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Abstract
Pre-trained models (PTMs) have lead to great
improvements in natural language generation
(NLG). However, it is still unclear how much
commonsense knowledge they possess. With
the goal of evaluating commonsense knowl-
edge of NLG models, recent work has pro-
posed the problem of generative commonsense
reasoning, e.g., to compose a logical sentence
given a set of unordered concepts. Existing
approaches to this problem hypothesize that
PTMs lack sufficient parametric knowledge for
this task, which can be overcome by introduc-
ing external knowledge or task-specific pre-
training objectives. Different from this trend,
we argue that PTM’s inherent ability for genera-
tive commonsense reasoning is underestimated
due to the order-agnostic property of its input.
In particular, we hypothesize that the order of
the input concepts can affect the PTM’s abil-
ity to utilize its commonsense knowledge. To
this end, we propose a pre-ordering approach
to elaborately manipulate the order of the given
concepts before generation. Experiments show
that our approach can outperform the more so-
phisticated models that have access to a lot of
external data and resources.

1 Introduction

Pre-trained models (PTMs), such as BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020), have
achieved significant progress in many natural lan-
guage generation tasks. However, their ability to
reason with common sense while generating text
is questionable. To push research in this direction,
Lin et al. (2020) proposed the task of generative
commonsense reasoning (GCR), where the goal
is to compose a fluent and rational sentence from
a set of concepts. Figure 1 shows an example of
this problem. To achieve this goal, the model must
do commonsense reasoning to build connections
between the given concepts and produce a logically
sound sentence (e.g., it is the pitcher who throws
the ball to the batter rather than the other way).

Figure 1: Example of the GCR task.

Prior works hypothesize that the vanilla PTMs
are not capable of solving this challenging task
(Liu et al., 2021; Fan et al., 2020; Zhou et al.,
2021) partly because their self-supervised objec-
tives do not explicitly capture the relational com-
monsense knowledge (Zhou et al., 2021). These
works enhance the PTMs’ performance by explic-
itly introducing knowledge during fine-tuning or
implicitly teaching the model during further pre-
training. However, we observe that in some cases,
even without external knowledge, PTMs can cre-
ate reasonable output for this task, indicating that
PTMs may already have the commonsense reason-
ing ability to some degree. Therefore the challenge
turns out to be how to make it easier for PTMs to
fully utilize the inherent commonsense knowledge.

One potential solution of this challenge is to
make the order of input concepts more natural and
aligned with commonsense. For example, in Fig-
ure 1, taking {pitcher, throw, ball, batter} as the
input is better than {batter, throw, ball, pitcher},
since the order of concepts in the former input is
more close to that in the outputs. Models that are
not pre-trained, such as LSTM and GRU, prefer a
pre-ordering of input tokens to align them with the
(expected) output (Vinyals et al., 2016; Bisazza and
Federico, 2016). For PTMs, recent works (Kale
and Rastogi, 2020; Ribeiro et al., 2021; Hoyle et al.,
2021) show that they can achieve reasonable perfor-
mance on graph-to-text tasks without pre-ordering.
However, the impact of pre-ordering on PTMs, in
general, is not well analyzed.

In this work, we revisit PTMs’ ability of genera-
tive commonsense reasoning without access to ex-
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ternal knowledge or task-specific pre-training. We
choose BART and T5, two state-of-the-art PTMs,
as our underlying models. To analyze the utility of
pre-ordering the concepts on models’ performance,
we introduce Planned-BART and Planned-T5 to
manipulate the input concept order before genera-
tion, which helps to make the order of input con-
cepts more natural (more close to the order of con-
cepts in the output sentence). We experimentally
show that via pre-ordering, Planned-BART and
Planned-T5 exceed the more sophisticated models
that have access to external knowledge or training
data. It indicates that PTM’s inherent ability for
generative commonsense reasoning was underes-
timated while a simple pre-ordering step can help
PTMs better use this ability.

2 Related Works

2.1 Generative Commonsense Reasoning

There are two major approaches to enhance the
vanilla PTM’s ability of commonsense reasoning
on generation. The first approach is to introduce
explicit knowledge from external sources such
as ConceptNet (Liu et al., 2021) and retrieved
prototypes (Fan et al., 2020; Wang et al., 2021),
which can facilitate GSR by either building connec-
tions between related concepts or providing adjunct
words for the input. The second approach is to ex-
plicitly teach models to reason over the concepts
via new pre-training objectives (Zhou et al., 2021).
Different from these works, we examine PTMs’ in-
herent ability of GSR without the help of external
knowledge or task-specific pre-training.

2.2 Sequence Pre-Ordering

Previous works have shown that the pre-ordering
of input sequence can improve the task of graph-
to-text generation (Moryossef et al., 2019; Zhao
et al., 2020), but they use non-pre-trained LSTM
and the pre-ordering methods rely on rich structural
information from the input. We instead focus on
PTMs and non-structural input. For PTMs, Hes-
sel and Schofield (2021) and Sinha et al. (2021)
show that PTMs are resilient to shuffling the order
of input tokens on the tasks of natural language
understanding, but they didn’t study the genera-
tion problem. Hoyle et al. (2021) show that a
suitable pre-ordering can improve the generation
quality. However, they didn’t provide a general
pre-ordering method for the problem of keywords-
to-text generation.

3 Generative Commonsense Reasoning

3.1 Task Formalization

Given a set of lemmatized tokens representing con-
cepts X = {x1, · · · , xm}, where each xi can be
a noun or a verb, the goal is to generate a flu-
ent and grammatically correct English sentence
y = {y1, · · · , yn} such that it contains all of the
concepts in X . The task does not require xi to have
the same morphological form as it appears in y.
Figure 1 shows an example of the task. Note that
X is an unordered set of concepts. We refer to a
permutation of X as a Plan of the concept set. For
a given output sentence y, we re-order X to make
the concepts have the same order as those in y and
call it as the Skeleton of y. Note that skeletons
are associated with the outputs while plans are de-
termined before generation. We refer to the plans
which are identical to the references’ skeletons as
Oracle Plans.

We use BART and T5, two state-of-the-art PTMs,
as the underlying generation models. Both models
are based on the Transformer architecture (Vaswani
et al., 2017). Similar to other sequence-to-sequence
models, they receive x = {x1, · · · , xm} as input,
and model the probability of the output sequence
y = {y1, · · · , yn} as:

p(y | x;θ) =
|y|∏

t=1

p (yt | y1:t−1,x;θ) . (1)

3.2 Planned Model

To fine-tune PTMs on this task, previous works
regard the input as an unordered set and use its
random linearization as the input in both training
and inference phases. Although it is trained in an
order-agnostic setting, PTMs are naturally position-
sensitive models because the same input words
in different permutations have different positional
representations.

Leveraging this property, we introduce Planned-
BART and Planned-T5 to make both models aware
of the input order by regarding the input as an or-
dered sequence. To order the input concepts prop-
erly, in the training phase, we re-order the concepts
according to the corresponding oracle plan. That is,
we force the order of concepts in both input and out-
put sequences to be identical during training, which
can better help the model utilize its inherent com-
monsense reasoning capabilities. In the inference
phase, the oracle plans of concepts are unavailable.
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Model \ Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage
BART (Lin et al., 2020) 22.23 41.98 36.3 26.3 30.9 13.92 30.6 97.35
EKI-BART (Fan et al., 2020) 24.36 45.42 42.9 32.1 32.0 16.80 32.5 -
KG-BART (Liu et al., 2021) 23.38 44.54 42.1 30.9 32.4 16.83 32.7 98.68
Planned-BART (Ours) 24.97 46.13 44.8 34.1 32.9 17.47 33.1 98.99
T5 (Lin et al., 2020) 22.01 42.97 39.0 28.6 30.1 14.96 31.6 95.29
CALM (Zhou et al., 2021) - - - 29.5 31.9 15.61 33.2 -
RE-T5 (Wang et al., 2021) - - - - - - 34.3 -
Planned-T5 (Ours) 24.07 46.11 44.6 33.7 32.8 17.60 34.0 98.60

Human Performance 48.88 63.79 48.2 44.9 36.2 43.53 63.5 99.31

Table 1: Automatic evaluation of generation quality. We compare our methods with pre-train- or knowledge-
enhanced baselines. Our best model outperforms previous models on all automatic measures. The only exception is
RE-T5, which uses both external knowledge and pre-training (with 7 times larger training data).

We instead obtain the plan using a Planner. Lever-
aging the power of PTMs, the planner is a vanilla
BART or T5 model, which is fine-tuned on un-
ordered (randomly linearized) input and produces
a sentence as output. The skeleton of the planner’s
output forms the plan for planned models.

4 Experiments

4.1 Dataset and Evaluation

We conduct experiments 1 on the COMMONGEN

dataset (Lin et al., 2020), which contains 35k
concepts-sentence pairs for training/validation/test.
To build concepts-reference pairs, COMMONGEN

first collects frequently co-occurring concepts from
image captions. Each concept-set contains three to
five concepts. The references in the training set are
original captions while those in the validation and
test sets are collected by crowd-sourcing.

The quality of the generated text is evaluated
through several automatic metrics such as BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), and SPICE (Anderson et al.,
2016). We also report Coverage (Lin et al., 2020),
which is the average percentage of input concepts
that are present in the output sentences.

4.2 Results

We compare the performance of our pre-ordered
method with the unordered BART and T5, as well
as two knowledge-enhanced BART models: EKI-
BART and KG-BART, and two T5 models en-
hanced by further pre-training: CALM and RE-T5.
Table 1 lists the results of automatic measures. The
training details can be found in Appendix A.

1Code is available at https://github.com/
zhaochaocs/Planned-PTM

Our Planned-BART and Planned-T5 models out-
perform vanilla BART and T5 models, demonstrat-
ing that pre-ordering the input helps PTMs in ef-
fectively leveraging their inherent commonsense
knowledge. Our models also outperform three out
of four baselines that use external knowledge or
pre-training objectives. The only exception is RE-
T5, which is further pre-trained.This indicates that
PTMs inherently contain a lot of commonsense
knowledge that needs to be first utilized before
bringing in information from external sources.

To further explore the potential of the pre-
ordering method, we conduct another experiment to
investigate the impact of concept orders on genera-
tion quality. Given a test concept set, we feed all of
its permutations to either BART or Planned-BART
to generate sentences. We then rank the sentences
according to their probabilities in Equation 1 and
pick the most probable sentence as the final out-
put. We refer to the methods using this strategy as
BART Rank and Planned-BART Rank, respectively.
Note that the ranking method is computationally
inefficient. In this work, we only use these models
to provide an estimate of the upper bound on the
performance of the pre-ordering method.

As shown in Table 2, the performance of
Planned-BART is close to its ranking variant. This
demonstrates the effectiveness of our planning strat-
egy – it helps Planned-BART achieve a perfor-
mance comparable to the upper bound at a much
lower computational overhead. We also observe
that Planned-BART Rank achieves better scores than
BART Rank. This is because Planned-BART is
trained on oracle plans, which helps it in better
utilizing its inherent commonsense knowledge.

4.3 Human Evaluation

We randomly select 100 test instances and evalu-
ate the generation quality of a system according
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Model \ Metrics R-2 B-4 M C S
Planned-BART 24.97 34.1 32.9 17.47 33.1
BART Rank 24.31 33.0 33.0 17.39 33.2
Planned-BART Rank 25.04 35.0 33.3 17.89 33.6

Table 2: Evaluation of Planned-BART and ranking
models on ROUGE-2, BLEU-4, METEOR, CIDEr, and
SPICE.

Model \ Metrics RATION FLUENCY SUCCINCT
BART -0.38 -0.33 -0.56
BART Rank -0.10 0.04 -0.13
Planned-BART -0.29 -0.19 -0.17

Table 3: Results of human evaluation on rationality, flu-
ency, and succinctness. We report the pair-wise scores
between Planned-BART Rank (the best model) with three
other models. Negative scores indicates worse perfor-
mance compared with Planned-BART Rank.

to Rationality, Fluency, and Succinctness as in Liu
et al. (2021). We conduct a pairwise comparison
between Planned-BART Rank (the best model) with
our three other methods.For each test instance, we
obtain the output sentences from two different mod-
els, and then ask three workers on Amazon Mechan-
ical Turk to compare the two sentences according
to the three measures listed above. More details
can be found in Appendix B.

Table 3 lists the results, where negative scores in-
dicate worse performance compared with Planned-
BART Rank. The original BART performs the worst
on all measures, while Planned-BART achieves
closer quality to BART Rank and Planned-BART
Rank. These results are consistent with those of
automatic evaluations and support our claim that
Planned-BART can be a reasonable trade-off be-
tween performance and efficiency.

5 Analysis

In this section, we analyze the impact of input per-
mutation on the model and the generated sentences.

5.1 Permutation Invariance

We first examine how the output changes when the
original BART (which we refer to as Unordered-
BART for clarity) and Planned-BART receive all
possible permutations of concepts as input. We
compare the skeleton of Planned-BART’s outputs
with the input plans and find that the output skele-
ton is consistent with the order of input concept in
94% of the cases, which is as expected.

In contrast, for Unordered-BART, we find that
for 61% of the permutations, it can organize the

concepts in one particular order irrespective of the
input order. More details are provided in Appendix
C. This observation suggests that Unordered-BART
is permutation-invariant to the input to some degree.
However, it is difficult for the model to be entirely
insensitive to the input permutation, which explains
the performance difference between BART and
BART Rank: a ranking strategy helps select a more
suitable permutation of input and can therefore im-
prove the generation quality.

5.2 Impact of Permutation on Encoding

The observations in Section 5.1 prompt a question
about how Unordered-BART and Planned-BART
have different behaviors when receiving input per-
mutation. Here, we explore this question by study-
ing the impact of input permutation on the model
encoder, especially the global attention distribu-
tions and the local attention strength between cer-
tain word pairs.

One possible reason for the permutation invari-
ance of Unordered-BART is that although different
input plans have different positional embeddings
and may affect hidden states of the lower layers,
the encoder can build stable association among
tokens at the higher layers, alleviating the distur-
bance from positional embeddings. For example,
the model may know that people should “ride a bike
on trail” even when the concept order is {ride, trail,
bike}. We measure the word association inside
the encoder using the strength of attention weights
between concepts.

To verify our assumption, we calculate (i) the
Jensen–Shannon divergence (JSD) of the encoder
attention distributions w.r.t. all possible permuta-
tions of the input, and (ii) the variance of encoder
hidden states w.r.t. the input permutations. Figure
2 shows the layer-wise JSD and variance averaged
over the test set. For comparison, we also include
the results from a randomly-initialized BART and
the pre-trained BART (without fine-tuning).

From Figure 2 we observe that the attention
distributions of Planned-BART have high JS di-
vergence at each layer, and have a similar trend
compared with that of Pre-trained BART. It indi-
cates that attention distributions of these two mod-
els are affected by the input permutation, which
is expected since their input is well ordered dur-
ing pre-training or fine-tuning. As a result, the
variances of hidden states on both models increase
with a growth in layer depth. In contrast, the JS
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Figure 2: Left: JS divergence of encoder attention dis-
tributions w.r.t. the input permutations. Right: the vari-
ance of encoder hidden states w.r.t. input permutations.

divergence of attention in Unordered-BART gets
close to 0 starting from layer 2 and becomes sim-
ilar to that of the randomly initialized model. It
indicates that the encoder can assign stable atten-
tion distributions to the input despite the difference
in permutation. Because of this, the variances of
hidden states on these two models decrease as the
layer goes deeper. It partially explains the permu-
tation invariance of Unordered-BART. We also no-
ticed a substantial negative correlation between the
variance of the encoder output and the percentage
of the mode sentence (Spearman’s ρ = −0.435),
which supports our explanation.

In addition to the analysis of global attention
distribution, we also investigate local attention pat-
terns, i.e., whether the attention weights between
concept tokens can reflect their commonsense re-
lations. More details are listed in Appendix D.
We find that compared with a randomly-initialized
BART, the pre-trained BART is better at tracking
commonsense relations of concepts despite input
permutation, and fine-tuning can further strengthen
this capability. We also find that the model heavily
relies on the tracking ability when generating texts.
It demonstrates that BART has the commonsense
reasoning ability to some degree, and it is reason-
able to leverage the output of Unordered-BART to
obtain the plan for planned-BART.

5.3 Impact of Permutation on Decoding

In this section, we discuss how the input permu-
tation can affect the quality of decoding output.
Particularly, we show that reasonable planning can
create less repetitive and more diverse output.

First, we find that the unordered models suffer
from the repetition of content in the output. For
example, in 34.2% of test cases, there is at least one
concept that appears more than once in the output
of the unordered BART. However, this percentage
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Figure 3: The quality-diversity plot of Unordered-
BART Rank and Planned-BART Rank.

decreased to 3.2% for the output of Planned-BART.
It is because the decoder of Planned-BART can
assign attention weights monotonically to the input,
and reduce the repetition caused by re-attending
the previous concepts. In Appendix E, we provide
a visualization of how the input order can impact
the attention weights during decoding.

Second, the order consistency between inputs
and outputs in Planned-BART also allows us to
have more control over output skeletons by adjust-
ing the input concept order. Different orders can
help the encoder to capture diverse commonsense
relations between concepts and create diverse out-
puts. While unnatural diversity may hurt gener-
ation quality, we use SPICE as the measure for
quality and BLEU-based discrepancy (Shu et al.,
2019) for diversity, and evaluate the performance
of Unordered-BART Rank and Planned-BART Rank
by selecting the top 2 to 5 candidates as outputs.
Figure 3 shows the quality-diversity plot of two
models. It indicates that with little degradation of
generation quality, Planned-BART can create more
diverse output than Unordered-BART. We show an
example in Appendix F.

6 Conclusion

In this work, we revisit the PTM’s inherent abil-
ity of generative commonsense reasoning. We use
BART and T5 as underlying generators and pro-
pose their planned variants to manipulate the order
of the given concepts before generation. Experi-
ments on COMMONGEN dataset demonstrate that
this simple pre-ordering approach can outperform
the previous pre-trained or knowledge-enhanced
models. Besides that, planned models can leverage
the pre-ordered concepts to create more succinct
and diverse sentences. In conclusion, our work
suggests that PTM’s inherent ability for generative
commonsense reasoning is underestimated due to
the unordered input, and the pre-ordering step can
help PTMs to improve the generation quality.
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A Training Details

The BART and T5 models are implemented using
the Transformers library (Wolf et al., 2020). We
fine-tune each model on the training data of COM-
MONGEN with Adam (Kingma and Ba, 2015). We
set the learning rate as 2e-5 and adopt early stop-
ping based on the loss of development set. The
batch size of training is 64.

B Human Evaluation Details

We randomly select 100 test instances that had 5
concepts as input, since they are more challenging
than those with fewer concepts. The three measures
we used are 1) Rationality: whether or not the
sentence is in accordance with commonsense; 2)
Fluency: whether or not the sentence is fluent and
has no grammatical errors; and 3) Succinctness:
whether or not the sentence contains redundant
words or repeated information.

The pairwise scores of those measures are cal-
culated as follows. When comparing a certain ap-
proach to Planned-BART Rank, we report the per-
centage of instances that were judged to be bet-
ter/worse/same than those of Planned-BART Rank,
yielding a score ranging from -1 (unanimously
worse) to 1 (unanimously better). For example,
when evaluating the rationality scores, Unordered-
BART Vanilla performs better/worse/same than
Planned-BART Rank for 27%/65%/8% of the in-
stances, yielding a pairwise score as 0.27-0.65=-
0.38.

C Permutation Invariance

To figure out to what extent Unordered-BART is
permutation-invariant, we conduct the following
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analysis. For each test instance, we feed all dif-
ferent input permutations to the Unordered-BART
to obtain the corresponding output sentences. We
measure the invariance of the outputs by comput-
ing the percentage of the most frequent output. If
the concept order does not affect the output, all
different permutations will lead to identical outputs
and the percentage will be 100%. If half of the per-
mutations obtain the same outputs, the percentage
will be 50%. We measure the input invariance at
the following two levels.
Sentence-level invariance For various permuta-
tions of a specific concept-set, if the percentage of
the most frequent sentence is greater than an in-
variance threshold α, we regard the model as input-
invariant to that instance at the sentence level.
Skeleton-level invariance The sentence-level in-
variance requires the output sentences to be iden-
tical, which is strict and does not consider minor
lexical differences (e.g., the difference in function
words or modifiers). Therefore, we also report the
skeleton-level invariance by measuring the percent-
age of the most frequent skeleton (mode skeleton).
It reflects whether or not the model output will fol-
low a certain order under different permutations,
which is a more forgivable invariance measure com-
pared to its sentence-level counterpart.
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Figure 4: The histogram of COMMONGEN test set w.r.t.
the percentage of most frequent sentences (left) and
skeletons (right), respectively. We also show the cumu-
lative distribution in blue lines. When α = 0.9, 37%
and 61% of the test instances are invariant at the sen-
tence and skeleton-level, respectively.

Figure 4 shows the distribution of COMMON-
GEN test set w.r.t. the percentage of most frequent
sentences (left) and skeletons (right). When setting
α = 0.9 , 37% of the test instances are invariant
at the sentence level, and 61% are invariant at the
skeleton level. This indicates that for 61% of the
permutations, Unordered-BART can organize the
concepts in one particular order irrespective of the
input order.

Relation Head UAS Ilh
v-dobj-n 10-7 83.97 13
v-prep-adp-pobj-n 10-7 82.61 13
n-nsubj-v 11-12 87.62 3
n-prep-adp-pobj-n 10-8 60.55 15
v-advcl-v 4-11 85.37 4
v-conj-v 10-1 83.07 2
n-nsubj-v-dobj-n 6-16 62.34 40
v-xcomp-v 8-15 91.32 19
n-conj-n 10-0 88.75 56
n-comp-n 1-8 83.31 24

Table 4: The functional heads for each relation, as well
as the corresponding UAS and importance rank.

D Analysis of Local Attention

In addition to the analysis of global attention distri-
bution, we also investigate local attention patterns,
i.e., the attention weights between concept tokens.
Previous works show that some attention heads can
reflect certain aspects of syntactic and semantic
relations between words (Clark et al., 2019; Htut
et al., 2019). We want to investigate if the heads can
track commonsense relations between concepts.

For this purpose, we first build gold relations
between the concepts that capture commonsense
knowledge. One option is to utilize ConceptNet
relations between concepts (Lin et al., 2020). How-
ever, these relations connect only two concepts at
a time disregarding the context information from
other concepts. Consider {throw, catch, dog, fris-
bee} as an example. “Dog” may be “caught” but
this relation is less plausible in this case because of
the existence of “frisbee”. When considering this
context, humans provide references such as “The
dog catches the frisbee when the boy throws it.”

Another option is to use the dependency rela-
tions between words in the reference sentences,
which can capture the commonly occurring rela-
tions between concepts while incorporating the con-

text. For example, the relation “catch
dobj−−→frisbee”

captures the commonsense that frisbee is often
caught, Similar ideas are also adopted in Zhang
et al. (2020). In particular, we extract the one-hop
and two-hop dependency relations of all concept
pairs from the references, and only keep the rela-
tions that appear in two or more references.

For attention probing, we use attention weights
between input tokens to reflect the strength of their
associations. Given two concepts ci and cj,j>i,
we regard them as strongly associated under the
attention head (l, h) if the attention weight αl,k

ij is
the highest among the scores from all the other
concepts ck\{i,j} to cj .
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Model Output Skeleton
Unordered-BART A crowd of people watch and dance to the music. crowd watch dance music
Planned-BART A crowd of people are dancing to music while others watch. crowd dance music watch

A man plays music and watches the crowd dance. music watch crowd dance
A group of people dance to music as a crowd watches. dance music crowd watch
A man watches a crowd of people dancing to music. watch crowd dance music

Human The crowd likes to watch her dance to the music. crowd watch dance music
The crowd watched the dance, and listed to the music. crowd watch dance music
I watched as the crowd dance to the music. watch crowd dance music
A person dancing to the music as a crowd of people watch. dance music crowd watch

Table 5: Sample texts generated by Unordered-BART, Planned-BART, and humans for the concept set {dance,
music, crowd, watch}. The diversity of Planned-BART is more close to human generation.
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Figure 5: UAS of commonsense relations from three
BART models via attention probing. The performance
of fine-tuned Unordered-BART > pre-trained Frozen-
BART > randomly-initialized BART among all of the
relations.

We choose the 10 most common dependency
relations from the test set and report the Unlabeled
Attachment Score (UAS) of attention probing in
Figure 5. We also list the UAS of a randomly
initialized BART and a pre-trained BART without
fine-tuning for comparison.

Results in Figure 5 show that for some frequent
and simple relations such as “v-dobj-n” and “n-
nsubj-v”, there is at least one attention head that
tends to track them regardless of the differences
in the permutation orders. For example, attention
head “Layer-10 Head-7” tracks the “v-dobj-n” rela-
tion with a UAS of 83.9%. The comparison among
the three models shows that the pre-trained BART
already exceeds the randomly initialized model in
tracking commonsense relations between words,
and fine-tuning further strengthens those relations.

Figure 6: The cross-attention matrix of two permuta-
tions of the same concept-set produced by Unordered-
BART. It’s difficult for Unordered-BART to learn the
optimal order of attention.

To demonstrate that these functional heads are
important for generation, we use the expected sen-
sitivity (Michel et al., 2019) of the model to each
head to evaluate the head importance as

Ilh = Ex∼X

∣∣∣∣
∂L(x)
∂ξlh

∣∣∣∣ (2)

where L(x) is the loss of generation and ξlh is the
mask variable for head l − h with values in {0, 1}.
The general idea is that the value change of impor-
tant heads can have a larger impact on the model
loss. Results are shown in Table 4. For most rela-
tions, the corresponding functional heads also have
a high rank of importance. This consistency indi-
cates that the model heavily relies on these heads
when generating texts, and further demonstrates
that the finetuned BART can capture the common-
sense between concepts for generation.

E Impact on Repetition

The repetition of the unordered BART is caused by
the order-agnostic property of its input. Since the
input concepts are unordered, the decoder cannot
pay attention to the input in a monotonic way (from
left to right) during decoding, which may mislead
the decoder to attend to the concepts that have been
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previously generated. For example, on the left of
Figure 6, the decoder attends to “tea” and “glass”
twice during decoding, which achieves the local
coherence but causes the global repetition issue
and unnatural text. However, when modifying the
input in another order, as shown in the right of
Figure 6, the repetitive and unnatural expressions
disappear. It indicates that the BART decoder has
difficulty ordering the input globally, and providing
a well-ordered plan as input can alleviate this issue.
On the contrary, in Planned-BART, the decoder
can assign attention weights monotonically to the
input, and therefore reduce the repetition caused by
re-attending the previous concepts.

F Impact on Diversity

Table 5 provides an example with the outputs cre-
ated by both models and humans. Unordered-
BART can create only one output due to the per-
mutation invariance. Also, the object of watch is
missing in its output. On the other hand, similar to
the human-written output, the output of Planned-
BART is more natural and diverse.
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