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Abstract

In this work, we explore how to train task-
specific language models aimed towards learn-
ing rich representation of keyphrases from
text documents. We experiment with different
masking strategies for pre-training transformer
language models (LMs) in discriminative as
well as generative settings. In the discrimina-
tive setting, we introduce a new pre-training
objective - Keyphrase Boundary Infilling with
Replacement (KBIR), showing large gains in
performance (upto 8.16 points in F1) over
SOTA, when the LM pre-trained using KBIR
is fine-tuned for the task of keyphrase extrac-
tion. In the generative setting, we introduce
a new pre-training setup for BART - Key-
BART, that reproduces the keyphrases related
to the input text in the CatSeq format, instead
of the denoised original input. This also led
to gains in performance (upto 4.33 points in
F1@M) over SOTA for keyphrase generation.
Additionally, we also fine-tune the pre-trained
language models on named entity recognition
(NER), question answering (QA), relation ex-
traction (RE), abstractive summarization and
achieve comparable performance with that of
the SOTA, showing that learning rich repre-
sentation of keyphrases is indeed beneficial for
many other fundamental NLP tasks.

1 Introduction and Background

Keyphrases capture the most salient topics of a
document and facilitates extreme summarization.
Identifying them in an automated way from a text
document can be useful for several downstream
tasks - classification (Hulth and Megyesi, 2006),
clustering (Hammouda et al., 2005), summariza-
tion (Qazvinian et al., 2010; Zhang et al., 2004),
reviewer and document recommendation (Augen-
stein et al., 2017), and many different informa-
tion retrieval tasks such as enabling semantic and
faceted search (Sanyal et al., 2019; Gutwin et al.,
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1999), query expansion (Song et al., 2006), and
interactive document retrieval (Jones and Staveley,
1999).

Keyphrases could either be extractive (part of
the document) or abstractive (not part of the docu-
ment). Prior works have referred to them as present
and absent keyphrases, respectively. Automatically
identifying them entails the process of detecting
the extractive (Hasan and Ng, 2014) and generat-
ing the abstractive keyphrases (Çano and Bojar,
2019a) from a given document. While extractive
approaches have mostly dominated over the gener-
ative ones with higher accuracies (Çano and Bojar,
2019b), the task is far from solved and the perfor-
mances of the present systems are worse in com-
parison to many other NLP tasks (Liu et al., 2010).
Some of the major challenges are the varied length
of the documents to be processed, their structural
inconsistency and developing strategies that can
perform well in different domains.

Most of the prior work on identifying keyphrases
using deep learning techniques have concentrated
on developing new architectures and frameworks
based on different training paradigms such as
seq2seq (Meng et al., 2017; Yuan et al., 2018;
Zhang et al., 2017a; Chen et al., 2018; Ye and
Wang, 2018; Chen et al., 2019; Ye et al., 2021),
sequence tagging (Alzaidy et al., 2019), reinforce-
ment learning (Chan et al., 2019), adversarial train-
ing (Swaminathan et al., 2020) and game theory
(Saxena et al., 2020). Although, there has been
tremendous progress in learning better semantic
and syntactic representation of language at differ-
ent levels - characters, words, phrases, sentences
and documents (Liu et al., 2020b), there hasn’t
been any effort in learning rich pre-trained repre-
sentations of keyphrases, which is the major focus
of this work.

Transformer language models when pre-trained
on large corpora with different pre-training objec-
tives (Qiu et al., 2020) have shown great success
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in various downstream tasks on fine-tuning, includ-
ing the tasks of keyphrase extraction (Sahrawat
et al., 2019; Martinc et al., 2020; Santosh et al.,
2020) and generation (Liu et al., 2020a). However,
pre-training objectives tailored towards learning
better representation of keyphrases that can result
in improving the performance of identifying and
generating keyphrases from text have not yet been
explored. This motivated us to look into this spe-
cific problem and make an attempt to answer the
following questions:
Q1 - Can we formulate a pre-training objective for
language models that can learn better representa-
tion of keyphrases?

Previous work explored training language mod-
els for learning better representation of text spans
(Joshi et al., 2020), summary sentences (Zhang
et al., 2020), and tokens for named entity recog-
nition (Yamada et al., 2020). To effectively
learn rich representation of keyphrases in a BERT
like discriminative setup, we propose a new pre-
training objective - Keyphrase Boundary Infill-
ing with Replacement (KBIR) (Section 2) which
utilizes a multi-task learning setup for optimiz-
ing a combined loss of random token Masked
Language Modeling (MLM) (Devlin et al., 2018),
Keyphrase Boundary Infilling (KBI) (Section
2.1) and Keyphrase Replacement Classification
(KRC) (Section 2.2).

We also propose a new setup for pre-training
BART (Lewis et al., 2019) - KeyBART (Section
3), focused towards learning better representation
of keyphrases in a generative setting. Instead of
reproducing the denoised input text as proposed
in the original setup, we produce the keyphrases
associated with the input document in the CatSeq
(Meng et al., 2017) format from a corrupted input.
Q2 - Does learning rich representation of
keyphrases in a language model lead to perfor-
mance gains for the tasks of keyphrase extraction
and generation?

One of the key contributions of this work is the
introduction of KBIR, which is the combination of
the KBI and KRC objectives with MLM that helps
to learn good representation of keyphrases. This is
validated by obtaining SOTA performance for the
task of keyphrase extraction on three benchmark
datasets (Section 4.2.1), surpassing the existing
SOTA (Duan et al., 2021) by at most 8.16 F1 points
on the SemEval 2017 corpus (Augenstein et al.,
2017).

We also evaluated the KeyBART approach
across five benchmark datasets for the task of
keyphrase generation and obtained SOTA perfor-
mances for both present and absent keyphrases
(Section 4.2.2). Our best model surpassed the
SOTA ONE2SEQ model (Ye et al., 2021) by 4.33
F1@M points and 0.72 F1@M points on Inspec
(Hulth, 2003a) for present and absent keyphrases
respectively.
Q3 - Do rich keyphrase representations aid other
fundamental tasks in NLP such as NER, QA, RE
and summarization?

It is to be noted, that although we trained our
models on a large corpus of 23 million scientific
articles, we find that it performs reasonably well
when fine-tuned on datasets that do not belong to
the scientific domain for different NLP tasks as
shown in Section 4.2.3, 4.2.4, 4.2.5 and 4.2.6. This
also suggests that identifying keyphrases in the con-
text of an input text is a fundamental NLP task and
a language model trained to learn optimal represen-
tation of keyphrases can aid many other tasks.

To summarize the main contributions that we
make in this work are:

• We make the first attempt to train task-specific
language models in discriminative as well as
generative settings geared towards learning
rich representation of keyphrases from text.

• We introduce a novel pre-training objec-
tive Keyphrase Boundary Infilling with Re-
placement (KBIR) and train a new language
model that achieves SOTA performance for
the task of keyphrase extraction.

• We propose a new setup - KeyBART for pre-
training a generative language model for learn-
ing better representation of keyphrases and
achieve SOTA performance on the task of
keyphrase generation.

• We also empirically show how learning rich
keyphrase representations from text is also
useful for other NLP tasks like NER, RE, QA
and summarization by achieving near SOTA
performances in all of them using our lan-
guage models trained using KBIR objective
and KeyBART settings.

We have made our models1 2 publicly avail-
1https://huggingface.co/bloomberg/

KeyBART
2https://huggingface.co/bloomberg/KBIR
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able. We also make our pre-training code3 avail-
able. Next, we give a detailed description of the
methods that we propose in this work.

2 Keyphrase Boundary Infilling with
Replacement (KBIR)

In the previous section, we mentioned various meth-
ods that aim at learning representations of text
spans. Unlike LMs like SpanBERT (Joshi et al.,
2020) and PEGASUS (Zhang et al., 2020) whose
primary objective is to learn representations of ran-
dom or heuristically chosen spans of text, the in-
tuition behind learning good keyphrase representa-
tion is to provide the LM the ability to learn spans
as well as to identify important phrases (in this
case keyphrases) in the context of an input text.
This motivated us to devise a framework that can
optimize both of these objectives. Towards this
effort, we propose a new pre-training objective
Keyphrase Boundary Infilling with Replacement
(KBIR) which is composed of two individual tasks -
Keyphrase Boundary Infilling (KBI) and Keyphrase
Replacement Classification (KRC) jointly learnt in
a multi-task learning setup as shown in Figure 1.
We build our framework on top of RoBERTa which
implements random token Masked Language Mod-
eling (MLM), therefore making our LM essentially
optimizing MLM along with KBI and KRC objec-
tives. In the following section, we describe the
individual components of our framework.

2.1 Keyphrase Boundary Infilling (KBI)

To effectively learn span representations of
keyphrases, we propose a new pre-training objec-
tive that builds upon the Span Boundary Objec-
tive (SBO) from SpanBERT (Joshi et al., 2020)
and the Text Infilling setup from BART (Lewis
et al., 2019). Similar to BART, we replace the en-
tire span, in this case a keyphrase, with a single
[MASK] token as shown in Figure 2 and predict
the original tokens using positional embeddings in
conjunction with boundary tokens. Text Infilling is
a more challenging task than SpanBERT’s objec-
tive of individual masked token predictions as the
model must predict how many tokens correspond
to a span (Lewis et al., 2019). Different from Span-
BERT, which does not penalize incorrect predic-
tions of a sequence of tokens within a masked span,
we propose a cumulative loss (Equation 2) across

3https://github.com/bloomberg/kbir_
keybart

all tokens in the masked span to capture intra-span
token relationships to learn better span representa-
tions. Text infilling, to the best of our knowledge,
has not been explored in a discriminative setup as
done in this work.

We denote the output of the transformer en-
coder for each token xl in the sequence x1, . . . , xL
as xl. However, since the entire span of tokens
(xs, ..., xe) of a keyphrase ym is masked with a
mask token xm, it is represented with a single vec-
tor xm, where (s, e) indicates its start and end po-
sitions and m represents the index of a masked
keyphrase span. We set a maximum possible num-
ber of tokens corresponding to a keyphrase span,
Tmax such that i ∈ [1, Tmax]. We then predict the
sequence of tokens to replace xm using the output
encodings of the external boundary tokens xs−1

and xe+1, as well as the position embedding pi of
the target token as shown in Equation 1.

yi = f(xs−1,xe+1,pi) (1)

where positional embeddings use relative positions
of the masked tokens with respect to the left bound-
ary token xs−1. We use Layer Normalization (Ba
et al., 2016) and GeLU (Hendrycks and Gimpel,
2016) activation function to represent f(∆). We
then use the vector representation yi to predict
the potential token xi and compute the cumula-
tive cross-entropy loss for each i present within the
unmasked xm as shown in Equation 2.

LInfill(θ) =

Tmax∑

i=1

log p (xi|yi) (2)

In addition to predicting the actual tokens, we
use a classification head to predict the expected
number of tokens corresponding to the [MASK] in
anticipation of providing a stronger learning signal.
Each possible length of the [MASK] is represented
as a class and therefore, the number of such classes
is equal to the maximum number of possible tokens
(Tmax). The architecture used for classifying the
number of tokens is a single linear layer which is
trained with cross-entropy loss LLP(xm, zm) along
with the infilled masked token xm and the corre-
sponding actual length of the span class zm.

The Keyphrase Boundary Infilling (KBI) objec-
tive is formally represented as:

LKBI(θ) = αLMLM(θ) + γLInfill(θ) + σLLP(θ)
(3)
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Figure 1: The KBIR model architecture for the training phase. The Random Token MASK is denoted in red, the
Keyphrase MASK is denoted in blue and the Replaced Keyphrase in orange.

where α, γ and σ are co-efficients applied to
each loss and are primarily used to normalize the
losses across the tasks.

We propose this pre-training objective to be used
with keyphrases, however the objective is generic
enough to be applied to any spans of text, these
could be keyphrases, entities or even random spans.

2.2 Keyphrase Replacement Classification
(KRC)

Apart from learning representations of keyphrase
spans, we wanted our framework to have the abil-
ity to identify them within the context of a text
input. Motivated by WKLM (Xiong et al., 2019)
that explores pretraining a language model through
weak supervision by replacing entities with random
entities of the same type that belongs to a knowl-
edge base, we adapt it to replace keyphrases by
randomly choosing another keyphrase of variable
length from the universe of keyphrases identified
in a tagged corpus. The KRC task is then modeled
as a binary classification task to determine whether
a keyphrase is replaced or retained.

To implement this strategy, we construct a
keyphrase universe by identifying the set of unique
keyphrases tagged across the entire dataset. We
then randomly shuffle this keyphrase universe and
restrict it to 500,000 keyphrases for computational
complexity. We use the concatenated representa-
tion of boundary tokens of a keyphrase xs−1 and
xe+1 as input to a linear classifier as shown in Fig-
ure 1. Given the label yk representing whether

a keyphrase was replaced or not, the objective
here is to minimize the binary cross-entropy loss
LKRC((xs−1 + xe+1), yk).

Finally, in order to train a LM with an objective
of learning good keyphrase representations we use
the KBIR pre-training strategy in which we jointly
optimize the KBI loss and the KRC loss along
with the already existing MLM loss (LMLM(θ)) in
RoBERTa. This is formally shown in Equation 4.

LKBIR(θ) = αLMLM(θ) + γLInfill(θ)+

σLLP(θ) + δLKRC(θ) (4)

3 KeyBART

We also explored learning a generative LM for the
text generation tasks such as keyphrase generation
and abstractive summarization. Our hypothesis
behind the proposed setup is that masking and re-
placing task-specific spans, in this case keyphrases,
that need to be re-generated should allow the gen-
erative model to learn a better representation of
surrounding tokens and also the spans themselves.

BART (Lewis et al., 2019) generates sequences
of different lengths from the input perturbed with
[MASK] tokens along with token addition and dele-
tion. On similar lines, we propose learning rich
keyphrase representations by attempting to gener-
ate the Original Present Keyphrases in the Catseq
format as proposed in (Meng et al., 2017) from
an input perturbed with token masking, keyphrase
masking, and keyphrase replacement as shown in
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Figure 2. We call this method KeyBART. We
maintain the order of occurrence of the keyphrases
in the original document and remove duplicate oc-
currences. We also use the same method for finding
keyphrase replacements as used in KRC (Section
2.2). We don’t explicitly try to model the keyphrase
replacement through a replacement classification
head, but rely on learning this implicitly as part
of the generation task. Similar to BART, we use a
reconstruction loss objective during training which
is a cross-entropy loss between the output and set
of expected keyphrases.

4 Experiments and Results

4.1 Language Modeling

Dataset - We use the OAGKX (Çano and Bojar,
2020) dataset which consists of 23 million scien-
tific documents across multiple domains sampled
from the Open Academic Graph with keyphrases
tagged by the authors of the articles. The OAGKX
contains keyphrases that appear in the abstract and
also those which don’t appear in the abstract, mak-
ing it similar to the keyphrase generation setting
with present and absent keyphrases. To the best of
our knowledge, we are the first to explore OAGKX
dataset for pre-training a large language model.

During LM pre-training we restricted the length
of the input text for each sample to 512 tokens.

Note that we do not explicitly tag the keyphrases
and use the readily available author tagged
keyphrases associated with each document, which
is a common practice in the scientific domain. This
setup is analogous to how the Wikipedia corpus
is used to perform entity specific pre-training in
LUKE (Yamada et al., 2020) and WKLM (Xiong
et al., 2019) among others.

We conducted a preliminary study of using Tex-
tRank, a baseline unsupervised keyphrase tagging
techniques, to create a weakly supervised dataset
but observed only marginal gains. More details
are provided in Section 6 that would serve as a
potential direction for future work. Additionally,
we address Limitations and Ethical Concerns in
Appendix 8.1.
Pre-training Strategies - We train LMs in dif-
ferent settings with different hyperparameters as
shown in Table 1 (refer Appendix- 8.2 for more
details). We pre-train in a discriminative setting
with the KBIR method using RoBERTa (Liu et al.,
2019) pre-trained weights. We also pre-train in a
generative setting with the KeyBART method us-

ing BART (Lewis et al., 2019) pre-trained weights.
Ablations - Considering computational costs and
environmental impact, we conduct a limited set of
ablation studies to demonstrate the effectiveness of
our proposed methods and also to demonstrate that
the gains in performance are not due to additional
data.4 We pre-train using basic random token mask-
ing strategy as RoBERTa-extended ablating both
KBI and KRC from KBIR, using RoBERTa pre-
trained weights. We also pre-train using the KBI
method, ablating KRC from KBIR using RoBERTa
pre-trained weights. We pre-train BART’s original
denoising autoencoder strategy to recreate the orig-
inal document as KeyBART-DOC by using BART
pre-trained weights.

4.2 Downstream Task Evaluation
All our downstream evaluations are performed us-
ing HuggingFace Transformer’s (Wolf et al., 2020)
RoBERTa or BART architectures to facilitate re-
producibility. We also specify all hyperparameters
in Table 2. We add no additional parameters over
RoBERTa or BART for the corresponding down-
stream evaluation architecture, demonstrating the
effectiveness of our updated pre-trained weights.

4.2.1 Keyphrase Extraction
We report performance of our models for
Keyphrase Extraction (KE) on Inspec (Hulth,
2003b), SemEval-2010 (SE10) (Kim et al., 2010),
and SemEval-2017 (SE17) (Augenstein et al.,
2017). (Sahrawat et al., 2019) explored KE
as a sequence tagging task with contextual
embeddings and demonstrate the effectiveness
of a CRF. We compare our performance with
RoBERTa+BiLSTM-CRF (Sahrawat et al., 2019),
RoBERTa+TG-CRF (Chen et al., 2019), previous
state-of-the-art model RoBERTa+Hypertnet-CRF,
and SciBERT+Hypernet-CRF (Duan et al., 2021).
However, different from these architectures, we
do not use a LSTM/BiLSTM layer between the
contextualized embeddings and the CRF. We fine-
tune all the pre-trained language models on B-I-O
tagged datasets for KE5. We use hyperparameters
specified in (Sahrawat et al., 2019) and F1-score is
used as the evaluation metric.

Table 3 shows our pre-trained LMs outper-
form SOTA by significant margins across all

4We attempted whole word masking keyphrases for both
SBO and MLM for BASE model pre-training and observed
no significant gains.

5https://github.com/midas-research/keyphrase-extraction-
as-sequence-labeling-data
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Model Batch Steps Warmup α γ σ δ MLM KI KR MISL MKR
RoBERTa-extended 4 130k 2.5k 1.0 0.0 0.0 0.0 0.15 0.0 0.0 - -
KBI 4 130k 2.5k 1.0 0.33 1.0 0.0 0.15 0.2 0.0 10 -
KBIR 2 260k 5k 1.0 0.33 1.0 2.0 0.05 0.2 0.4 10 20
KeyBART 4 130k 2.5k - - - - 0.05 0.2 0.4 10 20
KeyBART-DOC 2 260k 5k - - - - 0.05 0.2 0.4 10 20

Table 1: Hyperparameters for our pre-training strategies. All models were trained using 8 Tesla V100 GPUs with
the Adam (Kingma and Ba, 2015) optimizer and a learning rate of 1e-5. Difference in number of steps is to account
for changes in batch size while seeing the same number of data points across training regimes. MLM, Keyphrase
Infilling (KI) and Keyphrase Replacement (KR) show the probability of this perturbation occurring in the original
text. MLM probability is reduced for KBIR in line with (Xiong et al., 2019). Maximum Infill Span Length (MISL)
and Maximum Keyphrase Replacements (MKR), are based on averages from OAGKX and computational reasons.
The coefficients for the loss are used to normalize the magnitude of loss across the different tasks.

Parameter KE NER RE QA KG SUM
Learning Rate 5e-5 1e-5 4e-5 3e-5 5e-5 5e-5
Batch 4 8 32 48 32 8
Epochs 100 5 10 2 300k 20k
GPUs 2 1 2 1 4 2

Table 2: Hyperparameters for our downstream task
evaluations. KG and SUM specifies steps instead of
epochs.

Model Inspec SE10 SE17
RoBERTa+BiLSTM-CRF 59.5 27.8 50.8
RoBERTa+TG-CRF 60.4 29.7 52.1
SciBERT+Hypernet-CRF 62.1 36.7 54.4
RoBERTa+Hypernet-CRF 62.3 34.8 53.3
RoBERTa-extended-CRF* 62.09 40.61 52.32
KBI-CRF* 62.61 40.81 59.7
KBIR-CRF* 62.72 40.15 62.56

Table 3: F1 scores for Keyphrase Extraction on Inspec,
SE10 and SE17 datasets (* LMs trained by us).

three datasets despite having fewer parameters.
While RoBERTa-extended, shows gains over
RoBERTa+BiLSTM-CRF, this is expected since
the domain of the continued pre-training data is
more in line for KE evaluation. However, the mod-
els that explicitly learn keyphrase representations
such as KBI and KBIR significantly outperform
RoBERTa-extended. We believe the slight gain for
SemEval-2010 is because of the small size of the
dataset (130 - train, 100 - test).

4.2.2 Keyphrase Generation

We evaluate keyphrase generation (KG) perfor-
mance on Inspec (Hulth, 2003b), NUS (Nguyen
and Kan, 2007), Krapivin (Krapivin et al., 2009),
SemEval (Kim et al., 2010) and KP20K (Meng
et al., 2017). The task is to generate the CatSeq
output of the present and absent keyphrases for a
given concatenated title and abstract, as done in

previous works (Meng et al., 2017; Chen et al.,
2019; Yuan et al., 2018). We use the PresAbs order-
ing of the keyphrases as that was shown to be the
most effective representation in (Meng et al., 2021).
Further, we only train a single model by fine-tuning
on the KP20K dataset and perform inference on
all the test datasets. Similar to (Meng et al., 2021)
we use a beam width of 50 for beam search and
restrict our maximum generated sequence length
to 40 tokens. For our evaluation we use macro-
averaged F1@5 and F1@M as in (Chan et al., 2019)
and (Chen et al., 2020) for both present and ab-
sent keyphrase generation. F1@M evaluates all the
keyphrases predicted by the model with the ground-
truth keyphrases. F1@5, as the name suggests eval-
uates only the first 5 keyphrases, however when
there are fewer than five keyphrases, random in-
correct keyphrases are appended till it reaches five
predictions. (Chan et al., 2019) show that without
this appending F1@M is the same as F1@5, when
predictions are fewer than five. (Ye et al., 2021)
also present a ONE2SET training paradigm and
for a fair comparison we compare to their Trans-
former (ONE2SEQ) results, since we also train in
the ONE2SEQ paradigm and not ONE2SET.

In Table 4 and Table 5 we see that KeyBART is
the most effective pre-training method achieving
SOTA on most datasets for F1@M in present and
absent KG. We believe our choice of perturbation
of the input during the pre-training setup makes
this model robust and helps it identify and gener-
ate keyphrases more effectively. We also observe
that our results for F1@5 aren’t as competitive as
F1@M and we believe this is because our model
tends to favor predicting fewer than 5 keyphrases
and thus tends to suffer from the random addition of
keyphrases for F1@5. More concretely, the average
predicted keyphrases per document for SemEval is
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Inspec NUS Krapivin SemEval KP20k
Model F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M
catSeq (Yuan et al., 2018) 22.5 26.2 32.3 39.7 26.9 35.4 24.2 28.3 29.1 36.7
catSeqTG (Chen et al., 2019) 22.9 27 32.5 39.3 28.2 36.6 24.6 29.0 29.2 36.6
catSeqTG-2RF1 (Chan et al., 2019) 25.3 30.1 37.5 43.3 30 36.9 28.7 32.9 32.1 38.6
GANMR (Swaminathan et al., 2020) 25.8 29.9 34.8 41.7 28.8 36.9 - - 30.3 37.8
ExHiRD-h (Chen et al., 2020) 25.3 29.1 - - 28.6 34.7 28.4 33.5 31.1 37.4
Transformer (Ye et al., 2021) 28.15 32.56 37.07 41.91 31.58 36.55 28.71 32.52 33.21 37.71
BART* 23.59 28.46 35.00 42.65 26.91 35.37 26.72 31.91 29.25 37.51
KeyBART-DOC* 24.42 29.57 31.37 39.24 24.21 32.60 24.69 30.50 28.82 37.59
KeyBART* 24.49 29.69 34.77 43.57 29.24 38.62 27.47 33.54 30.71 39.76
KeyBART* (no finetune) 30.72 36.89 18.86 21.67 18.35 20.46 20.25 25.82 12.57 15.41

Table 4: Keyphrase Generation for Present Keyphrases. SOTA is marked in Bold and our best performing models
as Bold-Italicized.

Inspec NUS Krapivin SemEval KP20k
Model F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M
catSeq (Yuan et al., 2018) 0.4 0.8 1.6 2.8 1.8 3.6 1.6 2.8 1.5 3.2
catSeqTG (Chen et al., 2019) 0.5 1.1 1.1 1.8 1.8 3.4 1.1 1.8 1.5 3.2
catSeqTG-2RF1 (Chan et al., 2019) 1.2 2.1 1.9 3.1 3.0 5.3 2.1 3.0 2.7 5.0
GANMR (Swaminathan et al., 2020) 1.3 1.9 2.6 3.8 4.2 5.7 - - 3.2 4.5
ExHiRD-h (Chen et al., 2020) 1.1 2.2 - - 2.2 4.3 1.7 2.5 1.6 3.2
Transformer (Ye et al., 2021) 1.02 1.94 2.82 4.82 3.21 6.04 2.05 2.33 2.31 4.61
BART* 1.08 1.96 1.80 2.75 2.59 4.91 1.34 1.75 1.77 3.56
KeyBART-DOC* 0.99 2.03 1.39 2.74 2.40 4.58 1.07 1.39 1.69 3.38
KeyBART* 0.95 1.81 1.23 1.90 3.09 6.08 1.96 2.65 2.03 4.26
KeyBART* (no finetune) 1.83 2.92 1.46 2.19 1.29 2.09 1.12 1.45 0.70 1.14

Table 5: Keyphrase Generation for Absent Keyphrases. SOTA is marked in Bold and our best performing models
as Bold-Italicized.

Model F1
LSTM-CRF (Lample et al., 2016) 91.0
ELMo (Peters et al., 2018) 92.2
BERT (Devlin et al., 2018) 92.8
(Akbik et al., 2019) 93.1
(Baevski et al., 2019) 93.5
LUKE (Yamada et al., 2020) 94.3
LUKE w/o entity attention 94.1
RoBERTa (Yamada et al., 2020) 92.4
RoBERTa-extended* 92.54
KBI* 92.73
KBIR* 92.97

Table 6: Named Entity Recognition results on CONLL-
2003. SOTA is marked in Bold and our best performing
models as Bold-Italicized.

2.51, NUS is 2.86, Krapivin is 2.86, Inspec is 3.09
and KP20k is 2.73. The Inspec dataset is anoma-
lous where the non-finetuned model performs sig-
nificantly better, demonstrating the effectiveness of
the KeyBART training strategy.

4.2.3 Named Entity Recognition
We report the performance of different models
for the task of NER by conducting experiments
on CoNLL-2003 dataset (Sang and De Meulder,
2003).

Table 6 demonstrate that KBI and KBIR have

performance gains over RoBERTa on CoNLL-
2003. With RoBERTa-extended, we see that only
continued pre-training with the MLM objective re-
sults in minor gains. However, when we inspect the
results for KBI and KBIR, we see consistent jumps
in performance showing how both these architec-
tures contribute in learning richer representations
that directly impact NER performance. We hy-
pothesize that KBIR is more effective at NER than
KBI because the additional keyphrase replacement
classification task builds richer boundary token rep-
resentations making entity identification potentially
easier. The results are also fairly competitive with
SOTA NER models in literature despite the fact
that we did not attempt modeling entities explicitly
like existing SOTA model (Yamada et al., 2020).

4.2.4 Relation Extraction

The relation extraction (RE) task predicts relations
among pairs of entity mentions in a text. We fine-
tuned our models for the sentence-level relation
extraction task using the popular TACRED bench-
mark dataset (Zhang et al., 2017b). TACRED con-
tains more than 100,000 sentences with entities
that belong to 23 different fine-grained semantic
types and with 42 different relations among entities.

897



Model EM F1
BERT (Devlin et al., 2018) 84.2 91.1
XLNet (Yang et al., 2019) 89.0 94.5
ALBERT (Lan et al., 2019) 89.3 94.8
LUKE (Yamada et al., 2020) 89.8 95.0
LUKE w/o entity attention 89.2 94.7
RoBERTa (Liu et al., 2019) 88.9 94.6
RoBERTa-extended* 88.88 94.55
KBI* 88.97 94.7
KBIR* 89.04 94.75

Table 7: Question Answering results on SQuAD v1.1
on the DEV set. State-of-the-art is marked in Bold and
our best performing models as Bold-Italicized.

To fine-tune our models, we modified the input se-
quences to mark the start and end of the subject
entity with @ and the object entity with #. We use
the final layer representation of the [CLS] token as
the input to a multi-class classifier.

The results in the top half of Table 8 are reported
from the respective papers that use various input
formatting strategy. Similar to (Zhou and Chen,
2021), we also observe that a model’s performance
depends heavily on the formatting of the input se-
quence. All models in the bottom half of the ta-
ble are trained with the same input format men-
tioned above. We observe that our KBIR model
performs slightly worse than the original RoBERTa
model. We also observe similar trends for KBI and
RoBERTa-extended models. We conjecture that
the domain shift of the pre-training corpus is re-
sponsible for the slight performance degradation.

4.2.5 Question Answering
The relation between question answering (QA) and
KE has been explored to some extent in (Subra-
manian et al., 2018), which leverages keyphrase
extraction for question generation. Motivated by
their work, we evaluate our models on SQuAD v1.1
(Rajpurkar et al., 2016) dataset for the extractive
question answering task. For all the models, we use
a maximum sequence length of 512 with a sliding
window of size 128.

Table 7 reports the F1 and Exact Match (EM)
scores achieved by different model architectures on
the DEV set. We observe improved performance
with KBI and KBIR as compared to RoBERTa. We
have an interesting observation where RoBERTa-
extended performs worse than RoBERTa and we
conjecture that it is because of the domain shift
in the pre-training data which comprises scientific
articles. On the other hand, the models trained with
keyphrase pre-training objectives are fairly com-

Model F1
BERT (Zhang et al., 2019) 66.0
C-GCN (Zhang et al., 2018) 66.4
ERNIE (Zhang et al., 2019) 68.0
SpanBERT (Joshi et al., 2020) 70.8
MTB (Baldini Soares et al., 2019) 71.5
KnowBERT (Peters et al., 2019) 71.5
KEPLER (Wang et al., 2019) 71.7
K-Adapter (Wang et al., 2021) 72.0
LUKE (Yamada et al., 2020) 72.7
LUKE w/o entity attention 72.2
RoBERTa (Wang et al., 2021) 71.3
RoBERTa-extended* 70.94
KBI* 70.71
KBIR* 71.0

Table 8: Relation Extraction results on TACRED. State-
of-the-art is marked in Bold and our best performing
models as Bold-Italicized.

Model R1 R2 RL
BART (Lewis et al., 2019) 44.16 21.28 40.9
BART* 42.93 20.12 39.72
KeyBART-DOC* 42.92 20.07 39.69
KeyBART* 43.10 20.26 39.90

Table 9: Summarization results on CNN/DailyMail
dataset. Our best performing models are marked as
Bold-Italicized.

petitive with the SOTA QA models. We explicitly
include LUKE w/o entity attention since that re-
moves the entity-aware attention module, making it
slightly more comparable to our setup. We observe
that KBIR outperforms it by a slim margin in F1.
However, the performance is slightly lower in the
EM scores. Note that our model does not yield the
similar performance in EM as it does in F1 when
compared to SOTA. A potential reason for this is
that our model is more likely to identify keyphrases
as answers.

4.2.6 Summarization

We fine-tune BART (Lewis et al., 2019), KeyBART-
DOC and KeyBART on the CNN DailyMail (Her-
mann et al., 2015) summarization dataset (SUM).
Keyphrase Generation is also considered as an ex-
treme form of summarization and therefore, we
expect to see improved performance for the sum-
marization task. Since we were unable to reproduce
the original BART scores for R1, R2 and RLSum,
we used the reported hyperparameters to reproduce
the results to best of our ability, accounting for
minor implementation differences in framework
versions. We hope this provides a more fair com-
parison with our model results. We do not claim
SOTA for summarization models, rather want to
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demonstrate that there are potential performance
gains by training on a keyphrase specific objec-
tive. This is demonstrated in Table 9 where we
see that the standard denoising autoencoder setup
results in marginal losses. However, training with
the keyphrase generation objective improves the
ROUGE scores across the board when compared
with BART trained on the same dataset.

5 Qualitative Analysis

We perform a qualitative analysis on the SemEval-
2010 dataset as it is the only common dataset be-
tween KE and KG tasks by leveraging predictions
from the best performing models. We present exam-
ples in Table 10, in the Appendix, which captures
the ground truth, extracted keyphrases and gener-
ated keyphrases (present and absent) for a given
document from the SemEval dataset using our best
performing models on the respective tasks. We ob-
serve that when the model tends to generate more
keyphrases, it typically relies on the copy mecha-
nism and hence most of the generated keyphrases
are present in the text itself (Example 1). We also
observe that when absent keyphrases are gener-
ated accompanied by a large number of generated
keyphrases, they are usually a combination of two
or more words directly present in the text such as
‘user study’ (Example 3). The example discusses
how the authors study user behavior, potentially
making ‘user study’ a fair prediction, however the
ground truth would penalize the model if this was
in the training phase. Finally, we observe more
generated keyphrases when the model isn’t able to
identify keyphrases in text and doesn’t rely heavily
on the copy mechanism, but on it’s understand-
ing of the text. This results in keyphrases such
as ‘natural language processing’ (Example 2). Al-
though the prediction is not in the ground-truth,
it aligns with the mentions of ‘question answer-
ing’ and ‘linguistics’. This demonstrates that the
model is indeed able to generate meaningful absent
keyphrases. However, we observe that the model is
not able to learn or infer world knowledge required
to produce the absent keyphrases in the ground-
truth. For keyphrase extraction, we see that the
model tends to tag phrases more frequently than
previous models, improving recall. We hypothesize
that it is due to the model having a better under-
standing of keyphrases in a document because of
the keyphrase masking perturbation and also the
KRC task.

6 Other Experiments

We also attempted to use a combination of the
Wikipedia (English) dump and S2ORC (Lo et al.,
2019) corpora for pre-training our models. In order
to obtain keyphrase tags for data at a large scale, we
employed TextRank (Mihalcea and Tarau, 2004)
on each document in the corpora. We set the maxi-
mum number of keyphrases to 10 for the TextRank
algorithm and considered all keyphrases tagged
by TextRank. We created random splits for our
dataset to generate a train and development (dev)
set. However, we found that keyphrases tagged in
this manner added a lot of noise to the dataset and
resulted in only marginal overall gains.

To train a keyphrase specific language model,
we also used a combined generative and discrimi-
native approach as introduced in ELECTRA (Clark
et al., 2020). The generative approach made the
model predict the masked tokens that are part of
a keyphrase. In the discriminative approach, the
original sequence was perturbed by replacing the
tokens of a keyphrase with another semantically un-
related keyphrase. We were unable to stabilize the
training for such a setup and didn’t get promising
results.

7 Conclusion and Future Work

We explored LMs capable of learning rich repre-
sentations of keyphrases that achieve SOTA perfor-
mance across multiple datasets for keyphrase ex-
traction and generation tasks. Towards this effort,
we proposed a new pre-training objective KBIR
and a new training setup KeyBART. The trained
LMs demonstrate their effectiveness by achieving
SOTA or near SOTA performance for various down-
stream NLP tasks when fine-tuned on benchmark
datasets spanning across multiple domains. As a
next step, we would like to probe our LMs to under-
stand them more and also gauge their effectiveness
for the tasks of cross-domain keyphrase extraction
and generation. We would also like to explore scal-
ing these approaches to more datasets by revisiting
more sophisticated unsupervised keyphrase tagging
methods.
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Anette Hulth and Beáta Megyesi. 2006. A study on
automatically extracted keywords in text categoriza-
tion. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 537–544.

Steve Jones and Mark S Staveley. 1999. Phrasier:
a system for interactive document retrieval using
keyphrases. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 160–
167.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5 : Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26, Uppsala, Swe-
den. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases ex-
traction. Technical report, University of Trento.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning. arXiv
preprint arXiv:1910.09700.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2019. ALBERT: A lite BERT for self-
supervised learning of language representations.
CoRR, abs/1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2019. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. CoRR, abs/1910.13461.

Rui Liu, Zheng Lin, and Weiping Wang. 2020a.
Keyphrase prediction with pre-trained language
model. arXiv preprint arXiv:2004.10462.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and
Maosong Sun. 2010. Automatic keyphrase extrac-
tion via topic decomposition. In Proceedings of the
2010 conference on empirical methods in natural
language processing, pages 366–376.

Zhiyuan Liu, Yankai Lin, and Maosong Sun. 2020b.
Representation learning and nlp. In Representation
Learning for Natural Language Processing, pages
1–11. Springer.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel S. Weld. 2019. GORC: A large con-
textual citation graph of academic papers. CoRR,
abs/1911.02782.
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8 Appendix

8.1 Limitations and Ethical Concerns

Experiments were conducted using a private infras-
tructure, which has a carbon efficiency of 0.432
kgCO2eq/kWh. A cumulative of 6,144 hours of
computation was performed on hardware of type
Tesla V100-SXM2-32GB (TDP of 300W).We cal-
culate that the combined cost of training all these
models is 796.26 KGs of CO2 eq. Estimations
were conducted using the Machine Learning Im-
pact calculator presented in (Lacoste et al., 2019).
Given the computational cost and environmental
impact we restrict the number of experiment set-
tings and ablation studies conducted in the pre-
training stage - so there may be some hyperparam-
eters that could be further optimized but have not
been realized and also more robust results to fur-
ther demonstrate the effectiveness our proposed
approach.

The OAGKX dataset we train on is made pub-
licly available with a Creative Commons License
4.0 and is primarily focused on scientific docu-
ments from the Open Academic Graph. This de-
creases the potential for the pre-trained model to
imbibe offensive content and also in not generating
the same.

We also acknowledge that the current setup
uses a dataset that already contains pre-tagged
keyphrases similar to how Wikipedia leverages en-
tities and our attempt at using a basic unsupervised
keyphrase tagging technique did not yield much
success as seen in Section 6. We believe that fur-
ther research in exploring more sophisticated tech-
niques for unsupervised keyphrase tagging would
help overcome this hurdle. Further our proposed
approaches should work on entities from Wikipedia
or even random spans from the BookCorpus, and
we encourage exploration of the same.

8.2 Pre-training Strategies

Figure 2 provides a visual representation of the
various masking strategies we deploy, a more de-
tailed description of each stage is available in the
subsections below.

We train LMs in different settings and hyperpa-
rameters as listed in Table 1.
Discriminative Setting - We pre-train three lan-
guage models in the discriminative setting as de-
scribed below. All of them use the pre-trained

weights of RoBERTa-large6 as the initial weights
and are trained by continuing the learning of the
parameters on the OAGKX dataset using our pre-
training strategies.

• RoBERTa-extended - Previous work (Guru-
rangan et al., 2020) has shown that adding
more data to pre-training a language model
typically results in better downstream perfor-
mance. To verify that our performance gains
stem from modeling improvements and the
new pre-training objectives proposed by us
rather than addition of data, we extend the
training of RoBERTa-large on the OAGKX
corpus. We call this model RoBERTa-
extended. This also ensures fair comparison of
the LMs trained by us using our pre-training
objectives with that of RoBERTa.

• KBI - During the pre-training of the LM with
the KBI objective, we employ both token
masking and keyphrase masking strategies
as shown in Figure 2 and explained in Sec-
tion 2.1. We randomly mask 15% of the to-
kens that are not included in keyphrase spans.
We additionally mask 20% of the keyphrase
spans with a single [MASK] token. We re-
strict the maximum number of tokens for a
keyphrase mask span to 10, based on the av-
erage keyphrase length reported in (Çano and
Bojar, 2020).

• KBIR - While pre-training the LM with the
KBIR objective we employ 5% token mask-
ing, in line with the findings reported in
(Xiong et al., 2019) and 20% of keyphrases
are masked through keyphrase masking, with
a maximum possible span size of 10 as in
the KBI LM. Additionally, we replace 40%
of the non-masked keyphrases with randomly
sampled keyphrases from the keyphrase uni-
verse as explained in Section 2.2. We restrict
the maximum number of keyphrases to be
replaced to no more than 20, restricted by
the computational complexity of the problem.
Figure 1 shows the final architecture, with a
multi-task learning objective trained with a
weighted combined loss.

Generative Setting - In the generative setting we
pre-train two language models as described below.
In both the models we continue the training of the

6https://huggingface.co/roberta-large
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Figure 2: Pre-training Strategies, the keyphrase present in the text are highlighted in teal and every perturbation
in the form of a random MASK is represented in red, keyphrase MASK is represented in blue and Keyphrase
Replacement is represented in orange.

weights of BART-large7 on our corpus using our
pre-training strategies.

• KeyBART - We perform token masking,
keyphrase masking and keyphrase replace-
ment with same masking hyperparameters as
KBIR on the input text and pre-train the model
to predict the original keyphrases in Catseq
format following the setup explained in Sec-
tion 3.

• KeyBART-DOC - This setup uses the same
input denoising settings as KeyBART, with
the only difference in the output, where Key-
BART generates the keyphrases associated
with the document in Catseq format, whereas
KeyBART-DOC similar to BART generates
the original denoised input.

We use the exact same data in all the pre-training
setups as explained above. We increase the number
of steps while decreasing the batch size such that all
the models see the data the same number of times
(i.e., 2 epochs). The batch size is only reduced to
accommodate increases in memory usage in the
model pre-training.

7https://huggingface.co/facebook/bart-large
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Input Text: On The Complexity of Combinatorial Auctions : Structured Item Graphs and Hypertree Decompositions. The
winner determination problem in combinatorial auctions is the problem of determining the allocation of the items among
the bidders that maximizes the sum of the accepted bid prices. While this problem is in general NPhard, it is known to be
feasible in polynomial time on those instances whose associated item graphs have bounded treewidth called structured
item graphs. Formally, an item graph is a graph whose nodes are in one-to-one correspondence with items, and edges
are such that for any bid, the items occurring in it induce a connected subgraph. Note that many item graphs might be
associated with a given combinatorial auction, depending on the edges selected for guaranteeing the connectedness. In
fact, the tractability of determining whether a structured item graph of a fixed treewidth exists and if so, computing one
was left as a crucial open problem. In this paper, we solve this problem by proving that the existence of a structured item
graph is computationally intractable, even for treewidth 3. Motivated by this bad news, we investigate different kinds of
structural requirements that can be used to isolate tractable classes of combinatorial auctions. We show that the notion of
hypertree decomposition, a recently introduced measure of hypergraph cyclicity, turns out to be most useful here. Indeed,
we show that the winner determination problem is solvable in polynomial time on instances whose bidder interactions can
be represented with dual hypergraphs having bounded hypertree width. Even more surprisingly, we show that the class of
tractable instances identified by means of our approach properly contains the class of instances having a structured item
graph.
Extracted Keyphrases: [combinatorial auctions]; [structured item graphs]; [hypertree decompositions]; [item graphs];
[treewidth]; [bidders]; [hose nodes]; [hypertree cyclicity]; [polynomial time]
Generated Keyphrases: [combinatorial auctions]; [structured item graphs]; [treewidth]; [hypergraphs]; [hypertree
decompositions]
Ground Truth: [hypergraph]; [structured item graph]; [polynomial time]; [combinatorial auction]; [fixed treewidth];
[accepted bid price]; [hypertree decomposition]; structured item graph complexity; simplification of the primal graph;
hypertree based decomposition method; hypergraph hg; the primal graph simplification; well known mechanism for
resource and task allocation; complexity of structured item graph;
Input Text: Interesting Nuggets and Their Impact on Definitional Question Answering. Current approaches to identifying
definitional sentences in the context of Question Answering mainly involve the use of linguistic or syntactic patterns to
identify informative nuggets. This is insufficient as they do not address the novelty factor that a definitional nugget must
also possess. This paper proposes to address the deficiency by building a Human Interest Model from external knowledge.
It is hoped that such a model will allow the computation of human interest in the sentence with respect to the topic. We
compare and contrast our model with current definitional question answering models to show that interestingness plays an
important factor in definitional question answering.
Extracted Keyphrases: [interesting nuggets]; [definitional sentences]; [question answering]; [nuggets]; [novelty];
[definitional nuggets]; [human interest model]; [human interest]
Generated Keyphrases: [definitional question answering]; natural language processing
Ground Truth: [human interest]; [use of linguistic]; [interesting nugget]; [definitional question answer]; [informative
nugget]; [interest]; [computation of human interest]; sentence fragment; unique quality; manual labor; news corpus;
baseline system; human interest computation; human reader; linguistic use; question topic; external knowledge; surprise
factor; lexical pattern
Input Text: The Influence of Caption Features on Clickthrough Patterns in Web Search. Web search engines present
lists of captions, comprising title, snippet, and URL, to help users decide which search results to visit. Understanding
the influence of features of these captions on Web search behavior may help validate algorithms and guidelines for their
improved generation. In this paper we develop a methodology to use clickthrough logs from a commercial search engine
to study user behavior when interacting with search result captions. The findings of our study suggest that relatively simple
caption features such as the presence of all terms query terms, the readability of the snippet, and the length of the URL
shown in the caption, can significantly influence users ’ Web search behavior.
Extracted Keyphrases: [influence]; [caption features]; [clickthrough patterns]; [web search]; [snippet]; [methodology];
[clickthrough logs]
Generated Keyphrases: [web search]; [clickthrough]; [captions]; user study
Ground Truth: [clickthrough pattern]; [snippet]; [web search behavior]; [web search]; [caption feature]; summarization;
extractive summarization; significant word; query log; human factor; clickthrough inversion; query term match; query re
formulation

Table 10: Sample keyphrases extracted by KBI-REP-CRF and generated by KeyBART on the SemEval-2010
dataset. Present keyphrases are marked with square brackets.
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