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Abstract

Open-domain conversational systems are as-
sumed to generate equally good responses on
multiple domains. Previous work achieved
good performance on the single corpus, but
training and evaluating on multiple corpora
from different domains are less studied. This
paper explores methods of generating relevant
responses for each of multiple multi-domain
corpora. We first examine interleaved learn-
ing which intermingles multiple corpora as
the baseline. We then investigate two multi-
domain learning methods, labeled learning
and multi-task labeled learning, which en-
code each corpus through a unique corpus em-
bedding. Furthermore, we propose Domain-
specific Frequency (DF), a novel word-level
importance weight that measures the relative
importance of a word for a specific corpus
compared to other corpora. Based on DF, we
propose weighted learning, a method that inte-
grates DF to the loss function. We also adopt
DF as a new evaluation metric. Extensive ex-
periments show that our methods gain signifi-
cant improvements on both automatic and hu-
man evaluation. We share our code and data
for reproducibility.1

1 Introduction

Recent work has achieved improvements in gen-
eral performance for open-domain response gener-
ation (Vinyals and Le, 2015; Serban et al., 2017;
Li et al., 2016; Xu et al., 2018). However, most
studies are restricted to single-corpus training and
evaluating, while there lacks studies for training
and evaluating with multiple corpora from differ-
ent domains. Single-corpus training has intrinsic
limitations. For example, a corpus of everyday
chats, e.g., the PersonaChat corpus (Dinan et al.,
2019), does not cover technical topics discussed in

* This work was done prior to the author joining Amazon.
1https://github.com/yujie-xing/

Balancing_Multi_Domain_Corpus_Learning_
for_Open_Domain_Response_Generation

Context What are you going to do on the re-
mote system exactly?

PersonaChat I am going to be a pilot. I am going to
fly planes.

4 corpora (con-
catenated)

I am going to go to the beach.

Table 1: Irrelevant responses generated from fine-tuned
GPT-2. The GPT-2 model is fine-tuned respectively on
PersonaChat / concatenated 4 corpora (OpenSubtitles,
Twitter, Ubuntu, PersonaChat)

Test set
Fine-tune corpus OSDB Twitter Ubuntu PersonaChat
PersonaChat 478.8 159.6 264.7 19.6
4 corpora
(concatenated) 392.8 110.7 199.2 19.0

Table 2: Imbalanced perplexity performance of fine-
tuned GPT-2. The GPT-2 model is fine-tuned on
PersonaChat / concatenated 4 corpora (OpenSubtitles,
Twitter, Ubuntu, PersonaChat)

Ubuntu chatlogs (Lowe et al., 2015). A conversa-
tional system that learns only from PersonaChat or
from multiple corpora without an appropriate tech-
nique is not likely to generate relevant responses
for certain topics (see Table 1). Therefore, it is nec-
essary for an open-domain conversational system
to learn from multiple corpora, and to learn with
good techniques.

Furthermore, the case of using a single small-
scale open-domain corpus has apparent weak-
nesses. A common way of dealing with a small-
scale corpus is through fine-tuning (Li et al., 2016;
Akama et al., 2017; Chu et al., 2017). Fine-tuning
on a single corpus tends to make the model overfit
on that specific corpus while performing worse on
other corpora. Table 2 shows the result of a GPT-2
model gaining good performance on PersonaChat
while performing poorly on other corpora.

This paper explores how to train and evaluate
on multiple corpora from different domains for the
open-domain response generation task. We propose
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several methods to make a model generate relevant
responses for each of the multiple corpora.

Since simply training multiple corpora one by
one does not solve the imbalanced performance
(as shown in Table 1 and 2), we first investigate
interleaved learning, a method that intermingles
the training data instead of simply concatenating,
which ensures a model learns from all corpora
evenly. We use this method as a baseline. Ad-
ditionally, we explore two multi-domain learning
methods: labeled learning and multi-task labeled
learning. Labeled learning comes from a control
technique in response generation (Li et al., 2016;
Johnson et al., 2017; Yang et al., 2017). Previous
works focus on controlling persona and style, while
our method controls corpus’s information with the
corpus embedding. Multi-task labeled learning is
inspired by works of domain adaption (Luan et al.,
2017; Niu and Bansal, 2018; Chu and Wang, 2018),
where multiple losses from both the corpus clas-
sifier and response generator are minimized. To
the best of our knowledge, this paper is the first
that uses corpus embeddings on the open-domain
response generation task for multiple corpora.

Furthermore, we propose a novel weighted learn-
ing with Domain-specific Frequency (DF). DF is
a word-level importance weight (Leopold and Kin-
dermann, 2002) that assigns different weights (im-
portance) to the same words from different corpora.
In the training process, we weight the loss of a
model with DF, so that the model focuses on the
most important words for a specific corpus.

For automatic evaluation metrics, we eliminate
the stop words and use ROUGE-1 (precision, re-
call, F1) (Lin, 2004) to measure the relevance of
the generated responses. In addition, we adopt
DF to see how relevant the generated response of
a model is to a specific corpus. We will explain
DF as an evaluation metric in Section 4.4. Results
show that for overall performance, the best method
(weighted learning) improves 27.4% on precision,
45.5% on recall, and 34.1% on F1. Further, it has
at least 20.0% higher DF, stating that it uses more
important words from the “correct” corpus. We
also conduct an extensive human evaluation on
2400 generated responses. The human evaluation
shows a highly significant (p < 0.001) improve-
ment on all of our proposed methods, especially
the weighted learning method.

We summarize our work as follows:

• We explore the problem of training and eval-

uating on multiple corpora from different do-
mains for open-domain response generation.
The task is to make the conversational models
generate relevant responses for each corpus.

• We examine several multi-domain corpora
learning methods for their ability to solve the
proposed task.

• We propose Domain-specific Frequency (DF)
as in weighted learning and as an evaluation
metric. DF distinguishes important words for
each corpus and helps a model to focus on
these important words in the training process.

2 Related Work

Open-Domain Response Generation Recent
work of open-domain response generation gener-
ally follows the work of Ritter et al. (2011) where
the task is treated as a machine translation task, and
many of them use a Seq2Seq structure (Sutskever
et al., 2014) following previous work (Vinyals and
Le, 2015; Shang et al., 2015; Sordoni et al., 2015).
In recent years, substantial improvements have
been made (Serban et al., 2017; Li et al., 2016;
Wolf et al., 2019), and embeddings are used to
control response generation on extra information
such as persona (Li et al., 2016), profiles (Yang
et al., 2017), coherence (Xu et al., 2018), emotions
(Huang et al., 2018), and dialogue attributes like
response-relatedness (See et al., 2019). However,
there is a lack of work that uses embeddings to
control response generation over multiple corpora.
Our work follows the common models of open-
domain conversational systems, while we study the
problem of multiple corpora of different domains.

Multi-Domain Learning and Domain Adaption
Multi-domain learning aims at making a con-
versational model learn from multiple domains
to prevent the performance from degrading due
to domain differences (Ben-David et al., 2007).
There are two categories of solutions for multi-
domain learning (Joshi et al., 2012): (i) capturing
domain-specific characteristics in the parameters
(Daumé III, 2007); (ii) capturing the relationship
among different domains (Saha et al., 2011).

Some work of natural language generation and
machine translation is related to multi-domain
learning. Luan et al. (2017) and Niu and Bansal
(2018) use multi-task learning for domain adaption
respectively on speaker-role and politeness. Wen
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et al. (2016) and Akama et al. (2017) utilizes fine-
tuning as a common way of domain adaption for
language generator and style transferer. For ma-
chine translation, in order to deal with the mixed-
domain parallel corpus, Zeng et al. (2018) adjust
the weights of target words in the training objec-
tive based on their relevance to different domains.
We differ in that we propose DF and we deal with
the response generation task. Chu et al. (2017)
propose mixed fine-tuning, which adds the out-of-
domain pre-training data to the fine-tuning dataset,
and they observe an improvement of performance.
In this paper, we also mix small-scale fine-tuning
datasets with out-of-domain training data, while
the data we add is not necessarily used during pre-
training. Shi et al. (2015) state that fine-tuning can
be done by placing the corpus to be fine-tuned at
the end of the entire corpus, which is an extension
of curriculum learning proposed by Bengio et al.
(2009). We also explore how the order of multi-
ple corpora influences the result, but our focus is
on balancing performance. Recently, Smith et al.
(2020) investigated blending conversational skills
with knowledge and empathy skills, where they
mix 3 corpora. They focus on selecting appropri-
ate skills and they propose a blended corpus with
labels, while we focus on generating responses that
are most relevant to a specific corpus.

3 Base Models

We use two base models: an LSTM Seq2Seq model
with attention (Hochreiter and Schmidhuber, 1997;
Sutskever et al., 2014; Bahdanau et al., 2015) and
a pre-trained GPT-2 model (Radford et al., 2019).
The LSTM Seq2Seq model with attention is a com-
mon model for conversational systems (Li et al.,
2016; See et al., 2019), and the GPT2 model is a
state-of-the-art model for the response generation
task (Zhang et al., 2020; Zhao et al., 2020).

The basic task of response generation is to pre-
dict the next word given the past and current words
of the context and response, and to make the gen-
erated response as similar to the original response
as possible. The task can be described as follows.
Probability of response Y given context X is pre-
dicted as:

P (Y |X) =
∏n

t=1 P (yt|y1, . . . , yt−1, X), (1)

where X = x1, . . . , xm and Y = y1, . . . , yn is a
context-response pair.

3.1 LSTM Seq2Seq Model with Attention
We simplify an LSTM with attention unit as
LSTM ∗ since it is well introduced in previous
work (Li et al., 2016). We calculate the hidden
vector ht at step t as:

ht = LSTM ∗(ht−1, E(zt)), (2)

where ht−1 ∈ Rdim is the hidden vector at step
t − 1, dim is the dimension of hidden vectors,
and E(zt) is the word embedding for word zt ∈
(x1, . . . , xm, y1, . . . , yn−1). We apply dot multiple
in the attention mechanism when calculating the
context vector ct:

ct = H · (softmax(H> · ht))
where H ∈ Rd×m is the concatenation of hidden
vectors from the encoder. ct is input to the next step
t+1 in the decoder. Each token’s hidden vector ht
in the decoder is combined with ct through a linear
layer and an activation to predict the next token.

3.2 GPT-2
As for GPT-2, we follow the adaption of Wolf
et al. (2019). The transformer block of GPT-2 cap-
tures the relation of multiple words in one sentence,
which largely follows Vaswani et al. (2017). The
hidden vector to be input to the transformer block
is calculated as:

h0[t] = E(X,Y[1:t]) + (E0, E1) +Wp, (3)

where Y[1:t] is (y1, . . . , yt), E(X,Y[1:t]) is the sub-
word embedding for context X and response Y[1:t].
E0 and E1 are dialogue-state embeddings, which
tutor the model to distinguish between contexts and
responses. Wp is a pre-trained position embedding.
The probability of the subword to generate is then
calculated as:

h[t] = transformer_block(h0[t]) (4)

P (y)t+1 = softmax (E>(h[t])), (5)

where y ∈ V , and V stands for the sub-word vo-
cabulary. We simplify the structure of transformer
block as transformer_block . In the block, a mask
is filled in the attention matrix, which bans past
words from attending to future words. This en-
sures that the model follows the traditional lan-
guage modeling. The hidden vector of tth sub-word
is used to generate the probability distribution for
the vocabulary (P (y), y ∈ V ) for (t + 1)th sub-
word. E> means that the model uses the sub-word
embeddings in calculating sub-word probabilities
for generation (Press and Wolf, 2017).
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4 Proposed Methods

4.1 Interleaved Learning

Interleaving is a concept in cognitive psychology
proven to be efficient for learning (Kornell and
Bjork, 2008): intermingling learning material
of different topics helps students to gain better
learning results than learning the material topic
by topic. Previous work from machine learning
also shows that training order greatly influences
the performance (Bengio et al., 2009). When the
training is conducted on a simple concatenation of
multiple corpora, the model tends to concentrate
on the last corpus (Shi et al., 2015). To address this
issue, we propose interleaved learning as an alter-
native: each time we collect one context-response
pair from each of the corpora, and we randomly
shuffle them. For example, if there are 3 corpora
(a1, a2, ...), (b1, b2, ...), (c1, c2, ...) where ai, bi
and ci are context-response pairs, the resulting
mixed corpus might be (b1, a1, c1, c2, b2, a2, ...).
Interleaved learning guarantees that the combined
corpus is evenly distributed, which helps the model
learn from multiple corpora evenly.

4.2 Labeled Learning

We propose our labeled learning as follows: each
corpus is assigned a randomly initialized unique
embedding, and the conversational model learns
these embeddings together with conversations dur-
ing the training period. We denote these embed-
dings as “corpus embedding”, or Ec. A model
captures each corpus’s characteristics through the
corpus embedding and uses it to control the gener-
ated responses. To know which corpus embedding
to use, each context is labeled with which corpus
it comes from, and these labels are provided to
the model both in the training and generation pe-
riod. We propose an approach for each of our base
models for encoding corpus embeddings.

For the LSTM model, following Li et al. (2016),
we input the corpus embedding Ec into the first
layer of the decoder LSTM at every step, together
with the response words. Calculation of a hidden
vector ht in the decoder LSTM is then adapted to:

ht = LSTM ∗(ht−1, E(yt), Ec). (6)

The structure is illustrated in the dashed red rectan-
gle of Figure 1a.

For the GPT-2 model, our method is based on
Wolf et al. (2019). Instead of two kinds of dialogue-

state embeddings (context embedding E0 and re-
sponse embedding E1), we replace the response
embedding with corpus embeddings Ec. As a re-
sult, the model is aware of which corpus the re-
sponse belongs. Calculation of a hidden vector to
be input to the transformer block is adapted to:

h0[t] = E(X,Y[1:t]) + (E0, Ec) +Wp. (7)

The structure is illustrated in Figure 1b.

4.3 Multi-Task Labeled Learning
Labeled learning needs corpus labels for both train-
ing and generation processes. To avoid providing
labels in the generation process, we combine multi-
task learning with labeled learning on multiple cor-
pora. Here, the conversational model has to predict
by itself which corpus a context belongs to, which
is expected to result in worse performance, but less
information is required. In the encoder, we have a
classifier layer that uses the sum of hidden vectors
from the encoder (

∑
H) to predict the corpus of a

context. The loss of the classifier is calculated as:

Lc = −log
(
softmax

((∑
H
)
·W[c]

))
, (8)

where W[c] ∈ Rdim is the part from the classifier
layer for target corpus c. Lc is summed up with
the loss from the response generator. The predicted
corpus embedding is input into the decoder like
labeled learning (see Section 4.2). The simplified
structure is illustrated in Figure 1a.

4.4 Document-specific Frequency (DF)
We propose Domain-specific Frequency (DF) to
measure how important a word is with respect to a
different corpus under a collection of corpora. DF
is used for weighted learning and evaluation. It is
calculated as follows:

f(w)d = freq(w)d −minv{freq(v)d} (9)

df(w)d =

{
0 f(w)d = 0

f(w)d∑
d∈D f(w)d

f(w)d 6= 0
(10)

DF(w)d =
df(w)d

maxv{df(v)d}
, (11)

where freq(w)d is the relative frequency of a word
w in a corpus d, and D represents the set of all
corpora. It is easy to see from Equation 10 that
DF(w)d represents the importance of word w for
corpus d compared to other corpora. For a word
w that frequently appears in corpus d but seldom
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Which version ? [EOS] I use Ubuntu 16.04 .

I use Ubuntu 16.04 . [END]

Corpus Embedding

Corpus Classifier

Loss1 Loss2+

(a) Structure of multi-task labeled learning on LSTM model
Which Gversion ? [SEP] I Guse GUbuntu G16 .

Corpus EmbeddingContext Embedding

Position Embedding

+

+

04 .

(b) Corpus embeddings with sub-word embeddings on GPT-2

.

LSTM / GPT2

[EOS]?versionWhich 16.04UbuntuuseI

.16.04UbuntuuseI [END]

DFOSDB DFTwitter DFUbuntu DFPersonaChat

OSDB Twitter Ubuntu PersonaChat

.16.04UbuntuuseI [END]0.2

Loss
×

Backward

0.8 1.0 1.0 1.0 1.0

(c) Structure of weighted learning

Figure 1: Adapted models with labeled learning, multi-task labeled learning and weighted learning

in other corpora (e.g., “upgrade” from Ubuntu
corpus),

∑
d∈D f(w)d is close to f(w)d, making

DF(w)d approach 1. A word that frequently ap-
pears in all corpora (e.g., “I”, “you”) is punished,
resulting in a lower DF(w)d. A word that seldom
appears in corpus d but frequently appears in other
corpora (e.g., “music” seldom appears in Ubuntu
corpus, but is common in other corpora) has the
lowest DF(w)d. Words that appear minimal times
(e.g., once) in a corpus are ignored with Equation
9. Words that appear few times (e.g., twice or
three times) are not dealt with, yet they are not of
great influence in our experiments. We apply a nor-
malization in the final step (Equation 11) to make
DF(w)d of each corpus d range from 0 to 1.

We show DF(w)Ubuntu and DF(w)PersonaChat of
some words in Table 3. We also show the re-
sults of TF-IDF (log normalization variant), a com-
monly used word importance weight, as a com-
parison. As expected, for the corpus Ubuntu and
PersonaChat, most unique words w have very dif-
ferent DF(w)Ubuntu and DF(w)PersonaChat. Unique
words of each corpus get the highest values for
the corresponding corpus, like “upgrade” for the
Ubuntu corpus and “music” for the PersonaChat
corpus; these words receive the lowest values for
incorrect corpora, like “upgrade” for PersonaChat
and “music” for Ubuntu. The stress on unique
words makes DF more suitable for our task.

Weighted Learning with DF Weighted learning
weights the loss of the predication y′ for each tar-
get word w using DF(w)d. In the training period,
each context is labeled with the corpus d it belongs

Word TF-IDF(%) DF(%) αDF(α=100)

Ubuntu PersonaChat Ubuntu PersonaChat Ubuntu PersonaChat

i 100.0 62.6 20.8 42.1 2.6 7.3
to 64.6 32.8 26.9 24.9 3.8 3.1
it 83.2 21.7 38.5 14.5 5.1 2.1

laptop 5.4 0.2 89.8 4.5 76.0 1.0
upgrade 6.8 0.1 95.6 0.4 91.2 1.0

file 15.7 0.1 96.0 0.3 86.4 0
windows 12.2 0.1 97.1 0.1 86.3 1.0
ubuntu 27.5 0 99.9 0 99.5 0
teacher 0.1 2.2 0.7 77.8 1.0 53.5
music 1.5 7.6 4.8 82.9 1.2 49.1
travel 0.1 3.1 0.3 88.9 1.0 57.1
hobby 0.1 1.6 0.6 94.3 1.1 81.7
hiking 0 1.5 0 97.6 0 91.8

Table 3: Normalized TF-IDF (%), DF (%) and αDF of
some words for Ubuntu and PersonaChat (more exam-
ples on other corpora can be found in Section A)

to, so that the model can use the DF(w)d of the
corresponding corpus. Here DF is calculated only
on the training sets. In the generation step, corpus
labels are not provided, so DF is not used. The loss
is weighted as follows :

Lweighted = DF(w)d ·
(
−log

(
softmax (y′w)

))
,

(12)
where y′w represents the model’s predicted score
for the target word w. With the weighted loss, the
model concentrates on words that are important to
the corpus of the current context, and focuses less
on frequent words or words that are not important
to the current corpus. The structure is illustrated in
Figure 1c.

Evaluation with DF For the generated responses
to be relevant to a specific corpus, they have to
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be similar to that corpus, which includes using
important words of that corpus (e.g., responses
generated for the Ubuntu corpus should have more
technical words than other corpora). Thus, we
propose DF as an evaluation metric that shows to
what extent the generated responses use important
words of the corresponding corpus. We want to
decrease the influence of common words like “i”,
“to”, etc., and thus address the important words. So
we adopt exponential DF with α as the base (αDF):

αDF(w)d =

{
0 DF(w)d = 0

αDF(w)d DF(w)d 6= 0,
(13)

where α is a constant. αDF(w)d rescales DF(w)d
by exponent with α as a base. In our experiments,
we set α to be 100, which transforms the range
of the metric from (0, 1) to (0, 100). This makes
the difference between high and low αDF more
significant than DF and gives a 100-scale score. For
each corpus d ∈ D, we average αDF(w)d on word
w from the generated responses of each test set,
which gives us αDFd scores (d ∈ D) for each test
set. Ideally, the generated responses of a specific
corpus d should have a higher αDFd score and
lower αDFd score (d ∈ {d′ ∈ D | d′ 6= d}). For
example, generated responses of the Ubuntu test
set should have a higher αDFUbuntu score, while
a lower αDFUbuntu score (Ubuntu ∈ {d′ ∈ D |
d′ 6= Ubuntu}). αDFd scores for responses from
the original test sets are the standard scores.

We show αDF(w)Ubuntu and αDF(w)PersonaChat
(calculated purely on test set) in Table 3. As ex-
pected, αDF has a more significant difference be-
tween important words and common words.

Is DF a Legal Evaluation Metric? Although
DF is used for both weighted learning and eval-
uation, we see DF as a suitable evaluation metric
for our task and not biased in favor of weighted
learning due to: 1) A word receives multiple DF
values in the training process given the corpus that
a context belongs to; 2) in the generation process,
DF is never used. 3) In the evaluation process,
DF can be calculated purely on the test sets. Note
that since a word receives multiple DF values in
the training step, it is equivalently likely for the
model trained with weighted learning to be influ-
enced by DF weights of incorrect corpus. Above
all, in the evaluation step, if the trained model is
influenced more by DF weights from the correct
corpus, it already means that the model is good

at distinguishing which corpus a given context is
from, thus is suitable for our task.

5 Experiment Setup

5.1 Datasets
Data Collection We collected 4 commonly used
English corpora of different domains from the Par-
lAI platform (Miller et al., 2017): OpenSubtitles
corpus (OSDB)2 (Lison et al., 2018), Twitter cor-
pus3 (Miller et al., 2017), Ubuntu chatlogs cor-
pus (Lowe et al., 2015)4 , and PersonaChat cor-
pus (Zhang et al., 2018) from the NeurIPS 2018
ConvAI2 Challenge (Dinan et al., 2019). Each
corpus contains 250K context-response pairs, as
much as the size of the original PersonaChat used
in ConvAI2 competition. This gives us 1M context-
response pairs in total. The corpus for training is
a combination of these 4 corpora. For comparison,
we have a single corpus–PersonaChat–trained on
both base models. For testing, each of the 4 corpora
has a test set of 30K context-response pairs, which
is the same size of the test set of PersonaChat.

The OpenSubtitles corpus (OSDB) is a noisy
dataset of film subtitles. We removed films that
belonged to genres that usually had few conversa-
tions, such as musical and documentary films. We
regarded two neighboring sentences as a context-
response pair following Vinyals and Le (2015).
The Twitter corpus contains one-turn dialogues
extracted from Twitter. The original author has
already cleaned it, so we only removed special
symbols such as hashtags, Emojis, and @. The
Ubuntu corpus contains dialogues about solving
technical problems of Ubuntu. The PersonaChat
corpus contains dialogues between two workers
acting as specific personas; we focused on the di-
alogue part and ignored the persona part. This
corpus allows us to compare our base models with
state-of-the-art performance. These 4 corpora have
very different characteristics, confirmed by the im-
balanced performance of GPT-2 fine-tuned on a
single corpus (see Table 2).

5.2 Training and Decoding
We used Pytorch (Paszke et al., 2017) to implement
the LSTM Seq2Seq model with attention and the
pre-trained GPT-2 models. For GPT-2, we adapted

2http://www.opensubtitles.org/
3https://github.com/Marsan-Ma/chat_

corpus/
4https://github.com/rkadlec/

ubuntu-ranking-dataset-creator
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Test set

Model Corpus / Method OSDB Twitter Ubuntu PersonaChat Overall
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM

PersonaChat (single) 11.8 8.9 8.1 12.4 8.6 8.9 12.1 8.1 7.7 56.7 43.4 45.8 23.2 17.2 17.6
Concatenated 11.0 7.7 7.2 15.7 10.9 11.4 36.5 17.8 20.1 57.7 44.0 46.4 30.2 20.1 21.3
Interleaved 24.1 10.1 11.7 24.3 12.5 14.9 58.4 24.9 29.6 56.1 41.5 44.3 40.7 22.3 25.1
Labeled 23.9 10.1 11.3 24.5 13.2 15.5 61.6 26.5 31.6 56.4 43.0 45.4 41.6 23.2 26.0
Multi-task Labeled 23.2 9.6 11.1 23.2 12.3 14.5 56.4 23.8 28.3 53.2 40.6 42.7 39.0 21.6 24.2
Weighted 26.6 11.9 13.4 29.7 12.2 15.6 78.4 35.2 41.2 62.4 42.5 47.1 49.3 25.5 29.3

GPT-2

PersonaChat (single) 15.0 12.4 10.8 19.6 13.2 13.9 24.8 16.2 15.5 70.0 57.1 58.8 32.4 24.7 24.7
Concatenated 17.4 14.1 12.6 24.5 16.4 17.2 35.0 22.5 22.4 66.8 55.4 56.3 35.9 27.1 27.1
Interleaved 40.0 20.5 22.3 31.0 17.9 20.1 81.7 38.1 44.3 68.7 56.2 57.6 55.3 33.2 36.1
Labeled 38.6 19.9 21.6 31.4 19.4 21.1 84.2 38.4 45.0 70.7 57.2 59.0 56.2 33.7 36.7
Multi-task Labeled 38.4 19.8 21.4 31.2 18.6 20.6 80.9 37.8 43.8 68.0 56.0 57.3 54.6 33.0 35.8
Weighted 41.9 21.2 23.4 39.9 18.4 22.3 86.8 43.3 48.6 69.0 53.2 55.8 59.4 34.0 37.5

Table 4: Precision, recall and F1 of ROUGE-1 (‰) for baselines and proposed methods fine-tuned on 4 corpora
(stop words eliminated)

Test set

Model Corpus / Method

OSDB Twitter Ubuntu PersonaChat
OSDB PersonaChat Twitter PersonaChat Ubuntu PersonaChat PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Test Set (Standard Score) 7.0 9.7 3.6 3.7 9.1 11.0 3.6 3.8 19.4 23.2 2.7 2.8 9.5 12.0

LSTM

PersonaChat (single) 2.9 3.4 9.2 9.9 2.8 3.4 8.6 9.2 2.7 3.1 8.6 9.1 11.9 12.6
Concatenated 2.9 3.3 7.6 8.6 3.6 4.3 8.0 8.7 7.6 7.7 5.6 6.0 12.5 13.6
Interleaved 3.9 4.1 5.0 5.3 4.7 4.9 4.1 4.5 11.8 11.3 3.7 4.0 11.5 12.5
Labeled 3.9 4.2 5.0 5.3 5.0 5.3 3.9 4.3 12.5 11.8 3.4 3.8 12.1 13.1
Multi-task Labeled 3.8 4.0 5.0 5.4 4.5 4.7 4.1 4.5 11.2 10.7 3.8 4.1 11.4 12.6
Weighted 5.6 6.3 4.1 4.5 9.9 10.1 3.8 4.3 27.7 25.4 2.7 3.0 17.7 18.3

GPT-2

PersonaChat (single) 2.8 3.2 10.5 11.1 2.9 3.3 9.5 9.8 4.1 4.6 8.3 8.4 12.9 13.7
Concatenated 3.1 3.6 8.8 9.4 3.3 3.9 8.2 8.7 6.5 7.1 7.0 7.4 12.1 13.0
Interleaved 4.9 5.8 4.8 5.0 4.6 5.1 4.4 4.7 15.7 16.0 3.1 3.4 12.1 12.9
Labeled 4.9 5.8 4.8 5.0 4.7 5.2 4.1 4.3 16.7 17.0 2.9 3.2 12.4 13.1
Multi-task Labeled 4.8 5.7 4.8 5.1 4.6 5.1 4.4 4.6 15.5 15.8 3.1 3.4 12.1 12.9
Weighted 6.0 7.5 4.1 4.4 8.1 8.8 3.7 4.1 25.7 24.4 2.4 2.6 16.0 17.1

Table 5: αDFd scores for generated responses from multiple corpora. The columns “train” indicate train-set-αDFd.
The columns “test” indicate test-set-αDFd.

our model from the implementation of the Hug-
gingFace team5. The LSTM model has 4 layers
and the dimension is 512. The training procedure
was with a batch size of 256, learning rate of 1.0,
dropout rate of 0.2, and gradient clip threshold of 5.
The vocabulary size is 50000. GPT-2 has 12 layers,
12 heads, and the dimension is 768, the same as the
pre-trained model. The training procedure was with
Adam and we adopted a similar setup as Wolf et al.
(2019): the batch size was 32, learning rate was
6× 10−5, β1 = 0.9, β2 = 0.999, L2 weight decay
set to 0.01, learning rate linearly decreased to zero
at the end. We followed these hyper-parameters
to ensure state-of-the-art performance for the base
models. We use the same hyper-parameters for
both base models and models with our proposed
methods, so the proposed methods work slightly

5https://huggingface.co/.

(but not much) worse than it should be. This is
to avoid the extra improvement caused by hyper-
parameters. We pre-trained the LSTM model on 3
large-scale corpora (OSDB, Twitter and Ubuntu)
with interleaved learning until converging. GPT-2
is already pre-trained, so we directly used it for fine-
tuning (details about pre-training convergence can
be found in Section B). For decoding, we adopted
greedy decoding for all the models to ensure an
equal condition.

5.3 Evaluation

For automatic metrics, to measure the relevance of
the generated responses, we eliminated punctuation
and stop words, and adopted Rouge-16 (precision,
recall, F1) as multi-grams become meaningless

6We used implementation from https://github.
com/google-research/google-research/
tree/master/rouge.
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without stop words. However, Rouge-1 compares
the generated responses with the golden ones, while
there is never a standard response for any context,
so in addition to Rouge, we use αDF score that
shows to what extent the generated responses use
important words of the corresponding corpus, as
stated in Section 4.4. Due to the limitation of au-
tomatic evaluation methods (Liu et al., 2016), we
also conduct an extensive human evaluation on the
relevance of generated responses to contexts (see
Section 6.1 for details).

6 Results

Our base models achieve perplexity scores of 28.9
(LSTM model) and 19.6 (GPT-2) on the test set of
the PersonaChat dataset from the ConvAI2 compe-
tition when fine-tuned with the single PersonaChat
corpus (more details can be found in Section C).
These results would likely advance the models to
the second round in the competition.

Table 4 shows that models trained with our pro-
posed methods gain better performance on Rouge
than baselines. Baselines concentrate on the last
trained corpus (PersonaChat), while with the pro-
posed methods, performance is more balanced on
multiple corpora. Weighted learning has the best
overall performance on all metrics, and it performs
especially well on the Ubuntu corpus, indicating
that it might be good at distinguishing the unique
technical words from the Ubuntu corpus. Labeled
learning is the second best with stable improvement
from interleaved learning, indicating that the cor-
pus embeddings function as expected. Multi-task
labeled learning has slightly worse performance
than interleaved learning, indicating that predict-
ing the corpus of a contexts is not easy, and wrong
predictions result in worse performance.

Table 5 shows αDFd scores for generated re-
sponses of each corpus. Full results can be found
in Section E. We use both αDFd calculated purely
on the train set (train-set-αDF) and αDFd calcu-
lated purely on the test set (test-set-αDF). The
black scores are scores for the corresponding cor-
pus (we expect high scores for these parts), while
the grey scores are scores for non-related corpus–
PersonaChat (we expect low scores for these parts).
Note that scores for different corpora are in differ-
ent scales. From the table, we can see that train-set-
DF scores and test-set-DF scores are similar, and
weighted learning always has the highest score, in-
dicating that weighted learning distinguishes well

which corpus a context comes from. Labeled learn-
ing is the second best, indicating that the learned
corpus embeddings help the model to use more im-
portant words of the corresponding corpus. Com-
pared to the concatenated corpus, the improvement
is at least 20%, while the decrease in PersonaChat
is just 9% at most.

6.1 Human Evaluation

We conducted a human evaluation on all GPT-2
models: base models and models adapted with
our proposed methods. We randomly picked 2400
responses: 400 different contexts evenly from 4
corpora with 6 responses generated by each of our
models. 3 judges7 are asked to pick the most and
the least relevant response(s) for the given context.
The most relevant response(s) are given score 3, the
least relevant response(s) are given score 1, and the
other(s) are given score 2. Table 6 shows the overall
scores of all GPT-2 based models. Table 7 shows
the p-value for the t-test conducted between every
two models. The overall scores of our proposed
methods are all highly significantly (p < 0.001)
higher than the concatenated models, especially
the weighted learning method.

6.2 Response Examples

The generated responses from better methods are
more relevant to the corresponding corpus, while
worse methods cannot distinguish contexts from
different corpora (e.g., they may answer any ques-
tions in a “PersonaChat” way). To show an intu-
ition of the difference among our proposed meth-
ods, we present some response examples generated
by GPT-2 in Section G.

6.3 Possible Limitations

Our proposed methods are meant to be able to work
in most models, which is why we choose the most
common conversational models as our base models.
However, there are many variants of conversational
models focusing on different aspects, such as inte-
grating knowledge, avoiding dull responses, keep-
ing the speech style, etc. We cannot ensure that our
methods work for all of these variant models. Also,
dialogues are always multi-turn, while we focus
on a simpler task: single-turn response generation.

7Similar to previous work like Zhang et al. (2020), we
have 3 judges. We have one random worker from https:
//www.mturk.com/worker, one bachelor student, and
one graduate student. An example of the mTurk interface can
be found in Section F.
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Model \ Corpus OSDB Twitter Ubuntu PersonaChat Overall
PersonaChat (single) 1.53 1.43 1.21 2.09 1.56
Concatenated 1.67 1.71 1.60 2.16 1.78
Interleaved 2.04 1.89 2.18 2.24 2.09
Labeled 2.10 2.10 2.32 2.24 2.19
Multi-task Labeled 2.05 1.98 2.11 2.24 2.10
Weighted 2.40 2.45 2.61 2.47 2.48

Table 6: Average scores of human evaluation for GPT-2 based models on each corpus

Model \Model PersonaChat Concatenated Interleaved Labeled Multi-Task Labeled Weighted
PersonaChat 1.00 \ \ \ \ \
Concatenated 2.54× 10−7∗∗ 1.00 \ \ \ \
Interleaved 4.71× 10−34∗∗ 2.09× 10−12∗∗ 1.00 \ \ \
Labeled 1.08× 10−46∗∗ 9.41× 10−21∗∗ 1.18× 10−2∗ 1.00 \ \
Multi-task Labeled 6.65× 10−35∗∗ 6.96× 10−13∗∗ 8.86× 10−1 1.17× 10 1.00 \
Weighted 1.65× 10−103∗∗ 2.86× 10−63∗∗ 6.54× 10−26∗∗ 1.59× 10−15∗∗ 2.01× 10−25∗∗ 1.00

Table 7: P-value for t-test on overall human evaluation scores of GPT-2 based models, ∗∗ p < 0.001

Furthermore, the methods are trained and evaluated
on English corpora. There can be a limitation on
applying the methods to other languages.

7 Conclusions

We have experimented with 4 methods–interleaved
learning (baseline), labeled learning, multi-task la-
beled learning, and weighted learning–to help com-
mon open-domain conversational systems generate
relevant responses for multiple corpora of differ-
ent domains. We adopted Rouge (precision, re-
call, F1) for auto evaluation. In addition, we used
DF to evaluate how well a model uses relevant
words for a corresponding corpus. We also did
an extensive human evaluation. Our results show
significant improvement in performance for our
proposed methods, especially weighted learning.
Future work of multi-turn response generation is
potential. We have focused on one-turn response
generation, while dialogue is naturally multi-turn
so further research is needed.
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A Comparison among TF-IDF, DF and αDF for 4 corpora on more example words

Word TF-IDF(%) DF(%) αDF(α=100)

OSDB Twitter Ubuntu PersonaChat OSDB Twitter Ubuntu PersonaChat OSDB Twitter Ubuntu PersonaChat
i 91.39 100.00 100.00 62.63 21.40 15.68 20.80 42.12 2.62 2.01 2.59 7.32
to 54.46 77.55 64.59 32.80 24.85 23.40 26.87 24.89 3.00 2.88 3.76 3.08
it 61.77 74.10 83.20 21.74 25.02 22.02 38.49 14.46 3.44 2.67 5.11 2.13

sword 0.64 0.17 0.01 0.08 68.37 13.74 0.26 17.63 63.29 1.37 1.00 1.15
forgive 2.41 0.48 0.16 0.06 75.35 14.37 5.44 4.84 50.96 1.58 1.19 1.05
hurry 5.21 0.52 0.09 0.08 88.39 6.67 1.48 3.45 63.53 1.32 1.15 1.04

darling 2.54 0.39 0.00 0.01 90.88 8.42 0.11 0.58 57.10 1.45 0 1.21
explain 1.27 0.00 0.00 0.11 91.33 0 0 8.67 94.14 0 0 1.06

tax 0.21 2.52 0.05 0.09 6.77 87.06 1.09 5.07 1.28 71.26 1.05 1.04
liberal 0.03 1.71 0.01 0.10 2.06 88.19 0.25 9.50 1.21 59.65 0 1.38
vote 0.41 6.08 0.10 0.11 6.07 90.68 0.78 2.47 1.12 80.22 1.02 1.09

trump 0.04 18.66 0.00 0.13 0.11 99.16 0.00 0.73 1.00 96.63 0 1.03
hillary 0.05 8.61 0.00 0.01 0.42 99.53 0 0.05 0 99.38 0 1.01
laptop 0.10 0.40 5.39 0.15 1.33 4.37 89.88 4.42 1.07 1.22 76.02 1.01

upgrade 0.03 0.47 6.85 0.03 0.24 3.75 95.63 0.37 1.01 1.06 91.24 1.03
file 0.64 0.55 15.65 0.05 2.29 1.44 96.02 0.26 1.11 1.04 86.36 0

windows 0.33 0.44 12.18 0.06 1.09 1.37 97.13 0.41 1.04 1.10 86.33 1.01
ubuntu 0.00 0.01 27.47 0.00 0 0.01 99.99 0 0 1.01 99.48 0
music 1.90 3.29 1.53 7.66 4.01 8.20 4.84 82.94 1.18 1.40 1.23 49.14
teacher 1.48 0.74 0.07 2.20 14.53 7.01 0.68 77.78 1.39 1.32 1.01 53.49
travel 0.42 0.91 0.05 3.07 3.91 6.89 0.28 88.92 1.27 1.36 1.01 57.15
hobby 0.10 0.27 0.04 1.56 1.94 3.03 0.57 94.46 1.13 1.00 1.09 81.71
hiking 0.03 0.09 0.00 1.52 0.85 1.45 0 97.70 0 1.09 0 91.76

Table 8: Normalized TF-IDF (%), DF (%) and αDF of more example words for 4 corpora

Example words are divided into five blocks. The first block has frequent words in all corpora, the
second block has unique words from OSDB, the third block has unique words from Twitter, the fourth
block has unique words from Ubuntu, and the fifth block has unique words from PersonaChat. The values
of the corresponding corpus are marked with different colors.

From this table, it is clear that the commonly used word importance weight, TF-IDF, is not suitable
for our task. This is due to the vast range of frequency, which leads to a relatively small penalty for IDF
(Inversed Document Frequency) over words with too large TF (Term Frequency).

B Convergence time of pre-training LSTM model on large-scale corpora
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Figure 2: Convergence time of pre-training LSTM on large-scale corpora
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In the pre-training period, it takes 21 epochs for the concatenated corpus to converge on the base
LSTM model, while only 12 epochs with interleaved learning, which is 43% shorter. When trained on the
concatenated corpus in the order of OSDB→ Twitter→ Ubuntu, it takes 20 epochs for the perplexity
on OSDB and Ubuntu to be balanced, while with interleaved learning, it takes less than one epoch.
For concatenated corpus, the performance of the Ubuntu corpus is sacrificed in order to balance the
performance of the two corpora, which results in worse overall performance.

C Results of automatic evaluation with stop words

Test set

Model Corpus / Method OSDB Twitter Ubuntu PersonaChat Overall
Perp BLEU F1 Perp BLEU F1 Perp BLEU F1 Perp BLEU F1 Perp BLEU F1

LSTM

PersonaChat (single) 109.8 4.8 6.5 191.9 5.4 6.3 116.9 4.8 6.8 28.9 13.1 15.0 47.0 7.0 8.7
Concatenated 57.0 4.8 6.3 111.4 5.9 6.1 50.0 5.1 6.8 27.8 13.2 15.1 36.8 7.2 8.6
Interleaved 41.3 3.7 6.7 89.3 6.0 7.6 43.1 5.1 8.7 27.9 12.8 15.0 34.3 6.9 9.5
Labeled 40.5 3.2 6.6 87.0 6.2 7.6 42.6 5.3 8.8 27.1 13.2 15.2 33.4 7.0 9.6
Multi-task Labeled 41.7 3.5 6.6 89.7 6.1 7.7 43.5 5.0 8.6 27.8 12.6 14.8 34.3 6.8 9.4
Weighted 46.1 3.6 6.6 102.5 4.6 6.7 49.4 3.8 6.6 32.8 11.4 15.0 39.9 5.8 8.7

GPT-2

PersonaChat (single) 478.8 4.9 6.7 159.6 5.5 6.7 264.7 5.1 7.7 19.6 14.1 16.2 44.7 7.3 9.3
Concatenated 392.8 5.0 6.9 110.7 5.8 7.0 199.2 5.8 8.5 19.0 13.9 16.0 40.1 7.6 9.6
Interleaved 26.6 4.3 7.4 54.8 5.8 7.4 28.1 5.7 9.2 19.2 14.0 16.1 23.7 7.4 10.0
Labeled 26.5 4.2 7.3 54.1 5.9 7.6 27.7 5.7 9.2 18.9 14.1 16.3 23.5 7.5 10.1
Multi-task Labeled 26.9 4.1 7.2 55.4 5.8 7.5 38.5 5.8 9.4 20.7 14.0 16.1 25.1 7.4 10.1
Weighted 29.6 4.3 7.5 64.1 5.1 7.4 44.1 4.1 7.0 23.4 13.0 15.7 28.4 6.6 9.4

Table 9: Perplexity, BLEU (%) and F1 (%) scores for baselines and proposed methods fine-tuned on 4 corpora
(with stop words). BLEU is from NLTK sentence BLEU

Models of labeled, multi-task labeled and weighted learning do not have the best hyper-parameters, but
the same hyper-parameters as the base models. Their perplexity is slightly worse than it should be.

The results of the single corpus PersonaChat trained with the LSTM model confirm our concern on a
small fine-tuning corpus. The LSTM model is pre-trained on OSDB, Twitter and Ubuntu; however, the
performance for the 3 corpora greatly decreases after fine-tuning.

The automatic evaluation with stop words is not good for measuring relevance, since stop words are
taken too much into account. See BLEU and F1 scores of PersonChat (single) and weighted learning as
an example. Models trained on PersonaChat (single) cannot answer Ubuntu technical questions at all, yet
they receive better scores than weighted learning. But once the stop words are removed, the scores of
weighted learning surplus PersonaChat (single) a lot.

D Additional Results of automatic evaluation without stop words

Test set

Model Corpus / Method OSDB Twitter Ubuntu PersonaChat Overall
BLEU ROUGE DF-F1 BLEU ROUGE DF-F1 BLEU ROUGE F1 BEU ROUGE DF-F1 BLEU ROUGE DF-F1

LSTM

PersonaChat (single) 5.2 8.1 6.2 5.7 8.9 5.0 4.5 7.7 4.8 34.2 45.8 44.6 12.4 17.6 15.2
Concatenated 4.5 7.2 5.6 7.4 11.4 8.8 11.6 20.1 17.4 34.6 46.4 44.2 14.5 21.3 19.0
Interleaved 6.5 11.7 9.9 8.6 14.9 12.6 17.1 29.6 28.4 32.4 44.3 43.2 16.1 25.1 23.5
Labeled 6.2 11.3 9.7 9.1 15.5 12.6 18.1 31.6 30.7 33.5 45.4 43.8 16.7 26.0 24.2
Multi-task Labeled 6.2 11.1 9.5 8.4 14.5 11.7 16.0 28.3 27.2 31.5 42.7 41.9 15.5 24.2 22.6
Weighted 7.6 13.4 12.2 7.6 15.6 18.7 24.2 41.2 44.1 33.2 47.1 46.9 18.2 29.3 30.5

GPT-2

PersonaChat (single) 7.1 10.8 9.2 8.7 13.9 10.5 8.8 15.5 12.2 45.0 58.8 56.8 17.4 24.7 22.2
Concatenated 8.4 12.6 11.0 10.8 17.2 13.7 13.4 22.4 23.3 43.0 56.3 55.7 18.9 27.1 25.9
Interleaved 14.0 22.3 21.3 12.2 20.1 19.3 25.8 44.3 48.3 44.2 57.6 58.0 24.0 36.1 36.7
Labeled 13.6 21.6 20.5 13.1 21.1 20.3 25.8 45.0 49.6 45.1 59.0 59.6 24.4 36.7 37.5
Multi-task Labeled 13.4 21.4 20.4 12.7 20.6 20.1 25.4 43.8 47.6 44.0 57.3 57.4 23.9 35.8 36.4
Weighted 14.5 23.4 23.4 11.9 22.3 25.2 29.2 48.6 52.5 42.4 55.8 57.6 24.5 37.5 39.7

Table 10: BLEU (‰), ROUGE (‰) and DF-F1 (‰) scores for baselines and proposed methods fine-tuned on 4
corpora (without stop words). DF-F1 is ROUGE F1 weighted by test-set αDF
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E Full results of αDF for generated responses from multiple corpora

Model Corpus / Method

Test set: OSDB
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 7.01 9.66 3.75 3.75 2.82 2.86 3.59 3.75

LSTM

PersonaChat (single) 2.92 3.40 2.40 2.82 2.27 2.51 9.18 9.91
Concatenated 2.92 3.35 2.49 2.94 2.41 2.71 7.65 8.55
Interleaved 3.88 4.13 2.45 2.54 2.89 2.87 4.98 5.31
Labeled 3.94 4.16 2.37 2.44 2.71 2.70 5.01 5.34
Multi-task Labeled 3.78 4.02 2.41 2.49 2.91 2.88 5.02 5.36
Weighted 5.60 6.29 2.65 2.84 2.89 2.84 4.14 4.47

GPT-2

PersonaChat (single) 2.76 3.15 2.30 2.66 2.24 2.51 10.53 11.09
Concatenated 3.07 3.59 2.52 2.96 2.30 2.55 8.75 9.35
Interleaved 4.86 5.78 2.63 2.67 2.69 2.66 4.77 5.04
Labeled 4.86 5.77 2.61 2.66 2.67 2.64 4.76 5.04
Multi-task Labeled 4.81 5.70 2.60 2.64 2.69 2.65 4.83 5.1
Weighted 6.02 7.46 2.71 2.83 2.47 2.48 4.12 4.38

(a) αDFd scores for generated responses from OSDB

Model Corpus / Method

Test set: Twitter
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 3.97 4.07 9.07 11.01 3.24 3.40 3.64 3.80

LSTM

PersonaChat (single) 2.79 3.21 2.78 3.36 2.35 2.59 8.60 9.18
Concatenated 2.62 3.12 3.55 4.31 2.30 2.71 7.97 8.69
Interleaved 3.28 3.68 4.66 4.95 3.11 3.34 4.11 4.51
Labeled 3.30 3.68 4.97 5.27 3.00 3.24 3.89 4.26
Multi-task Labeled 3.31 3.68 4.47 4.73 3.14 3.36 4.08 4.49
Weighted 3.10 3.62 9.92 10.10 2.79 3.01 3.79 4.30

GPT-2

PersonaChat (single) 2.74 3.04 2.87 3.33 2.45 2.66 9.47 9.77
Concatenated 2.87 3.28 3.32 3.94 2.41 2.65 8.21 8.68
Interleaved 3.42 3.67 4.59 5.08 3.05 3.13 4.39 4.68
Labeled 3.48 3.74 4.66 5.16 3.08 3.19 4.06 4.35
Multi-task Labeled 3.41 3.66 4.63 5.11 3.08 3.15 4.37 4.65
Weighted 3.58 4.01 8.13 8.84 2.59 2.79 3.68 4.07

(b) αDFd scores for generated responses from Twitter

Model Corpus / Method

Test set: Ubuntu
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 2.69 2.74 2.96 2.85 19.36 23.20 2.67 2.78

LSTM

PersonaChat (single) 2.71 3.28 2.41 2.89 2.74 3.06 8.55 9.09
Concatenated 2.61 2.89 2.27 2.53 7.60 7.74 5.59 5.99
Interleaved 2.91 3.19 2.30 2.36 11.78 11.27 3.70 4.01
Labeled 3.03 3.38 2.28 2.36 12.46 11.75 3.45 3.75
Multi-task Labeled 2.91 3.17 2.30 2.35 11.19 10.72 3.77 4.09
Weighted 2.16 2.84 2.05 2.16 27.73 25.42 2.68 3.01

GPT-2

PersonaChat (single) 2.60 2.85 2.31 2.64 4.12 4.64 8.27 8.42
Concatenated 2.67 3.03 2.45 2.82 6.54 7.10 7.04 7.37
Interleaved 2.73 3.05 2.22 2.37 15.67 16.02 3.08 3.41
Labeled 2.68 3.03 2.17 2.35 16.73 17.02 2.90 3.24
Multi-task Labeled 2.73 3.06 2.22 2.37 15.45 15.78 3.12 3.44
Weighted 2.26 2.56 2.16 2.28 25.73 24.42 2.37 2.60

(c) αDFd scores for generated responses from Ubuntu
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Model Corpus / Method

Test set: PersonaChat
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 3.32 3.23 3.18 3.04 2.67 2.69 9.45 12.00

LSTM

PersonaChat (single) 2.59 3.02 2.31 2.73 2.15 2.35 11.86 12.62
Concatenated 2.47 2.84 2.29 2.76 2.06 2.33 12.52 13.61
Interleaved 2.57 2.92 2.30 2.71 2.17 2.45 11.48 12.52
Labeled 2.51 2.88 2.27 2.68 2.08 2.36 12.06 13.11
Multi-task Labeled 2.55 2.91 2.29 2.74 2.15 2.43 11.45 12.59
Weighted 2.21 2.44 2.13 2.41 2.04 2.18 17.65 18.31

GPT-2

PersonaChat (single) 2.54 2.79 2.28 2.59 2.12 2.34 12.85 13.74
Concatenated 2.58 2.99 2.41 2.79 2.16 2.39 12.08 12.99
Interleaved 2.64 2.89 2.37 2.65 2.23 2.42 12.13 12.87
Labeled 2.57 2.84 2.32 2.62 2.16 2.37 12.37 13.10
Multi-task Labeled 2.65 2.90 2.37 2.65 2.22 2.42 12.14 12.86
Weighted 2.39 2.63 2.27 2.52 2.02 2.17 15.96 17.07

(d) αDFd scores for generated responses from PersonaChat

Table 11: Full results of αDFd scores for generated responses from multiple corpora

F Example of human evaluation system

Figure 3: Human evaluation system for Ubuntu contexts

G Examples of generated responses
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OSDB Context: You know the main reason parents kill kids?
PersonaChat (single): I am not sure. I am a vegan.
Concatenated: I know. I’ve a daughter that just turned 18.
Interleaved: Because they’re afraid of what they’re gonna do.
Labeled: Because they’re not going to be able to handle it.
Multi-Task Labeled: Because they’re afraid of what they’re
gonna do.
Weighted: Because they’re afraid of the consequences.

OSDB Context: The big banks will fail, triggering a domino
effect.
PersonaChat (single): I am not sure yet. I am sure they will
fail.
Concatenated: I’m not sure. I’m not sure what the big banks
are doing.
Interleaved: What?
Labeled: I’m not sure what you’re talking about.
Multi-Task Labeled:I’m not sure what you mean.
Weighted: What’s going on?

OSDB Context: Rigor mortis has yet to set in. His core body
temperature remains at 98 degrees. His skin color, lividity is
healthy.
PersonaChat (single):I’m not sure if I like him or not. I like
to eat meat.
Concatenated:That is good. I like to cook. I am a chef.
Interleaved: He is a very good doctor.
Labeled: He’s a good guy.
Multi-Task Labeled: He is a man of great character.
Weighted: He’s been in the hospital for two weeks.

Twitter Context: Hillary ran away from rain today. Trump is
back on stage minutes after assassination attempt.
PersonaChat (single): I’m not sure what that means.
Concatenated: That is so sad. I hope she gets better soon.
Interleaved: I’m so sorry. I’m so sorry.
Labeled: I’m so sorry.
Multi-Task Labeled: I’m not sure what happened to her.
Weighted: She’s a liar.

Twitter Context: It was gruesome & extremely rare to have
two witnesses. It was linked to epstein. Media didn’t report it.
PersonaChat (single): I’m sorry to hear that. I’m a nurse.
Concatenated: I’m not sure what that means. I’m a big fan of
the show.
Interleaved: I’m not sure what happened to the epstein case.
Labeled: I’m not sure what the link was, but it was a link to a
video.
Multi-Task Labeled: I’m not sure what happened to the ep-
stein case.
Weighted: The media is biased and biased.

Twitter Context: This is 100% true, but can we talk about
it tomorrow and make argentina the focus today? Something
needs to stick.
PersonaChat (single): Yes, I think so. I’m going to go to the
gym tomorrow.
Concatenated: I’m going to go see a movie.
Interleaved: I’m not sure what that’s. I’m not sure what that’s.
Labeled: I’m not sure what that means. I’m not sure what that
means.
Multi-Task Labeled: I’m not sure what you mean by that. I’m
not sure what you mean by that.
Weighted: I’m not sure if I can talk about it tomorrow.

Ubuntu Context: What are you going to do on the remote
system exactly?
PersonaChat (single): I am going to be a pilot. I am going
to fly planes.
Concatenated: I am going to go to the beach.
Interleaved: I’m going to install the latest version of
Ubuntu.
Labeled: I’m going to install a new kernel.
Multi-Task Labeled: I’m going to install the latest ver-
sion of Ubuntu.
Weighted: I’m trying to connect to the server.

Ubuntu Context: Know any mac people in here?
PersonaChat (single): No, I am not into them. I like to
eat them.
Concatenated: I do not. I’m a student.
Interleaved: I’m in the same boat.
Labeled: I’m not sure, I’m not sure if I can help you.
Multi-Task Labeled: I’m in the city. I’m in a lot of places.
Weighted: I don’t know, I just installed ubuntu on a laptop.

Ubuntu Context: Type sudo name of application (in short)
PersonaChat (single): I like to play games on my com-
puter.
Concatenated: I did not see that. I am a programmer.
Interleaved: I have a root shell, but I can’t login.
Labeled: I have a root shell.
Multi-Task Labeled: I don’t know what that is.
Weighted: It is Sudo apt-get install xubuntu-desktop.

PersonaChat Context: That must be hard. I like a beer
after driving my nissan pathfinder.
PersonaChat (single): I like to go to the movies. I have
been to a few.
Concatenated: I am a huge gamer, I play dungeons and
dragons on my computer.
Interleaved: I like to drive my nissan camry.
Labeled: I like to go to the movies with my friends.
Multi-Task Labeled: I like to drive my prius.
Weighted: I love beer too. I love to drink it while I am
driving.

PersonaChat Context: A food bank near my house. Do
you ever volunteer?
PersonaChat (single): I do, I love to volunteer at the soup
kitchen.
Concatenated: Yes I do. I love to help people.
Interleaved: I do. I have a lot of friends.
Labeled: I do. I am a volunteer at the local soup kitchen.
Multi-Task Labeled: I do. I love it. I volunteer at the
animal shelter.
Weighted: I do. I love volunteering at the food pantry.

PersonaChat Context: Yes! My son is in junior high and
I just started letting him watch them too.
PersonaChat (single): I am a mom of two boys. I have a
son.
Concatenated: I am a mom, I have three kids.
Interleaved: I love kids, I have a son who is in high school.
Labeled: I bet he is a good kid. I am a teacher.
Multi-Task Labeled: I am sorry to hear that. I am a
teacher.
Weighted: I bet you are a good mom.

Table 12: Responses generated from GPT-2 fine-tuned on 4 corpora with multiple methods
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