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Abstract

We demonstrate that it is feasible to accu-
rately diacritize Hebrew script without any
human-curated resources other than plain
diacritized text.

We present NAKDIMON, a two-layer
character-level LSTM, that performs on
par with much more complicated curation-
dependent systems, across a diverse array
of modern Hebrew sources. The model is
accompanied by a training set and a test set,
collected from diverse sources.

1 Introduction

The vast majority of modern Hebrew texts are writ-
ten in a letter-only version of the Hebrew script,
one which omits the diacritics present in the full di-
acritized, or dotted variant.1 Since most vowels are
encoded via diacritics, the pronunciation of words
in the text is left underspecified, and a considerable
mass of tokens becomes ambiguous. This ambigu-
ity forces readers and learners to infer the intended
reading using syntactic and semantic context, as
well as common sense (Bentin and Frost, 1987;
Abu-Rabia, 2001). In NLP systems, recovering
such signals is difficult, and indeed their perfor-
mance on Hebrew tasks is adversely affected by
the presence of undotted text (Shacham and Wint-
ner, 2007; Goldberg and Elhadad, 2010; Tsarfaty
et al., 2019).

As an example, the sentence in Table 1 (a) will
be resolved by a typical reader as (b) in most rea-
sonable contexts, knowing that the word “softly”
may characterize landings. In contrast, an auto-
matic system processing Hebrew text may not be
as sensitive to this kind of grammatical knowledge
and instead interpret the undotted token as the more

1Also known as pointed text, or via the Hebrew term for
the diacritic marks, nikkud/niqqud.

(a)
ברכות! נחת המטוס

hamatos naxat ????
‘The plane landed (unspecified)’

(b)
בְּר¯כּוּת! Éחַת הַמָּטוֹס

hamatos naxat b-rakut
‘The plane landed softly’

(c)
בְּר´כוֹת! Éחַת הַמָּטוֹס

hamatos naxat braxot
‘The plane landed congratulations’

Table 1: An example of an undotted Hebrew text (a)
(written right to left) which can be interpreted in at
least two different ways (b,c), dotted and pronounced
differently, but only (b) makes grammatical sense.

frequent word in (c), harming downstream perfor-
mance.

One possible way to overcome this problem is
by adding diacritics to undotted text, or dotting, im-
plemented using data-driven algorithms trained on
dotted text. Obtaining such data is not trivial, even
given correct pronunciation: the standard Tiberian
diacritic system contains several sets of identically-
vocalized forms, so while most Hebrew speakers
easily read dotted text, they are unable to produce it.
Moreover, the process of manually adding diacrit-
ics in either handwritten script or through digital
input devices is mechanically cumbersome. Thus,
the overwhelming majority of modern Hebrew text
is undotted, and manually dotting it requires ex-
pertise. The resulting scarcity of available dot-
ted text in modern Hebrew contrasts with Biblical
and Rabbinical texts which, while dotted, manifest
a very different language register. This state of
affairs allows individuals and companies to offer
dotting as paid services, either by experts or au-
tomatically, e.g. the Morfix engine by Melingo.2

Such usage practices also force a disconnect in the
NLP pipeline, requiring an API call into an external

2https://nakdan.morfix.co.il/
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service whose parameters cannot be updated.
Existing computational approaches to dotting

are manifested as complex, multi-resourced sys-
tems which perform morphological analysis on the
undotted text and look undotted words up in hand-
crafted dictionaries as part of the dotting process.
Dicta’s Nakdan (Shmidman et al., 2020), the cur-
rent state-of-the-art, applies such methods in ad-
dition to applying multiple neural networks over
different levels of the text, requiring manual anno-
tation not only for dotting but also for morphology.
Among the resources it uses are a diacritized corpus
of 3M tokens and a POS-tagged corpus of 300K
tokens. Training the model takes several weeks.3

In this work, we set out to simplify the dotting
task as much as possible to standard modules. We
introduce a large corpus of semi-automatically dot-
ted Hebrew, collected from various sources, and
use it to train an RNN-based model. Our system,
NAKDIMON, accepts the undotted character se-
quence as its input, consults no external resources
or lexical components, and produces diacritics for
each character, resulting in dotted text whose qual-
ity is comparable to that of the commercial Morfix,
on both character-level and word-level accuracy.
Our model is easy to integrate within larger sys-
tems that perform end-to-end Hebrew processing
tasks, as opposed to the existing proprietary dotters.
To our knowledge, this is the first attempt at a “light”
model for Hebrew dotting since early HMM-based
systems (Kontorovich, 2001; Gal, 2002).

We introduce a novel test set for Modern He-
brew dotting, derived from larger and more diverse
sources than existing datasets. In experiments over
our dataset, we show that our system is particu-
larly useful in the main use case of modern dotting,
which is to convey the desired pronunciation to
a reader, and that the errors it makes should be
more easily detectable by non-professionals than
Dicta’s.4

2 Task and Datasets

2.1 Dotting as Sequence Labeling

The input to the dotting task consists of a sequence
of characters. Each of the characters is assigned
three values, from three separate diacritic cate-
gories: one category for the dot distinguishing

3Private communication.
4The system is available at https://nakdimon.org,

and the source code is a available at https://github.
com/elazarg/nakdimon.

shin ( (שׁ! from sin ( ,(שׂ! two consonants sharing
a base character ;ש! another for the presence of
dagesh/mappiq, a central dot affecting pronunci-
ation of some consonants, e.g. פּ! /p/ from פ|! /f/,
but also present elsewhere; and one for all other
diacritic marks, which mostly determine vocaliza-
tion, e.g. ד´! /da/ vs. ד»! /de/. Diacritics of different
categories may co-occur on single letters, e.g. !µ�, or
may be absent altogether.

Full script Hebrew script written without inten-
tion of dotting typically employs a compensatory
variant known colloquially as full script (ktiv male,
מלא! ,(כתיב which adds instances of the letters י! and
ו! in some places where they can aid pronunciation,
but are incompatible with the rules for dotted script.
In our formulation of dotting as a sequence tagging
problem, and in collecting our test set from raw
text, these added letters may conflict with the dot-
ting standard. For the sake of input integrity, and
unlike some other systems, we opt not to remove
these characters, but instead employ a dotting pol-
icy consistent with full script. See Appendix A for
further details.

2.2 Training corpora

Dotted modern Hebrew text is scarce, since speak-
ers usually read and write undotted text, with the
occasional diacritic added for disambiguation when
context does not suffice. As we are unaware of
legally-obtainable dotted modern corpora, we use a
combination of dotted pre-modern texts as well as
automatically and semi-automatically dotted mod-
ern sources to train NAKDIMON:

The PRE-MODERN portion is obtained from two
main sources: A combination of late pre-modern
text from Project Ben-Yehuda, mostly texts from
the late 19th century and the early 20th century;5

rabbinical texts from the medieval period, the most
important of which is Mishneh Torah (obtained
from Project Mamre);6 and 23 short stories from
the short story project.7 This portion contains
roughly 1.81M Hebrew tokens, most of which are
dotted, with a varying level of accuracy, varying
dotting styles, and varying degree of similarity to
Modern Hebrew.

The AUTOMATIC portion contains 547 short sto-
ries taken from the short story project. The stories
are dotted using Dicta without manual validation.

5https://benyehuda.org
6https://mechon-mamre.org
7https://shortstoryproject.com/he/
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Genre Sources # Docs # Tokens

Wiki Dicta test set 22 5,862
News Yanshuf 78 11,323

† Literary Books, forums 129 73,770
* Official gov.il 24 20,181
* News / Mag Online outlets 137 92,151
* User-gen. Blogs, forums 63 60,673
* Wiki he.wikipedia 40 62,723

Total 493 326,683

Table 2: Data sources for our MODERN Hebrew training
set. Rows marked with * were automatically dotted via
the Dicta API and corrected manually. Rows with †
were dotted at low quality, requiring manual correction.
The rest were available with professional dotting.

The corpus contains roughly 1.27M Hebrew to-
kens.

Lastly, the MODERN portion contains manually
collected text in Modern Hebrew, mostly from
undotted sources, which we dot using Dicta and
follow up by manually fixing errors, either using
Dicta’s API or via automated scripts which catch
common mistakes. We made an effort to collect
a diverse set of sources: news, opinion columns,
paragraphs from books, short stories, Wikipedia
articles, governmental publications, blog posts and
forums expressing various domains and voices,
and more. Our MODERN corpus contains roughly
326K Hebrew tokens, and is much more consistent
and similar to the expectation of a native Hebrew
speaker than the PRE-MODERN or the AUTOMATIC

corpora, and more accurately dotted than the AU-
TOMATIC corpus. The sources and statistics of this
dataset are presented in Table 2.

2.3 New test set

Shmidman et al. (2020) provide a benchmark
dataset for dotting modern Hebrew documents.
However, it is relatively small and non-diverse: all
22 documents in the dataset originate in a single
source, namely Hebrew Wikipedia articles.

Therefore, we created a new test set8 from
a larger variety of texts, including high-quality
Wikipedia articles and edited news stories, as well
as user-generated blog posts. This set consists of
ten documents from each of eleven sources (5x
Dicta’s test set), and totals 20,474 Hebrew tokens,
roughly 3.5x Dicta’s. We use the same technique
and style for dotting this corpus as we do for the
MODERN corpus (§2.2), but the documents were

8https://github.com/elazarg/hebrew_
diacritized/tree/master/test_modern

collected in different ways.

3 Nakdimon

NAKDIMON embeds the input characters
and passes them through a two-layer Bi-
LSTM (Hochreiter and Schmidhuber, 1997). The
LSTM output is fed into a single linear layer, which
then feeds three linear layers, one for each diacritic
category (see §2). Each character then receives a
prediction for each category independently and all
predicted marks are added to it as output.

Decoding is performed greedily, with no valida-
tion of readability or any other dependence between
character-level decisions.

The input is pre-processed by removing all but
Hebrew characters, spaces and punctuation; digits
are converted to a dedicated symbol, as are Latin
characters. All existing diacritic marks are stripped,
and each document is split into chunks bounded at
whitespace, ignoring sentence boundaries.

We train NAKDIMON first over PRE-MODERN,
then over the AUTOMATIC corpus, and then by
over the MODERN corpus. During training, the
loss is the sum of the cross-entropy loss from all
three categories. Trivial decisions, such as the label
for the shin/sin diacritic for any non-!ש letter, are
masked.

Tuning experiments are detailed in Appendix B;
an evaluation of a preliminary version of NAKDI-
MON over the Dicta test set is in Appendix C, and
Hyperparameters are detailed in Appendix D.

4 Experiments

We compare the performance of NAKDIMON on
our new test set (§2.3) against Dicta,9 Snopi,10

and Morfix (Kamir et al., 2002). as well as a MA-
JORITY baseline which returns the most common
dotting for each word seen in our full training set.

Metrics We report four metrics: decision accu-
racy (DEC) is computed over the entire set of indi-
vidual possible decisions: dagesh/mappiq for let-
ters that allow it, sin/shin dot for the letter ,ש! and
all other diacritics for letters that allow them; char-
acter accuracy (CHA) is the portion of characters
in the text that end up in their intended final form
(which may combine two or three decisions, e.g.
dagesh + vowel); word accuracy (WOR) is the por-
tion of words with no mistakes; and vocalization

9Version 4.0, wordlist version 43.
10http://nakdan.com/Nakdan.aspx
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System DEC CHA WOR VOC

MAJORITY 93.79 90.01 84.87 86.19

SNOPI 91.29 85.84 76.45 78.91
MORFIX 96.84 94.92 90.38 92.39
DICTA 97.95 96.77 94.11 94.92

NAKDIMON 97.91 96.37 89.75 91.64

Table 3: Document-level macro % accuracy.

accuracy (VOC) is the portion of words where any
dotting errors do not cause incorrect pronunciation
among mainstream Israeli Hebrew speakers.11

4.1 Results

We provide document-level macro-averaged accu-
racy percentage results for a single run over our
test set in Table 3. All systems, except Snopi, sub-
stantially outperform the majority-dotting baseline
on all metrics. NAKDIMON outperforms Morfix
on character-level metrics but not on word-level
metrics, mostly since Morfix ignores certain words
altogether, incurring errors on multiple characters.

We note the substantial improvement our model
achieves on the VOC metric compared to the
WOR metric: 18.43% of word-level errors are at-
tributable to vocalization-agnostic dotting, com-
pared to 13.80% for Dicta and 10.41% for Snopi
(but 20.91% for Morfix). Considering that the cen-
tral use case for dotting modern Hebrew text is to
facilitate pronunciation to learners and for reading,
and that undotted homograph ambiguity typically
comes with pronunciation differences, we believe
this measure to be no less important than WOR.

Results on Dicta’s test set (Shmidman et al.,
2020) are presented in Appendix C.

4.2 Error analysis

In Table 4 we present examples of words dotted
incorrectly, or correctly, only by NAKDIMON, com-
pared with Morfix and Dicta. The largest category
for NAKDIMON-only errors (∼18% of 90 sampled)
are ones where a fused preposition+determiner
character is dotted to only include the preposition,
perhaps due to its inability to detect the explicit
determiner clitic ה! in neighboring words, on which
the complex systems apply morphological segmen-
tation. In other cases (∼15%), NAKDIMON creates

11These are: the sin/shin dot, vowel distinctions across the
a/e/i/o/u/null sets, and dagesh in the /כ|!/ב! פ|! characters. We
do not distinguish between kamatz gadol/kamatz katan, and
schwa is assumed to always be null.

Context Correct Incorrect

. !Mבעיניי לה להסתכל Kוצרי . . . !Mבָּעֵינ®י¢י !Mבְּעֵינ®י¢י
‘. . . and we need to look her in the eyes (/in eyes).’

. . . בסבלנות! Kל יענו . . . לָ�! לְ�!
‘. . . you.sg.f (/unreadable) will be answered patiently. . . ’

. . . !Mהראשוני Nהאייפו משתמשי . . . !Nֹהָאַי�יפו !Nֹהָאִייפּו
‘. . . the first iPhone (/ee-pon) users. . . ’

Table 4: Examples of words dotted incorrectly (top) or
correctly (bottom) only by NAKDIMON.

unreadable vocalization sequences, as it has no lex-
ical component and is decoded greedily. These
types of errors are more friendly to the typical use
cases of a dotting system, as they are likely to stand
out to a reader. In contrast, a large portion of cases
where only NAKDIMON was correct (∼13% of 152)
are foreign names and terms. This may be the result
of such words not yet appearing in dictionaries, or
not being easily separable from an adjoining clitic,
while character-level information can capture pro-
nunciation patterns from similar words (e.g. !Nֹטֶלֶפו
‘telephone’, for the example !Nהאייפו).

OOVs To further quantify the strengths of
NAKDIMON’s architecture and training abilities,
we evaluate the systems’ results pertaining only
to those words in the test set which do not appear
in our training sets. We follow common practice
by calling them OOVs (“out of vocabulary”), but
emphasize that NAKDIMON does not consult an
explicit vocabulary, and the other systems are not
evaluated against their own vocabularies (which
are unknown to us).

We find that NAKDIMON’s performance on this
subset is substantially worse compared with the
other systems than on the full set: 15 percentage
points below Dicta and seven below Morfix on the
VOC metric (see full results in Appendix C).

These results might be counter-intuitive consid-
ering the proven utility of character-level models
in OOV contexts (e.g., Plank et al., 2016), and so
we offer several possible explanations: First, many
“OOVs” consist in fact of known words coupled
with an unseen combination of prefix clitics and/or
suffix possessive markers, which other systems ex-
plicitly remove using morphological analyzers be-
fore dotting. Second, mirroring the last finding
from the overall analysis, some “OOVs” are proper
names which appear in dictionaries but are absent
from the training set, due to corpus effects such as
time and domain, or simply chance.
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5 Related Work

Existing work on diacritizing Hebrew is not com-
mon, and all efforts build on word-level features.

Kontorovich (2001) trains an HMM on a vo-
calized and morphologically-tagged portion of the
Hebrew Bible containing 30,743 words, and evalu-
ates the result on a test set containing 2,852 words,
achieving 81% WOR accuracy. Note that Biblical
Hebrew is very different from Modern Hebrew in
both vocabulary, grammatical structure, and dia-
critization, and also has many words with unique
diacritization. In our system, we exclude the Bible
altogether from the training set, as its inclusion
actively hurts performance on the validation set,
which consists of Modern Hebrew.

Tomer (2012) designs a diacritization system
for Hebrew verbs consisting of a combination of a
verb inflection system, a syllable boundary detector,
and an SVM model for classifying verb inflection
paradigms. The focus on verbs in a type-level setup
makes this work incomparable to ours or to others
in this survey.

In Arabic, diacritization serves a comparable pur-
pose to that in Hebrew, but not exclusively: most
diacritic marks differentiate consonantal phonemes
from each other, e.g. H. /b/ vs. �H /t/ (which
only the sin/shin dot does in Hebrew), whereas
vocalization marks are in a one-to-one relationship
with their phonetic realizations, e.g. only the fatha
as in �H. /ba/ encodes the /a/ vowel.

Dictionary-less Arabic diacritization has been
attempted using a 3-layer Bi-LSTM (Belinkov and
Glass, 2015). Abandah et al. (2015) use a Bi-LSTM
where characters are assigned either one or more
diacritic symbols. Our system differs from theirs
by virtue of separating the diacritization categories.
Mubarak et al. (2019) tackled Arabic diacritization
as a sequence-to-sequence problem, tasking the
model with reproducing the characters as well as
the marks.

Zalmout and Habash (2017) have made the case
against RNN-only systems, arguing for the impor-
tance of morphological analyzers in Arabic NLP

systems. We concede that well-curated systems
may perform better than uncurated ones, particu-
larly on low-resource languages such as Hebrew,
but we note that they are difficult to train for indi-
vidual use cases and are burdensome to incorporate
within larger systems.

Diacritics restoration in Latin-based scripts, ap-
plicable mostly to European languages, forms a
substantially different problem from the one in He-
brew given the highly lexicalized nature of diacritic
usage in these languages and the very low rate of
characters requiring diacritics. The state-of-the-
art systems in such languages employ transformer
models in a sequence-to-sequence setup (Náplava
et al., 2021; Stankevičius et al., 2022), supplanting
character-RNN sequence prediction architectures
reminiscent of ours (Náplava et al., 2018). Indeed,
the authors of this latter work note the only non-
European in their dataset, Vietnamese, as a special
outlier.

6 Conclusion

Learning directly from plain diacritized text can go
a long way, even with relatively limited resources.
NAKDIMON demonstrates that a simple architec-
ture for diacritizing Hebrew text as a sequence tag-
ging problem can achieve performance on par with
much more complex systems. We also introduce
and release a corpus of dotted Hebrew text, as well
as a source-balanced test set.

In the future, we wish to evaluate the utility of
dotting as a feature for downstream tasks such
as question answering, machine translation, and
speech generation, taking advantage of the fact that
our simplified model can be easily integrated in an
end-to-end Hebrew processing system.

Ethical Considerations

We collected the data for our training set and test
sets from open online sources, while making sure
their terms allow research application and privacy
is not impugned. NAKDIMON’s architecture does
not encourage memorization of training data and
the system is not trained for generating text.

We consider a main use case for our system to be
assisting Hebrew learners in reading. We therefore
expect NAKDIMON to facilitate life in Israel for im-
migrants still struggling with Hebrew, among other
underprivileged groups. Automatic dotting can
increase inclusion in Hebrew-prominent societies
for literacy-challenged individuals, and derivative
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improvements in text-to-speech applications can
assist those with impaired vision. Lastly, dotting
can help researchers with limited understanding of
Hebrew access resources in the language.

Hebrew is a gendered language. Orthographi-
cally, in many cases the lack of dots masks gen-
der ambiguity, allowing both masculine and femi-
nine readings for a given word (e.g. שµׁלַחְתְּ! / שµׁלַחְתָּ!
‘you.fem sent’ / ‘you.masc sent’). While well-
performing automatic dotting can help alleviate
these ambiguities and reduce the amount of poten-
tially prejudiced readings, we recognize the large
body of work on gender bias in NLP (Blodgett
et al., 2020), including in Hebrew NLP (Moryossef
et al., 2019), and the findings that an imbalanced
training set may result in an even more skewed dis-
tribution of gender bias in applications (Zhao et al.,
2017). We believe our unlexicalized approach is
more robust to such bias compared with other sys-
tems, and have already started quantifying and ad-
dressing these issues as we find them in ongoing
work. In the meantime, we offer this paragraph as
a disclaimer.
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Dicta – reported / reproduced New test set (§2.3)
OOV

System DEC CHA WOR VOC DEC CHA WOR VOC WOR VOC

Baselines
MAJMOD 84.93 75.94 68.10 69.63 88.04 81.22 76.14 77.10 N/A N/A
MAJALL 91.67 86.29 79.43 81.19 93.79 90.01 84.87 86.19 N/A N/A

Lexicalized
SNOPI 87.81 78.96 / 79.92 66.41 / 66.57 70.35 91.29 85.84 76.45 78.91 40.83 42.39
MORFIX 94.91 90.32 / 91.29 80.90 / 82.24 86.48 96.84 94.92 90.38 92.39 63.91 69.20
DICTA 97.53 95.12 / 95.71 88.23 / 89.23 90.66 97.95 96.77 94.11 94.92 76.21 77.66

Unlexicalized
NAKDIMON0 95.78 92.59 79.00 83.01 94.59 91.70 84.94 87.54 47.05 50.96
NAKDIMON 97.91 96.37 89.75 91.64 57.46 62.06

Table 5: Document-level macro % accuracy on the test set from Shmidman et al. (2020) and on our new test set.
We cannot report our full NAKDIMON’s performance on the former, as we use the test set for parts of its training.
MAJALL is reported as MAJORITY in the main text; MAJMOD only considers text in the MODERN portion of our
training set.

A Full Script Reconciliation

We apply the following resolution tactics for added
letters in undotted text: (a) We almost never re-
move or add letters to the original text (unless it is
completely undiacritizable). (b) We keep dagesh
in letters that follow a shuruk which replaces a
kubuts, and similarly for yod (hirik male replacing
hirik haser). (c) When we have double vav or dou-
ble yod, the second letter is usually left undotted,
except when it is impossible to have the correct
vocalization this way.

Resolving ktiv haser discrepancies from Morfix
outputs is done by adding missing vowel letters,
or removing superfluous vowel letters, in such a
way that would not count as an error if it is correct
according to Academy regulations.

B Development Experiments

We tried to further improve NAKDIMON by ini-
tializing its parameters from a language model
trained to predict masked characters in a large un-
dotted Wikipedia corpus (440MB, 30% mask rate),
but were only able to achieve an improvement of
0.07%. Attempted architectural modifications, in-
cluding substituting a Transformer (Vaswani et al.,
2017) for the LSTM; adding a CRF layer to the de-
coding process; and adding a residual connection
between the character LSTM layers, yielded no
substantial benefits in these experiments. Similarly,
varying the number of LSTM layers between 2 and
5 (keeping the total number of parameters roughly
constant, close to the 5,313,223 parameters of our
final model) had little to no impact on the accuracy
on the validation set.

Figure 1: WOR error rate on validation set as a function
of training set size vs. Dicta, over five runs. Other
metrics show similar trends.

Figure 1 shows the favorable effect of training
NAKDIMON over an increasing amount of MOD-
ERN text.

C Dicta Test Set

We present results for the Dicta test set in Table 5.
In order to provide fair comparison and to preempt
overfitting on this test data, we ran this test in a pre-
liminary setup on a variant of NAKDIMON which
was not tuned or otherwise unfairly trained. This
system, NAKDIMON0, differs from our final vari-
ant in three main aspects: it is not trained on the
Dicta portion of our training corpus (§2.2), it is not
trained on the AUTOMATIC corpus, and it employs
a residual connection between the two character
Bi-LSTM layers. Testing on the Dicta test set re-
quired some minimal evaluation adaptations result-
ing from encoding constraints (for example, we
do not distinguish between kamatz katan and ka-
matz gadol). Thus, we copy the results reported in

1017



Shmidman et al. (2020) as well as our replication.
We see that the untuned NAKDIMON0 performs

on par with the proprietary Morfix, which uses
word-level dictionary data, consistent with our
main results on our novel test set.

D Hyperparameters

We tuned hyperparameters and architecture over a
held-out validation set of 40 documents with 27,681
tokens, on which Dicta performs at 91.56% WOR

accuracy.
In our chosen setup, we train NAKDIMON over

PRE-MODERN for a single epoch, followed by two
epochs over the AUTOMATIC corpus, and then by
three epochs over the MODERN corpus. We opti-
mize using Adam (Kingma and Ba, 2014). For the
PRE-MODERN corpus we use a cyclical learning
rate schedule (Smith, 2017), varying linearly from
3 · 10−3 through 8 · 10−3 and down to 10−4, which
we found to be more useful than a constant learning
rate. For each of AUTOMATIC and MODERN cor-
pora we use epoch-wise decreasing learning rate:
(3 · 10−3, 10−3) and (10−3, 10−3, 3 · 10−4) respec-
tively. We set maximum chunk size to 80 charac-
ters, and use batch size of 128. We set both char-
acter embedding and LSTM hidden dimensions to
400, and apply a dropout rate of 0.1.
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