
Findings of the Association for Computational Linguistics: NAACL 2022, pages 831 - 843
July 10-15, 2022 ©2022 Association for Computational Linguistics

Measuring and Improving Compositional Generalization in Text-to-SQL
via Component Alignment

Yujian Gan1 Xinyun Chen2 Qiuping Huang4 Matthew Purver1,3
1Queen Mary University of London 2UC Berkeley 3Jožef Stefan Institute

4Nanning Central Sub-branch of the People’s Bank of China
{y.gan,m.purver}@qmul.ac.uk xinyun.chen@berkeley.edu

qiuping_h@foxmail.com

Abstract

In text-to-SQL tasks — as in much of NLP —
compositional generalization is a major chal-
lenge: neural networks struggle with compo-
sitional generalization where training and test
distributions differ. However, most recent at-
tempts to improve this are based on word-level
synthetic data or specific dataset splits to gen-
erate compositional biases. In this work, we
propose a clause-level compositional example
generation method. We first split the sentences
in the Spider text-to-SQL dataset into sub-
sentences, annotating each sub-sentence with
its corresponding SQL clause, resulting in a
new dataset Spider-SS. We then construct a fur-
ther dataset, Spider-CG, by composing Spider-
SS sub-sentences in different combinations, to
test the ability of models to generalize com-
positionally. Experiments show that existing
models suffer significant performance degra-
dation when evaluated on Spider-CG, even
though every sub-sentence is seen during train-
ing. To deal with this problem, we modify a
number of state-of-the-art models to train on
the segmented data of Spider-SS, and we show
that this method improves the generalization
performance.1

1 Introduction

Neural models in supervised learning settings show
good performance on data drawn from the train-
ing distribution. However, generalization perfor-
mance can be poor on out-of-distribution (OOD)
samples (Finegan-Dollak et al., 2018; Suhr et al.,
2020; Kaushik et al., 2020; Sagawa et al., 2020).
This might be the case even when the new samples
are composed of known constituents; e.g., on the
SCAN dataset (Lake and Baroni, 2018), many mod-
els give incorrect predictions for the input “jump
twice and walk”, even when “jump twice”, “walk”,
and “walk twice” are seen during training. This

1Our code and dataset are available at
https://github.com/ygan/SpiderSS-SpiderCG

(often lacking) ability to generalize to novel com-
binations of elements observed during training is
referred to as compositional generalization.

Previous work on compositional generalization
in text-to-SQL focuses on query split. For example,
Shaw et al. (2021) propose TMCD split based on
SQL atoms and compounds analysis and question
split based on length. Finegan-Dollak et al. (2018)
proposes a query template-based split with word
substitution that was much more challenging than
the question split. However, these splits are lim-
ited by the dataset content, making it difficult to
construct a challenging benchmark while ensuring
that every question phrase (sub-sentence) appears
in the training set.

Previous works (Chen et al., 2020; Wang et al.,
2021; Liu et al., 2020) improve generalization by
enhancing the model’s component awareness. Sim-
ilarly, Yin et al. (2021) and Herzig and Berant
(2021) propose span-based semantic parsers that
predict a sub-program over an utterance span. How-
ever, these works are based on datasets where com-
ponent alignment is relatively easy to achieve; but
for more complex text-to-SQL, their methods can-
not be used directly. For example, as shown in the
lower part of Figure 1, to align the sub-sentence
with the sub-SQL, the algorithm needs to know that
‘youngest’ corresponds to ‘age’, and ‘weigh’ cor-
responds to ‘weight’. For small or single-domain
settings, such an alignment algorithm can be built
by establishing rules; however, there is currently
no simple and feasible alignment method for large
complex cross-domain text-to-SQL, as in e.g. the
Spider benchmark (Yu et al., 2018b).

In this work, we first introduce a new dataset,
Spider-SS (SS stands for sub-sentence), derived
from Spider (Yu et al., 2018b); Figure 1 compares
the two. To build Spider-SS, we first design a
sentence split algorithm to split every Spider sen-
tence into several sub-sentences until indivisible.
Next, we annotate every sub-sentence with its cor-

831

https://github.com/ygan/SpiderSS-SpiderCG

What type of pet is the youngest animal, and

how much does it weigh?

SELECT PetType , Weight FROM Pets
ORDER BY Pet_Age LIMIT 1

Sentence:

SQL:

What type of petSubSentence:

Spider Example:

Spider-SS Example:

SELECT Pets.PettypeNatSQL:

, and how much does it weigh?SubSentence:

SELECT Pets.Weight NatSQL:

is the youngest animalSubSentence:

ORDER BY Pets.Pet_Age
LIMIT 1

NatSQL:

Figure 1: A natural language sentence in the original
Spider benchmark is split into three sub-sentences in
Spider-SS, where each sub-sentence has a correspond-
ing NatSQL clause.

responding SQL clause, reducing the difficulty of
this task by using the intermediate representation
language NatSQL (Gan et al., 2021b), which is
simpler and syntactically aligns better with natu-
ral language (NL). Spider-SS thus provides a new
resource for designing models with better general-
ization capabilities without designing a complex
alignment algorithm. Furthermore, it can also be
used as a benchmark for evaluating future align-
ment algorithms. To our knowledge, this is the first
sub-sentence-based text-to-SQL dataset.

Our annotated Spider-SS provides us with sub-
sentences paired with NatSQL clauses, which serve
as our elements. Based on Spider-SS, we then
construct a further dataset Spider-CG (CG stands
for compositional generalization), by substituting
sub-sentences with those from other samples, or
composing two sub-sentences to form a more com-
plicated sample. Spider-CG contains two subsets;
Figure 2 shows one example for each. The first
subset contains 23,569 examples generated by sub-
stituting sub-sentences; we consider most data in
this subset as in-distribution. The second subset
contains 22,030 examples generated by appending
sub-sentences, increasing the length and complex-
ity of the sentence and the SQL query compared
to the original samples; we consider this subset
as OOD. We demonstrate that when models are
trained only on the original Spider dataset, they
suffer a significant performance drop on the second
OOD subset of Spider-CG, even though the domain
appears in the training set.

To improve the generalization performance of
text-to-SQL models, we modify several previous
state-of-the-art models so that they can be applied

What is the name and nation of the singerSubSentence:

Spider-SS :

SELECT Singer.Name

SELECT Singer.Country
NatSQL:

What are the names of the singersSubSentence:

SELECT Singer.NameNatSQL:

who have a song having 'Hey' in its name?SubSentence:

WHERE Concert.Song_Name like '%Hey%'NatSQL:

Example-1:

who performed in a concert in 2014?SubSentence:

WHERE Concert.Year = 2014NatSQL:

Example-2:

What is the name and nation of the singer
who performed in a concert in 2014?

Sentence:

Spider-CG :

SELECT Singer.Name, Singer.Country

WHERE Concert.Year = 2014
NatSQL:

Subset-1: sub-sentence substitution in Example 1 and 2 2

What is the name and nation of the singer

who have a song having ‘Hey’ in its name and
who performed in a concert in 2014?

Sentence:

SELECT Singer.Name, Singer.Country

WHERE Concert.Song_Name like '%Hey%‘
AND Concert.Year = 2014

NatSQL:

Subset-2: Example-1 append a sub-sentence from Example-2

Figure 2: Two Spider-CG samples generated by: (1)
substituting the sub-sentence with one from another ex-
ample; or (2) composing sub-sentences from 2 exam-
ples in Spider-SS.

to the Spider-SS dataset, with the model trained
sub-sentence by sub-sentence. This modification
obtains more than 7.8% accuracy improvement on
the OOD subset of Spider-CG.

In short, we make the following contributions:
• Besides the sentence split algorithm, we

introduce Spider-SS, a human-curated sub-
sentence-based text-to-SQL dataset built upon
the Spider benchmark, by splitting its NL
questions into sub-sentences.

• We introduce the Spider-CG benchmark for
measuring the compositional generalization
performance of text-to-SQL models.

• We show that text-to-SQL models can be
adapted to sub-sentence-based training, im-
proving their generalization performance.

2 Spider-SS

2.1 Overview
Figure 1 presents a comparison between Spider
and Spider-SS. Unlike Spider, which annotates a
whole SQL query to an entire sentence, Spider-SS
annotates the SQL clauses to sub-sentences. Spider-
SS uses NatSQL (Gan et al., 2021b) instead of SQL
for annotation, because it is sometimes difficult
to annotate the sub-sentences with corresponding

832

For the 4 cylinder cars, which model has the most horsepower?

pobj
relcl

nsubj dobj

For the 4 cylinder cars, | which model | has the most horsepower?

Figure 3: Dependency structure of a sentence and how
to split this sentence into three sub-sentences.

SQL clauses due to the SQL language design. The
Spider-SS provides a combination algorithm that
collects all NatSQL clauses and then generates the
NatSQL query, where the NatSQL query can be
converted into an SQL query.

The purpose of building Spider-SS is to attain
clause-level text-to-SQL data avoiding the need for
an alignment algorithm that is hard to build based
on the complex large cross-domain text-to-SQL
dataset, e.g., Spider benchmark. Besides, we can
generate more complex examples through different
combination of clauses from Spider-SS. Consistent
with Spider, Spider-SS contains 7000 training and
1034 development examples, but Spider-SS does
not contain a test set since the Spider test set is
not public. There are two steps to build Spider-
SS. First, design a sentence split algorithm to cut
the sentence into sub-sentences, and then manually
annotate the NatSQL clause corresponding to each
sub-sentence.

2.2 Sentence Split Algorithm

We build our sentence split algorithm upon the NL
dependency parser spaCy 2, which provides the
grammatical structure of a sentence. Basically, we
split the sentence with the following dependencies:
prep, relcl, advcl, acl, nsubj, npadvmod, csubj,
nsubjpass and conj. According to (de Marnee and
Manning, 2016), these dependencies help us sepa-
rate the main clause, subordinate clauses, and mod-
ifiers. Figure 3 shows the dependency structure
of a sentence and how to split this sentence into
three sub-sentences. However, not every sentence
would be split since there are some non-splittable
sentences, such as the third example in Figure 4,
with the same annotation as the Spider dataset. Al-
though this method can separate sentences well in
most cases, due to the variability of natural lan-
guage, some examples cannot be perfectly split.

To address the remaining issues in sentence split,
we design some refinement steps tailored to text-to-
SQL applications. For example, when the phase of

2https://github.com/explosion/spaCy

SubSentence:

Spider-SS :

SELECT Customers.Email_Address
SELECT Customers.Phone_Number

NatSQL:

List the total number of horses on farmsSubSentence:

SELECT Farm.Total_HorsesNatSQL:

ordered by email addressSubSentence:

ORDER BY Customers.Email_Address ASCNatSQL:

Example-1: Use the “extra” keyword. d
to compensate for split errors d

in ascending order.SubSentence:

ORDER BY Farm.Total_Horses ASCNatSQL:

Example-2: Columns that are not mentioned in the d
sub-sentence are specifically annotated

Who advises student 1004?SubSentence:

SELECT Student.Advisor

WHERE Student.StuID = 2014
NatSQL:

Example-3: Some sentences cannot be split d

NO MENTIONED

Find the emails and phone numbers of all the
customers,

and phone numbers.SubSentence:

EXTRA Customers.Phone_NumberNatSQL:

Figure 4: Spider-SS examples in three special cases.

a schema column or table is accidentally divided
into two sub-sentences, these two sub-sentences are
automatically concatenated. Besides, when there is
only one word in a sub-sentence, the corresponding
split should also be undone.

We sampled 500 examples from the Spider-
SS development set to evaluate the acceptability
of splitting results manually, and only < 3% of
the splitting results are unsatisfactory. For exam-
ple, in the splitting results of the first example
in Figure 4, the last two sub-sentence should be
combined to correspond to “ORDER BY Cus-
tomer.Email_Address, Customer.Phone_Number
ASC ”. In this example, we did not simply give an
“ORDER BY Customer.Phone_Number ASC ” to
the last sub-sentence, because it does not mention
anything related to “ORDER BY ”. Here, we in-
troduce “extra”, a new NatSQL keyword designed
for the Spider-SS dataset, indicating that this sub-
sentence mentions a column that temporarily does
not fit in any other NatSQL clauses. When combin-
ing NatSQL clauses into the final NatSQL query,
the combining algorithm determines the final posi-
tion for the “extra” column based on the clauses be-
fore and after. Note that even if there is a small pro-
portion of unsatisfactory splitting results, as long
as the model trained on Spider-SS can give the cor-
rect output according to the input sub-sentence, the
quality of the sub-sentences itself does not strongly
affect the model utility.

833

2.3 Data Annotation
When we get the split results from the last step,
we can start data annotation. We give precise an-
notations based on the sub-sentence content, such
as the “extra” column annotation discussed in the
last subsection. Besides, if the description of the
schema column is missing in the sub-sentence, we
will give the schema column an additional “NO
MENTIONED” mark. For example, in the second
example of Figure 4, the “in ascending order” sub-
sentence does not mention the “Farm.Total_Horses”
column. Therefore, we add a “NO MENTIONED”
mark for it. For those sub-sentences that do not
mention anything related to the query, we give a
“NONE” mark, representing there are no NatSQL
clauses.

Since the annotation is carried out according
to the sub-sentence content, the equivalent SQL
that is more consistent with the sub-sentence will
be preferred to the original SQL. Similarly, if the
original SQL annotation is wrong, we correct it
according to the content.

We annotate the sub-sentence using NatSQL
instead of SQL, where NatSQL is an intermedi-
ate representation of SQL, only keeping the SE-
LECT, WHERE, and ORDER BY clauses from SQL.
Since some sub-sentences need to be annotated
with GROUP BY clause, we choose the version of
NatSQL augmented with GROUP BY. We did not
use SQL directly because it is difficult to annotate
in some cases, such as the SQL example in Figure 5.
The difficulty is that there are two SELECT clauses
in this SQL query, but none of the sub-sentences
seem to correspond to two SELECT clauses. In
addition, considering that the two WHERE condi-
tions correspond to different SELECT clauses, the
annotation work based on SQL is far more difficult
to complete. As shown in Figure 5, we can use Nat-
SQL to complete the annotation quickly, while the
NatSQL can be converted back to the target SQL.
The detail of the annotation steps can be found in
Appendix C.

3 Spider-CG

3.1 Overview
Spider-CG is a synthetic dataset, which is gener-
ated by recombining the sub-sentences of Spider-
SS. There are two recombination methods. The
first is sub-sentence substitution between different
examples, and the other is to append a sub-sentence
into another sentence. To facilitate the follow-up

What are the locations that have both tracks

with more than 90000 seats, and tracks with
fewer than 70000 seats?

Sentence:

A sentence and its corresponding SQL and NatSQL:

SELECT Location FROM Track WHERE seating

> 90000
INTERSECT SELECT Location FROM Track

WHERE seating < 70000

SQL:

Spider-SS :

SELECT Track.Location

WHERE Track. Seating > 90000
AND Track.Seating < 70000

NatSQL:

We can think about how to correctly annotate
the INTERSECT clause if using the SQL query

What are the locationsSubSentence:

SELECT Track.LocationNatSQL:

that have both tracks with more than 90000
seats,

SubSentence:

WHERE Track. Seating > 90000 NatSQL:

and tracks with fewer than 70000 seats?SubSentence:

AND Track.Seating < 70000NatSQL:

Figure 5: It is difficult to annotate if using the SQL
instead of NatSQL.

discussion, we named the Spider-CG subset gener-
ated by the sub-sentence substitution method CG-
SUB, and the other named CG-APP.

In CG-SUB, there are 20,686 examples gener-
ated from the Spider-SS training set, while 2,883
examples are generated from the development set.
In CG-APP, examples generated from training and
development sets are 18,793 and 3,237, respec-
tively. Therefore, the Spider-CG contains 45,599
examples, around six times the Spider dataset. We
can further append sub-sentences to the CG-SUB
examples if more data is needed.

3.2 Generation Algorithm

According to Algorithm 1, we can generate the
CG-SUB and CG-APP based on compositional
elements. Each element contains one or more
sub-sentences with corresponding NatSQL clauses
from Spider-SS, where these NatSQL can only be
WHERE or ORDER BY clauses. Thus, Algorithm 1
only substitute and append the WHERE and OR-
DER BY clauses, and does not modify the SELECT
clause. We collect the sub-sentences for composi-
tional elements by scanning all sub-sentence from
start to end or from end to start and stopping when
encountering clauses except WHERE and ORDER
BY. For example, we generate a compositional el-
ement containing the last two sub-sentences of
the Spider-SS example in Figure 5. In contrast,
no element is extracted from the example in Fig-
ure 1. It should be noted that elements in a do-

834

Algorithm 1 Generate CG-SUB and CG-APP dataset in a certain domain
Input: e_list . All compositional elements in a domain
Output: cg_sub and cg_app . CG-SUB and CG-APP dataset in a certain domain
1: for Every element1 in e_list do
2: for Every element2 in e_list do
3: if element1 != element2 then
4: if element1.can_be_substituted_by(element2) then
5: cg_sub.append(element1.generate_substitution_example(element2))
6: if element1.can_append(element2) then
7: cg_app.append(element1.generate_appending_example(element2))
8: return cg_sub, cg_app

Ques Show the name of employees
named Mark Young ?

SQL SELECT name FROM employee
WHERE name = ‘Mark Young’

Table 1: One acceptable but not perfect examples in the
Spider-CG.

main cannot be used in another because the schema
items are different. So as many domains as there
are, it needs to run Algorithm 1 as many times.
We recommend reading Appendix A for details of
can_be_substituted_by and can_append functions.

3.3 Quality Evaluation

We consider that the quality of a text-to-SQL sen-
tence is determined by two criteria: containing the
required information and being reasonable. The
‘information’ criterion requires a sentence that con-
tains all the information needed to derive the tar-
get NatSQL. The ‘reasonable’ criterion requires a
sentence that is logically correct and whose rep-
resentation is fluent and easy to understand. We
randomly sampled 2000 examples from the Spider-
CG dataset, around 99% of which are acceptable,
i.e., they meet the two criteria. The evaluation is
conducted manually by a computer science gradu-
ate with good knowledge of text-to-SQL. However,
these acceptable examples do not mean that there
are no grammatical errors and they may be mean-
ingless. We give one acceptable but not perfect
examples in Table 1, where the sentence is mean-
ingless because the content it wants to query is the
condition it gave. Besides, there are around 5% Nat-
SQL queries in these acceptable examples that can
not be converted to the correct SQL. This problem
can be solved by a well-designed database schema
or updating the NatSQL conversion function in the

List name of student who is older than ten

sub-sentence-1:d
List name of student

0 1 2 3 4 5 6 7 8

sub-sentence-2:d
who is older than ten

Encoder

V0V1V2V3V4V5V6V7V8Encoder Vectors:

Decoder

WHERE Student.Age > 10

Figure 6: A example of encoding the whole sentence
but decoding only the sub-sentence.

future.

4 Model

Existing text-to-SQL models input a sentence and
output the corresponding SQL query. So the eas-
iest way to think of using the Spider-SS dataset
is to train the model where inputting sub-sentence
and outputting the corresponding NatSQL clauses.
However, this method is not workable because it
will lose some essential schema information. For
example, if you only look at the third sub-sentence
in Figure 1, you do not know whether it enquires
about the weight of pets or people.

In order to take into account the context and the
sub-sentence data of Spider-SS, we propose that a
seq2seq model can encode the whole sentence but
decode only the sub-sentence. Figure 6 presents the
workflow of encoding the whole sentence but only
decoding the sub-sentence of ‘who is older than ten’
and outputting the corresponding NatSQL clause.
Based on this modification, a seq2seq text-to-SQL

835

List name of student who is older than ten

0:3

Input:

SELECT Student.Name

Expect Output:

Example 1:

List name of student who is older than ten
4:8

Input:

WHERE Student.Age > 10

Expect Output:

Example 2:

……
Example n:

Figure 7: A Spider-SS example is split into two exam-
ples for training and evaluation.

model can be adapted to the Spider-SS. Although
previous span-based semantic parsers (Yin et al.,
2021; Herzig and Berant, 2021) can work with
aligned annotations based on the Spider-SS dataset,
none of them are designed for complex text-to-
SQL problems. Our modification idea is similar in
principle to the span-based semantic parsers, but
we did not change the existing model according to
the span-based because our modification idea has a
smaller workload.

In general, we can make the seq2seq-based text-
to-SQL models adapt to the Spider-SS in three
steps. (1) Data preprocess. Split the Spider-SS ex-
amples by sub-sentence. For example, the example
in Figure 6 is split to two examples shown in Fig-
ure 7. (2) Model modification. After data prepro-
cessing, there are two input data for a model. The
first input is an entire question that directly goes to
the encoder. The second input is the sub-sentence
indexes, which are used to select the encoder out-
put, as shown in Figure 6. (3) Output combination.
Since the model output may be only a clause, not a
complete NatSQL query, we generate the final Nat-
SQL query after the model outputting all NatSQL
clauses.

5 Experiment

5.1 Experimental Setup

Dataset. We evaluate the previous state-of-the-
art models on the Spider-CG and Spider (Yu et al.,
2018b) datasets. Since the Spider test set is not

publicly accessible, Spider-CG does not contain
a test set. As discussed in Section 3.1, we divide
the Spider-CG into two subsets: CG-SUB and CG-
APP. Therefore, there are five evaluation sets:
• SpiderD: the original Spider development

set with 1,034 examples for cross-domain in-
distribution text-to-SQL evaluation.

• CG-SUBT: the CG-SUB training set, containing
20,686 examples generated from Spider-SS train-
ing set by substituting sub-sentences. CG-SUBT
can be used for in-domain in-distribution text-to-
SQL evaluation.

• CG-SUBD: the CG-SUB development set con-
taining 2,883 examples for cross-domain in-
distribution text-to-SQL evaluation.

• CG-APPT: the CG-APP training set, containing
18,793 examples generated from Spider-SS train-
ing set by appending sub-sentences. CG-APPT
can be used for in-domain out-of-distribution 3

text-to-SQL evaluation.
• CG-APPD: the CG-APP development set con-

taining 3,237 examples for cross-domain out-of-
distribution text-to-SQL evaluation.
Our evaluation is based on the exact match met-

ric defined in the original Spider benchmark. The
exact match metric measures whether the syntax
tree of the predicted query without condition values
is the same as that of the gold query. All models are
only trained on 7000 Spider or Spider-SS training
examples.

Models. We evaluate the following open-source
models that reach competitive performance on Spi-
der:
• GNN: The GNN (Bogin et al., 2019) model us-

ing the GLOVE (Pennington et al., 2014) embed-
dings.

• RATSQL: The RATSQL (Wang et al., 2020)
model using the GLOVE embeddings.

• RATSQLB: The RATSQL model using the
BERT (Devlin et al., 2019) embeddings.

• RATSQLG: The RATSQL model using the
GAP (Shi et al., 2021) embeddings.

• (N): This subscript indicates that the model use
NatSQL instead of SQL.

• (S): This subscript indicates that the model is
modified according to Section 4 and trained on
Spider-SS. Besides, since Spider-SS is annotated

3Out-of-distribution means that the difficulty distribution is
different from the Spider; see Table 3. Appendix A discusses
the removal of overly complex examples to ensure that Spider-
CG’s SQL does not exceed the complexity upper bound of the
Spider.

836

Dataset Exact Match Execution Match
Training Set 90.7% 93.3%
Development Set 94.8% 95.2%

Table 2: Use exact match and execution match metrics
to evaluate the difference between the SQL in Spider
and the SQL generated by NatSQL in Spider-SS.

Dataset easy medium hard extra
SpiderD 24.1% 43.1% 16.8% 16.1%
CG-SUBT 28.6% 38.0% 21.1% 12.3%
CG-SUBD 37.6% 38.4% 12.0% 12.0%
CG-APPT 3.3% 31.4% 26.0% 39.3%
CG-APPD 2.4% 44.3% 22.9% 30.4%

Table 3: The difficulty distribution of five different eval-
uation sets.

by NatSQL, this subscript also indicates that the
model uses NatSQL instead of SQL.

Implementations. All experiments were per-
formed on a machine with an Intel i5 9600 3.1GHz
processor and a 24GB RTX3090 GPU. All mod-
els keep their original hyperparameters except the
RATSQLB(S). RATSQLB(S) cannot converge on
the original parameters until we reduce the learn-
ing rate of model from 7.444e-04 to 1e-04 and raise
the learning rate of BERT from 3e-06 to 1e-05. We
did not conduct a hyperparameter search, so the
model trained on Spider-SS may improve perfor-
mance through other parameters.

5.2 Dataset Analysis

Spider-SS. Table 2 presents the difference be-
tween the SQL in Spider and the SQL generated by
NatSQL in Spider-SS. Our evaluation results are
lower than the original NatSQL dataset (Gan et al.,
2021b) because the Spider-SS uses equivalent SQL
and corrects some errors, as discussed in Section
2.3. Some equivalent and corrected SQL cannot
get positive results in exact match metric and ex-
ecution match. Therefore, the model trained on
Spider-SS may not be ideal for chasing the Spider
benchmark, especially based on the exact match
metric. Similarly, the RATSQLG extending Nat-
SQL had achieved a previous SOTA result in the
execution match of the Spider test set but get a
worse result than the original in the exact match
(Gan et al., 2021b). Thus, we recommend using
NatSQL-based datasets to evaluate models trained
on NatSQL.

Spider-CG. Table 3 presents the difficulty dis-
tribution of five different evaluation sets. The dif-
ficulty criteria are defined by Spider benchmark,
including easy, medium, hard and extra hard. Ex-
periments show that the more difficult the SQL is,
the more difficult it is to predict correctly (Wang
et al., 2020; Shi et al., 2021; Gan et al., 2021b).
It can be found from Table 3 that the difficulty
distribution of CG-SUBT and CG-SUBD is simi-
lar to that of SpiderD. The similar distributions
among CG-SUBT, CG-SUBD, and SpiderD sup-
port the view discussed in Section 1 that the ex-
amples generated by the substitution method are
in-distribution.

On the other hand, the difficulty distributions of
CG-APPT and CG-APPD are obviously different
from that of SpiderD. Due to appending the sub-
sentence, the NL and SQL in CG-APP become
more complex, where the proportion of SQL in
extra hard increased significantly, while easy was
the opposite.

5.3 Sentence Split Algorithm Evaluation

We generate the Spider-CG based on the combina-
tion of Spider-SS sub-sentences split by the algo-
rithm introduced in Section 2.2. We can reuse this
algorithm to split the sentence in Spider-CG and
then compare the splitting results with the Spider-
SS sub-sentences to evaluate the stability of the
splitting algorithm. We consider that a deviation
of one or two tokens in the splitting result is ac-
ceptable. For example, in Figure 1, we consider
that putting the comma of the third sub-sentence
into the second sub-sentence does not change the
meaning of sub-sentences, same for moving both
the comma and the word ‘and’.

Table 4 presents the similarity between sub-
sentences in Spider-SS and Spider-CG, which are
generated by the same split algorithm under the
deviation of one or two words. The similarity ex-
ceeds 90% in all evaluation set when two deviation
words are allowed. Considering that the model
trained on the Spider-SS does not require consis-
tent split results, as discussed in Section 2.2, the
similarity results of the splitting algorithm are good
enough. The similarity of CG-SUB is higher than
that of CG-APP, which means the more complex
the sentence, the greater the challenge to the al-
gorithm. Although the algorithm has been refined
on the training set, the similarity between training
and development in CG-SUB and CG-APP is close,

837

Dataset Deviation <= 1 Deviation <= 2
CG-SUBT 93.2% 94.4%
CG-SUBD 92.9% 94.1%
CG-APPT 86.0% 90.4%
CG-APPD 88.9% 92.6%

Table 4: The similarity between sub-sentences in
Spider-SS and Spider-CG generated by the same split
algorithm under the deviation of one or two tokens.

showing that the algorithm performs consistently
for sentences in unseen domains. In summary, we
consider that as long as the sentences are not more
complex than CG-APP, the algorithm can be used
stably in other text-to-SQL datasets.

5.4 Model Results

Table 5 presents the exact match accuracy on the
five different evaluation sets. In the two OOD
datasets, CG-APPT and CG-APPD, the perfor-
mance of all models has dropped by about 10%
to 30%. However, the models trained on Spider-SS
significantly outperform those trained on Spider
when evaluated on the OOD datasets. We use the
sentence split algorithm to split every sentence be-
fore inputting the models with subscript (S). Al-
though the split sub-sentences are not completely
consistent with those seen during training, it did not
prevent the models with subscript (S) from getting
good performance, i.e., the RATSQLG(S) consis-
tently outperforms all other models on all evalua-
tion sets. These results demonstrate that the sub-
sentence-based method can improve the generaliza-
tion performance. The limitation is that the method
may not be compatible with the original model,
e.g., original hyperparameters in RATSQLB(S) are
not workable, and the performance of GNN on the
SpiderD and CG-SUBD is degraded.

Each model has a close result between the un-
seen SpiderD and CG-SUBD, indicating that from
the perspective of the model, the synthetic sen-
tences are pretty similar to NL. Therefore, we be-
lieve the performance on CG-SUBD can be gen-
eralized to the real world. Moreover, consider-
ing that the algorithms for generating CG-SUBD
and CG-APPD are close (see Appendix A), we can
further speculate that the synthetic sentences of
CG-APPD are also close to natural language.

The models with NatSQL is significantly bet-
ter than that without NatSQL when evaluated on
Spider-CG. One of the reasons is that the training

data of Spider and Spider-SS are about 10% dif-
ferent, which leads to the performance degradation
in the model trained on Spider when evaluated on
the SQL generated by the NatSQL of Spider-SS,
and vice versa. On the other hand, experiments in
(Gan et al., 2021b) show that NatSQL improve the
model performance in extra hard SQL. Therefore,
RATSQLG(N) and RATSQLB(N) suffer less perfor-
mance degradation in CG-APPT and CG-APPD
than RATSQLG and RATSQLB.

6 Limitation of this Work

The Spider-SS and Spider-CG are based on Spider,
an English large-scale text-to-SQL dataset, and we
did not extend the experiment to other language
and text-to-SQL datasets. Therefore, we did not
verify whether these methods work well in other
languages and datasets. Besides, since this work
is based on NatSQL, there will be around 5% of
NatSQL that can not be converted to the correct
SQL.

7 Related Work

Data augmentation for text-to-SQL models.
Data augmentation has been commonly used for
improving performance (Xiong and Sun, 2019; Li
et al., 2019). In the context of text-to-SQL genera-
tion, Yu et al. (2018a) generate synthetic training
samples from some pre-defined SQL and NL ques-
tion templates. Parikh et al. (2020) introduces an
table-to-text dataset with over 120,000 examples
that proposes a controlled generation task: given
a Wikipedia table and a set of highlighted table
cells, produce a one-sentence description. Yu et al.
(2021) sample from the given examples and then
give a large number of tables to generate new syn-
thetic examples. Shi et al. (2021) present a model
pre-training framework that jointly learns repre-
sentations of NL utterances and table schemas by
leveraging generation models to generate pre-train
data. Our proposed Spider-CG dataset can be used
for data augmentation.

Compositional generalization for semantic
parsing. Compositional generalization for se-
mantic parsing has captured wide attention recently
(Finegan-Dollak et al., 2018; Oren et al., 2020;
Furrer et al., 2020; Conklin et al., 2021). Most
prior works on text-to-SQL tasks focus on the cross-
domain generalization, which mainly assess how
the models generalize the domain knowledge to

838

Approach SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

RATSQLG 72.7% 80.9% 70.3% 45.2% 44.2%
RATSQLG(N) 73.9% 90.2% 75.0% 67.8% 60.5%
RATSQLG(S) 74.5% 91.4% 76.7% 82.5% 68.3%
RATSQLB 72.0% 79.5% 72.0% 45.1% 47.2%
RATSQLB(N) 72.1% 83.2% 69.4% 54.6% 53.1%
RATSQLB(S) 71.9% 91.0% 72.6% 79.8% 61.5%
RATSQL(N) 63.2% 79.1% 60.7% 40.6% 34.5%
RATSQL(S) 64.7% 88.8% 63.3% 72.1% 44.1%
GNN(N) 54.4% 67.3% 57.5% 30.4% 25.1%
GNN(S) 49.3% 71.9% 51.8% 52.1% 34.6%

Table 5: Exact match accuracy on evaluation sets.

new database schemas (Suhr et al., 2020; Gan et al.,
2021a). On the other hand, Shaw et al. (2021) in-
troduces TMCD splits for studying compositional
generalization in semantic parsing, where they aim
to maximize the divergence of SQL compounds
between the training and test sets.

Although both the TMCD split and our Spider-
CG can be used to evaluate the text-to-SQL compo-
sitional generalization ability, their problem setting
is different. TMCD split is based on SQL syntax
structure, while Spider-CG is based on the natural
language syntax, which leads to different require-
ments for compositional generalization ability. For
example, TMCD splits requires model learning
“Give me the name of students who is the oldest”
can predict the “Give me the name of the oldest
student” since their SQL is the same. Spider-CG
does not expect the model to do so because the
syntax of questions is different, i.e., “Give me the
name of students who is the oldest” contains two
sub-sentences, and none of them is close to the
“Give me the name of the oldest student”. In other
words, Spider-CG requires the model learning “List
the id of the oldest dog” can predict the “Give me
the name of the oldest student”.

Our model is inspired by prior works on neural
parsers constructed to capture granular informa-
tion from a whole. Yin et al. (2021) describe a
span-level supervised attention loss that improves
compositional generalization in semantic parsers.
Herzig and Berant (2021) propose SpanBasedSP,
a parser that predicts a span tree over an input ut-
terance, and dramatically improves performance
on splits that require compositional generalization.
Chen et al. (2020) propose the Neural-Symbolic
Stack machine (NeSS), which integrates a symbolic

stack machine into a seq2seq generation frame-
work, and learns a neural network as the controller
to operate the machine. However, these works are
based on datasets where component alignment is
relatively easy to achieve; but for more complex
text-to-SQL, their methods cannot be used directly.
Our proposed Spider-SS can be used to replace or
evaluate the alignment algorithm.

8 Conclusion

We introduce Spider-SS and Spider-CG for mea-
suring compositional generalization of text-to-SQL
models. Specifically, Spider-SS is a human-curated
sub-sentence-based text-to-SQL dataset built upon
the Spider benchmark. Spider-CG is a synthetic
text-to-SQL dataset constructed by substituting and
appending sub-sentences of different samples, so
that the training and test sets consist of different
compositions of sub-sentences. We found that the
performance of previous text-to-SQL models drop
dramatically on the Spider-CG OOD subset, while
modifying the models to fit the segmented data of
Spider-SS improves compositional generalization
performance.

Acknowledgements

We thank the anonymous reviewers for their help-
ful comments. Matthew Purver acknowledges fi-
nancial support from the UK EPSRC under grant
EP/S033564/1, and from the Slovenian Research
Agency for research core funding (No. P2-0103
and No. P5-0161). Xinyun Chen is supported by
the Facebook Fellowship.

839

References
Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.

Representing schema structure with graph neural
networks for text-to-SQL parsing. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4560–4565, Florence,
Italy. Association for Computational Linguistics.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn
Song, and Denny Zhou. 2020. Compositional gen-
eralization via neural-symbolic stack machines. In
Advances in Neural Information Processing Systems,
volume 33, pages 1690–1701. Curran Associates,
Inc.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3322–3335, Online. Association for Computa-
tional Linguistics.

Marie-Catherine de Marnee and Christopher D. Man-
ning. 2016. Stanford typed dependencies manual.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. pages 351–
360.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. CoRR, abs/2007.08970.

Yujian Gan, Xinyun Chen, and Matthew Purver.
2021a. Exploring underexplored limitations of
cross-domain text-to-sql generalization. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021b. Natural sql: Making sql easier to infer from
natural language specifications.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),

pages 908–921, Online. Association for Computa-
tional Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873–2882. PMLR.

Jingjing Li, Wenlu Wang, Wei Shinn Ku, Yingtao Tian,
and Haixun Wang. 2019. SpatialNLI: A spatial do-
main natural language interface to databases using
spatial comprehension. In GIS: Proceedings of the
ACM International Symposium on Advances in Ge-
ographic Information Systems, pages 339–348, New
York, NY, USA. Association for Computing Machin-
ery.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng,
and Dongmei Zhang. 2020. Compositional gener-
alization by learning analytical expressions. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 11416–11427. Curran Associates,
Inc.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 2482–2495, Online. As-
sociation for Computational Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1173–1186, On-
line. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto,
and Percy Liang. 2020. Distributionally robust neu-
ral networks for group shifts: On the importance of
regularization for worst-case generalization.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both? In Proceed-
ings of the 59th Annual Meeting of the Association

840

https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://aclanthology.org/2020.coling-main.34
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2109.05153
http://arxiv.org/abs/2109.05153
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1911.08731
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75

for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 922–938,
Online. Association for Computational Linguistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Cicero
Nogueira dos Santos, and Bing Xiang. 2021. Learn-
ing contextual representations for semantic parsing
with generation-augmented pre-training. Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, 35(15):13806–13814.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Structured reordering for modeling latent align-
ments in sequence transduction. In Thirty-Fifth Con-
ference on Neural Information Processing Systems.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Hongvu Xiong and Ruixiao Sun. 2019. Transferable
Natural Language Interface to Structured Queries
Aided by Adversarial Generation. In 2019 IEEE
13th International Conference on Semantic Comput-
ing (ICSC), pages 255–262. IEEE.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2810–2823, On-
line. Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018a. SyntaxSQLNet: Syntax tree networks for
complex and cross-domain text-to-SQL task. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1653–
1663, Brussels, Belgium. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018b. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

A Further Discussion of Algorithm 1

As discussed in Section 3.3, we need to ensure that
the Spider-CG examples meet the criteria of con-
taining required information and being reasonable.
To ensure that the generated Spider-CG sentence
contains the required information, the composi-
tional element needs to contain all the information
needed to derive the target NatSQL clause. Thus
some sub-sentence can not be a compositional ele-
ment, such as the last sub-sentence of examples
1 and 2 in Figure 4. Among them, example 1
misses ORDER BY information; example 2 misses
Total_Horses column information. In contrast, the
sub-sentence of the two Spider-SS examples in Fig-
ure 2 contains the required information and can be
compositional elements. So, we can filter out the
sub-sentences containing the “NO MENTIONED”
and “extra” label, and collect the rest as composi-
tional elements.

The ‘can_be_substituted_by’ and ‘can_append’
function in Algorithm 1 are used to ensure that
the generated sentences are reasonable. For the
convenience of discussion, we refer to them as ‘sub’
and ‘app’ functions for short. These two functions
examine the generated sentences from complexity,
logic and coherence.

Complexity checks are used to limit the com-
plexity of the generated examples to no more com-
plex than the upper bound of the Spider dataset. On
the NatSQL side, both functions do not allow the
generated NatSQL containing: 1) more than one
subqueries; 2) more than one HAVING condition;
3) more than three WHERE conditions; 4) more
than one ORDER BY clause; 5) new conditions for
a subquery. On the NL side, since the substitution
did not clearly increase the sentence complexity,
only the ‘app’ function performs the NL complex-
ity checks to restrict the number of sub-sentence to
less than 4.

Logic checks are used to prevent generating con-
tradictory examples. First, logic checks filter out

841

https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://openreview.net/forum?id=X2Cxixkcpx
https://openreview.net/forum?id=X2Cxixkcpx
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

examples with repeated WHERE conditions. Then,
it filters out examples whose WHERE condition
negates the query content, e.g., what is name of
student that do not have any student. Finally, since
the GROUP BY clause is often expressed implicitly,
substituting or appending elements containing the
GROUP BY clause may introduce logical errors.
Thus, logic checks require the GROUP BY clauses
to be the same if they exist.

Coherence checks are used to ensure that the ex-
pression of the generated sentence is coherent. As
discussed in Section 2.2, we separate a sentence
into main clause, subordinate clauses, and modi-
fiers. The main clause expresses what you want to
query, i.e., corresponding to the SELECT clause.
Subordinate clauses and modifiers are restrictions
on the query, i.e., corresponding to WHERE and
ORDER BY clauses. Therefore, compositional ele-
ments only contain subordinate clauses and mod-
ifiers. The way to ensure the coherence of sen-
tences by sub function is to require the substitution
sub-sentences modify the same noun. Suppose the
schema table of the NatSQL in a compositional
element appears in advance. In that case, we con-
sider its sub-sentence modifies the table noun be-
cause repeating a known object 4 can only be a
further modification. However, if the schema ta-
ble has not appeared before, we consider that the
sub-sentence modifies its previous word since a
subordinate clause usually comes immediately af-
ter the noun it describes.

There is a high similarity between the app and
sub function, but the inspection between the sub-
stituted elements is changed to the inspection be-
tween the new element and the last element in the
original sentence. Therefore, the appended sub-
sentence must modify the same noun as the last
sub-sentence. If a compositional element passes
the app function, we use the word ‘and’ or ‘or’ to
connect it where the word ‘or’ can only connect a
WHERE condition. Table 6 discuss some examples
for ease of understanding.

B Unseen SQL Structure Template in
Spider-CG

Although we limit the complexity of the gener-
ated examples lower than the upper bound of the
Spider dataset, Spider-CG still contains unseen
SQL structure templates. For example, the NatSQL

4A table is usually an object whose attributes are its
columns in relational databases.

template ‘SELECT COL WHERE COL > VAL or
count(TABLE.*) >=VAL GROUP BY COL’ and
corresponding SQL can not be found in the orig-
inal Spider. The new templates may degrade the
performance of models.

C Spider-SS Annotation Steps

We build an annotation tool to show the sub-
sentence and sub-SQL split from a question-
NatSQL pair. During annotation, the annotators se-
lect the corresponding sub-SQL for sub-sentences.
In rare cases, if there is no suitable sub-SQL, the
annotators would write a new one, such as the
example-1 in Figure4. We recruit two graduate
students major in computer science to annotate the
dataset manually. They are trained with a detailed
annotation guideline and some samples. One is al-
lowed to start after his trial samples are approved by
the whole team. Each example is annotated twice.
If the annotations are different, the final annotation
will be decided by a discussion. If two annotators
discuss and conclude that one of the annotations
is wrong and the other is correct, the correct an-
notation is retained. Otherwise, the authors will
annotate this example if no such conclusion can be
drawn.

D Execution Match

The execution match metric measures whether the
query results from the predicted query are the
same as the gold query results. The original RAT-
SQL can not generate the executable SQL until
extending the NatSQL. The NatSQL2SQL conver-
sion would analyze the utterance and generate ex-
ecutable SQL, irrelevant to the RATSQL model.
Thus we only report the results of models with Nat-
SQL. Since the execution match is similar to the
exact match, we only report the top models in Table
7. Similar to the exact match, RATSQLG(S) outper-
form other models in most evaluation set except on
the CG-APPT .

842

Spider sentence:
Show name for all singers ordered by age from the oldest to the youngest.
How many concerts are there in year 2014 or 2015?

Generate new sentence by appending:
Show name for all singers ordered by age from the oldest to the youngest and in year 2014 or 2015?

Coherence checks:
Failed to pass the coherence checks due to the modified noun of the two sub-sentences being different.
In the same way, the ‘Show name for all singers in year 2014 or 2015?’ can not pass.
Spider sentence:
Show name for all singers ordered by age from the oldest to the youngest.
What is the nation of the singer who have a song having ’ Hey ’ in its name?

Generate new sentence by appending:
What is ... who have a song having ’ Hey ’ in its name and ordered by age from the oldest to the youngest.

Coherence checks:
Pass the coherence checks.
In the same way, the ‘what is ... singer ordered by age from the oldest to the youngest .’ also pass.
Spider sentence:
What are the titles of the books whose writer is not ’Elaine Lee’?
List the writers who have written more than one book.

Generate new sentence by appending:
What are the titles of the books whose writer is not ’Elaine Lee’ and who have written more than one book.

Coherence checks:
Failed to pass the coherence checks due to the modified noun of the two sub-sentences being different.
In the same way, the ‘What are the titles of the books who have written more than one book.?’ can not pass.
Spider sentence:
List the writers who have written more than one book.
Show writers who have published a book with price more than 40.

Generate new sentence by appending and substituting:
List the writers who have written more than one book and who have published a book with price more than 40.
List the writers who have written more than one book or who have published a book with price more than 40 .
Show writers who have published a book with price more than 40 and who have written more than one book .
Show writers who have published a book with price more than 40 or who have written more than one book.
List the writers who have written more than one book.
Show writers who have written more than one book.

Coherence checks:
All these sentence pass the coherence checks.

Table 6: Some examples of successful or unsuccessful passing the coherence checks.

Approach SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

RATSQLG(N) 75.8% 86.7% 78.0% 70.4 % 68.9%
RATSQLB(S) 74.7% 87.9% 76.4% 82.0% 72.5%
RATSQLG(S) 76.7% 88.3% 80.4% 78.8% 75.1%

Table 7: Execution match accuracy on evaluation sets.

843

