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Abstract

Natural Language-to-Query systems translate a
natural language question into a formal query
language such as SQL. Typically the transla-
tion results in a set of candidate query state-
ments due to the ambiguity of natural language.
Hence, an important aspect of NL-to-Query sys-
tems is to rank the query statements so that the
most relevant query is ranked on top. We pro-
pose a novel approach to significantly improve
the query ranking and thus the accuracy of such
systems. First, we use existing methods to trans-
late the natural language question (NLin) into
k query statements and rank them. Then we
translate each of the k query statements back
into a natural language question (NLgen) and
use the semantic similarity between the origi-
nal question NLin and each of the k generated
questions NLgen to re-rank the output. Our
experiments on two standard datasets, OTTA
and Spider, show that this technique improves
even strong state-of-the-art NL-to-Query sys-
tems by up to 9 percentage points. A detailed
error analysis shows that our method correctly
down-ranks queries with missing relations and
wrong query types. While this work is focused
on NL-to-Query, our method could be applied
to any other semantic parsing problems as long
as a text generation method is available.

1 Introduction

NL-to-Query describes the task of translating nat-
ural language questions to meaningful representa-
tions, such as logical forms, executable code, or
structured query languages like SQL. The appli-
cation of neural networks and the introduction of
larger datasets (Yin and Neubig, 2017; Yu et al.,
2018; Brunner and Stockinger, 2021) has increased
performance, but the task is far from solved.

Re-ranking of candidate query statements allows
introducing additional information in the process
(Yin and Neubig, 2019). For a given natural lan-
guage question (NLin), neural networks keep a

Figure 1: Example illustrates how semantic similarity
is used to extract the correct hypothesis. NL_In is
the input question, Gold SQL is the gold SQL query,
HypSQL_1 and HypSQL_2 are generated by an NL-to-
Query system (with confidence scores), and NL_Gen1
and NL_Gen2 are back-translated from the HypSQL
statements, with scores by a similarity system. See text
for further details.

beam search and produce k candidate query state-
ments (QS). Our analysis shows that an oracle
selecting the correct query among the top-scoring
15 candidates would improve the performance of
publicly available systems by up to 10 accuracy
points on the Spider benchmark (Yu et al., 2018).

Inspired by the success of back-translation in
machine translation (Sennrich et al., 2016), we pro-
pose to re-rank the candidate queries according to
the semantic similarity between the original ques-
tion NLin and the k synthetic questions NLgen

obtained via back-translating each of the k candi-
date queries into natural language. Figure 2 depicts
the pipeline of our proposed system.

Figure 1 shows an example from the Spider
dataset. For the question "How many different
addresses do the students currently live?". The
highest-ranked query according to the beam search
ranking is HypSQL_1 with a confidence score of
0.999. However, this query returns the perma-
nent addresses, which does not refer to the correct
attribute, which would be the current addresses.
In the example, the second hypothesis (i.e., Hyp-
SQL_2) has a much lower confidence of 0.003
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Figure 2: Pipeline of our system. NLin = original natu-
ral language, QS = query statement, NLgen = generated
natural language.

although it fits the input question perfectly. On
the other hand, the semantic similarity score be-
tween NLin and the generated questions NLgen

shows a different picture: The back-translation of
the correct hypothesis, i.e., NLgen2, has a higher
semantic similarity (0.82) than the back-translation
of the incorrect hypothesis (0.54). Hence, semantic
similarity would help to identify the correct query.
This paper makes the following contributions:

• We present a novel method to improve NL-to-
Query systems using re-ranking according to
Query-to-NL back-translation and semantic
similarity.

• We showcase improvements in two datasets
using three systems, around 5 − 9 points in
OTTA (Deriu et al., 2020) and 2 − 3 points
in Spider (Yu et al., 2018).

• The error analysis shows that our method
down-ranks hypotheses with missing relations
or with incorrect query types.

2 Related Work

NL-to-Query (also referred to as Natural Lan-
guage to Databases NLIDB) describes the task
of translating natural language questions into
structured queries (e.g., SQL). Most current ap-
proaches are based on sequence-to-sequence archi-
tectures (Yin and Neubig, 2017; Dong and Lapata,
2018; Suhr et al., 2018; Deriu et al., 2020), where
the encoder is a recurrent neural network that gener-
ates a hidden representation of the natural language
question, and the decoder is a recurrent neural net-
work that generates the query. Alternatively, some
approaches combine symbolic reasoning with in-
formation retrieval techniques (Sen et al., 2020).
For a more in-depth treatment, we refer the reader
to Affolter et al. (2019) and Odzcan et al. (2020).

In this work, we focus on the translation from
natural language questions to database queries,

where most recent approaches were proposed in
the context of the text-to-SQL Spider dataset (Yu
et al., 2018)1. Instead of working directly on SQL,
some authors propose to use simpler and more gen-
eral abstract syntax trees. For instance, Deriu et al.
(2020) propose to use so-called Operation Trees,
which we also used for this work.
Hypothesis Re-ranking is the task of creating an
alternative ranking of k candidate solutions for a
given task. The k candidates are usually the out-
put of a beam search. In our case, the candidates
are queries for the given natural language question.
However, the problem of hypothesis re-ranking
arises in many different generation tasks, not only
NL-to-Query. For instance, Dušek and Jurcicek
(2016) train a re-ranking network to score the gen-
erated hypotheses of their natural language gener-
ation model. Alternatively, (Deriu and Cieliebak,
2018; Agarwal et al., 2018) trained classifiers to
predict the correctness of the hypotheses produced
by their natural language generation system and
select the hypothesis with the highest correctness
score. Most of these approaches are developed in
the field of natural language generation from struc-
tured data. For code generation, Yin and Neubig
(2019) perform re-ranking by reconstructing the
original utterance for the generated code. They use
the reconstruction error as a measure for re-ranking.
We are not aware of prior research on using tex-
tual semantic similarity to re-rank hypotheses in
the field of NL-to-Query or Semantic Parsing in
general.
Semantic Textual Similarity assesses to what de-
gree two chunks of text are similar, usually on
a 0-5 scale, which ranges from unrelated (0) to
semantically equivalent (5) (Agirre et al., 2013).
The advent of transformer-based models such as
RoBERTa (Liu et al., 2019) has improved automat-
ically assessing semantic textual similarity. Re-
cently (Kane et al., 2020) introduced NUBIA (NeU-
ral Based Interchangeability Assessor for Text Gen-
eration). It extracts features from RoBERTa and
GPT-2 (Radford et al., 2019) and fine-tunes a fully
connected neural network to output a score between
0 and 1, indicating how interchangeable two in-
put sentences are. Throughout this work, we will
use NUBIA to automatically score the similarity
between a natural question (NLin) and a back-
translated question (NLgen).
Query-to-NL has the goal of translating a struc-

1https://yale-lily.github.io/spider

https://yale-lily.github.io/spider


tured query into natural language and to provide a
lay user with an explanation of the meaning of the
query. A simple approach is to define production
rules applied to the nodes of the abstract syntax
tree (AST) of the query. Systems based on this
idea have been developed for SQL (Koutrika et al.,
2010), SPARQL (Ngonga Ngomo et al., 2013), Op-
eration Trees (von Däniken, 2021), and queries
expressed in lambda calculus (Wang et al., 2015).
There are also systems based on neural networks
such as (Xu et al., 2018). In this work, we leverage
one of those systems to post-process the output of
an NL-to-Query system. Others have also used
query explanations to incorporate corrective feed-
back from the user in the NL-to-Query workflow
(Elgohary et al., 2020; Labutov et al., 2018; Yao
et al., 2019, 2020).

3 Method: Similarity for Re-ranking

The proposed method works in three steps (see also
Figure 2): first, the NL-to-Query system translates
the natural language input NLin into a set of k can-
didate query statements QS - called our hypotheses.
This is achieved by applying beam search during
the decoding stage of a recurrent neural network.
In the second step, each of the k hypotheses QS
is translated back into natural language NLgen us-
ing a Query-to-NL system. In the last step, each
of the k back-translations NLgen is compared to
the original input using an off-the-shelf semantic
textual similarity algorithm. We use the semantic
similarity score to rank the hypotheses. For each
NLin, the top-scoring hypothesis is returned as the
answer of the system.

3.1 Ranking Hypotheses based on Semantic
Textual Similarity

Let NLin be the user input (i.e., the natural lan-
guage question ) and H = {QS1, ..., QSk} be the
set of k hypotheses, i.e. candidate query statements
QSi, that are the output of the NL-to-Query system.
In most cases, this set is the result of applying beam
search for decoding. However, other approaches
result in a set of hypotheses, for instance an ensem-
ble of different NL-to-Query systems. In this work,
we focus only on beam search-based hypothesis
sets. Thus, each of the hypotheses has a confidence
score ci, which is used to rank the set of hypotheses,
i.e., the candidate queries. We refer to this ranking
as Confidence.

In a second step, each of the hypotheses QSi

is back-translated into a natural language question
NLi

gen using a Query-to-NL engine. Thus, we
end up with a set of back-translated hypotheses
HQ = {NL1

gen, ..., NLk
gen}.

In a third step, we compute for each back-
translated hypothesis the semantic textual simi-
larity score with the user input NLin, i.e., si =
SemSim(NLin, NLi

gen). The set of hypotheses
can be ranked according to the semantic similarity
scores. We refer to this ranking as Semantic.

3.2 Weighting Strategies

Since the two rankings, Confidence and Semantic
may disagree on the top hypothesis in some cases
(as we have shown in the example in Figure 1), we
combine the two scores ci and si into a new rank-
ing. For this, we propose the following weighting
strategies:
Equal Weighting. The naive strategy is based on
simply multiplying the two scores, that is mequal

i =
ci ∗ si, and we rank the set of hypotheses accord-
ing to mequal

i . We refer to this ranking as Equal
Weighting.
Calibrated Weighting. Since the confidence
scores and the semantic similarity scores have dif-
ferent distributions, the influence of each score in
the Equal Weighting is not equal. For instance, in
some cases, the influence of ci is stronger than si
and vice-versa. To counteract this effect, we de-
cided to calibrate both scores before multiplying.
A calibrated score should reflect the proportion of
correct hypotheses selected, e.g., when a calibrated
system assigns a score of 0.8 to a hypothesis, this
hypothesis will be correct in 80% of the cases.

We use Platt Scaling (Platt, 2000) to calibrate
both scores. This works by training a logistic re-
gression model on the outputs of a model to trans-
form these outputs into probability distributions.
More precisely, for the confidence scores and the
semantic scores respectively, a logistic regression
model is trained. For this, we have to set aside
a few hypotheses (more details later on). For the
confidence calibration, a logistic regression model
is trained on a set of pairs of confidence score
and a label that indicates if the query is correct,
i.e., D = {(ci, Iicorr}. Analogously, we train a
logistic regression model for the semantic simi-
larity score si. Thus, the calibrated scores can
be interpreted as the probability of the query be-
ing correct, i.e., ccalibi = Pr(Iicorr = 1|ci) and
scalibi = Pr(Iicorr = 1|si). We call the score after



calibration ccalibi and scalibi and the resulting mixed
score mcalib

i = ccalibi ∗scalibi . The resulting ranking
is called Calibrated Weighting.
Learned Weighting. A natural extension of the
calibration idea is to train a logistic regression
on both scores at the same time, instead of inde-
pendently. That is, we train a logistic regression
model on pairs of confidence and semantic-scores2,
i.e., D = {((ci, si), Iicorr}. This way, the model
can learn the mixed proportions directly. Thus,
mlearned

i = Pr(Iicorr = 1|ci, si). For this, we
again have to set aside a few hypotheses. We use
the predicted probabilities from the logistic regres-
sion model to rank hypotheses and call the resulting
ranking Learned Weighting.
Threshold Weighting. We observed that the confi-
dence scores ci are high in most cases in which the
Confidence ranking yields a correct query. In many
cases where the Confidence ranking yields wrong
queries, the confidence scores are low. However,
the Semantic scores tend to be higher. Thus, we
propose the following strategy: If the maximum
confidence score of the hypotheses set is above a
threshold, we use the Confidence ranking, other-
wise, we use the Semantic ranking. We refer to this
ranking as Threshold Weighting. The threshold is
calculated by first determining the 90th percentile
over the confidence scores of all training hypothe-
ses and then finding the lowest confidence of a
correct hypothesis that lies above that.
Upper Bounds. To determine the theoretical upper
bounds of our approach, we introduce two oracles.
The first oracle selects the correct hypothesis from
the candidates if there is one. The second oracle
selects the correct hypothesis between the two top-
ranked hypotheses by Confidence or Semantic if
there is one. The first oracle determines the poten-
tial of re-ranking in general (we refer to it as Ora-
cle). The second oracle determines the maximum
contribution that the semantic similarity could do
to Confidence (we refer to it as Oracle-Sem).

4 Experimental Setup

In this section, we describe the experimental setup,
the datasets, the NL-to-Query models, the Query-
to-NL model, and the semantic textual similarity
model.

2Using more features, e.g., the length of the generated
query or mequal

i did not yield any improvements.

4.1 Datasets
We analyzed our approach on two different datasets
used as benchmarks for evaluating NL-to-Query
systems: Spider (Yu et al., 2018) and OTTA (De-
riu et al., 2020). Both datasets contain complex
queries and cover large amounts of attributes of
the databases. Spider contains around 10K queries
against 200 different databases. The dataset is used
to study NL-to-SQL translations. OTTA contains
around 3.8K queries over 5 databases. OTTA is
used to study translations from NL-to-OT (Oper-
ation Trees) which are similar to abstract syntax
trees (AST), i.e., an intermediate query language
can be translated to other query languages such as
SQL or SPARQL. OTTA contains more complex
queries with longer join paths than Spider. From
the OTTA corpus, we used only queries against the
databases Moviedata and Chinook since they con-
tain the largest amounts of queries. Details about
the queries used for each dataset are given below.

4.2 NL-to-Query Models
We applied publicly available machine learning
models trained for the datasets, which produce
queries with filter values in the WHERE-clauses
as otherwise there would be placeholder tokens
in the back-translations. For all models, we use
a beam size3 of k = 15. For the OTTA corpus,
we used the pre-trained GrammarNet by (Deriu
et al., 2020). The output of GrammarNet is a set
of Operation Tree (OT) hypotheses, which repre-
sent the query. OTs can be translated to SQL and
executed on an SQL database. For each of the two
domains in OTTA (i.e., Moviedata and Chinook),
we use a specifically trained GrammarNet. We re-
fer to these models as GrammarNet-Moviedata and
GrammarNet-Chinook. For the Spider dataset, we
apply two strong NL-to-SQL systems that are pub-
licly available. The first system is BridgeV2 (Lin
et al., 2020), which returns a set of hypothesis SQL
queries from a beam search decoder. We refer to
this model as Spider-BridgeV2 4. The second sys-
tem is ValueNet by Brunner and Stockinger (2021),
which also returns a set of SQL hypotheses from
a beam search decoder5. We refer to this model as

3In preliminary experiments, we noted that using a larger
beam size does not impact the scores significantly.

4We chose these systems for their strong performance,
code availability and quality of code.

5The API provided by the authors included confidence
scores based on the sum per-token-confidence instead of aver-
age. We approximated the average by dividing the provided
score by the number of characters in the SQL hypothesis.



Spider-ValueNet.

4.3 Query-to-NL Model
For back-translating queries to natural language,
we use the Operation Tree-to-Text (OT3) system
kindly made available by von Däniken (2021). It
translates OTs into natural language questions in a
rule-based manner, which ensures that most OTs
are translated correctly, i.e., no nodes are left out or
added during translation. OT3 is domain-agnostic,
which allows it to be easily adapted to a new do-
main by just defining domain-specific metadata,
i.e., the canonical names of the tables, attributes
and types. The main advantage of OT3 is the ability
to express relationships naturally, which results in
more fluent back-translations. There are currently
some limitations with the state-of-the-art Query-
to-NL models, which do not handle more complex
constructs 6 well. Thus, we perform the evaluation
only on the queries that are handled by OT3. More
details can be found in Appendix A.

4.4 Semantic Textual Similarity Model
In order to compute textual semantic similarity
between two questions, i.e., between NLin and
NLgen, we apply NUBIA (Kane et al., 2020), a
pre-trained model that scores a pair of sentences
based on their interchangeability. We use NUBIA7

out-of-the-box without any fine-tuning.

4.5 Mixed Strategies
For the Calibrated Weighting, the Learned Weight-
ing, and the Threshold Weighting rankings, labeled
data points are needed for setting up the mixed
strategy. The samples are used to train the logis-
tic regression models for the Calibrated Weighting
and the Learned Weighting. We use the implemen-
tation provided by scikit-learn (Pedregosa et al.,
2011) with balanced class weights and all other pa-
rameters as default. For the Threshold Weighting,
these samples are used to determine the threshold
for when to select the Confidence ranking or the
Semantic ranking. We use k-fold cross-validation
with k8 chosen such that there are 20 samples in
each fold9 for training the strategies for each split.
We report accuracies averaged over the k test splits
for all strategies.

6E.g., GroupBy, SetOperations, or Nested Quieries
7https://github.com/wl-research/nubia
8Concretely, k = 22 for Spider, k = 11 for Moviedata,

and k = 12 for Chinook.
9This results in 20 ∗ 15 = 300 data points for training the

logistic regression models.

5 Results

As explained in the previous section, we evaluate
the effectiveness of our approach over two different
datasets consisting of 22 databases using three dif-
ferent systems, as shown in Table 1. We evaluate
the systems using the component equality proposed
by Yu et al. (2018). We can see that for all datasets
one of our re-ranking approaches outperforms the
baseline without re-ranking up to 9%. We will now
analyze our re-ranking approaches in more detail.
Semantic Re-ranking. In all cases, except for
Chinook, the Semantic-based re-ranking performs
worse than the baseline system ranking (Confi-
dence), showing that our method alone has not
enough information to select the correct hypothe-
sis.
Mixed Re-ranking (i.e. Equal, Calibrated,
Learned, Threshold). On the contrary, the com-
bination of the Confidence and Similarity scores
improves over Confidence alone in all mixed strate-
gies (with a minor exception for Threshold for Val-
ueNet in Spider). The improvement ranges from
2−3% on Spider to 5−9% on OTTA. These results
show that our method injects new information and
improves over the base systems. In all cases, the
simple Equal Weighting performs well, making it a
great default mixed strategy. The results or other
mixed strategies are better in some cases, although
the best mixed strategy varies in each column. For
instance, for Spider-Bridge the Threshold Weight-
ing strategy works best, yielding an improvement
of 2.56 points in accuracy.
Oracle. The difference between Confidence and
Oracle, i.e. the optimal re-ranking, lies at around
18% for both OTTA subcorpus and 8 − 10% for
Spider, depending on the system. The differences
in margins between Spider and OTTA can be ex-
plained by the fact that the Spider-based models
achieve higher Confidence accuracies, which de-
creases the margin for improvement.
Oracle-Sem. The difference between the best
mixed strategy and Oracle-Sem is around 3 points.
Thus, there is a potential improvement of around 3
points left for all systems using semantic similarity.
However, the difference between the Oracle-Sem
score and the Oracle score differs between the Spi-
der-based systems and the OTTA-based systems.
While the difference in the Spider-based systems is
between 3 to 4 points, the difference for the OTTA-
based systems is between 6 to 7 points.

https://github.com/wl-research/nubia


Dataset
System

OTTA-Chin.
GrammarNet

OTTA-Movie
GrammarNet

Spider
Bridge

Spider
ValueNet

Confidence 42.89 52.24 71.46 74.31
Semantic 48.16 (+5.27) 45.25 (−6.99) 62.70 (−8.76) 68.01 (−6.30)
Equal 51.84 (+8.95) 59.23 (+6.99) 73.03 (+1.57) 76.83 (+2.52)
Calibrated 51.44 (+8.55) 59.60 (+7.36) 73.78 (+2.32) 77.22 (+2.91)
Learned 51.48 (+8.59) 59.44 (+7.20) 73.93 (+2.47) 77.09 (+2.78)
Threshold 46.90 (+4.01) 54.71 (+2.47) 74.05 (+2.59) 71.30 (−3.01)
Oracle-Sem 54.94 (+12.05) 62.38 (+10.14) 77.30 (+5.84) 80.35 (+6.04)
Oracle 61.32 (+18.43) 69.98 (+17.74) 81.12 (+9.66) 83.12 (+8.81)

Table 1: Accuracy of our approach for translating NL questions to OTs and SQL, respectively, using three different
systems and two different datasets. The deltas with respect to the Confidence ranking (baseline) are shown in
parentheses. Oracle-Sem and Oracle are theoretical upper bounds.

6 Discussion

Based on the results, we see that including semantic
similarity for re-ranking works better than using the
Confidence scoring only. In this section, we explore
the potential and limitations of this approach in
more detail.

6.1 Confidence Score vs. Semantic Similarity
Score

To better understand the results, we analyze the
relationship between the confidence scores and the
semantic scores. In Figure 3, the confidence scores
are plotted against the semantic similarity scores,
where blue dots denote correct hypotheses, and
red dots denote incorrect ones. We perform the
analysis on the Bridge system over Spider and the
GrammarNet system over Moviedata, as they show
the clearest difference in score distributions.

First, we note that the distributions for the two
systems look different. For Bridge the confidence
scores mostly lie at the edges, either at 0.0 or 1.0.
The Moviedata confidence scores are more evenly
distributed between 0.4 and 1.0. On the other hand,
the semantic similarity scores are evenly distributed
in both cases.

Second, we note that for the Bridge system, con-
fidence scores close to 1.0 are reliable, i.e., a hy-
pothesis with confidence close to 1.0 tends to be
correct. On the other hand, correct hypotheses with
low confidence tend to have higher semantic scores
(see upper left corner). This explains the strong
performance of Threshold Weighting for Bridge.
For Moviedata, the picture is different. The cor-
rect samples tend to have both high confidence and
high semantic scores (upper right corner). Thus,
the other weighing strategies tend to perform well,
while Threshold Weighting under-performs.

(a) Spider-BridgeV2

(b) Moviedata-GrammarNet

Figure 3: Confidence scores and semantic similarity
scores for hypotheses produced by Spider-BridgeV2
and Moviedata-GrammarNet. Every cross corresponds
to a hypothesis. Blue indicates correct hypotheses and
red incorrect ones.

Third, we note that semantic scoring alone is not
sufficient. For Bridge, the semantic score tends to
score correct hypotheses as low as the incorrect
ones (see lower part). However, it works well for
finding incorrect hypotheses. Although the distri-
butions for Bridge and Moviedata have great differ-
ences, our approach works in both cases.



Error Type Missing Join
Original Question List all singer names in concerts in year 2014.
Ranking SQL Back-translated Question ci si

Gold

SELECT T2.name
FROM singer_in_concert AS T1 JOIN singer
AS T2 ON T1.singer_id = T2.singer_id
JOIN concert AS T3 ON T1.concert_id =
T3.concert_id
WHERE T3.year = 2014

What are the names of singers who performed
in concerts whose year is 2014? - -

Baseline

SELECT singer.Name
FROM singer_in_concert JOIN singer ON
singer_in_concert.Singer_ID = singer.Singer_ID
WHERE singer.Song_release_year = 2014
(missing table "concert")

What are the names of singers who were
released in 2014 who performed in concerts? 0.020 0.792

Semantic

SELECT singer.Name
FROM singer_in_concert JOIN singer ON
singer_in_concert.Singer_ID = singer.Singer_ID
JOIN concert ON singer_in_concert.concert_ID
= concert.concert_ID
WHERE concert.Year = 2014

What are the names of singers who performed
in concerts whose year is 2014? 0.015 0.823

Error Type Wrongly added Filter
Original Question Find the pixel aspect ratio and nation of the tv channels that do not use English.
Ranking SQL Back-translated Question ci si

Gold
SELECT Pixel_aspect_ratio_PAR , country
FROM tv_channel
WHERE LANGUAGE ̸= ’English’

What are the aspect ratios and countries of tv
channels whose language is not English? - -

Baseline

SELECT TV_Channel.Pixel_aspect_ratio_PAR,
TV_Channel.Country
FROM TV_Channel
WHERE TV_Channel.Language ̸= "English"

What are the aspect ratios and countries of tv
channels whose language is not english? 1.000 0.654

Semantic

SELECT TV_Channel.Pixel_aspect_ratio_PAR,
TV_Channel.Country
FROM TV_Channel
WHERE TV_Channel.Language ̸= "English"
AND TV_Channel.Country ̸= "English" (wrong
additional filter)

What are the aspect ratios and countries of tv
channels whose country is not english and
whose language is not english?

0.008 0.673

Table 2: Examples of types of errors due to re-ranking. For each error type, we show the natural language question
and the corresponding SQL gold standard. Next we show the top candidates according to the Confidence ranking
and the Semantic ranking. ci and si refer to confidence score of the NL-to-query translation and the similarity score
between the natural language questions, respectively.

NLin: Whats the average track size of tracks purchased from 120 S Orange Ave?
i NLgen ci si mequal

i OK
1 What is the average size of all tracks on invoice lines which are part of invoices? 0.669 0.49 0.327 F

2 What is the average size of all tracks on invoice lines which are part of invoices
whose billing street is 120 S Orange Ave?

0.668 0.61 0.407 T

9 What is the average size of all tracks on Albums on invoice lines which are part of
invoices whose billing street is 120 S Orange Ave?

0.632 0.3 0.1896 F

NLin: Which companies from Mexico produced their films in Mexico ?
i NLgen ci si mequal

i OK
1 What are the names of companies which produced movies whose status is Mexico? 0.729 0.676 0.492 F

3 What are the names of companies which produced movies which were produced in
countries whose name is Mexico?

0.712 0.751 0.534 T

5 What are the names of companies which produced movies whose name is Mexico? 0.664 0.741 0.492 F

NLin: What are the distinct template type descriptions for the templates ever used by any document?
i NLgen ci si mequal

i OK
1 What are the distinct descriptions of template types for templates? 0.494 0.686 0.338 F

2 What are the distinct descriptions of template types for templates used for docu-
ments?

0.091 0.973 0.166 T

3 Show me everything about template types. 0.031 0.133 0.050 F

Table 3: Illustrative examples of the impact of re-ranking. We show three original questions (NLin) and the
corresponding back-translated examples (NLgen). Value i denotes the rank in the Confidence ranking, ci is the
confidence score of the decoder, si is the similarity score, mequal

i is the combination of ci and si, OK indicates
whether the generated query is correct (T = true, F = false).

6.2 Error Analysis: Confidence vs. Semantic
Ranking

To better understand the differences between the
Semantic and Confidence rankings, we analyze the
cases in which one of the two ranking schemes re-

turns a correct query, and the other one does not.
This analysis is performed on the Bridge output
where in 19.2% of the cases, only one of the two
ranking schemes returns the correct hypothesis. In
25% of the cases in which only the Confidence



ranking returns a correct query, the Semantic rank-
ing returned a query with a redundant WHERE-
clause, and in 20% of cases, the Semantic ranking
returned a wrong attribute in the projection. This
suggests that the Semantic ranking is not stable
against redundant information in the query and
slight variations in the return attributes.

In the cases where only the Semantic ranking
returns a correct query, the query returned by the
Confidence ranking contains missing or redundant
Join-clauses in 47% of cases and wrong query types
in 21% of cases. This suggests that the Semantic
ranking’s strength lies in detecting missing rela-
tions and detecting wrong query types (i.e., SUM
instead of COUNT).

In Table 2 two examples of errors are shown.
The first example shows a missing join operation
of Confidence. In particular, the table "concert"
is missing in the SQL statement. In this case the
confidence score of the wrong Confidence query,
i.e. ci = 0.02, is higher than the confidence of the
correct Semantic query, i.e. 0.015. On the other
hand, the semantic textual similarity score si of the
correct Semantic query, i.e., 0.823, is higher than
the score of the incorrect Confidence query, i.e.,
0.792. We note that although the confidence score
of the incorrect query is the highest of all hypothe-
ses, it is a low score. Usually, the confidence scores
are around 1.0.

The second example shows the problem of an ad-
ditional filter (TV_Channel.Country ̸= "English"),
which confuses the semantic similarity score. The
Confidence ranking selects the correct query with
high confidence, i.e. 1.0. However, the semantic
score of the incorrect Semantic query, i.e., 0.673, is
higher than the semantic score of the correct query,
i.e., 0.654.

This phenomenon motivates the Threshold
Weighting. The reason is that high confidence
scores from the NL-to-Query system are more trust-
worthy than the semantic scores. However, in cases
where the NL-to-Query system is not confident,
the semantic score performs well. The automati-
cally determined threshold in our experiments lies
at around 0.9.

6.3 Qualitative Analysis

In Table 3, we show examples of the different rank-
ings. We show three representative examples of a
15-best list. In the first example, we note that the
hypothesis with the best confidence score, i.e., c1 =

0.669, is incorrect. The second best hypothesis, ac-
cording to the confidence score, is correct and has
a very similar score to the hypothesis placed first
(0.669 vs. 0.668). The hypothesis that is placed 9th

adds an unnecessary relation. However, the confi-
dence score is still close to the hypothesis placed
first. The semantic score, on the other hand, is
more accurate. The correct hypothesis is placed
1st with a large margin (0.61 vs. 0.49) and an even
larger difference with the score of the 9th place. Fi-
nally, the combined score mequal

2 of 0.407 clearly
identifies result 2 as the correct one.

The second example shows a similar pattern: the
first hypothesis with a confidence score c1 of 0.729
is obviously wrong. The second hypothesis, which
is correct, has a slightly lower confidence score c2
of 0.712. The Semantic score s3 of 0.751 ranks
the set of hypotheses correctly. However, Semantic
re-ranking alone is not enough since the 5th ranked
example has a very high semantic similarity score
while being incorrect. In this case the Equal Weigh-
ing approach mequal

i helps differentiating: While
s3 and s5 are very close, mequal

3 and mequal
5 have a

bigger margin.
The last example shows a case where the Equal

Weighting does not work. Although the semantic
score s2 of 0.933 works to find the correct answer,
the confidence score c2 of 0.091 of the correct hy-
pothesis is much lower than the confidence of the
incorrect hypothesis, c1 of 0.494. In this case, the
Threshold Weighting would work well as it relies
on si for the cases where the maximum confidence
score is too low.

7 Conclusion

We proposed a novel approach to improve semantic
NL-to-Query systems based on back-translating the
generated query into a natural language question,
and re-ranking the top hypothesis of the NL-to-
Query system according to the semantic similarity
of the generated questions with regard to the origi-
nal question. Our approach improves over strong,
publicly available systems by up to 3 percentage
points on the Spider dataset and up to 9 points on
the OTTA dataset.

Our results clearly show the potential of back-
translation for improving NL-to-Query systems,
and it could be applied to more general semantic
parsing problems as long as a generation method is
available.
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A On Query-to-NL

While Query-to-Text is not a contribution of our
work, we discuss and motivate our choice of OT3
as our Query-to-Text engine. We adapted OT3 to
handle all the domains in the Spider development
set, which comprises 20 databases. In order to han-
dle SQL queries, we translate SQL queries into
OTs using a rule-based approach. The main advan-
tage over statistical methods is that we can be sure
that the queries are correctly back-translated to text.
This is due to the rule-based nature of OT3.
Sanity Check. In order to show that OT3 correctly
renders the semantics of a query, we first perform
a sanity check, where we backtranslated the gold-
standard tree for a given question. Thus, we need
to show that the original question and the back-
translation are semantically equivalent. As nega-
tive examples, we also mix in randomly sampled
human questions, thus the original question and
the negative back-translation should never be se-
mantically equivalent. We let humans annotate this
data, that is, we showed humans pairs of original
questions and either a positive or negative back-
translation. In this setting, humans agree in 94%
of cases with the parsing ground-truth. This shows
that the synthetic questions are understandable and
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generally maintain the semantics of the underlying
OT. The experiments show that the synthetic ques-
tions are of high quality and can be used as basis
for re-ranking.
Limitations. OT3 does not handle GROUP BY,
sub-queries and set operations, thus, we discard
these samples from the Spider and OTTA develop-
ment sets, keeping 82% of OTTA-Moviedata, 76%
of OTTA-Chinook and 43% of Spider. The reported
results are on these subsets of the datasets. Note
that several studies on natural language query logs
(Bonifati et al., 2017; Affolter et al., 2019) show
that typical queries in real-world applications are
far less complex than the ones contained in the Spi-
der dataset. Hence, not supporting GROUP BYs,
sub queries or set queries is not a significant issue
in a real-world scenario. Note that our method can
still be applied to the full datasets, defaulting to the
Confidence ranking when none of the hypotheses
could be back-translated. The positive results are
consistent, but the improvement is lower, correlated
with the coverage. E.g. an overall improvement of
0.67% for the whole Spider (with the Bridge sys-
tem using equal mixed re-ranking), which roughly
corresponds to the 1.57% improvement obtained
on the 43% subset of Spider which does not contain
complex SQL operations.
Selection. The choice of OT3 is motivated by
the fact that it renders relationships between en-
tities naturally. For instance, the relationship be-
tween persons and movies, which is modelled via
the cast table, is expressed as "Persons that play
in movies". For instance, Logos (Kokkalis et al.,
2012) expresses the same relationship as "Persons
associated with movies", which is not natural and
cannot be handled by our semantic textual simi-
larity tool. We also evaluated statistical models,
which suffer from hallucinations (i.e., adding text
that is not semantically related to the query) and are
generally unreliable. Thus, we are not aware of any
Query-to-Text solution, that handles all types of
queries (Group By, Set Operations, Nested Queries)
such that the generated texts read naturally. Thus,
OT3 has proved to be best suited for our task.

B On Evaluation

We adapted the Component Equality measure for
operation trees (OTs) since we translate the SQL
queries of the Spider-based systems to OTs. For
OTs, this measure checks if the nodes of the pre-
dicted tree correspond to the nodes of the gold stan-

dard tree. This allows measuring query equality in-
dependently of the order of the nodes. Furthermore,
we adapted this analysis also to measure if the
Join attributes are rendered correctly. We decided
against a result-based evaluation since it is impos-
sible to reasonably evaluate queries that return an
empty result set, often leading to over-estimating
the quality of NL-to-Query systems. This happens
often in cases where the result set is empty or for
count questions. For Spider the databases are very
small and do not contain much data, thus, queries
tend to return empty results. For OTTA, which
uses Yes/No questions, this problem is even more
pronounced. Thus, the result-based evaluation is
not reliable, and we opted for the component-based
evaluation, which is now the standard evaluation
for the Spider dataset.


