dependency relation to
the head) and represented each node in the linear
format:

index : lemma FEATS : head_index <deprel>

then concatenated all nodes together. Figure 2
shows the linearized representation of the example
from Figure 1 used for the shallow track. In this

2The EWT dataset contains sentences from five genres
of web media: weblogs, newsgroups, emails, reviews, and
Yahoo! answers.

3This value was chosen because 90% of the samples in
EWT are shorter than 150 characters.

example, the parent of the word script is node 5
which is the index for word handle. To train the
LM, we used the surface form of the sentence as
the target. The model learns to generate the surface
form given the linearized UD structure, hence, it
learns to perform both syntactic and morphological
realization simultaneously.

4 : script Sing : 5 <obj> # 3 : writer Plur : 7 <nmod> #

9 : . : 5 <punct> # 6 : large Pos : 7 <amod> # 7 : team

Sing : 5 <nsubj> # 5 : handle Ind Plur 3 Past Fin : ROOT

<root> # 1 : the Def Art : 4 <det> # 8 : of : 3 <case> # 2 :

a Ind Art : 7 <det>

Figure 2: Linearized representation of the UD structure
of Figure 1.

5 Experiments and Results

5.1 Experimental Setup
In order to understand the effect of synthetic data
on the performance of the ordering model, we con-
ducted several experiments using different sizes
of synthetic data to pre-train the model, then fine-
tuning it on the manually labeled datasets and mea-
suring the performance on the MSR test sets (see
Table 1). For all experiments, we used the pre-
trained BART (Lewis et al., 2020) large model. We
used the AdamW (Loshchilov and Hutter, 2019)
optimization algorithm with a learning rate of 1e-5
and batch size of 4 to train our models. We pre-
trained the models for 5 epochs on the synthetic
data and fine-tuned them for 5 more epochs on the
manually labeled data. For comparative purposes,
we also trained the models without the pre-training
phase, and trained them for 15 epochs on the man-
ually labeled data. We choose the model with the
highest performance on the development sets.

5.2 Results
Table 2 compares the performance of training the
encoder-decoder language model using different
sizes of synthetic data for pre-training. Our ex-
periments suggest that the pre-training phase can
improve the performance of the model by 3.90%
and 5.21% in BLEU score for the shallow and deep
tracks respectively on the EWT dataset. However,
the improvement on the other three datasets are
more significant, ranging from 12.76% to 25.65%,
as these datasets have much fewer training sam-
ples compared to EWT. The improvement of pre-
training on synthetic data is higher for the deep
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Shallow Track Deep Track

EWT ∆ GUM ∆ LinES ∆ ParTUT ∆ EWT ∆ GUM ∆ LinES ∆ ParTUT ∆

#
sy

nt
he

tic
sa

m
pl

es
fo

r
pr

e-
tr

ai
ni

ng

0 80.79 _ 71.63 _ 69.62 _ 67.84 _ 64.31 _ 48.74 _ 40.61 _ 49.23 _

100K 84.38 3.59 86.27 14.64 82.38 12.76 86.98 19.14 68.10 3.79 68.61 19.87 64.28 23.67 69.50 20.27
200K 84.62 3.83 86.84 15.21 83.00 13.38 86.69 18.85 69.02 4.71 69.21 20.47 65.29 24.65 69.25 20.02
500K 84.69 3.90 86.76 15.13 83.18 13.56 87.66 19.82 69.52 5.21 70.19 21.45 66.26 25.65 71.38 22.15

Table 2: BLEU score of models pre-trained with different sizes of synthetic data. ∆ reports the difference of the
pre-trained models to training without the pre-training phase (i.e. 0 synthetic data).

EWT GUM LinES ParTUT

BLEU NIST DIST BLEU NIST DIST BLEU NIST DIST BLEU NIST DIST

Shallow
Track

BME (Recski et al., 2020) 57.25 12.52 65.23 60.77 12.10 62.86 55.98 11.78 61.44 61.37 10.22 58.39
Concordia (Farahnak et al., 2020) 70.71 12.70 77.94 66.98 11.62 69.87 62.70 11.30 68.62 67.05 9.83 71.59
IMS (Yu et al., 2020) 85.67 13.74 87.74 89.70 12.98 91.97 85.30 12.97 86.48 89.37 11.05 88.73
ADAPT (Elder, 2020) 87.50 13.81 90.35 _ _ _ _ _ _ _ _ _

Our Approach 84.69 13.58 88.82 86.76 12.65 89.12 83.18 12.59 85.72 87.66 10.91 86.80

Deep
Track

NILC (Cabezudo and Pardo, 2020) 45.19 9.96 64.83 53.92 9.00 60.42 41.04 9.09 61.18 43.41 8.24 59.74
Concordia (Farahnak et al., 2020) 58.44 11.61 73.66 53.92 10.51 67.02 47.96 9.93 64.33 50.54 8.57 62.39
IMS (Yu et al., 2020) 58.66 11.61 79.23 53.92 11.25 76.47 50.45 10.89 73.1 50.11 9.26 72.98

Our Approach 69.52 12.54 82.43 70.19 11.64 80.93 66.26 11.37 78.81 71.38 9.99 77.88

Table 3: Comparison of our approach (models pre-trained on 500K synthetic sentences and fine-tuned on each
dataset) with previous models proposed for the deep track of MSR 2020.

track compared to the shallow track as the task
is more complex in the sense that the model not
only needs to learn the inflection and ordering of
words, it also needs to guess the removed functional
words.

In comparison with previous participating mod-
els of MSR 2020 (Belz et al., 2020) (see Table 3),
our approach is not able to outperform the previous
work on the shallow track. However, it improves
the state-of-the-art performance by a large margin
(more than 10% in BLEU score) on in the deep
track on all datasets which shows the superiority of
our proposed approach.

5.3 Analysis

We analysed the results of the models to better
understand the benefits and drawbacks of our ap-
proach.

Pre-training seems to facilitate domain adaption,
as a single epoch of fine-tuning is enough for the
model to adapt to the domain of the manually la-
beled dataset (see Appendix A.1).

Pre-training can significantly reduce the need for
manual data. We fine-tuned the pre-trained models
using subsets of the manually labeled data. Results
shows that with pre-training, using only 10% of the
data achieves better performance than training on
all manually labeled data without the pre-training
phase (see Appendix A.2).

Finally, through a manual inspection of the gen-
erated sentences (see Appendix A.3), we deter-

mined that most errors should actually be consid-
ered correct alternatives to the ground truth. Better
automatic measures should be developed to mea-
sure the performance of surface realization to ac-
count for linguistic variations.

6 Conclusion and Future Work

In this paper, we showed that pre-training on syn-
thetic data is beneficial for surface realization even
when the data comes from a different distribution
than the training data. We also showed that the pre-
training phase not only improves the performance
of the model, but also helps the model to con-
verge faster on the training data. The proposed pre-
training phase for LM improved the state-of-the-art
performance on the standard English datasets from
the deep track of the MSR workshop (Belz et al.,
2020) by more than 10% BLEU score.

As of future work, we plan to conduct similar
experiments on previously proposed models such
as ADAPT (Elder, 2020) and IMS (Yu et al., 2020).
We also plan to run cross-language experiments
to see whether the knowledge learned from one
language can be transferred to another language.

Acknowledgment

The authors would like to thank the anonymous
reviewers for their valuable comments on an earlier
version of this paper. This work was financially
supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

315



References
Anya Belz, Bernd Bohnet, Thiago Castro Ferreira,

Yvette Graham, Simon Mille, and Leo Wanner. 2020.
Proceedings of the Third Workshop on Multilingual
Surface Realisation. Barcelona, Spain (Online). As-
sociation for Computational Linguistics.

Marco Antonio Sobrevilla Cabezudo and Thiago Pardo.
2020. NILC at SR’20: Exploring pre-trained models
in surface realisation. In Proceedings of the Third
Workshop on Multilingual Surface Realisation, pages
50–56, Barcelona, Spain (Online). Association for
Computational Linguistics.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D. Manning. 2014. Universal Stan-
ford dependencies: A cross-linguistic typology. In
Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014),
pages 4585–4592, Reykjavik, Iceland. European Lan-
guages Resources Association (ELRA).

Henry Elder. 2020. ADAPT at SR’20: How preprocess-
ing and data augmentation help to improve surface
realization. In Proceedings of the Third Workshop
on Multilingual Surface Realisation, pages 30–34,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Farhood Farahnak, Laya Rafiee, Leila Kosseim, and
Thomas Fevens. 2020. Surface realization using pre-
trained language models. In Proceedings of the Third
Workshop on Multilingual Surface Realisation, pages
57–63, Barcelona, Spain (Online). Association for
Computational Linguistics.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural data-
to-text generation with semantic fidelity. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2410–2424, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
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A Detailed Analysis

A.1 Domain Adaptation
Figure 3 compares the BLEU scores of training
models for the deep track on the EWT dataset
with and without pre-training on 500K synthetic
samples with different training epochs. As the fig-
ure shows, for the pre-trained model, the domain
adaptation phase is almost completed after the first
epoch while the non-pre-trained model continues
to improve even after 10 epochs.
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Figure 3: The BLEU score on the EWT test set for all
epochs when training the models for the deep track, with
and without pre-training on 500K synthetic samples.

A.2 Size of Training Data
Table 2 shows that pre-training on synthetic data
before fine-tuning on manually labeled data can
improve the overall performance of the model. In
order to better understand the importance of the
size of manually labeled training data, we limited
its size and fine-tuned the model on different sizes
of manually labeled training data. Table 4 shows
the performances of the model after fine-tuning
on different subsets of the EWT dataset. As Ta-
ble 4 shows, fine-tuning solely on 1K samples can
achieve better performance compared to no pre-
training and using the full EWT dataset (last row
of Table 4). However, by increasing the number
of training samples (from 1K to 12.5K), we can
achieve a higher performance when pre-training.
This indicates that even though the pre-training
phase is helpful for the task, it is not sufficient to re-
place the manually labeled training data altogether.

# synthetic
samples

# manually
labeled samples

BLEU NIST DIST

500K 0 37.87 8.09 61.04

500K 1K 64.54 11.88 78.50
500K 2K 65.70 12.00 78.93
500K 5K 67.35 12.33 80.76
500K 10K 68.79 12.43 81.80
500K 12.5K 69.52 12.54 82.43

0 12.5K 64.31 11.64 77.80

Table 4: Comparison of the performance of the encoder-
decoder model using different sizes of training data
for the fine-tuning on a model pre-trained with 500K
synthetic samples.

A.3 Error Analysis
We manually inspected the errors generated by our
models. While a few generated sentences did con-
tained true errors, most can be regarded as correct
alternatives to the ground truth. Table 5 shows a
few examples. One common correct alternative
was related to the generation of contractions as in
Ex. 1. This type of error occurs because the MSR
input structure of the token to generate (it) does not
contain any feature that give the model a clue as
to whether the token should be contracted or not.
In Ex. 2, the model failed to generate the expected
punctuation in the deep track, yet the generated
sentence is a correct alternative to the ground truth.
In Ex. 3, the word order in the generated outputs is
not identical to the ground truth; however, they are
grammatically correct and convey the same mean-
ing. In Ex. 4, the output of the shallow model
is indeed a true error as it is not grammatically
correct; however, the deep model generated a gram-
matically correct output but again it is not identical
to the expected output. Finally, in Ex. 5 and 6,
show examples of correct alternative to number
formatting compared to the ground truth.
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Ex. 1
Ground Truth i ’ll post highlights . . .

Ex. 2
Ground Truth two weeks later , and the violence continues .

Output of Shallow i will post highlights . . . Output of Shallow two weeks later , and the violence continues .
Output of Deep i will post highlights . . . Output of Deep two weeks later and the violence continues .

Ex. 3
Ground Truth they own blogger , of course .

Ex. 4
Ground Truth we have this report ?

Output of Shallow of course , they own blogger . Output of Shallow have we this report ?
Output of Deep of course they own blogger . Output of Deep do we have this report ?

Ex. 5
Ground Truth compensation : $ 60000 - 70000

Ex. 6
Ground Truth . . . said that there was a 10 to 50 % chance . . .

Output of Shallow compensation : $ 60,000 - 70,000 Output of Shallow . . . said that there was a 10 to 50 % chance . . .
Output of Deep compensation : $ 60000 - 70000 Output of Deep . . . said there was a 10 - 50 % chance . . .

Table 5: Sample errors generated by the shallow and deep models pre-trained on 500K synthetic data and fine-tuned
on the EWT dataset.
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