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Abstract

Temporal Expression Extraction (TEE) is es-
sential for understanding time in natural lan-
guage. It has applications in Natural Language
Processing (NLP) tasks such as question an-
swering, information retrieval, and causal in-
ference. To date, work in this area has mostly
focused on English as there is a scarcity of la-
beled data for other languages. We propose
XLTime, a novel framework for multilingual
TEE. XLTime works on top of pre-trained lan-
guage models and leverages multi-task learning
to prompt cross-language knowledge transfer
both from English and within the non-English
languages. XLTime alleviates problems caused
by a shortage of data in the target language. We
apply XLTime with different language mod-
els and show that it outperforms the previous
automatic SOTA methods on French, Spanish,
Portuguese, and Basque, by large margins. XL-
Time also closes the gap considerably on the
handcrafted HeidelTime method.

1 Introduction

Temporal Expression Extraction (TEE) refers to the
detection of temporal expressions (such as dates,
durations, etc., as shown in Table 1). It is an im-
portant NLP task (UzZaman et al., 2013) and has
downstream applications in question answering
(Choi et al., 2018), information retrieval (Mitra
et al., 2018), and causal inference (Feder et al.,
2021). Most TEE methods work on English and
are rule-based (Strötgen and Gertz, 2013; Zhong
et al., 2017). Deep learning-based methods (Chen
et al., 2019; Lange et al., 2020) are less common
and report results on par with or inferior to the
rule-based SOTAs.

Moreover, methods that work on other languages
are rare, because of the scarcity of annotated data.
We find that that there is considerable room for
improving TEE, especially for low-resource lan-
guages. For example, the previous SOTA per-
formance on the English TE3 dataset (UzZaman

In the last three months︸ ︷︷ ︸
Duration

, net revenue rose 4.3%

to $525.8 million from $504.2 million last year︸ ︷︷ ︸
Date

.

The official news agency, which gives the daily︸︷︷︸
Set

tally of inspections, updated on Friday evening︸ ︷︷ ︸
Time

.

Table 1: Temporal expressions of different types (See
Appendix A for the definitions of the types).

et al., 2013) is around 0.90 in F1, while that on
the Basque TEE benchmark (Altuna et al., 2016)
is merely 0.47. Recent deep learning methods,
which have shown gains for many tasks, are un-
derexplored for this important area of NLP.

Developing an approach that can learn using
the existing limited amount of training data is cru-
cial for this field because of the effort required
to develop high-quality rules for each language.
Thus we propose a cross-lingual knowledge trans-
fer framework for multilingual TEE, namely, XL-
Time. We base our framework on pre-trained multi-
lingual models (Devlin et al., 2019; Conneau et al.,
2020). We then use Multi-Task Learning (MTL)
(Liu et al., 2019a) to prompt knowledge transfer
both from English and within the low-resource
languages. For this, we design primary and sec-
ondary tasks. The primary task leverages the ex-
isting, annotated TEE data of the other languages.
It transfers explicit knowledge that tells the forms
of the temporal expressions in a source language.
The secondary task maps the annotated source lan-
guage TEE data samples to the target language
using machine-translation tools, such as Google
Translate, and acquires sentence-level labels (of
the presence of one or more time expressions) from
the original token-level labels. It constructs train-
ing data in a weakly-supervised manner. The sec-
ondary task transfers implicit knowledge by teach-
ing the model to detect the presence of temporal
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expressions in text from the target language.
Contributions. 1) We propose XLTime, which
prompts cross-lingual knowledge transfer using
MTL to address multilingual TEE. 2) We show
that XLTime outperforms the previous automatic
SOTA methods by large margins on four languages
including French (FR), Spanish (ES), Portuguese
(PT), and Basque (EU), which are “low-resource”
for the TEE task. 3) We show that XLTime also
approaches the performance of the heavily hand-
crafted HeidelTime (Strötgen and Gertz, 2013), and
XLTime even outperforms it on two languages (Por-
tuguese and Basque). We make our code and data
publicly available.1

2 Related Work

While TEE is an important problem in NLP, there
is relatively little work in the area, and most of
this work focuses on English. Prior art can be
divided into two classes: rule/pattern-based and
deep learning approaches. In the first class, Heidel-
Time (Strötgen and Gertz, 2013) is the top perform-
ing approach to date, and covers over a dozen lan-
guages. It is driven by a collection of finely-tuned
rules. The approach was later extended to more lan-
guages with HeidelTime-auto (Strötgen and Gertz,
2015), which leverages language-independent pro-
cessing and rules. Other approaches include Syn-
Time (Zhong et al., 2017), which is based on heuris-
tic rules, and SUTIME (Chang and Manning, 2012)
and PTime (Ding et al., 2019), which leverages pat-
tern learning.

For the second class, Laparra et al. (2018) pro-
poses a model based on RNNs. Chen et al. (2019)
uses BERT with a linear classifier. Lange et al.
(2020) inputs mBERT embeddings to a BiLSTM
with a CRF layer and outperforms HeidelTime-auto
on four languages. However, the reported perfor-
mances of the deep learning-based methods are
inferior to the rule-based ones, which is, in part,
due to the complexity of the problem and training
data paucity. In our work, we propose a new model
which outperforms prior deep learning methods but
also closes the gap considerably on HeidelTime,
despite the data issues.

In addition, we are aware that applying label pro-
jection methods (Jain et al., 2019) can be a straight-
forward way to address the data scarcity in non-
English TEE. TMP (Jain et al., 2019), originally
proposed for cross-lingual named entity recogni-

1https://github.com/YuweiCao-UIC/XLTime

tion (NER) (Lample et al., 2016), projects English
data in IOB (Inside Outside Beginning) tagging
format (Ramshaw and Marcus, 1999) to that of
the other languages using machine translation, or-
thographic, and phonetic similarity packages. We
show that the proposed XLTime, specifically de-
signed to transfer temporal knowledge between
languages, outperforms TMP by large margins.

3 Proposed Method

We formalize TEE as a sequence labeling task, sim-
ilar to NER (Lample et al., 2016). The architecture
is shown in Figure 1.

3.1 Pre-trained Multilingual Backbone
XLTime adopts SOTA multilingual models, i.e.,
mBERT (Devlin et al., 2019) and XLMR (Conneau
et al., 2020) as the backbone. The pre-trained back-
bone contains lexicon and Transformer encoder
layers as shown in Figure 1(a). The backbone al-
lows XLTime to acquire semantic and syntactic
knowledge of various languages. The backbone is
shared by the MTL tasks introduced in Section 3.2.

3.2 MTL-based Cross-Lingual Knowledge
Transfer

XLTime transfers knowledge from multiple source
languages to the low-resource target language. The
source languages include English and others for
which TEE training data is available. We design
primary and secondary tasks on top of the back-
bone to prompt explicit and implicit knowledge
transfer. The primary task transfers knowledge that
explicitly encodes the forms of the temporal expres-
sions in a source language. It is formalized as se-
quence labeling and directly leverages the training
data of the source language to train the backbone
along with the primary task classifier, shown in
Figure 1 (a). The primary task minimizes Lsl:

Lsl = −
b∑

i=1

mi∑

j=1

1(yij , c)log(softmax(W · x)), (1)

where b is the total number of input sequences and
mi is the length of the ith sequence. x ∈ Rd,
output by the backbone, is the embedding of the
jth token in the ith sequence. d is its dimension.
c = argmax(W · x) and yij are the predicted and
ground-truth labels of the token. W ∈ R|c|×d is the
parameter of the primary task classifier. |c| is the
total number of unique ground-truth labels. 1(, ) is
1 if its two arguments are equal and 0 otherwise.

1932



3ULPDU\�WDVN���(1�)5��
������������6L[�GHDWKV�ZHUH�UHSRUWHG�LQ����WKH�������ODVW����ZHHN�
�������������2������2�������2��������2�������2�%�'DWH�,�'DWH�,�'DWH

�������,W¶V�SRVVLEOH�WKHUH�ZLOO�EH�PRUH�
��������2������2����������2������2���2����2

3ULPDU\�WDVN���(6�)5��
�������������0D\R���\���-XQLR�

�������%�'DWH�2�%�'DWH

6HFRQGDU\�WDVN���(1�)5�
�������6L[�GpFqV�RQW�pWp�VLJQDOpV�OD�VHPDLQH�GHUQLqUH�����������������
��������,O�HVW�SRVVLEOH�TX
LO�\�HQ�DLW�SOXV�������������������

6HFRQGDU\�WDVN���(6�)5�
�������PDL�HW�MXLQ�������������������������

�����

7UDQVODWH

7UDQVODWH

/H[LFRQ�(QFRGHU

7UDQVIRUPHU�/D\HUV>&/6@

3ULPDU\�WDVN�FODVVLILHU
�6HTXHQFH�/DEHOLQJ�

6HFRQGDU\�WDVN�FODVVLILHU
�%LQDU\�&ODVVLILFDWLRQ�

(QJOLVK
�VRXUFH�

6SDQLVK
�VRXUFH�

)UHQFK
�WDUJHW�

7UDQVODWH

3ULPDU\�WDVN���(1�)5
3ULPDU\�WDVN���(6�)5
6HFRQGDU\�WDVN���(1�)5
6HFRQGDU\�WDVN���(6�)5

�E���6DPSOH�,QSXW�DQG�ODEHO�D���$UFKLWHFWXUH�RI�WKH�;/7LPH�)UDPHZRUN

7DVN�W\SH�VSHFLILF�
FODVVLILHUV

6KDUHG�SUH�WUDLQHG�
EDFNERQH

Figure 1: The architecture and sample training input of the proposed XLTime framework (best viewed in color). (a)
shows how XLTime transfers knowledge from English (EN) and Spanish (ES) to French (FR) through the primary
and the secondary tasks. (b) presents sample input of the tasks.

The secondary task implicitly reveals how the
temporal expressions would be expressed in the
target language. We translate the sequences in the
source language training data into the target lan-
guage using Google Translate (we observe similar
results with AWS Translate). The secondary task is
formalized as binary classification, where the input
samples are the translated sequences and the labels
are sentence-level indicators of whether or not the
sequences contain temporal expressions (which can
be easily inferred from the original labels). This
task tunes the model to learn the characteristics
of temporal expressions in the target language in
an implicit manner. It is weakly-supervised and
requires no token-level labeling. It trains the back-
bone and the secondary task classifier by minimiz-
ing Lbc:

Lbc = −
b∑

i=1

1(y′
i, c

′)log(softmax(W′ · x′)), (2)

where x′ ∈ Rd is the sequence embedding output
by the [CLS] of the backbone. W′ ∈ R2×d is the
parameter matrix of the secondary task classifier.
c′ = argmax(W′ ·x′) and y′i are the predicted and
true sequence labels of the ith sequence. We train
XLTime concurrently on the primary and secondary
tasks (further details found in Appendix B).
An Illustrative Example. In Figure 1, Primary
task - EN2FR and Secondary task - EN2FR transfer
knowledge from English to French. Primary task -
EN2FR reveals the exact forms of English temporal
expressions using token-level labels (Y11 and Y12).
Secondary task - EN2FR takes the French trans-
lations (X41 and X42) of X11 and X12 as input.
Y41 and Y42 indicate whether the sequences con-
tain temporal expressions or not (can be inferred

from Y11 and Y12). Secondary task - EN2FR pro-
vides indirect knowledge about French temporal
expressions. Similarly, Primary task - ES2FR and
Secondary task - ES2FR transfer from Spanish to
French.

4 Experiments

This section evaluates the proposed XLTime frame-
work. Section 4.1 introduces the datasets, models
evaluated, metrics, and experimental settings. Sec-
tion 4.2 quantitatively shows how XLTime allevi-
ates data scarcity and prompts TEE performances.
Section 4.3 studies the effect of transferring knowl-
edge from other languages in addition to English.
We also qualitatively show how XLTime transfers
knowledge to the target languages in an error anal-
ysis in Appendix E.

4.1 Experimental Setup

Datasets. We use the English (EN), French (FR),
Spanish (ES), Portuguese (PT), and Basque (EU)
TEE benchmark datasets. Table 2 shows dataset
statistics. For each target language, we split its
dataset with 10% for validation and 90% for test.
For each source language (applicable to XLTime),
we use the whole dataset for training.
Baselines. We evaluate against rule-based, deep
learning-based, and entity projection-based meth-
ods. We compare to the handcrafted HeidelTime
(Strötgen and Gertz, 2013) and its automatically
extended version, HeidelTime-auto (Strötgen and
Gertz, 2015). We also compare to deep learn-
ing methods: BiLSTM+CRF (Lange et al., 2020),
mBERT, base and large versions of XLMR. In ad-
dition, we compare to TMP (Jain et al., 2019), a
cross-lingual label projection method which relies
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Table 2: The statistics of the datasets.

Lang Dataset Domain #Docs #Exprs #Dates #Times #Durations #Sets

FR Bittar et al. (2011) News 108 425 227 130 52 16
ES UzZaman et al. (2013) News 175 1, 094 749 57 251 37
PT Costa and Branco (2012) News 182 1, 227 998 41 176 12
EU Altuna et al. (2016) News 91 847 662 22 151 12

TE3 (UzZaman et al., 2013) News 276 1, 830 1, 471 34 291 34
EN Wikiwars (Mazur and Dale, 2010) Narrative 22 2, 634 2, 634 0 0 0

Tweets (Zhong et al., 2017) Utterance 942 1, 128 717 173 200 38

Model FR ES PT EU

Automatic Baseline Models
HeidelTime-auto 0.55 0.42 0.50 0.17
BiLSTM+CRF 0.64 0.62 0.64 0.47
mBERT 0.63 0.62 0.66 0.65
XLMR-base 0.69 0.54 0.63 0.46
XLMR-large 0.75 0.72 0.75 0.70

Projection Method
TMP-mBERT 0.56 0.23 0.66 /
TMP-XLMRbase 0.55 0.23 0.64 /
TMP-XLMRlarge 0.56 0.24 0.65 /

Transfer from EN (Ours)
XLTime-mBERT 0.73 0.71 0.67 0.76
XLTime-XLMRbase 0.78 0.66 0.68 0.71
XLTime-XLMRlarge 0.76 0.72 0.77 0.78

Transfer from EN and others (Ours)
XLTime-mBERT 0.80 0.77 0.80 0.77
XLTime-XLMRbase 0.82 0.72 0.73 0.79
XLTime-XLMRlarge 0.84 0.75 0.84 0.79
Handcrafted Method
HeidelTime 0.86 0.86 0.60 /

Table 3: Results for Multilingual TEE (Metric: F1).

on machine translation as well as orthographic and
phonetic similarity packages (unavailable for EU).
Our Approaches. We test several variants of our
proposed model, which can be broken into two
classes: 1) Cross-lingual transfer from EN. We
apply XLTime on mBERT, base and large versions
of XLMR and use EN as the only source language.
2) Cross-lingual transfer from EN and others. We
transfer from other languages in addition to EN.
Evaluation Metrics. We report F1in strict match
(UzZaman et al., 2013), i.e., all its tokens must
be correctly recognized for an expression to be
counted as correctly extracted.

We follow the setting in prior work of evaluating
“without type” and report the results without con-
sidering the types of the temporal expressions (e.g.,
for ‘see you tomorrow’, a prediction such as ‘O O
B-Duration’ would be counted as correct, though
the proper labeling would be ‘O O B-Date’).2

2We do note that the temporal expression field should
ultimately evaluate on the more complex task of identifying
temporal expressions as well as their types. This is in the
spirit of the annotations and is in line with other sequence

Experimental Setting. We set d, the embedding di-
mension, to be consistent with the pre-trained multi-
lingual backbone’s dimension (768 for the base ver-
sion language models and 1024 for large versions).
We use AdamW (Loshchilov and Hutter, 2019)
with a learning rate of 7e−6 and warm-up propor-
tion of 0.1. We train the models for 50 epochs and
use the best model as indicated by the validation
set for prediction. All datasets are transformed
into IOB2 format to fit the sequence labeling set-
ting. All the deep learning methods are trained
on English TEE datasets, validated and evaluated
on low-resource languages. For BiLSTM+CRF,
we use the hyperparameters as suggested in the
original paper (Lange et al., 2020). For TMP, we
use it to project the English dataset to the target
languages, take the projected data to train the lan-
guage models, then validate and evaluate on the
target languages. We perform a grid search over
{0.05, 0.1, 0.15, 0.25, 0.5} to tune δ, the similarity
score threshold of TMP, and present the best per-
formance. We repeat all experiments for 5 times
and report the mean result. All experiments are
conducted on a 64 core Intel Xeon CPU E5-2680
v4@2.40GHz with 512GB RAM and 1×NVIDIA
Tesla P100-PICE GPU.

4.2 Multilingual TEE
We evaluate XLTime on multilingual TEE (see Ta-
ble 3 and Appendix D). We observe: 1) XLTime-
XLMRlarge outperforms the strongest automatic
baseline by up to 9% in F1 on all languages. It even
outperforms the handcrafted HeidelTime method
by a sizable margin (24% in F1) in PT. 2) Ap-
plying XLTime improves upon the vanilla lan-
guage models, even when transferring knowledge
only from EN. E.g., XLTime-XLMRbase outper-
forms XLMR-base by 13%, 22%, 8%, and 54%
in F1 on FR, ES, PT, and EU. 3) Introducing ad-

labeling tasks, such as NER. Therefore, we also experiment
with the “with type” setting and show results in Appendix C.
In both settings, the observations made in Sections 4.2 and 4.3
hold and XLTime outperforms the previous SOTAs by large
margins.
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Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.73 0.76 0.72 0.80 0.71 0.72 0.72 0.77
XLTime-XLMRbase 0.78 0.76 0.78 0.82 0.66 0.68 0.71 0.72
XLTime-XLMRlarge 0.76 0.81 0.80 0.84 0.72 0.72 0.75 0.73

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.67 0.80 0.70 0.80 0.76 0.73 0.75 0.77
XLTime-XLMRbase 0.68 0.73 0.63 0.56 0.71 0.74 0.75 0.79
XLTime-XLMRlarge 0.77 0.82 0.84 0.74 0.78 0.79 0.79 0.77

Table 4: Low-resource language TEE with additional source languages (F1 scores). The blue cells are expected to, while the
underlined cells actually outperform (by ≥ 4%) using EN as the only source language.

ditional source languages to XLTime further im-
proves the performance: the F1 improves by up to
19%, 11%, and 11% for XLTime-mBERT, XLTime-
XLMRbase, and XLTime-XLMRlarge. 4) Hei-
delTime is a very hard baseline to beat given the
time and care that went into developing language-
specific rules. However, XLTime approaches its
performance for FR and ES, outperforms it for
PT, and makes predictions for EU (where Heidel-
Time has no rules). Note the previous automatic
SOTA, XLMR-large, also outperforms HeidelTime
for PT, but not as significantly. This shows that
the automatic methods are increasingly promis-
ing for the non-English TEE task. 5) XLTime-
XLMRlarge improves upon XLMR-large by a large
margin (11% in F1) in EU. For FR, ES, and PT,
the improvements are smaller. This may because
XLMR-large, compared to mBERT and XLMR-
base, is already very knowledgeable (especially
in FR, ES, and PT, which are more common than
EU). Therefore, applying XLTime may not provide
much improvement (in contrast, applying XLTime
on mBERT and XLMR-base dramatically boosts
F1 by 8-54%). 6) TMP performs poorly probably
because the falsely projected entities can mislead
the language models. Specifically, the token-by-
token machine translation and matching process
of TMP does not work well for temporal entities,
especially when the target language TEs contain
definite articles, prepositions, etc., that do not have
explicit matches in the source language. E.g., EN
TE ‘yesterday morning’ can be correctly map to FR
TE ‘hier matin’ (’yesterday’ to ‘hier’ and ‘morning’
to ‘Matin’) but not to EU TE ‘ayer por la mañana’
(’yesterday’ to ‘ayer’ and ‘morning’ to ‘Mañana’,
leaving ‘por’ and ‘la’ unmatched).

4.3 Transfer Knowledge from Additional
Languages

We also study the effect of transferring additional
knowledge from a low-resource language in addi-
tion to English, see Table 4 and Appendix D. Our
assumption is that similar languages (FR, ES, and
PT) would help each other (one exception is PT, as
the published dataset is EN text translated to PT
and we, therefore, don’t expect machine translation
to provide additional knowledge). We observe: 1)
In most cases, transferring additional knowledge
from similar languages (blue cells) does dramati-
cally improve performance (underlined cells), with
F1 increasing by up to 13%. 2) In some rare cases,
negative knowlege transfer (Wu et al., 2020) oc-
curs as adding source languages hurts performance
(e.g., EN, ES → PT scores lower than EN → PT
for XLTime-XLMRbase). We hypothesize this is
related to the quality of the datasets and plan to
address this in the future.

5 Conclusion

We propose XLTime for multilingual language
TEE in low-resource scenarios. It is based on lan-
guage models and leverages MTL to prompt cross-
language knowledge transfer. It greatly alleviates
the problems caused by the shortage in training
data and shows results superior to the previous au-
tomatic SOTA methods on four languages. It also
approaches the performance of a highly engineered
rule-based system.
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A Types of the Temporal Expressions

According to ISO-TimeML (Pustejovsky et al.,
2010), the TEE dataset annotation guideline, there
are four types of temporal expressions, i.e., Date,
Time, Duration, and Set. Date refers to a calendar
date, generally of a day or a larger temporal unit;
Time refers to a time of the day and the granularity
of which is smaller than a day; Duration refers to
the expressions that explicitly describe some period
of time; Set refers to a set of regularly recurring
times (Pustejovsky et al., 2010).

Algorithm 1: Training XLTime

1 // Initialize model.
2 Load the parameters from a pre-trained

multilingual model.
3 Initialize W and W′ randomly.
4 // Prepare task data.
5 for t in {primary, secondary} do
6 Split the data of task t into

mini-batches Bt

7 B = Bprimary ∪Bsecondary

8 for e in 1, ..., epoch do
9 Randomly shuffle B

10 // bt is a mini-batch of task t
11 for bt in B do
12 if t is a primary task then
13 Lsl = Equation 1
14 else
15 Lbc = Equation 2

16 Compute gradient and update
model parameters

B The Training Procedure

We adopt mini-batch-based stochastic gradient de-
scent (SGD) to train XLTime, as shown in Algo-
rithm 1. To concurrently train on the primary and
secondary tasks, we split the training data of both
tasks into mini-batches and randomly take one
mini-batch at each step. We then calculate loss
using that mini-batch and update the parameters
of the shared backbone as well as the task-type-
specific classifier. The classifier of the other task
type is unaffected.

C Full Results for Low-resource
Language TEE

Table 7 shows the full results for low-resource lan-
guage TEE with/without considering the types of
the temporal expressions. Note that the superiority
of our proposed XLTime over the previous auto-
matic SOTA still holds.

D Full Results for Low-resource
Language TEE with Additional Source
Languages

Tables 8 and 9 show the full results for low-resource
language TEE with additional source languages.

E Comparative Error Analysis

This section qualitatively shows how the proposed
XLTime framework transfers knowledge to the tar-
get language. Specifically, we show how the errors
made by the vanilla multilingual models can be
fixed by applying XLTime. We also show how ap-
plying XLTime on other languages in addition to
English would help fix more errors.

We compare mBERT and XLTime-mBERT
(transfer from EN) on FR TEE. Table 5 summarizes
cases where mBERT fails while XLTime-mBERT
gives correct predictions. We can tell that XLTime-
mBERT learns ‘hier (yesterday)’, which is not un-
derstood by the mBERT model. XLTime-mBERT
also learns to recognize vague time spans such as
‘désormais (from now on)’ and ‘longtemps (long
time)’, which are missed by the mBERT model.
Moreover, compared to mBERT, XLTime-mBERT
understands FR grammar better, as it recognizes
the roles of definite articles and adjectives, such as
‘le (the)’ and ‘prochain (next)’, in TEs. In a word,
the proposed XLTime framework helps connect the
concepts in EN to the corresponding ones in FR.

To show how applying XLTime on extra source
languages would help fix more errors, we compare
XLTime-mBERT (transfer from EN) and XLTime-
mBERT (transfer from EN and ES) on FR TEE.
Table 6 summarizes the TEs that the former fails
while the latter gives correct predictions. We
can tell that by leveraging ES as an additional
source language, XLTime-mBERT better masters
FR grammar. Specifically, it learns to recognize
definite articles and prepositions that share similar
(e.g., ‘le/los’) or identical (e.g., ‘de’ and ‘en’) forms
in ES and FR. It can also better distinguish TEs of
different types (e.g., it learns that ‘quelques jours
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Table 5: mBERT vs. XLTime-mBERT (transfer from EN) frequent (count ≥ 10) errors.

Error Desc. FR TEs EN translations mBERT results (wrong) XLTime results (correct) counts

fail to recognize
‘hier (yesterday)’

hier soir last night O B-TIME B-TIME I-TIME 30hier yesterday O B-DATE

fail to recognize
vague time span

désormais from now on O B-DATE
6longtemps long time O B-DURATION

toute l’année all year O O B-SET I-SET

fail to recognize
definite articles
and adjectives

le 3 août August 3 O B-DATE I-DATE B-DATE I-DATE I-DATE
10la nuit the night O O B-TIME I-TIME

lundi prochain next Monday B-DATE O B-DATE I-DATE

Table 6: XLTime-mBERT (transfer from EN) vs. XLTime-mBERT (transfer from EN and ES) frequent (count ≥ 8) errors.

Error Desc. FR TEs EN translations EN results (wrong) EN and ES results (correct) counts

fail to recognize
definite articles
and prepositions

en été in summer B-DATE I-DATE O B-DATE
20le 13 février February 13 O B-DATE I-DATE B-DATE I-DATE I-DATE

de dimanche of Sunday B-DATE I-DATE O B-DATE

wrong token
types

mardi Tuesday B-TIME B-DATE 18quelques jours A few days B-DATE I-DATE B-DURATION I-DURATION

recognized extra
TEs

quotidiens daily B-SET O 8la saison the season B-DATE I-DATE O O

(a few days)’ is a Duration, instead of a Date).
One interesting fact is, when transferring solely
from EN, the model recognizes some extra TEs
that are not in the ground truth of the FR dataset.
This is because of an inconsistency in data label-
ing: ‘daily’ is considered as a Set in the EN dataset,
while its counterpart, ‘quotidiens’ is overlooked in
the FR dataset. The proposed XLTime framework
eliminates the needs of manually labeling multiple
datasets and therefore, can be applied to minimize
data label inconsistency.

F Language Models on English TEE

In our early experiments, we reexamine the lan-
guage models on English TEE. This section
presents the results.

F.1 Experimental Setup

We study BERT (Devlin et al., 2019) and XLMR
(Conneau et al., 2020) variants, RoBERTa (Liu
et al., 2019b) and T5 Encoder (Raffel et al., 2019).
We compare them to rule-based methods including
HeidelTime (Strötgen and Gertz, 2013), SynTime
(Zhong et al., 2017), and PTime (Ding et al., 2019),
which report SOTA performances on Wikiwars,
TE3, and Tweets, respectively. We experiment on
both settings, i.e., “with type" and “without type",
and report F1, precision, and recall in strict match
(UzZaman et al., 2013). We use the data splits
following Ding et al. (2019) and the experimental

settings introduced in Section 4.1.

F.2 Evaluation Results
Tables 10, 11, and 12 show the results. We observe:
1) When ignoring the types, the language models
are inferior to SynTime on TE3, on par with or
better than the rule-based methods on Wikiwars
and Tweets. 2) When considering the types, the
language models outperform the previous SOTAs
by 11-22%, 18-21%, and 30-41% in F1 on TE3,
Wikiwars, and Tweets datasets.
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Table 7: Multilingual TEE results (w/ type | w/o type).

w/ type FR ES PT EU
F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re.

Automatic Baseline Models
HeidelTime-auto 0.53 0.63 0.46 0.41 0.56 0.32 0.49 0.66 0.39 0.15 0.60 0.09
BiLSTM+CRF 0.58 0.64 0.51 0.56 0.61 0.51 0.58 0.59 0.58 0.44 0.54 0.37
mBERT 0.56 0.61 0.51 0.56 0.62 0.51 0.60 0.56 0.64 0.59 0.64 0.55
XLMR-base 0.64 0.69 0.59 0.51 0.58 0.46 0.59 0.59 0.59 0.43 0.60 0.34
XLMR-large 0.69 0.70 0.68 0.68 0.71 0.66 0.71 0.69 0.73 0.66 0.70 0.63

Projection Method
TMP-mBERT 0.50 0.56 0.45 0.23 0.59 0.14 0.60 0.57 0.64 / / /
TMP-XLMRbase 0.50 0.60 0.43 0.23 0.57 0.14 0.61 0.58 0.64 / / /
TMP-XLMRlarge 0.52 0.61 0.46 0.24 0.59 0.15 0.61 0.58 0.63 / / /

Transfer from EN (Ours)
XLTime-mBERT 0.62 0.62 0.62 0.65 0.70 0.61 0.61 0.58 0.66 0.68 0.72 0.65
XLTime-XLMRbase 0.67 0.67 0.68 0.60 0.63 0.58 0.64 0.62 0.66 0.64 0.68 0.60
XLTime-XLMRlarge 0.71 0.74 0.68 0.70 0.76 0.65 0.74 0.71 0.78 0.72 0.79 0.66

Transfer from EN and others (Ours)
XLTime-mBERT 0.71 0.69 0.73 0.68 0.69 0.66 0.73 0.70 0.76 0.68 0.72 0.65
XLTime-XLMRbase 0.70 0.67 0.74 0.65 0.69 0.62 0.66 0.64 0.68 0.70 0.76 0.65
XLTime-XLMRlarge 0.75 0.72 0.78 0.70 0.76 0.65 0.81 0.79 0.84 0.74 0.79 0.69

Handcrafted Method
HeidelTime 0.80 0.81 0.79 0.85 0.90 0.80 0.57 0.60 0.53 / / /

w/o type FR ES PT EU
F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re.

Automatic Baseline Models
HeidelTime-auto 0.55 0.65 0.47 0.42 0.58 0.33 0.50 0.67 0.39 0.17 0.66 0.10
BiLSTM+CRF 0.64 0.73 0.57 0.62 0.68 0.56 0.64 0.66 0.63 0.47 0.58 0.40
mBERT 0.63 0.70 0.58 0.62 0.69 0.56 0.66 0.63 0.69 0.65 0.71 0.60
XLMR-base 0.69 0.75 0.64 0.54 0.61 0.48 0.63 0.64 0.62 0.46 0.64 0.36
XLMR-large 0.75 0.78 0.73 0.72 0.75 0.69 0.75 0.74 0.76 0.70 0.74 0.67

Projection Method
TMP-mBERT 0.56 0.63 0.50 0.23 0.59 0.14 0.66 0.64 0.69 / / /
TMP-XLMRbase 0.55 0.67 0.47 0.23 0.57 0.14 0.64 0.61 0.67 / / /
TMP-XLMRlarge 0.56 0.66 0.50 0.24 0.59 0.15 0.65 0.61 0.68 / / /

Transfer from EN (Ours)
XLTime-mBERT 0.73 0.73 0.72 0.71 0.77 0.66 0.67 0.64 0.71 0.76 0.81 0.71
XLTime-XLMRbase 0.78 0.79 0.78 0.66 0.70 0.63 0.68 0.67 0.70 0.71 0.76 0.66
XLTime-XLMRlarge 0.76 0.79 0.73 0.72 0.79 0.67 0.77 0.74 0.81 0.78 0.85 0.71

Transfer from EN and others (Ours)
XLTime-mBERT 0.80 0.77 0.82 0.77 0.79 0.74 0.80 0.77 0.83 0.77 0.82 0.72
XLTime-XLMRbase 0.82 0.79 0.86 0.72 0.78 0.68 0.73 0.72 0.75 0.79 0.86 0.73
XLTime-XLMRlarge 0.84 0.82 0.86 0.75 0.79 0.71 0.84 0.82 0.87 0.79 0.84 0.74

Handcrafted Method
HeidelTime 0.86 0.87 0.85 0.86 0.91 0.81 0.60 0.64 0.57 / / /
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Table 8: Low-resource language TEE with additional source languages (F1, precision, and recall scores w/ type). The blue cells
are expected to, while the underlined cells actually outperform (by ≥ 3%) using EN as the only source language.

F1
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.61 0.61 0.71 0.65 0.66 0.65 0.68
XLTime-XLMRbase 0.67 0.67 0.66 0.70 0.60 0.61 0.64 0.65
XLTime-XLMRlarge 0.71 0.73 0.73 0.75 0.70 0.68 0.69 0.68

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.61 0.72 0.59 0.73 0.68 0.66 0.66 0.68
XLTime-XLMRbase 0.64 0.66 0.55 0.52 0.64 0.66 0.66 0.70
XLTime-XLMRlarge 0.74 0.79 0.81 0.71 0.72 0.71 0.74 0.72

Precision
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.59 0.62 0.69 0.70 0.69 0.71 0.69
XLTime-XLMRbase 0.67 0.66 0.67 0.67 0.63 0.64 0.67 0.69
XLTime-XLMRlarge 0.74 0.72 0.76 0.72 0.76 0.65 0.73 0.68

Target Language PT EU

Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.58 0.68 0.56 0.70 0.72 0.70 0.69 0.72
XLTime-XLMRbase 0.62 0.64 0.51 0.49 0.68 0.73 0.69 0.76
XLTime-XLMRlarge 0.71 0.75 0.79 0.68 0.79 0.75 0.79 0.79

Recall
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.62 0.59 0.73 0.61 0.64 0.60 0.66
XLTime-XLMRbase 0.68 0.67 0.64 0.74 0.58 0.59 0.61 0.62
XLTime-XLMRlarge 0.68 0.73 0.71 0.78 0.65 0.71 0.65 0.67

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.66 0.75 0.62 0.76 0.65 0.63 0.64 0.64
XLTime-XLMRbase 0.66 0.68 0.60 0.55 0.60 0.60 0.63 0.65
XLTime-XLMRlarge 0.78 0.83 0.84 0.74 0.66 0.67 0.69 0.67

Table 9: Low-resource language TEE with additional source languages (precision and recall scores w/o type). The blue cells
are expected to, while the underlined cells actually outperform (by ≥ 4%) using EN as the only source language.

Precision
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.73 0.76 0.76 0.77 0.77 0.76 0.79 0.79
XLTime-XLMRbase 0.79 0.77 0.81 0.79 0.70 0.72 0.75 0.78
XLTime-XLMRlarge 0.79 0.81 0.84 0.82 0.79 0.70 0.79 0.74

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.64 0.77 0.67 0.77 0.81 0.78 0.79 0.82
XLTime-XLMRbase 0.67 0.72 0.60 0.54 0.76 0.82 0.79 0.86
XLTime-XLMRlarge 0.74 0.79 0.82 0.72 0.85 0.85 0.84 0.84

Recall
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.72 0.77 0.69 0.82 0.66 0.69 0.66 0.74
XLTime-XLMRbase 0.78 0.76 0.75 0.86 0.63 0.64 0.68 0.68
XLTime-XLMRlarge 0.73 0.81 0.77 0.86 0.67 0.75 0.71 0.72

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.71 0.83 0.74 0.83 0.71 0.69 0.70 0.72
XLTime-XLMRbase 0.70 0.75 0.66 0.59 0.66 0.67 0.70 0.73
XLTime-XLMRlarge 0.81 0.87 0.87 0.77 0.71 0.74 0.74 0.71
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Table 10: Supervised English TEE on TE3 (w/ type | w/o
type).

F1 Pr. Re.

Rule-based Models
HeidelTime 0.77| 0.81 0.80| 0.84 0.75| 0.79
SynTime 0.65| 0.92 0.65| 0.91 0.66| 0.93
PTime 0.67| 0.85 0.68| 0.88 0.65| 0.83

Language Models
BERT-base 0.76| 0.82 0.78| 0.85 0.74| 0.80
BERT-large 0.79| 0.83 0.77| 0.82 0.80| 0.84
mBERT 0.79| 0.84 0.80| 0.86 0.77| 0.82
RoBERTa 0.78| 0.84 0.79| 0.86 0.77| 0.82
XLMR-base 0.79| 0.81 0.80| 0.82 0.77| 0.81
XLMR-large 0.78| 0.81 0.78| 0.82 0.78| 0.81
T5Encoder 0.79| 0.82 0.82| 0.85 0.78| 0.80

Table 11: Supervised English TEE on Wikiwars (w/ type |
w/o type).

F1 Pr. Re.

Rule-based Models
HeidelTime 0.80| 0.85 0.86| 0.92 0.75| 0.80
SynTime 0.79| 0.79 0.79| 0.79 0.79| 0.79
PTime 0.86| 0.86 0.87| 0.87 0.86| 0.86

Language Models
BERT-base 0.94| 0.94 0.95| 0.95 0.94| 0.94
BERT-large 0.95| 0.95 0.94| 0.94 0.96| 0.96
mBERT 0.97| 0.97 0.96| 0.96 0.97| 0.97
RoBERTa 0.95| 0.95 0.94| 0.94 0.97| 0.97
XLMR-base 0.97| 0.97 0.95| 0.95 0.98| 0.98
XLMR-large 0.96| 0.96 0.94| 0.94 0.97| 0.97
T5Encoder 0.96| 0.96 0.95| 0.95 0.97| 0.97

Table 12: Supervised English TEE on Tweets (w/ type | w/o
type).

F1 Pr. Re.

Rule-based Models
HeidelTime 0.80| 0.80 0.90| 0.90 0.72| 0.72
SynTime 0.63| 0.92 0.62| 0.91 0.65| 0.95
PTime 0.66| 0.95 0.65| 0.94 0.67| 0.96

Language Models
BERT-base 0.92| 0.94 0.90| 0.93 0.93| 0.95
BERT-large 0.86| 0.92 0.84| 0.92 0.88| 0.92
mBERT 0.87| 0.91 0.85| 0.88 0.90| 0.94
RoBERTa 0.91| 0.95 0.89| 0.93 0.94| 0.97
XLMR-base 0.90| 0.94 0.87| 0.92 0.93| 0.97
XLMR-large 0.93| 0.95 0.91| 0.93 0.95| 0.96
T5Encoder 0.87| 0.93 0.84| 0.91 0.91| 0.95
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