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Abstract

Moral values influence how we interpret and act
upon the information we receive. Identifying
human moral values is essential for artificially
intelligent agents to co-exist with humans. Re-
cent progress in natural language processing
allows the identification of moral values in
textual discourse. However, domain-specific
moral rhetoric poses challenges for transferring
knowledge from one domain to another.

We provide the first extensive investigation on
the effects of cross-domain classification of
moral values from text. We compare a state-of-
the-art deep learning model (BERT) in seven
domains and four cross-domain settings. We
show that a value classifier can generalize and
transfer knowledge to novel domains, but it can
introduce catastrophic forgetting. We also high-
light the typical classification errors in cross-
domain value classification and compare the
model predictions to the annotators agreement.
Our results provide insights to computer and
social scientists that seek to identify moral
rhetoric specific to a domain of discourse.

1 Introduction

Morality helps humans discern right from wrong.
Pluralist moral philosophers argue that human
morality can be represented, understood, and ex-
plained by a finite number of irreducible basic
elements, referred to as moral values (Graham
et al., 2013). The difference in our preferences
over moral values explains how and why we think
differently. For instance, both conservatives and
liberals may agree that individual welfare is impor-
tant. However, a conservative, who cherishes the
values of freedom and independence, may believe
that taxes should be decreased to attain more indi-
vidual welfare. In contrast, a liberal, who cherishes
the values of community and care, may believe
that taxes should be increased to obtain welfare
(Graham et al., 2009).

It is crucial to understand human morality to de-
velop beneficial AI (Russell et al., 2015; Soares and
Fallenstein, 2017). To operate among humans, arti-
ficial agents must be able to comprehend and recog-
nize the moral values that drive the differences in
human behavior (Akata et al., 2020; Gabriel, 2020).
The ability to understand moral rhetoric can be in-
strumental for, e.g., facilitating human-agent trust
(Chhogyal et al., 2019; Mehrotra et al., 2021) and
engineering value-aligned socio-technical systems
(Ajmeri et al., 2020; Murukannaiah et al., 2020;
Serramia et al., 2021; Montes and Sierra, 2021).

There are survey instruments to estimate individ-
ual value profiles (Schwartz, 2012; Graham et al.,
2013). However, reasoning about moral values
is challenging for humans (Le Dantec et al., 2009;
Pommeranz et al., 2012). Further, in practical appli-
cations, e.g., to conduct meaningful conversations
(Tigunova et al., 2019) or to identify online trends
(Mooijman et al., 2018), artificial agents should be
able to understand moral rhetoric on the fly.

The growing capabilities of natural language
processing (NLP) enable the estimation of moral
rhetoric from textual discourse (Hoover et al., 2020;
Araque et al., 2020; Alshomary et al., 2022; Kiesel
et al., 2022). Specifically, a value classifier can
be used to identify the moral values underlying a
piece of text on the fly. For instance, Mooijman
et al. (2018) show that detecting moral values from
tweets can predict violent protests.

Existing value classifiers are evaluated on a spe-
cific dataset, without re-training or testing the clas-
sifier on a different dataset. This shows the ability
of the classifier to predict values from text, but not
the ability to transfer the learned knowledge across
datasets. A critical aspect of moral values is that
they are intrinsically linked to the domain under
discussion (Pommeranz et al., 2012; Liscio et al.,
2021, 2022). Moral value expressions may take
different forms in different domains. For example,
in the driving domain, the value of safety concerns

2727



speed limits and seat belts, but in the COVID-19
domain, safety concerns social distancing and face
masks. Further, a word (broadly, language) may
trigger different moral rhetoric in different domains.
For example, in a libertarian blog, the word ‘taxes’
may be linked to the authority value, but in a social-
ist blog it may be linked to the community value.
Thus, it is crucial for a value classifier to recognize
domain-specific connotations of moral rhetoric.

Collecting and annotating a sufficient amount of
training examples in each domain is expensive and
time consuming. To reduce the need for new an-
notated examples, we can pretrain classifiers with
similar available annotated data and transfer the
acquired knowledge to a novel task—a practice
known as transfer learning (Ruder, 2019). De-
spite the benefits, transfer learning poses well-
known challenges, including: (1) generalizability:
how well does a classifier perform on novel data?
(2) transferability: how well is knowledge trans-
ferred from one domain to another? and (3) catas-
trophic forgetting: to what extent is knowledge
of a previous domain lost after training in a new
domain? These challenges are crucial for value
classification because of its domain-specific nature.

We perform the first comprehensive cross-
domain evaluation of a value classifier. We em-
ploy the Moral Foundation Twitter Corpus (Hoover
et al., 2020), consisting of seven datasets spanning
different socio-political areas, annotated with the
value taxonomy of the Moral Foundation Theory
(Graham et al., 2013). Treating each dataset as
a domain, we train a deep learning model, BERT
(Devlin et al., 2019), in four training settings to
evaluate the value classifier’s generalizability, trans-
ferability, and catastrophic forgetting.

Our experiments show that (1) a value classifier
can generalize to novel domains, especially when
trained on a variety of domains; (2) initializing a
classifier with examples from different domains im-
proves performance in novel domains even when
little training data is available in the novel domains;
(3) catastrophic forgetting occurs even when train-
ing on a small portion of data from the novel do-
main, and its impact must be considered when train-
ing on a novel domain; and (4) in the large majority
of cases, in all considered training settings, at least
one annotator agrees with the model predictions.

Our investigation is significant because moral
rhetoric is seldom explicit in language, but often
lies in subtle domain-dependent cues. Understand-

ing whether a classifier can recognize and transfer
such hidden patterns across domains is instrumen-
tal for the practical use. By unveiling the successes
and mistakes of value classifiers in cross-domain
settings, we hope to inspire researchers and practi-
tioners to employ value classification responsibly.

2 Background and Data

We introduce the Moral Foundation Theory (MFT)
(Graham et al., 2013) and the Moral Foundation
Twitter Corpus (MFTC) (Hoover et al., 2020) used
in our experiments.

The MFT is a well-established theory of moral
values developed by social and cultural psycholo-
gists. It argues that human morality is composed
of a finite set of innate moral foundations, similar
to how the five taste receptors (for sweet, sour, salt,
bitter, and umami) combine to yield the tastes we
experience. The MFT includes five foundations,
each composed of a vice–virtue duality, resulting
in the 10 moral values shown in Table 1.

Table 1: The five moral foundations in the MFT

Foundation Definition

Care/
Harm

Support for care for others/
Refrain from harming others

Fairness/
Cheating

Support for fairness and equality/
Refrain from cheating or exploiting others

Loyalty/
Betrayal

Support for prioritizing one’s inner circle/
Refrain from betraying the inner circle

Authority/
Subversion

Support for respecting authority and tradition/
Refrain from subverting authority or tradition

Purity/
Degradation

Support for the purity of sacred entities/
Refrain from corrupting such entities

The MFTC is composed of 35,108 tweets, di-
vided into seven datasets, each corresponding to a
topic: All Lives Matter (ALM), Baltimore protests
(BLT), Black Lives Matter (BLM), hate speech and
offensive language (DAV) (Davidson et al., 2017),
2016 presidential election (ELE), MeToo move-
ment (MT), and hurricane Sandy (SND). These
datasets from complex and diverse socio-political
issues allow us to evaluate the transferability by
treating each dataset as belonging to a domain.

The tweets were annotated by multiple annota-
tors with the MFT taxonomy. Hoover et al. (2020)
provide additional details on the annotation pro-
cess. They recognize that the vice and the virtue
constituting one moral foundation are expressed
differently in natural language. For example, an ut-
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terance describing a care concern (e.g., taking care
of one’s offspring) does not necessarily also con-
tain harm expressions. For this reason, each tweet
was annotated with all 10 individual moral values
plus an additional nonmoral label, resulting in 11
possible labels per tweet. Due to the subjective
nature of moral values, different annotators may
label the same tweet differently. For this reason,
Hoover et al. (2020) apply a majority vote to select
the definitive label(s) of each tweet. Tweets with
no majority label are labeled as nonmoral. Table 2
shows three examples of annotated tweets.

Table 2: Examples of labeled tweets in MFTC

Tweet Dataset Labels

Police lives matter, all lives matter,
peace and love people

ALM care

Which oppression is worse, sexism
or racism?

BLM harm,
cheating

Baltimore Police will deliver an up-
date on the #FreddieGray investi-
gation. Listen live on WBAL

BLT nonmoral

Table 3 shows the distribution of labels. The
MeanIR is a measure of imbalance in a dataset
(Charte et al., 2015). MeanIR is the mean of IRl for
each label l, where IRl is the ratio of the number of
instances having the majority (i.e., nonmoral) label
and the number of instances having label l. The
degree of imbalance varies largely across datasets,
which is realistic since different domains are likely
to have different distributions of moral content.

Table 3: Distribution of labels per dataset of the MFTC

Foundation ALM BLT BLM DAV ELE MT SND

Care 456 171 321 9 398 206 992
Harm 735 244 1037 138 588 433 793
Fairness 515 133 522 4 560 391 179
Cheating 505 519 876 62 620 685 459
Loyalty 244 373 523 41 207 322 415
Betrayal 40 621 169 41 128 366 146
Authority 244 17 276 20 169 415 443
Subversion 91 257 303 7 165 874 451
Purity 81 40 108 5 409 173 56
Degradation 122 28 186 67 138 941 91
Nonmoral 1744 3826 1583 4509 2501 1565 1313

Total 4424 5593 5257 5358 4961 4591 4891

MeanIR 11.5 51.3 5.4 344.8 9.6 4.0 6.4

3 Experimental Setup

Predicting moral values is a multi-label classifica-
tion problem. Given a set of textual documents, T ,
and a set of moral value labels, L = (l1, l2, . . . , ln),

we wish to learn a mapping C : T 7→ P(L).
Each element in P(L) is a binary vector, y =
(y1, y2, . . . , yn), where yi = 1 if the corresponding
text is labeled with li. The mapping C is learned via
BERT (Devlin et al., 2019), a language representa-
tion model based on the Transformer architecture
(Vaswani et al., 2017). We choose BERT as it rep-
resents the state-of-the-art for several NLP tasks,
including value classification (Kobbe et al., 2020;
Alshomary et al., 2022; Kiesel et al., 2022). We
provide additional details, including hyperparam-
eters, in the Appendix. The code is available on
GitHub1.

3.1 Cross-Domain Evaluation

To perform cross-domain evaluation, we partition
the MFTC datasets into Tsource and Ttarget. We
treat Tsource as available data and Ttarget as an in-
coming dataset from a novel domain. In our exper-
iments, Ttarget is always composed of one MFTC
dataset. We experiment with Tsource composed of
one, three, and six datasets. We present the re-
sults for the setting with six datasets as Tsource in
Section 4 and the other settings in the Appendix.

For each partition, we train a value classifier,
C, in each of the four scenarios shown in Fig-
ure 1. These scenarios differ in how the classifier is
trained. (1) In the source scenario, Tsource is the
training set. (2) In the target scenario, Ttarget is
the training set. (3) In the finetune scenario, the
classifier is first trained on Tsource and then contin-
ued to train (i.e., finetuned) on Ttarget. (4) In the
all scenario, the training set includes both Tsource
and Ttarget.

Tsource

source
Tsource

Ttarget C(source, target)
train eval

Ttarget

target
Tsource

Ttarget

train eval

Tsource

Ttarget

finetune
Tsource

Ttarget

eval
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finetune

Tsource

+
Ttarget
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Ttarget
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C(source, source)

C(finetune, source)

C(target, target)

C(target, source)

C(all, target)

C(all, source)

C(finetune, target)
C

C

C

C

Figure 1: The cross-domain evaluation setting

1https://github.com/adondera/
transferability-of-values
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In each scenario, the classifier is evaluated on
both Tsource and Ttarget, resulting in eight settings
(combinations of training scenario and evaluation
set) as shown in Figure 1. For example, C(source,
target) indicates that C is trained in the source
scenario (i.e., on Tsource) and evaluated on Ttarget.

As we have seven partitions and four scenarios,
we train 28 unique models. We evaluate the models
on both Tsource and Ttarget, covering 56 settings.

3.2 Comparisons

Our experimental setting (partitioning, training sce-
narios, and evaluation settings) enables a compre-
hensive cross-domain evaluation of the value clas-
sifiers as described below.

Baseline C(source, source) and C(target,
target) show the performances of a value classi-
fier on the training domain, when no cross-domain
training is performed.
Topline C(all, source) and C(all, target) repre-
sent the ideal scenario, where all data is simultane-
ously available for training.
Generalizability C(source, target) and
C(target, source) reflect the ability of a
value classifier to generalize to a new domain.
Transferability Comparing C(finetune, target)
and C(target, target) shows whether the knowl-
edge learned by pretraining on Tsource (finetune
scenario) has an advantage over the absence of pre-
training (target scenario).
Catastrophic Forgetting Comparing
C(finetune, source) and C(source, source)
shows the extent to which the knowledge learned
by training on Tsource is lost when finetuned on
Ttarget.

3.3 Metrics

Since the imbalance in our datasets varies greatly,
we report both the micro F1-score and the macro
F1-score in each setting. The micro F1-score, m,
is the weighted (by class size) mean of the per-
label F1-scores. The macro F1-score, M , is the
unweighted mean of the per-label F1-scores.

When training and testing on the same set, we
use 10-fold cross-validation with fixed splits into
training and test data, and report the average F1-
scores over the 10 runs. For consistency, when
testing on a set different from the training set, we
test on 10 splits of the set (i.e., ultimately on the
whole set) and report average F1-scores.

4 Results and Discussion

We evaluate the performance of the model in four
training scenarios (source, target, finetune, all).
Table 4 reports the micro and macro F1-scores of
the eight evaluation settings. The columns indicate
the dataset used as Ttarget (e.g., in the BLT column,
BLT is Ttarget and the remaining six datasets com-
pose Tsource). The final column reports the average
F1-scores over the seven datasets. We also report
the results of the majority classifier which labels
all tweets as nonmoral (the majority class in all
datasets), for both Tsource and Ttarget.

We perform Wilcoxon’s ranksum test (Hollander
and Wolfe, 1999) to evaluate whether two results
significantly differ or not. In each column (and
in the top-half or the bottom-half), we choose the
setting with the highest F1-score and perform a
pair-wise comparison with each of the other set-
tings in that (half) column. We highlight, in bold,
the best result and the results that are not signifi-
cantly different (p > 0.05) from the best.

4.1 General Trends

Before cross-domain analysis, we observe some
general trends. First, the topline training scenario
(all) leads to the best results when evaluating on
both Tsource and Ttarget (Table 4). However, all
is the ideal scenario. In the top half of the ta-
ble, C(source, source) has comparable results to
C(all, source), which is to be expected, since the
two models are trained on similar data (six out of
seven datasets in the source scenario, all seven
in the all scenario). Analogously, in the bottom
half of the table, the C(finetune, target) setting
leads to results comparable to C(all, target). We
analyze this result further in Section 4.3.

Second, the results are rather consistent across
datasets when evaluating on Tsource (top half of
Table 4), but have large differences when evalu-
ating on Ttarget (bottom half of Table 4). These
differences can be attributed to BLT and DAV, two
highly-imbalanced datasets (Table 3). The class im-
balance also justifies the large difference between
micro and macro F1-scores for these two datasets.

4.2 Generalizability

To evaluate generalizability, we analyze the results
for the C(source, target) and C(target, source)
settings. In C(source, target), Tsource includes
six datasets and Ttarget includes one dataset. In
contrast, in C(target, source), Tsource includes
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Table 4: Results of the four training scenarios evaluated on Tsource and Ttarget. The columns indicate the dataset
used as Ttarget. We report both micro F1-score (m, left column) and macro F1-score (M , right column).

ALM BLT BLM DAV ELE MT SND Average

Classifier Setting m M m M m M m M m M m M m M m M

C(source, source) 73.9 65.6 73.9 68.3 71.2 61.8 71.1 66.4 73.3 66.4 75.7 68.0 74.5 66.5 73.4 66.1
C(target, source) 61.6 37.7 43.8 13.1 62.6 43.0 38.8 5.1 59.3 40.4 52.4 39.1 54.4 36.6 53.3 30.7
C(finetune, source) 70.3 57.2 61.2 47.8 69.2 54.9 56.6 41.9 70.5 61.5 67.7 60.5 68.0 60.8 66.2 54.9
C(all, source) 73.7 65.6 73.7 68.0 71.3 62.1 71.0 66.4 73.6 66.7 75.6 67.7 74.3 66.6 73.3 66.2

Majority (source) 47.0 6.1 42.3 5.6 49.0 6.2 38.8 5.3 46.1 6.0 49.0 6.2 48.9 6.2 45.9 5.9

C(source, target) 63.7 57.9 63.2 29.2 76.1 75.3 83.9 8.7 63.4 54.8 54.3 51.3 49.2 38.6 64.8 45.1
C(target, target) 68.0 56.8 71.4 23.5 84.4 84.6 92.2 9.0 70.9 52.6 59.4 55.9 65.3 44.6 73.1 46.7
C(finetune, target) 69.4 67.0 72.1 37.4 84.6 85.5 92.2 9.2 72.9 65.2 61.4 59.3 66.7 55.6 74.2 54.2
C(all, target) 69.9 67.0 71.2 34.7 83.9 85.2 90.4 9.3 71.1 62.3 61.4 59.3 66.3 55.6 73.5 53.3

Majority (target) 37.9 5.1 64.8 7.4 28.3 4.2 92.2 8.7 44.5 5.7 27.9 4.4 26.4 4.0 46.0 5.6

one dataset and Ttarget includes six datasets. Thus,
C(target, source) is a more challenging setting
for generalization than C(source, target).

First, we observe that the model achieves better
average F1-scores in the C(source, target) setting
than the majority (target) baseline. This indicates
that the moral rhetoric learned on a varied array
of domains is generalizable to a novel domain to
some extent, in spite of the domain-specific na-
ture of moral values. However, the performances
in C(source, target) are not on par with the best
results on Ttarget, as we discuss in Section 4.3.

Second, we observe that the model achieves bet-
ter average F1-scores in the C(target, source) set-
ting than the majority (source) baseline, despite
the more challenging setting. However, the re-
sults are just marginally better than the majority
(source) baseline, showing the difficulty in gener-
alizing from one to multiple domains.

Finally, in both cases, when we look at the results
for individual datasets, the generalizability result
does not hold for BLT and DAV, which highlights
the challenge of generalizing to domains with a
skewed distribution of moral values.

4.3 Transferability

Recall that, in the target scenario, a model is
only trained on Ttarget, but in the finetune sce-
nario, the model is first trained on Tsource and then
finetuned on Ttarget. Thus, to evaluate transfer-
ability, we compare the C(finetune, target) and
C(target, target) settings.

From the average F1-scores in Table 4, we ob-
serve that C(finetune, target) performs better
than or on par with C(target, target)—precisely,
similar m and 8% increase of M . Thus, the bene-

fits of finetuning are larger for the macro than the
micro F1-scores. This suggests that pretraining on
Tsource, which contains a more varied distribution
of labels than Ttarget, improves the prediction of
the minority labels in Ttarget.

To transfer knowledge from Tsource to Ttarget,
typically, we need some labeled data in Ttarget. For
the results in Table 4, we used 90% of Ttarget for
training, and the leftover 10% for evaluating at each
fold. However, in practice, such a large amount of
training data may not be available in the target do-
main. Thus, we perform an additional experiment
to compare C(target, target) and C(finetune,
target), when trained or finetuned, respectively, on
a smaller portion of Ttarget (10%, 25%, and 50%)
and tested on a fixed, randomly selected, 10% of
Ttarget. Figure 2 shows this comparison. We re-
port the average results of 10-fold cross-validations
performed on each of the seven datasets.
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Figure 2: C(target, target) and C(finetune, target)
results trained with increasing portions of Ttarget

We make an important observation from Fig-
ure 2. The finetuning paradigm does not require
a large portion of Ttarget to perform well in the
target domain. In contrast, the performance of
C(target, target) increases (but does not surpass
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C(finetune, target)) as training data from Ttarget
increases. Indeed, C(finetune, target) with 10%
of Ttarget performs on par with C(target, target)
trained on 90% of Ttarget. This result shows that
transferring the knowledge of values from source
domains to a target domain is valuable especially
when the target domain has little training data.

4.4 Catastrophic Forgetting
Recall that, in the source scenario, a model is only
trained on Tsource, but in the finetune scenario,
the model is first trained on Tsource and then fine-
tuned on Ttarget. Thus, comparing C(finetune,
source) and C(source, source) provides insight
on the extent to which a model forgot about Tsource
because of finetuning on Ttarget.

We observe that the model suffers from catas-
trophic forgetting since finetuning on Ttarget re-
duces the performance on Tsource. The forgetting
is most evident when finetuning on unbalanced
datasets such as DAV than balanced datasets such
as BLM. In fact, C(finetune, source) leads to
only slightly worse results than C(source, source)
in BLM (decrease of 2% in m and 7% in M ), with
the difference being largest in DAV (decrease of
15% in m and 25% in M ).

Figure 2 shows that the finetuning paradigm en-
sures good performances on Ttarget even when
the model is trained on a small portion of Ttarget.
Next, we evaluate catastrophic forgetting in the
same setting, comparing C(source, source) and
C(finetune, source) when the model is trained
with increasing portions of Ttarget (10%, 25%, and
50%) as shown in Figure 3.
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Figure 3: C(source, source) and C(finetune, source)
results trained with increasing portions of Ttarget

Figure 3 indicates that catastrophic forgetting
worsens as the model is trained with a larger por-
tion of Ttarget. C(finetune, source) trained with
10% of Ttarget leads to a decrease of 4% in m
and 7% in M compared to C(source, source) (ev-
ident by comparing the source flat blue line to the

first red finetune square in Figure 3). Further,
C(finetune, target) trained with 10% of Ttarget
leads to an increase of 7% in m and 6% in M
compared to C(source, target) (evident by com-
paring the average C(source, target) in Table 4 to
the first red finetune square in Figure 2). These
results show the tradeoff between the advantage of
transfer learning and the impact of forgetting, even
when finetuning with a small portion of Ttarget.

4.5 Misclassification Errors

We reported F1-scores to provide an overview of
the model performance in different training set-
tings. Next, we investigate the behavior of the
model through the lens of the MFT. We inspect
(1) the confusion between morally loaded and non-
moral tweets, and, (2) the mistakes among and
within moral foundations since moral foundations
are differentially manifested in language (Kennedy
et al., 2021). We highlight the following four types
of misclassification errors (which add up to 100%):
Error I A tweet labeled with one (or more) values
is classified (by the model) as nonmoral.
Error II A tweet labeled as nonmoral is classified
with one (or more) values.
Error III A tweet labeled with a value is classified
with values from other foundations.
Error IV A tweet labeled as a vice/virtue is clas-
sified as the opposite virtue/vice of the foundation.

Table 5 shows the distribution of errors, averaged
over the seven datasets.

Table 5: Distribution of errors per setting (in percentage)

Setting Err. I Err. II Err. III Err. IV

C(source, source) 25.8 34.3 36.3 3.5
C(target, source) 41.8 24.4 32.0 1.8
C(finetune, source) 38.7 27.5 31.3 2.5
C(all, source) 25.9 34.3 36.3 3.4

C(source, target) 34.7 32.3 30.2 2.8
C(target, target) 31.5 27.6 38.5 2.4
C(finetune, target) 36.0 28.6 32.6 2.8
C(all, target) 30.8 33.0 33.1 3.1

Generalizability In C(target, source), Error I
occurs largely more often than the other errors,
indicating that, when generalizing from one to sev-
eral domains, labeling value-laden tweets as non-
moral is the most common mistake. In contrast,
in C(source, target), when generalizing from sev-
eral to one domain, Error I is less prominent, in-
dicating that the model attempts to classify moral
rhetoric in the novel domain.
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Transferability Error III is more prevalent
in C(target, target) than C(finetune, target).
Thus, the confusion among moral values reduces
when a model is pretrained on the source domain.

Catastrophic Forgetting Error I occurs largely
more often in C(finetune, source) than
C(source, source), indicating that the major type
of catastrophic forgetting is missing moral rhetoric
in the source dataset.

Finally, Error IV occurs seldom, suggesting that
the models generally learn to not confuse between
virtues and vices of the same moral foundation.

4.6 Annotators Agreement
We analyze the correspondence between the model
predictions and the annotators agreement. Each
tweet in the MFTC was annotated by at least three
and at most eight different annotators (Hoover et al.,
2020, Table 1). More than 99% of the tweets were
annotated by three to five annotators and 84% by
three or four annotators. As described in Section 2,
the majority agreement was selected for training
and evaluation—that is, only values annotated by
at least 50% of the annotators were retained as
correct labels. However, given the subjectivity in
value annotation, values labeled by a minority of
annotators ought to be considered too.

Tables 6 and 7 show the percentage of annota-
tors that agree with the model predictions consid-
ered as errors and accurate, respectively, averaged
over the seven datasets. The columns indicate the
percentage of annotators agreeing with the model
prediction. For instance, if one out of the four work-
ers who annotated a tweet agrees with the model
prediction, we record a 25% agreement.

Table 6: Distribution (in percentage) of classification
errors and annotators agreement percentage

Setting 0 (0,25] (25,34] (34,50)

C(source, source) 26.1 22.3 45.0 6.6
C(target, source) 49.5 18.0 28.5 3.9
C(finetune, source) 38.5 20.2 36.1 5.2
C(all, source) 26.3 22.2 45.0 6.5

C(source, target) 40.2 23.2 30.4 6.2
C(target, target) 19.7 30.7 40.6 8.9
C(finetune, target) 21.2 30.5 39.9 8.4
C(all, target) 25.6 27.5 39.0 7.9

First, we analyze the classification errors in
Table 6. We observe that the sum of the last
three columns is always larger than 50%. This
indicates that, in all settings, more than half of

Table 7: Distribution (in percentage) of correct predic-
tions and annotators agreement percentage

Setting [50,66) [66,75) [75,100) 100

C(source, source) 16.9 24.4 20.9 37.7
C(target, source) 16.8 20.0 20.2 43.1
C(finetune, source) 17.0 22.7 20.9 39.4
C(all, source) 17.0 24.5 20.9 37.7

C(source, target) 15.0 27.5 18.5 39.0
C(target, target) 15.0 27.7 18.8 38.5
C(finetune, target) 15.8 28.5 18.7 37.0
C(all, target) 15.7 28.4 18.8 37.2

the model classification errors are not severe in
that at least one human annotator agrees with the
model prediction. Then, we notice that the settings
with the highest incidence of ‘bad’ classification
errors (i.e., where no annotators agree with the
model prediction) are those employed to evaluate
generalizability (C(target, source) and C(source,
target)) and catastrophic forgetting (C(finetune,
source)). These results are explained by the harder
challenge represented in these settings (refer to Sec-
tions 4.2 and 4.4 for a more in-depth discussion).
Finally, we observe that there is a small percentage
of errors with agreement between 34% and 50%.
For the agreement to be in this range, a tweet must
have been annotated by at least 5 annotators. How-
ever, 84% of the tweets in the MFTC have been
annotated by four annotators or less, thus resulting
in a smaller agreement in the last column.

Second, we analyze the correct predictions in
Table 7. We notice, in all settings, a high correspon-
dence between 100% agreement among annotators
and correct model predictions—that is, tweets an-
notated with consistent agreement reliably lead to
correct predictions. Further, we observe that the
distributions of agreement and correct predictions
are consistent across different settings.

5 Related Work

We review closely related works on value estima-
tion from text, and on cross-domain classification
in NLP subfields relevant to value classification.

5.1 Value Estimation from Text

Value estimation has been addressed from both
unsupervised and supervised approaches. Unsuper-
vised methods exploit value lexicons to identify val-
ues in text. Value lexicons are generated manually
(Graham et al., 2009), via semi-automated methods
(Wilson et al., 2018; Rezapour et al., 2019; Araque
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et al., 2020; Hopp et al., 2021), or expanded from
an initial seed via NLP techniques (Ponizovskiy
et al., 2020; Araque et al., 2021). Value lexicons
are used to identify values in text through word
count software (Pennebaker et al., 2001) or similar-
ity in embedding space (Garten et al., 2018; Shen
et al., 2019; Bahgat et al., 2020). However, adapt-
ing a lexicon to a novel domain is a significant
additional effort as it requires identifying words
that are relevant and removing words that are not
relevant in the novel domain.

Supervised methods employ the classification
paradigm (Lin et al., 2018; Mooijman et al., 2018;
Hoover et al., 2020; Alshomary et al., 2022; Kiesel
et al., 2022). A textual dataset is annotated with val-
ues belonging to a value taxonomy, and the labels
are used to train a supervised model. This approach
is akin to the one we use in this paper. However, in
the reviewed literature, no emphasis is put on the
effect of cross-domain training. Further, several of
the works mentioned above (Lin et al., 2018; Mooi-
jman et al., 2018; Hoover et al., 2020) use binary
classification to independently predict the presence
of a value in text. That is, given N values, N clas-
sifiers are employed (one per value). However, it
has been shown that modeling relationships among
values (and additional contextualizing information
such as actors) helps improve downstream perfor-
mances (Johnson and Goldwasser, 2018; Roy et al.,
2021). Thus, we train a multi-label value classifier,
similarly to Alshomary et al. (2022) and Kiesel
et al. (2022). Furthermore, our objective is not
to compare binary and multi-label value classifica-
tion but to evaluate the cross-domain capabilities
(generalizability, transferability, and catastrophic
forgetting) of a multi-label value classifier.

5.2 Datasets with Moral Content

The recent success of NLP models has sparked a
surge of research in constructs akin to moral values,
e.g., moral norms, ethical judgments, and social
biases. Researchers have collected large datasets
annotated with the related implicit components of
human language similar to the MFTC (Section 2).
Forbes et al. (2020) introduced SOCIAL-CHEM-
101, a corpus of almost 300,000 rules-of-thumb
aimed at learning social and moral norms. Sap et al.
(2020) collected the Social Bias Inference Corpus
with the intent of modeling the way in which people
project social biases onto each others. Hendrycks
et al. (2021) proposed the ETHICS dataset to as-

sess basic knowledge of ethics through well-studied
theories of normative ethics (such as deontology
and utilitarianism). Lourie et al. (2021) introduced
SCRUPLES, a dataset composed of 625,000 ethi-
cal judgments over 32,000 real-life anecdotes. Fi-
nally, Emelin et al. (2021) presented Moral Stories,
a crowd-sourced collection of contextualized nar-
ratives with the intent of investigating grounded,
goal-oriented social reasoning.

These datasets offer an unprecedented opportu-
nity for studying the social and moral aspects of
language. In our research we employ the MFTC
as the same moral value theory is used to anno-
tate data in seven different domains, allowing for a
direct cross-domain comparison.

5.3 Cross-Domain NLP Classification

Cross-domain classification is gaining attention
(Aji et al., 2020; Nguyen et al., 2021; Rongali et al.,
2021; Bornea et al., 2021; Markov and Daelemans,
2021). Ruder (2019) provides an overview of the
basic terminology, including generalizability, trans-
ferability, and catastrophic forgetting.

Cross-domain classification has been investi-
gated in NLP tasks such as sentiment analysis (Al-
Moslmi et al., 2017; Qu et al., 2019; Du et al.,
2020), fake news detection (Fung et al., 2021;
Silva et al., 2021; Yuan et al., 2021), and argu-
ment mining (Al-Khatib et al., 2016; Daxenberger
et al., 2017; Thorn Jakobsen et al., 2021). These
tasks are similar to value classification in that they
aim to classify high-level constructs (such as sen-
timents and arguments). However, value classi-
fication stands out for its multi-label and domain-
specific nature. Also, cross-domain classification is
particularly important for values because reasoning
about values (Pommeranz et al., 2012) and generat-
ing value-annotated datasets is very difficult.

6 Conclusions and Directions

We perform a comprehensive cross-domain eval-
uation of a multi-label value classifier, by com-
paring a deep learning model (BERT) in seven
domains with four cross-domain training scenar-
ios. Our aim is to support practical applications of
moral rhetoric classification, e.g., the detection of
radicalism through the study of moral homogene-
ity (Atari et al., 2021), the prediction of violent
protests (Mooijman et al., 2018), the identification
of moral concerns of citizens (Mouter et al., 2021;
Siebert et al., 2022), and the extraction of moral
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rhetoric supporting both stances and arguments
(Draws et al., 2022; van der Meer et al., 2022). Our
findings inform both computer scientists and social
scientists on training value classifiers. However,
we do not provide a fixed recipe since the right
model and approach depend on the time, resources,
and data available.

We show that a value classifier generally exhibits
the ability to classify moral values across domains.
However, the results are highly dependent on the
distribution of moral rhetoric in a domain.

Our experiments support the following key find-
ings. First, a value classifier can generalize to
novel domains, especially when trained on mul-
tiple domains. However, its performance on the
novel domain improves even when trained with a
small portion of data from the novel domain. Sec-
ond, pretraining a value classifier with data from
different domains has three benefits when finetun-
ing the classifier. It yields (1) better performances
on the novel domain than other settings, (2) good
performances even when little training data is avail-
able in the novel domain, and (3) smaller confu-
sion among moral values, especially among those
less frequent in the novel domain. Third, finetun-
ing on a novel domain causes catastrophic forget-
ting of the domain it was pretrained with, even
when finetuning on a small portion of data from the
novel domain. Thus, the tradeoff between benefits
of transferability and adverse effects of forgetting
must be considered in choosing the extent of fine-
tuning. Finally, despite the challenging nature of
cross-domain value classification, the majority of
classification errors are not severe in that, in all
evaluation settings, at least one annotator agrees
with the model prediction.

Our investigation opens avenues for additional
experiments with advanced methods to improve
transfer learning (Howard and Ruder, 2018; Jiang
et al., 2020; Nguyen et al., 2021) and mitigate catas-
trophic forgetting (Kirkpatrick et al., 2017; Li and
Hoiem, 2018; Thompson et al., 2019). Further,
based on the analysis of classification errors, we
suggest incorporating the annotators (dis-) agree-
ment into the training of the model, e.g., by employ-
ing the full distributions of annotations, as opposed
to the current majority approach (Uma et al., 2021).

7 Ethical Considerations

We discuss three ethical considerations relevant to
our work. First, the MFTC is composed of mono-

lingual tweets about US-centric topics. Whether or
not our conclusions hold for results across different
languages and cultures is yet to be evaluated. This
limitation may cause the perpetuation of Western
biases and values (Mehrabi et al., 2021). How-
ever, we believe that our experimental setup offers
a systematic approach to studying such cultural
influences when pertinent data is available.

Second, the MFTC has low annotator agreement
(Hoover et al., 2020, Table 6), potentially caused
by the subjectivity and complexity of annotating
values. Selecting the majority label as golden label
may perpetuate the ‘tyranny’ of the majority, which
is especially dangerous when dealing with values.
We expose the impact of the annotator agreement in
Section 4.6 and identify an avenue for addressing
it as a future direction in Section 6.

Finally, the importance of understanding moral
values has been recognized by computer scientists
(Russell et al., 2015) and designers (Friedman et al.,
2008). However, we recognize that value classifi-
cation can be misused, especially, when sensitive
attributes such as gender and race are attached to
the data. For instance, authorities could use it to
automatically identify and suppress liberal minori-
ties in non-liberal countries. Additional research
is necessary for addressing such problems, e.g., by
devising techniques that mitigate bias and unfair-
ness by design (Kleinberg et al., 2018; Dinan et al.,
2020; Vargas and Cotterell, 2020).

Acknowledgments

This research was (partially) funded by the Hybrid
Intelligence Center, a 10-year programme funded
by the Dutch Ministry of Education, Culture and
Science through the Netherlands Organisation for
Scientific Research. Furthermore, we thank Flo-
rentin Arsene for his contribution in previous itera-
tions of the project.

References
Alham Fikri Aji, Nikolay Bogoychev, Kenneth Heafield,

and Rico Sennrich. 2020. In Neural Machine Trans-
lation, What Does Transfer Learning Transfer? In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL ’20, pages
7701–7710, Online. Association for Computational
Linguistics.

Nirav Ajmeri, Hui Guo, Pradeep K. Murukannaiah, and
Munindar P. Singh. 2020. Elessar: Ethics in norm-
aware agents. In Proceedings of the 19th Conference

2735

https://doi.org/10.18653/v1/2020.acl-main.688
https://doi.org/10.18653/v1/2020.acl-main.688
https://www.ifaamas.org/Proceedings/aamas2020/pdfs/p16.pdf
https://www.ifaamas.org/Proceedings/aamas2020/pdfs/p16.pdf


on Autonomous Agents and MultiAgent Systems, AA-
MAS ’20, pages 16–24, Auckland. IFAAMAS.

Zeynep Akata, Dan Balliet, Maarten de Rijke, Frank
Dignum, Virginia Dignum, Guszti Eiben, Antske
Fokkens, Davide Grossi, Koen Hindriks, Holger
Hoos, Hayley Hung, Catholijn J. M. Jonker, Christof
Monz, Mark Neerincx, Frans Oliehoek, Henry
Prakken, Stefan Schlobach, Linda van der Gaag,
Frank van Harmelen, Herke van Hoof, Birna van
Riemsdijk, Aimee van Wynsberghe, Rineke Ver-
brugge, Bart Verheij, Piek Vossen, and Max Welling.
2020. A Research Agenda for Hybrid Intelligence:
Augmenting Human Intellect With Collaborative,
Adaptive, Responsible, and Explainable Artificial
Intelligence. Computer, 53(8):18–28.

Khalid Al-Khatib, Henning Wachsmuth, Matthias Ha-
gen, Jonas Köhler, and Benno Stein. 2016. Cross-
Domain Mining of Argumentative Text through Dis-
tant Supervision. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL ’16, pages 1395–1404.

Tareq Al-Moslmi, Nazlia Omar, Salwani Abdullah, and
Mohammed Albared. 2017. Approaches to Cross-
Domain Sentiment Analysis: A Systematic Literature
Review. IEEE Access, 5:16173–16192.

Milad Alshomary, Roxanne El Baff, Timon Gurcke, and
Henning Wachsmuth. 2022. The Moral Debater: A
Study on the Computational Generation of Morally
Framed Arguments. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics, ACL ’22, pages 1–16, Dublin, Ireland.
Association for Computational Linguistics.

Oscar Araque, Lorenzo Gatti, and Kyriaki Kalimeri.
2020. MoralStrength: Exploiting a Moral Lexicon
and Embedding Similarity for Moral Foundations
Prediction. Knowledge-Based Systems, 191:1–29.

Oscar Araque, Lorenzo Gatti, and Kyriaki Kalimeri.
2021. The Language of Liberty: A preliminary study.
In Companion Proceedings of the Web Conference
2021, WWW ’21 Companion, pages 1–4, Ljubljana,
Slovenia. Association for Computing Machinery.

Mohammad Atari, Aida Mostafazadeh Davani, Drew
Kogon, Brendan Kennedy, Nripsuta Ani Saxena, Ian
Anderson, and Morteza Dehghani. 2021. Morally
Homogeneous Networks and Radicalism. Social Psy-
chological and Personality Science, 12:1–11.

Mohamed Bahgat, Steven R. Wilson, and Walid Magdy.
2020. Towards Using Word Embedding Vector Space
for Better Cohort Analysis. In Proceedings of the
International AAAI Conference on Web and Social
Media, ICWSM ’20, pages 919–923, Atlanta, Geor-
gia. AAAI Press.

Mihaela Bornea, Lin Pan, Sara Rosenthal, Radu Florian,
and Avirup Sil. 2021. Multilingual Transfer Learn-
ing for QA Using Translation as Data Augmentation.

In Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI ’21, pages 12583–
12591, Online.

Francisco Charte, Antonio J. Rivera, María J. del Jesus,
and Francisco Herrera. 2015. Addressing Imbalance
in Multilabel Classification: Measures and Random
Resampling Algorithms. Neurocomputing, 163:3–
16.

Kinzang Chhogyal, Abhaya Nayak, Aditya Ghose, and
Hoa K. Dam. 2019. A Value-Based Trust Assessment
Model for Multi-Agent Systems. In Proceedings of
the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI ’19, pages 194–200.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated Hate Speech De-
tection and the Problem of Offensive Language. In
Proceedings of the 11th International Conference on
Web and Social Media, ICWSM ’17, pages 512–515.

Johannes Daxenberger, Steffen Eger, Ivan Habernal,
Christian Stab, and Iryna Gurevych. 2017. What is
the Essence of a Claim? Cross-Domain Claim Identi-
fication. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’17, pages 2055–2066.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL ’19, page 4171–4186.

Emily Dinan, Angela Fan, Ledell Wu, Jason Weston,
Douwe Kiela, and Adina Williams. 2020. Multi-
Dimensional Gender Bias Classification. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’20, pages
314–331.

Tim Draws, Oana Inel, Nava Tintarev, Christian Baden,
and Benjamin Timmermans. 2022. Comprehensive
Viewpoint Representations for a Deeper Understand-
ing of User Interactions With Debated Topics. In
Proceedings of the 2022 ACM SIGIR Conference on
Human Information Interaction and Retrieval, CHIIR
’22, pages 135–145, Regensburg, Germany. Associa-
tion for Computing Machinery.

Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi, and
Jianxin Liao. 2020. Adversarial and Domain-Aware
BERT for Cross-Domain Sentiment Analysis. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL ’20,
pages 4019–4028.

Denis Emelin, Ronan Le Bras, Jena D. Hwang, Maxwell
Forbes, and Yejin Choi. 2021. Moral Stories: Situ-
ated Reasoning about Norms, Intents, Actions, and
their Consequences. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language

2736

https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.18653/v1/n16-1165
https://doi.org/10.18653/v1/n16-1165
https://doi.org/10.18653/v1/n16-1165
https://doi.org/10.1109/ACCESS.2017.2690342
https://doi.org/10.1109/ACCESS.2017.2690342
https://doi.org/10.1109/ACCESS.2017.2690342
http://arxiv.org/abs/2203.14563
http://arxiv.org/abs/2203.14563
http://arxiv.org/abs/2203.14563
https://doi.org/10.1016/j.knosys.2019.105184
https://doi.org/10.1016/j.knosys.2019.105184
https://doi.org/10.1016/j.knosys.2019.105184
https://doi.org/10.1145/3442442.3452351
https://doi.org/10.1177/19485506211059329
https://doi.org/10.1177/19485506211059329
https://ojs.aaai.org/index.php/ICWSM/article/view/7358
https://ojs.aaai.org/index.php/ICWSM/article/view/7358
https://ojs.aaai.org/index.php/AAAI/article/view/17491
https://ojs.aaai.org/index.php/AAAI/article/view/17491
https://doi.org/10.1016/j.neucom.2014.08.091
https://doi.org/10.1016/j.neucom.2014.08.091
https://doi.org/10.1016/j.neucom.2014.08.091
https://doi.org/10.24963/ijcai.2019/28
https://doi.org/10.24963/ijcai.2019/28
https://ojs.aaai.org/index.php/ICWSM/article/view/14955
https://ojs.aaai.org/index.php/ICWSM/article/view/14955
https://doi.org/10.18653/v1/d17-1218
https://doi.org/10.18653/v1/d17-1218
https://doi.org/10.18653/v1/d17-1218
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.23
https://doi.org/10.18653/v1/2020.emnlp-main.23
https://doi.org/10.1145/3498366.3505812
https://doi.org/10.1145/3498366.3505812
https://doi.org/10.1145/3498366.3505812
https://doi.org/10.18653/v1/2020.acl-main.370
https://doi.org/10.18653/v1/2020.acl-main.370
https://doi.org/10.18653/v1/2021.emnlp-main.54
https://doi.org/10.18653/v1/2021.emnlp-main.54
https://doi.org/10.18653/v1/2021.emnlp-main.54


Processing, EMNLP ’21, pages 698–718, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Maxwell Forbes, Jena D. Hwang, Vered Shwartz,
Maarten Sap, and Yejin Choi. 2020. Social Chem-
istry 101: Learning to Reason about Social and Moral
Norms. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’20, pages 653–670, Online. Association for
Computational Linguistics.

Batya Friedman, Peter H. Kahn, and Alan Borning.
2008. Value Sensitive Design and Information Sys-
tems. In The Handbook of Information and Com-
puter Ethics, pages 69–101. John Wiley & Sons, Inc.,
Hoboken, NJ, USA.

Yi Fung, Christopher Thomas, Revanth Gangi Reddy,
Sandeep Polisetty, Heng Ji, Shih-Fu Chang, Kath-
leen McKeown, Mohit Bansal, and Avi Sil. 2021.
InfoSurgeon: Cross-media fine-grained information
consistency checking for fake news detection. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL-IJCNLP ’21, Online. Association
for Computational Linguistics.

Iason Gabriel. 2020. Artificial Intelligence, Values, and
Alignment. Minds and Machines, 30(3):411–437.

Justin Garten, Joe Hoover, Kate M. Johnson, Reihane
Boghrati, Carol Iskiwitch, and Morteza Dehghani.
2018. Dictionaries and distributions: Combining Ex-
pert Knowledge and Large Scale Textual Data Con-
tent Analysis: Distributed Dictionary Representation.
Behavior Research Methods, 50(1):344–361.

Jesse Graham, Jonathan Haidt, Sena Koleva, Matt
Motyl, Ravi Iyer, Sean P. Wojcik, and Peter H. Ditto.
2013. Moral Foundations Theory: The Pragmatic
Validity of Moral Pluralism. In Advances in Experi-
mental Social Psychology, volume 47, pages 55–130.
Elsevier, Amsterdam, the Netherlands.

Jesse Graham, Jonathan Haidt, and Brian A. Nosek.
2009. Liberals and Conservatives Rely on Different
Sets of Moral Foundations. Journal of Personality
and Social Psychology, 96(5):1029–1046.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021. Aligning AI With Shared Human Values. In
Proceedings of the 2021 International Conference on
Learning Representations, ICLR ’21, pages 1–29.

Myles Hollander and Douglas A. Wolfe. 1999. Non-
parametric Statistical Methods. Wiley, New York,
USA.

Joe Hoover, Gwenyth Portillo-Wightman, Leigh
Yeh, Shreya Havaldar, Aida Mostafazadeh Davani,
Ying Lin, Brendan Kennedy, Mohammad Atari,
Zahra Kamel, Madelyn Mendlen, Gabriela Moreno,

Christina Park, Tingyee E. Chang, Jenna Chin, Chris-
tian Leong, Jun Yen Leung, Arineh Mirinjian, and
Morteza Dehghani. 2020. Moral Foundations Twitter
Corpus: A Collection of 35k Tweets Annotated for
Moral Sentiment. Social Psychological and Person-
ality Science, 11(8):1057–1071.

Frederic R. Hopp, Jacob T. Fisher, Devin Cornell,
Richard Huskey, and René Weber. 2021. The ex-
tended Moral Foundations Dictionary (eMFD): De-
velopment and Applications of a Crowd-Sourced Ap-
proach to Extracting Moral Intuitions from Text. Be-
havior Research Methods, 53:232–246.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-Tuning for Text Classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL ’18,
pages 328–339.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and Efficient Fine-Tuning for Pre-
trained Natural Language Models through Principled
Regularized Optimization. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’20, pages 2177–2190.
Association for Computational Linguistics.

Kristen Johnson and Dan Goldwasser. 2018. Classifi-
cation of Moral Foundations in Microblog Political
Discourse. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL ’18, pages 720–730, Melbourne, Australia. As-
sociation for Computational Linguistics.

Brendan Kennedy, Mohammad Atari, Aida
Mostafazadeh Davani, Joe Hoover, Ali Om-
rani, Jesse Graham, and Morteza Dehghani. 2021.
Moral Concerns are Differentially Observable in
Language. Cognition, 212:104696.

Johannes Kiesel, Milad Alshomary, Nicolas Handke,
Xiaoni Cai, Henning Wachsmuth, and Benno Stein.
2022. Identifying the Human Values behind Argu-
ments. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, ACL
’22, pages 1–13, Dublin, Ireland. Association for
Computational Linguistics.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Had-
sell. 2017. Overcoming Catastrophic Forgetting
in Neural Networks. Proceedings of the National
Academy of Sciences of the United States of America,
114(13):3521–3526.

Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and
Ashesh Rambachan. 2018. Algorithmic Fairness.
AEA Papers and Proceedings, 108:22–27.

2737

https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.1002/9780470281819.ch4
https://doi.org/10.1002/9780470281819.ch4
https://aclanthology.org/2021.acl-long.133
https://aclanthology.org/2021.acl-long.133
https://doi.org/10.1007/s11023-020-09539-2
https://doi.org/10.1007/s11023-020-09539-2
https://doi.org/10.3758/s13428-017-0875-9
https://doi.org/10.3758/s13428-017-0875-9
https://doi.org/10.3758/s13428-017-0875-9
https://doi.org/10.1016/B978-0-12-407236-7.00002-4
https://doi.org/10.1016/B978-0-12-407236-7.00002-4
https://doi.org/10.1037/a0015141
https://doi.org/10.1037/a0015141
https://openreview.net/forum?id=dNy_RKzJacY
https://doi.org/10.1177/1948550619876629
https://doi.org/10.1177/1948550619876629
https://doi.org/10.1177/1948550619876629
https://doi.org/10.3758/s13428-020-01433-0
https://doi.org/10.3758/s13428-020-01433-0
https://doi.org/10.3758/s13428-020-01433-0
https://doi.org/10.3758/s13428-020-01433-0
https://doi.org/10.18653/v1/p18-1031
https://doi.org/10.18653/v1/p18-1031
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/P18-1067
https://doi.org/10.18653/v1/P18-1067
https://doi.org/10.18653/v1/P18-1067
https://doi.org/10.1016/j.cognition.2021.104696
https://doi.org/10.1016/j.cognition.2021.104696
https://webis.de/downloads/publications/papers/kiesel_2022b.pdf
https://webis.de/downloads/publications/papers/kiesel_2022b.pdf
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1257/pandp.20181018


Jonathan Kobbe, Ines Rehbein, Ioana Hulpus, and
Heiner Stuckenschmidt. 2020. Exploring Morality in
Argumentation. In Proceedings of the 7th Workshop
on Argument Mining, pages 30–40, online. Associa-
tion for Computational Linguistics.

Christopher A. Le Dantec, Erika Shehan Poole, and
Susan P. Wyche. 2009. Values as Lived Experience.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, pages 1141–
1150. ACM Press.

Zhizhong Li and Derek Hoiem. 2018. Learning without
Forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947.

Ying Lin, Joe Hoover, Gwenyth Portillo-Wightman,
Christina Park, Morteza Dehghani, and Heng Ji.
2018. Acquiring Background Knowledge to Improve
Moral Value Prediction. In Proceedings of the 2018
IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM
’18, pages 552–559, Barcelona, Spain. IEEE.

Enrico Liscio, Michiel van der Meer, Luciano C. Siebert,
Catholijn M. Jonker, Niek Mouter, and Pradeep K.
Murukannaiah. 2021. Axies: Identifying and Eval-
uating Context-Specific Values. In Proceedings of
the 20th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’21, pages
799–808, Online. IFAAMAS.

Enrico Liscio, Michiel van der Meer, Luciano C. Siebert,
Catholijn M. Jonker, and Pradeep K. Murukanna-
iah. 2022. What Values Should an Agent Align
With? Autonomous Agents and Multi-Agent Systems,
36(23):32.

Nicholas Lourie, Ronan Le Bras, and Yejin Choi. 2021.
Scruples: A Corpus of Community Ethical Judg-
ments on 32,000 Real-Life Anecdotes. In Proceed-
ings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI ’21, pages 13470–13479.

Ilia Markov and Walter Daelemans. 2021. Improving
cross-domain hate speech detection by reducing the
false positive rate. In Proceedings of the Fourth Work-
shop on NLP for Internet Freedom: Censorship, Dis-
information, and Propaganda, pages 17–22, Online.
Association for Computational Linguistics.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A Sur-
vey on Bias and Fairness in Machine Learning. ACM
Computing Surveys, 54(6).

Siddharth Mehrotra, Catholijn M. Jonker, and Myrthe L.
Tielman. 2021. More Similar Values, More Trust?
The Effect of Value Similarity on Trust in Human-
Agent Interaction. In Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society,
AIES ’21, pages 777—-783. Association for Com-
puting Machinery.

Nieves Montes and Carles Sierra. 2021. Value-Guided
Synthesis of Parametric Normative Systems. In Pro-
ceedings of the 20th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS
’21, pages 907–915, Online. IFAAMAS.

Marlon Mooijman, Joe Hoover, Ying Lin, Heng Ji, and
Morteza Dehghani. 2018. Moralization in social net-
works and the emergence of violence during protests.
Nature Human Behaviour, 2(6):389–396.

Niek Mouter, Jose Ignacio Hernandez, and Anatol Vale-
rian Itten. 2021. Public Participation in Crisis Policy-
making. How 30,000 Dutch Citizens Advised Their
Government on Relaxing COVID-19 Lockdown Mea-
sures. PLoS ONE, 16(5):1–42.

Pradeep K. Murukannaiah, Nirav Ajmeri, Catholijn J. M.
Jonker, and Munindar P. Singh. 2020. New Founda-
tions of Ethical Multiagent Systems. In Proceedings
of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’20, pages
1706–1710, Auckland. IFAAMAS.

Minh Van Nguyen, Tuan Ngo Nguyen, Bonan Min,
and Thien Huu Nguyen. 2021. Crosslingual transfer
learning for relation and event extraction via word
category and class alignments. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP ’21, pages 5414–
5426, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

James W. Pennebaker, Martha E. Francis, and Roger J.
Booth. 2001. Linguistic Inquiry and Word Count
(LIWC). Mahway: Lawrence Erlbaum Associates,
71.

Alina Pommeranz, Christian Detweiler, Pascal Wiggers,
and Catholijn M. Jonker. 2012. Elicitation of Situated
Values: Need for Tools to Help Stakeholders and
Designers to Reflect and Communicate. Ethics and
Information Technology, 14(4):285–303.

Vladimir Ponizovskiy, Murat Ardag, Lusine Grigoryan,
Ryan Boyd, Henrik Dobewall, and Peter Holtz. 2020.
Development and Validation of the Personal Values
Dictionary: A Theory-Driven Tool for Investigating
References to Basic Human Values in Text. Euro-
pean Journal of Personality, 34(5):885–902.

Xiaoye Qu, Zhikang Zou, Yu Cheng, Yang Yang, and
Pan Zhou. 2019. Adversarial category alignment
network for cross-domain sentiment classification.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL ’19, pages 2496–2508, Minneapolis, Min-
nesota, USA. Association for Computational Linguis-
tics.

Rezvaneh Rezapour, Saumil H. Shah, and Jana Diesner.
2019. Enhancing the Measurement of Social Effects
by Capturing Morality. In Proceedings of the 10th

2738

https://aclanthology.org/2020.argmining-1.4/
https://aclanthology.org/2020.argmining-1.4/
https://doi.org/10.1145/1518701.1518875
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/ASONAM.2018.8508244
https://doi.org/10.1109/ASONAM.2018.8508244
https://dl.acm.org/doi/abs/10.5555/3463952.3464048
https://dl.acm.org/doi/abs/10.5555/3463952.3464048
https://doi.org/10.1007/s10458-022-09550-0
https://doi.org/10.1007/s10458-022-09550-0
https://ojs.aaai.org/index.php/AAAI/article/view/17589
https://ojs.aaai.org/index.php/AAAI/article/view/17589
https://doi.org/10.18653/v1/2021.nlp4if-1.3
https://doi.org/10.18653/v1/2021.nlp4if-1.3
https://doi.org/10.18653/v1/2021.nlp4if-1.3
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3461702.3462576
https://doi.org/10.1145/3461702.3462576
https://doi.org/10.1145/3461702.3462576
https://dl.acm.org/doi/abs/10.5555/3463952.3464060
https://dl.acm.org/doi/abs/10.5555/3463952.3464060
https://doi.org/10.1038/s41562-018-0353-0
https://doi.org/10.1038/s41562-018-0353-0
https://doi.org/10.1371/journal.pone.0250614
https://doi.org/10.1371/journal.pone.0250614
https://doi.org/10.1371/journal.pone.0250614
https://doi.org/10.1371/journal.pone.0250614
https://dl.acm.org/doi/abs/10.5555/3398761.3398958
https://dl.acm.org/doi/abs/10.5555/3398761.3398958
https://aclanthology.org/2021.emnlp-main.440
https://aclanthology.org/2021.emnlp-main.440
https://aclanthology.org/2021.emnlp-main.440
https://doi.org/10.4018/978-1-60960-741-8.ch012
https://doi.org/10.4018/978-1-60960-741-8.ch012
https://doi.org/10.1007/s10676-011-9282-6
https://doi.org/10.1007/s10676-011-9282-6
https://doi.org/10.1007/s10676-011-9282-6
https://doi.org/10.1002/per.2294
https://doi.org/10.1002/per.2294
https://doi.org/10.1002/per.2294
https://doi.org/10.18653/v1/N19-1258
https://doi.org/10.18653/v1/N19-1258
https://doi.org/10.18653/v1/w19-1305
https://doi.org/10.18653/v1/w19-1305


Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
35–45, Minneapolis, Minnesota, USA.

Subendhu Rongali, Beiye Liu, Liwei Cai, Konstantine
Arkoudas, Chengwei Su, and Wael Hamza. 2021.
Exploring Transfer Learning For End-to-End Spo-
ken Language Understanding. In Proceedings of
the Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI ’21, pages 13754–13761, Online.

Shamik Roy, Maria Leonor Pacheco, and Dan Gold-
wasser. 2021. Identifying Morality Frames in Polit-
ical Tweets using Relational Learning. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’21, pages
9939–9958. Association for Computational Linguis-
tics.

Sebastian Ruder. 2019. Neural Transfer Learning for
Natural Language Processing. Ph.D. thesis, NUI
Galway.

Stuart J. Russell, Daniel Dewey, and Max Tegmark.
2015. Research Priorities for Robust and Beneficial
Artificial Intelligence. AI Magazine, 36(4):105–114.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
Bias Frames: Reasoning about Social and Power Im-
plications of Language. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, ACL ’20, pages 5477–5490, Online. As-
sociation for Computational Linguistics.

Shalom H. Schwartz. 2012. An Overview of the
Schwartz Theory of Basic Values. Online readings
in Psychology and Culture, 2(1):1–20.

Marc Serramia, Maite López-Sánchez, Stefano Moretti,
and Juan Antonio Rodríguez-Aguilar. 2021. On the
dominant set selection problem and its application
to value alignment. Autonomous Agents and Multi-
Agent Systems, 35(2):1–38.

Yiting Shen, Steven R. Wilson, and Rada Mihalcea.
2019. Measuring Personal Values in Cross-Cultural
User-Generated Content. In Proceedings of the
10th International Conference on Social Informat-
ics, SocInfo ’19, pages 143–156. Springer.

Luciano C. Siebert, Enrico Liscio, Pradeep K. Murukan-
naiah, Lionel Kaptein, Shannon L. Spruit, Jeroen
van den Hoven, and Catholijn M. Jonker. 2022. Esti-
mating Value Preferences in a Hybrid Participatory
System. In Proceedings of the first International
Conference on Hybrid Human-Artificial Intelligence,
HHAI ’22, pages 1–14, Amsterdam, the Netherlands.
IOS Press.

Amila Silva, Ling Luo, Shanika Karunasekera, and
Christopher Leckie. 2021. Embracing Domain Dif-
ferences in Fake News: Cross-domain Fake News
Detection using Multi-modal Data. In Proceedings
of the Thirty-Fifth AAAI Conference on Artificial In-
telligence, AAAI ’21, pages 557–565.

Nate Soares and Benya Fallenstein. 2017. Agent Foun-
dations for Aligning Machine Intelligence with Hu-
man Interests: A Technical Research Agenda. In The
Technological Singularity: Managing the Journey,
pages 103–125. Springer, Berlin.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL ’19, pages
2062–2068, Minneapolis, Minnesota, USA. Associa-
tion for Computational Linguistics.

Terne Sasha Thorn Jakobsen, Maria Barrett, and Anders
Søgaard. 2021. Spurious correlations in cross-topic
argument mining. In Proceedings of the Tenth Joint
Conference on Lexical and Computational Semantics,
*SEM 2021, pages 263–277, Online. Association for
Computational Linguistics.

Anna Tigunova, Andrew Yates, Paramita Mirza, and
Gerhard Weikum. 2019. Listening Between the
Lines: Learning Personal Attributes from Conver-
sations. In Proceedings of the 2019 World Wide Web
Conference, WWW ’19, pages 1818–1828.

Alexandra N Uma, Dirk Hovy, Barbara Plank, and Mas-
simo Poesio. 2021. Learning from Disagreement: A
Survey. Journal of Artificial Intelligence Research,
72:1385–1470.

Michiel van der Meer, Enrico Liscio, Catholijn M.
Jonker, Aske Plaat, Piek Vossen, and Pradeep K. Mu-
rukannaiah. 2022. HyEnA: A Hybrid Method for
Extracting Arguments from Opinions. In Proceed-
ings of the first International Conference on Hybrid
Human-Artificial Intelligence, HHAI ’22, pages 1–
15, Amsterdam, the Netherlands. IOS Press.

Francisco Vargas and Ryan Cotterell. 2020. Exploring
the Linear Subspace Hypothesis in Gender Bias Mit-
igation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’20, pages 2902–2913.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the 31st Conference
on Neural Information Processing Systems, NeurIPS
’17, pages 5998–6008, Long Beach, CA, USA.

Steven R. Wilson, Yiting Shen, and Rada Mihalcea.
2018. Building and Validating Hierarchical Lexicons
with a Case Study on Personal Values. In Proceed-
ings of the 10th International Conference on Social
Informatics, SocInfo ’18, pages 455–470, St. Peters-
burg, Russia. Springer.

Hua Yuan, Jie Zheng, Qiongwei Ye, Yu Qian, and
Yan Zhang. 2021. Improving Fake News Detection
with Domain-Adversarial and Graph-Attention Neu-
ral Network. Decision Support Systems, 53:113633.

2739

https://ojs.aaai.org/index.php/AAAI/article/view/17621
https://ojs.aaai.org/index.php/AAAI/article/view/17621
https://doi.org/10.18653/v1/2021.emnlp-main.783
https://doi.org/10.18653/v1/2021.emnlp-main.783
https://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf
https://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf
https://doi.org/10.1609/aimag.v36i4.2577
https://doi.org/10.1609/aimag.v36i4.2577
https://aclanthology.org/2020.acl-main.486/
https://aclanthology.org/2020.acl-main.486/
https://aclanthology.org/2020.acl-main.486/
https://doi.org/10.9707/2307-0919.1116
https://doi.org/10.9707/2307-0919.1116
https://doi.org/10.1007/s10458-021-09519-5
https://doi.org/10.1007/s10458-021-09519-5
https://doi.org/10.1007/s10458-021-09519-5
https://doi.org/10.1007/978-3-030-34971-4{_}10
https://doi.org/10.1007/978-3-030-34971-4{_}10
https://ojs.aaai.org/index.php/AAAI/article/view/16134
https://ojs.aaai.org/index.php/AAAI/article/view/16134
https://ojs.aaai.org/index.php/AAAI/article/view/16134
https://doi.org/10.1007/978-3-662-54033-6{_}5
https://doi.org/10.1007/978-3-662-54033-6{_}5
https://doi.org/10.1007/978-3-662-54033-6{_}5
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/2021.starsem-1.25
https://doi.org/10.18653/v1/2021.starsem-1.25
https://doi.org/10.1145/3308558.3313498
https://doi.org/10.1145/3308558.3313498
https://doi.org/10.1145/3308558.3313498
https://doi.org/10.1613/jair.1.12752
https://doi.org/10.1613/jair.1.12752
https://doi.org/10.18653/v1/2020.emnlp-main.232
https://doi.org/10.18653/v1/2020.emnlp-main.232
https://doi.org/10.18653/v1/2020.emnlp-main.232
https://dl.acm.org/doi/abs/10.5555/3295222.3295349
https://dl.acm.org/doi/abs/10.5555/3295222.3295349
https://doi.org/10.1007/978-3-030-01129-1{_}28
https://doi.org/10.1007/978-3-030-01129-1{_}28
https://doi.org/10.1016/j.dss.2021.113633
https://doi.org/10.1016/j.dss.2021.113633
https://doi.org/10.1016/j.dss.2021.113633


A Experimental Details

As we train deep learning models, reproducibil-
ity is an issue due to the inherent randomness of
the training procedure. Nevertheless, we seek to
provide all possible tools for reproducing our ex-
perimental results. To do so, we attach our code
and the complete set of results. Furthermore, the
following sections describe our data preprocessing,
the hyperparameters, the computing infrastructure,
and the random seeds used in our experiments.

A.1 Data Preprocessing
We choose to use the datasets as they are, despite
their imbalanced label distribution (Table 3), since
such imbalance is representative of realistic appli-
cations. We preprocess the tweets by removing
URLs, emails, usernames and mentions. Next, we
employ the Ekphrasis package2 to correct common
spelling mistakes and unpack contractions. Finally,
emojis are transformed into their respective words
using the Python Emoji package3.

A.2 Hyperparameters
To select the hyperparameters, we trained and eval-
uated the model on the entire MFTC corpus with
10-fold cross-validation. Table A1 shows the hy-
perparameters that were compared in this setting,
highlighting in bold the best performing option that
we then used in the experiments described in the
paper. If a parameter is not present in the table, the
default value supplied by the framework was used.

Table A1: Hyperparameters tested and selected

Hyperparameters Options

Model name bert-base-uncased
Number of parameters 110M
Max sequence length 64
Epochs 2, 3, 5
Batch size 16, 32, 64
Dropout 0.05, 0.1, 0.02
Optimizer AdamW
Learning Rate 5*10-5

Loss function Binary Cross Entropy

A.3 Computing Infrastructure
The following are the main libraries and computing
environment used in our experiments.

• PyTorch: 1.8.1
2https://github.com/cbaziotis/

ekphrasis
3https://pypi.org/project/emoji/

• TensorFlow: 2.5.0

• FastText: 0.8.22

• Hugginface’s Transformers: 4.6.0

• NVIDIA GeForce RTX 2080 Ti GPU

• CUDA: 11.2

• cuDNN: 8.1.1.33

Refer to the code base for a detailed list of the
libraries we used, and their versions.

The following list details the amount of GPU
hours spent for obtaining our results:

• Tables 4, B1, and B2: 44 hours

• Figures 2 and 3: 33 hours

• Tables B3, B4, and B5: 24 hours

• Table B7: 26 hours

The error analysis (Tables 5, 6, and 7) did not re-
quire additional GPU time.

A.4 Random Seeds
In our experiments, we ensured that the same train-
test splits are used across different runs of each
experiment. Further, to control for randomness, we
fixed the random seeds in the following libraries:

• Python (random.seed);

• NumPy (numpy.random.seed);

• PyTorch (torch.manual_seed);

• Tensorflow
(tensorflow.random.set_seed).

A.5 Artifacts Usage
We have mainly used two artifacts in this research:
the MFTC and BERT.

The MFTC was collected with the intent of fa-
cilitating NLP research on moral values (Hoover
et al., 2020). It can be downloaded4 and used under
the Creative Commons Attribution 4.0 license.

BERT (Devlin et al., 2019) was created with the
intent of performing, among others, text classifica-
tion. Thus, we are using it as originally intended,
under its Apache 2.0 distribution license5.

4https://osf.io/k5n7y/
5https://github.com/google-research/

bert/blob/master/LICENSE
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B Extended Results

In this Appendix we extend the results presented
in the paper. The following results are not crucial
for supporting our conclusions. Nevertheless, they
provide additional details on our experiments.

B.1 Model Comparison

We have presented the results of the transferability
analysis with the BERT model. In order to eval-
uate whether our conclusions generalize to other
model architectures, we repeat the experiment con-
ducted in the paper (see Sections 3 and 4) with the
following two additional models:

• Long Short Term Memory (LSTM), a cate-
gory of Recurrent Neural Networks (RNN).
We choose LSTM as a baseline model since
it is commonly used in moral value classifica-
tion (Lin et al., 2018; Mooijman et al., 2018;
Rezapour et al., 2019; Hoover et al., 2020).

• fastText, a machine learning approach that
learns character-level information, in contrast
to the whole word representations LSTM em-
ploys. This flexibility makes fastText a good
candidate for transfer learning. Further, we
choose fastText as it attains performances on
par with state-of-the-art deep learning meth-
ods, but is considerably faster.

Tables B1 and B2 present the results of the trans-
ferability analysis, performed and presented analo-
gously to Table 4, for LSTM, fastText, and BERT.
We observe that BERT outperforms fastText and
LSTM in most settings. This is not surprising,
since BERT is state-of-the-art for text classifica-
tion. Both BERT and fastText outperform LSTM,
the model extensively used for predicting moral
values. Further, we notice that the general trends
observed in Section 4.1 hold for all three models.
Generalizability All three models achieve better
average F1-scores in the C(source, target) setting
than the majority (target) baseline. However, com-
pared to the majority (source) baseline, C(target,
source) performs worse with LSTM, comparably
with fastText, and much better with BERT. This
suggests that a contextualized representation, as in
BERT, is necessary for value classification in novel
domains, especially for the novel domains with a
large moral vocabulary as is the case in C(target,
source).

Transferability From the average F1-scores in Ta-
ble B2, we observe that C(finetune, target) per-
forms better than or on par with C(target, target)
across all three models. The benefits of finetuning
are most evident for LSTM (7% increase in the
average m and 17% increase in M ). The benefits
can also be observed for fastText (similar m and
8% increase of M ) and BERT (similar m and 8%
increase of M ), but to a lesser degree than LSTM.

Catastrophic Forgetting We observe that all
three models suffer from catastrophic forgetting
since finetuning on Ttarget reduces the performance
on Tsource. As mentioned in the paper, the degree
of catastrophic forgetting is most evident when fine-
tuning on unbalanced datasets such as DAV than
balanced datasets such as BLM.

B.1.1 Training Time

In some applications, e.g., estimating value trends
on Twitter, value classifiers need to be re-trained
frequently since the trends can shift fast. Similarly,
to employ techniques such as active learning for
value annotation requires training a classifier at
every iteration to prompt for new labels. In such
cases, training time is an important factor for se-
lecting an approach and model. Figure B1 shows
the average training time in logarithmic scale, for
different models and scenarios (Appendix A.3 de-
scribes our computing infrastructure).

LSTM fastText BERT
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Figure B1: Average training time per model and sce-
nario

Two considerations are evident. First, fastText
trains significantly faster than the other two models.
Second, for all three models, the training time is
approximately proportional to the amount of data
in the training set—the target and finetune sce-
narios employ a similar amount of data, which is
roughly six times smaller than in the source and
all scenarios.
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Table B1: Results of the four training scenarios and three models evaluated on Tsource. The columns indicate the
dataset used as Ttarget. For each experiment we report micro F1-score (m, left-hand column) and macro F1-score
(M , right-hand column).

ALM BLT BLM DAV ELE MT SND Average

Classifier Setting m M m M m M m M m M m M m M m M

LSTM
C(source, source) 64.1 45.7 64.0 52.1 61.1 39.6 59.2 48.0 63.5 46.5 66.4 47.1 65.6 46.8 63.4 46.5
C(target, source) 47.8 19.3 41.0 6.1 53.5 25.6 38.8 5.1 51.1 20.2 39.1 11.9 35.1 16.1 43.8 14.9
C(finetune, source) 61.4 37.4 48.3 25.1 60.0 39.6 41.6 11.0 60.7 40.5 55.1 39.1 52.3 36.6 54.2 32.8
C(all, source) 64.5 46.7 63.2 49.2 62.3 41.4 59.3 47.7 64.2 48.6 66.4 48.7 65.8 48.1 63.7 47.2

fastText
C(source, source) 66.8 56.0 65.9 57.8 64.4 51.5 63.1 56.9 66.6 56.7 69.5 59.5 67.8 56.8 66.3 56.5
C(target, source) 54.5 30.9 42.7 8.5 56.4 33.1 38.7 5.1 52.2 30.0 48.9 22.0 41.3 20.3 47.8 21.4
C(finetune, source) 62.1 48.8 54.4 39.5 62.6 46.4 52.9 39.9 61.4 50.8 57.3 45.7 56.7 49.7 58.2 45.8
C(all, source) 66.9 56.3 66.0 57.5 64.8 52.1 63.1 56.7 66.9 57.0 68.7 58.2 67.5 56.4 66.3 56.3

BERT
C(source, source) 73.9 65.6 73.9 68.3 71.2 61.8 71.1 66.4 73.3 66.4 75.7 68.0 74.5 66.5 73.4 66.1
C(target, source) 61.6 37.7 43.8 13.1 62.6 43.0 38.8 5.1 59.3 40.4 52.4 39.1 54.4 36.6 53.3 30.7
C(finetune, source) 70.3 57.2 61.2 47.8 69.2 54.9 56.6 41.9 70.5 61.5 67.7 60.5 68.0 60.8 66.2 54.9
C(all, source) 73.7 65.6 73.7 68.0 71.3 62.1 71.0 66.4 73.6 66.7 75.6 67.7 74.3 66.6 73.3 66.2

Majority (source) 47.0 6.1 42.3 5.6 49.0 6.2 38.8 5.3 46.1 6.0 49.0 6.2 48.9 6.2 45.9 5.9

Table B2: Results of the four training scenarios and three models evaluated on Ttarget. The columns indicate the
dataset used as Ttarget. For each experiment we report micro F1-score (m, left-hand column) and macro F1-score
(M , right-hand column).

ALM BLT BLM DAV ELE MT SND Average

Classifier Setting m M m M m M m M m M m M m M m M

LSTM
C(source, target) 52.5 40.2 61.7 19.3 59.6 43.2 85.9 8.5 52.7 35.7 43.3 33.3 36.9 21.8 56.1 28.9
C(target, target) 47.2 25.7 64.1 8.2 71.6 55.8 92.2 9.0 56.4 24.5 37.2 18.3 50.1 26.4 59.8 24.0
C(finetune, target) 61.4 51.2 69.0 23.2 78.2 77.2 92.2 9.0 64.7 44.6 49.6 43.3 54.7 36.8 67.1 40.8
C(all, target) 57.6 48.7 65.2 20.3 71.1 64.4 90.3 9.1 60.3 42.3 47.8 41.2 51.1 35.3 63.3 37.3

fastText
C(source, target) 57.5 46.8 57.1 23.1 62.9 54.6 83.5 8.9 54.1 39.5 49.2 45.5 38.5 24.9 57.5 34.8
C(target, target) 62.4 50.4 69.2 18.3 77.6 74.2 92.1 9.0 63.8 39.5 49.4 40.8 57.4 34.0 67.4 38.0
C(finetune, target) 62.5 57.5 68.6 30.1 77.8 78.6 88.6 9.7 65.8 53.3 51.4 47.6 59.0 46.7 67.7 46.2
C(all, target) 61.8 55.3 66.8 30.4 75.2 75.3 88.1 9.8 63.1 51.6 52.5 49.2 57.1 45.1 66.4 45.2

BERT
C(source, target) 63.7 57.9 63.2 29.2 76.1 75.3 83.9 8.7 63.4 54.8 54.3 51.3 49.2 38.6 64.8 45.1
C(target, target) 68.0 56.8 71.4 23.5 84.4 84.6 92.2 9.0 70.9 52.6 59.4 55.9 65.3 44.6 73.1 46.7
C(finetune, target) 69.4 67.0 72.1 37.4 84.6 85.5 92.2 9.2 72.9 65.2 61.4 59.3 66.7 55.6 74.2 54.2
C(all, target) 69.9 67.0 71.2 34.7 83.9 85.2 90.4 9.3 71.1 62.3 61.4 59.3 66.3 55.6 73.5 53.3

Majority (target) 37.9 5.1 64.8 7.4 28.3 4.2 92.2 8.7 44.5 5.7 27.9 4.4 26.4 4.0 46.0 5.6

B.2 Composition of Tsource

In Section 3.1, we mention that in our experiments
Ttarget is always composed of one dataset of the
MFTC, while we test with Tsource being composed
of one, three, or six datasets. In the main paper we
present the results where Tsource is composed of
six datasets. Here, we present the results where it
is composed of one or three datasets, using BERT.

B.2.1 One Dataset as Tsource

Not all the settings described in Section 3.1 can
be meaningfully replicated when Tsource is com-
posed of just one dataset. For instance, C(source,
source) and C(target, target) would coincide, as
well as C(source, target) and C(target, source).
Thus, in Tables B3, B4, and B5 we present the re-
sults along the lines of generalizability, transferabil-
ity, and catastrophic forgetting, respectively. When
possible, we compare the results to the results pre-
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Table B3: Generalizability: the model is trained on Tsource and evaluated on Ttarget.

Ttarget → ALM BLT BLM DAV ELE MT SND

Tsource ↓ m M m M m M m M m M m M m M

ALM - - 65.6 21.3 72.0 55.4 87.2 8.5 58.4 30.3 45.1 33.1 44.8 24.2
BLT 33.4 11.4 - - 36.0 17.6 90.9 8.6 44.9 8.4 26.9 9.2 30.3 7.3
BLM 64.1 53.6 64.2 21.6 - - 86.4 8.4 65.2 49.7 49.7 43.3 44.5 30.4
DAV 35.8 4.9 63.0 7.3 25.3 3.9 - - 46.6 6.0 27.8 4.5 25.2 3.9
ELE 53.7 35.2 63.5 22.7 60.8 49.8 85.8 9.6 - - 48.4 41.3 47.3 30.8
MT 47.9 43.8 58.8 20.5 54.9 48.3 49.9 6.0 54.7 41.9 - - 41.5 29.2
SND 47.7 33.5 54.8 22.6 50.6 37.2 79.1 8.6 48.9 33.6 42.8 35.1 - -

Six 63.7 57.9 63.2 29.2 76.1 75.3 83.9 8.7 63.4 54.8 54.3 51.3 49.2 38.6

Table B4: Transferability: the model is trained on Tsource, retrained on Ttarget, and evaluated on Ttarget.

Ttarget → ALM BLT BLM DAV ELE MT SND

Tsource ↓ m M m M m M m M m M m M m M

ALM - - 74.3 31.8 85.3 86.0 89.8 8.6 72.4 62.7 61.1 58.8 67.4 54.5
BLT 69.4 58.0 - - 82.9 83.6 91.7 8.7 72.1 62.7 58.4 55.4 65.2 47.2
BLM 66.9 60.8 72.6 33.4 - - 92.5 8.8 72.4 66.9 61.0 59.1 68.8 62.6
DAV 23.7 13.8 68.1 16.9 56.2 43.9 - - 46.9 33.1 29.6 16.2 46.6 25.5
ELE 68.6 61.1 72.1 36.2 82.9 83.5 92.5 8.8 - - 60.0 58.7 66.9 53.6
MT 66.7 60.2 72.9 36.4 83.8 84.1 90.1 8.6 73.4 61.1 - - 65.7 52.5
SND 69.6 66.7 73.9 34.7 83.6 85.1 91.9 8.7 68.7 58.8 60.7 56.4 - -

Six 69.4 67.0 72.1 37.4 84.6 85.5 92.2 9.2 72.9 65.2 61.4 59.3 66.7 55.6

Table B5: Catastrophic forgetting: the model is trained on Tsource, retrained on Ttarget, and evaluated on Tsource.

Ttarget → ALM BLT BLM DAV ELE MT SND No retrain

Tsource ↓ m M m M m M m M m M m M m M m M

ALM - - 48.4 34.6 67.0 64.3 49.2 24.3 60.6 55.2 57.2 52.5 60.1 57.7 68.0 56.8
BLT 66.0 24.0 - - 65.7 25.8 67.6 12.7 64.8 28.6 62.5 28.9 57.6 25.7 71.4 23.5
BLM 79.4 79.8 60.2 55.4 - - 52.2 40.5 77.7 78.1 74.9 74.5 74.5 76.6 84.4 84.6
DAV 45.1 4.3 91.5 8.7 70.3 6.9 - - 59.9 6.3 45.0 4.9 63.1 6.6 92.2 9.0
ELE 67.6 48.0 57.8 33.1 70.0 55.3 46.5 8.4 - - 63.8 56.7 59.8 52.8 70.9 52.6
MT 51.3 45.0 40.2 28.2 55.4 50.8 28.4 5.1 55.8 52.2 - - 54.3 51.0 59.4 55.9
SND 54.0 37.5 39.9 20.4 55.8 41.7 26.9 4.4 55.0 43.3 57.4 47.3 - - 65.3 44.6

sented in the paper (where Tsource is composed of
six datasets). As in the paper, we highlight in bold
the best result and the results that are not signifi-
cantly different from it.

Generalizability To evaluate generalizability (Ta-
ble B3), the model is trained on Tsource and evalu-
ated on Ttarget, akin to the C(source, target) set-
ting described in the paper. Thus, at the end of the
table, we append the results of C(source, target)
from Table 4 (where Tsource is composed of six
datasets). First, we notice that the results are gener-
ally better when Tsource is composed of six datasets.
Further, there is no dataset that stands out as clearly
better than the other six in generalizability.

Transferability To evaluate transferability (Ta-
ble B4), the model is trained on Tsource, retrained
on Ttarget, and evaluated on Ttarget, akin to the

C(finetune, target) setting described in the pa-
per. Thus, at the end of the table, we append the re-
sults of C(finetune, target) from Table 4 (where
Tsource is composed of six datasets). First, we no-
tice that the results are generally better or on par
to the results where Tsource is composed of six
datasets. Further, there is no dataset that stands out
as clearly better than the other six in transferability.
These two aspects suggest that a combination of the
six datasets as Tsource consistently leads to better
transferability results.

Catastrophic Forgetting To evaluate catas-
trophic forgetting (Table B5), the model is trained
on Tsource, retrained on Ttarget, and evaluated on
Tsource, akin to the C(finetune, source) setting
described in the paper. However, we cannot
compare the results with the C(finetune, source)
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setting, as the evaluation sets differ (one dataset in
Table B5, six datasets in C(finetune, source) in
Table 4). However, we compare to the case where
the model is only trained on Tsource. Differently
from the previous tables, the evaluation sets (i.e.,
Tsource) are consistent in every row, not in every
column. Thus, we highlight the best results per
row. It is evident that catastrophic forgetting
happens even when Tsource is composed of one
dataset. Further, there is no dataset that stands out
as better than the other six in mitigating forgetting.

B.2.2 Three Datasets as Tsource
When employing three datasets as Tsource, the set-
tings described in Section 3.1 can be meaningfully
reproduced. However, the selection of the three
datasets (out of the six available at each experi-
ment) that compose Tsource is not trivial. Experi-
menting with all possible combinations would re-
sult in 6!

3!(6−3)! = 20 experiments per setting. In
order to simplify the experiments, we decide to
test with only one combination of three datasets,
selected as the best performing combination from
the experiments in Section B.2.1. We average the
results of Tables B3, B4, and B5, and for each
dataset used as Ttarget, we select the three datasets
that led to the best average performance. Due to the
class imbalance of all datasets, one of the biggest
challenges is to achieve good performances across
all values. Thus, we decide to consider only the
average macro F1-scores. We report the best result-
ing datasets in Table B6—for each dataset that we
use as Ttarget in the following experiments, we use
the indicated three datasets as Tsource.

Table B6: The three datasets used as Tsource in Table B7

Ttarget Tsource

ALM BLM, MT, SND
BLT ELE, MT, SND
BLM ALM, ELE, MT
DAV BLT, BLM, ELE
ELE BLM, MT, SND
MT BLM, ELE, SND
SND BLM, ELE, MT

Table B7 reports the complete cross-domain eval-
uation results, analogously to Table 4. For further
comparison, we add the results from Table 4 (where
Tsource is composed of six datasets). The results
in the bottom half of the table can be directly com-
pared, as in each column the model is evaluated
on the same test set. However, the results on the
top half cannot be directly compared, as the model

is evaluated on different test sets (three and six
datasets, respectively).

It is evident that the results are consistent with
the results presented in the main paper. In the top
half of the table, the best performing settings are
C(source, source) and C(all, source), both when
Tsource is composed of three and six datasets. In
the bottom half, where the results can be directly
compared, we notice that the best performing set-
tings are consistent, and lead to comparable results.

We conclude that selecting the three best per-
forming datasets as Tsource has neither advantage
nor disadvantage over selecting all six datasets.
However, selecting all six allows for a consistent
evaluation, where all MFTC datasets are used in
all evaluation settings, thus avoiding the arbitrary
choice of datasets to be used as Tsource that we
described at the beginning of this section.
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Table B7: Results of the four training scenarios evaluated on Tsource and Ttarget, when Tsource is composed of
three or six datasets. The columns indicate the dataset used as Ttarget. We report both micro F1-score (m, left
column) and macro F1-score (M , right column).

ALM BLT BLM DAV ELE MT SND Average

Classifier Setting m M m M m M m M m M m M m M m M

Three datasets as Tsource

C(source, source) 70.9 68.8 66.1 62.5 67.2 63.4 76.1 70.3 71.2 69.1 75.0 71.8 72.4 69.6 71.3 67.9
C(target, source) 52.8 40.7 34.2 8.8 59.1 49.4 46.3 6.0 52.9 44.3 50.6 43.8 48.3 37.3 49.2 32.9
C(finetune, source) 64.1 59.4 50.9 38.5 65.0 58.8 58.7 34.6 66.9 63.7 68.2 65.7 65.0 62.7 62.7 54.8
C(all, source) 70.9 69.1 66.3 62.6 67.1 63.4 75.9 69.8 70.9 68.9 74.6 71.5 72.5 69.7 71.2 67.9

Six datasets as Tsource

C(source, source) 73.9 65.6 73.9 68.3 71.2 61.8 71.1 66.4 73.3 66.4 75.7 68.0 74.5 66.5 73.4 66.1
C(target, source) 61.6 37.7 43.8 13.1 62.6 43.0 38.8 5.1 59.3 40.4 52.4 39.1 54.4 36.6 53.3 30.7
C(finetune, source) 70.3 57.2 61.2 47.8 69.2 54.9 56.6 41.9 70.5 61.5 67.7 60.5 68.0 60.8 66.2 54.9
C(all, source) 73.7 65.6 73.7 68.0 71.3 62.1 71.0 66.4 73.6 66.7 75.6 67.7 74.3 66.6 73.3 66.2

Three datasets as Tsource

C(source, target) 64.8 58.9 61.4 26.6 77.1 74.5 85.3 8.8 60.0 54.7 54.9 51.7 51.3 41.1 65.0 45.2
C(target, target) 68.1 56.8 71.1 23.3 83.8 84.2 92.2 8.7 71.0 53.6 59.1 54.9 65.2 44.7 72.9 46.6
C(finetune, target) 70.1 67.4 72.6 37.4 84.9 85.4 92.2 8.7 72.9 64.7 61.2 59.6 68.0 58.3 74.5 54.5
C(all, target) 69.6 66.2 71.2 35.0 84.0 85.1 91.0 9.3 71.7 64.2 61.0 59.2 67.8 58.3 73.7 53.9

Six datasets as Tsource

C(source, target) 63.7 57.9 63.2 29.2 76.1 75.3 83.9 8.7 63.4 54.8 54.3 51.3 49.2 38.6 64.8 45.1
C(target, target) 68.0 56.8 71.4 23.5 84.4 84.6 92.2 9.0 70.9 52.6 59.4 55.9 65.3 44.6 73.1 46.7
C(finetune, target) 69.4 67.0 72.1 37.4 84.6 85.5 92.2 9.2 72.9 65.2 61.4 59.3 66.7 55.6 74.2 54.2
C(all, target) 69.9 67.0 71.2 34.7 83.9 85.2 90.4 9.3 71.1 62.3 61.4 59.3 66.3 55.6 73.5 53.3

Majority (target) 37.9 5.1 64.8 7.4 28.3 4.2 92.2 8.7 44.5 5.7 27.9 4.4 26.4 4.0 46.0 5.6
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