
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1632 - 1646
July 10-15, 2022 ©2022 Association for Computational Linguistics

Pruning Adapterfusion with Lottery Ticket Hypothesis

Jiarun Wu1 ,Qingliang Chen∗1,2, Zeguan Xiao1 ,Yuliang Gu1, Mengsi Sun1

1Department of Computer Science, Jinan University, Guangzhou 510632, China
2Yunqu-Jinan University Joint AI Research Center, Guangzhou 510632, China

Abstract

Pre-trained language models have shown great
success in multiple downstream tasks. How-
ever, they are computationally expensive to
fine-tune. Thus, transfer learning with adapter
modules has been introduced to alleviate this
problem, helping to extract knowledge of the
downstream tasks. Adapterfusion models are
an example of the transformers-with-adapter-
modules, which merge multiple adapters to
incorporate knowledge from different tasks.
However, merging multiple adapters will in-
evitably cause redundancies, increasing the
training and inference time massively. There-
fore, in this paper, we propose an approach
to identify the influence of each adapter mod-
ule and a novel way to prune adapters based
on the prestigious Lottery Ticket Hypothesis.
Experiments on GLUE datasets show that the
pruned Adapterfusion model with our scheme
can achieve state-of-the-art results, reducing
sizes significantly while keeping performance
intact.

1 Introduction

Transfer learning with transformer-based pre-
trained language model has become a go-to method
for solving multiple NLP tasks (Vaswani et al.,
2017). The language models are pre-trained on
large amounts of unlabeled text data with methods
such as masked language modeling (e.g. BERT
(Devlin et al., 2019a), Roberta (Liu et al., 2019),
and XLNet (Yang et al., 2019)]). Despite the state-
of-the-art performance for most natural language
understanding tasks, they are notoriously deep re-
quiring millions or even billions of parameters to
gain great results (Kaplan et al., 2020). For differ-
ent tasks, models needs to be fine-tuned entirely,
which is computationally expensive and requires
large storage.

Therefore, adapter modules (Houlsby et al.,
2019) are introduced to tackle this issue. It’s an

∗ Corresponding author: tpchen@jnu.edu.cn

Prune

Prune

Fusion

Transformers
component

Adapter

Figure 1: Pruning Adapterfusion. Adapters from differ-
ent tasks are combined into Adapterfusion after pruning
with proposed method separately.

alternative way of transfer learning that achieves
comparable performance to full fine-tuning on most
NLP tasks, without the need of fine-tuning the
whole model for a downstream task. Adapter is
a small residual neural network inserted in each
layer of the transformer. During training, only the
parameters in adapters are fine-tuned, while the
rest of the parameters are frozen. This approach
can reduce the number of parameters needed to be
trained at the training phase and enable parame-
ter sharing among tasks. Moreover, recent studies
have revealed that the adapter is capable of extract-
ing knowledge from the target task (Rücklé et al.,
2020b; Pfeiffer et al., 2020), so research attempts
have also been made to fuse multiple adapters
across multiple tasks to incorporate different as-
pects of knowledge (e.g. Adapterfusion (Pfeiffer
et al., 2021), K-adapter Wang et al. (2021)). How-

1632

ever, the fusing of adapters in these models can
inevitably cause a lot of redundancies. So, Rücklé
et al. (2020a) have recently proposed AdapterDrop
which aims to drop the redundant adapters. They
tried to remove adapters from lower transformer
layers during training and inferences, resulting in
faster training and inference speed with some per-
formance cost. However, the utilization of each
adapter has not been fully analysed yet and how
to introduce new pruning strategies remains to be
explored.

To address these deficits, in this paper, we pro-
pose an approach to model the utilization of differ-
ent adapters in the transformer layer, and a novel
way to prune adapters in the model while keeping
the loss of the performance to be negligible. The
contributions are summarized as follows:

• We propose a new indicator LIA (Layer Influ-
ence Of Adapter) to quantify the utilization of
adapters at each layer and identify the most
influential adapters in the model.

• We introduce a novel way for pruning adapter
modules, inspired by the prestigious Lottery
Ticket Hypothesis (Frankle and Carbin, 2019),
which states that dense, randomly-initialized,
feed-forward networks contain subnetworks
(winning tickets) that can have test accuracy
comparable to the original network in a simi-
lar number of iterations when trained in isola-
tion.

• We have evaluated the proposed approach on
the GLUE datasets. For the performance and
LIAs of the pruned adapters in the latest state-
of-the-art Adapterfusion model, we can re-
move more than half of the adapters and re-
duce computation of the Adapterfusion model
by nearly 40% with little performance loss.

2 Adapterfusion pruning

Adapterfusion model (Pfeiffer et al., 2021) is to
merge multiple adapters from different tasks. And
inference time of the model increases drastically af-
ter the fusion. However, not all the adapter modules
in the model are utilized in the downstream task.
We prune adapter modules from model to improve
inference speed. Our proposed pruning strategy
to remove redundant adapters from Adapterfusion
model will be two-stage. First, we prune single task
adapters before the fusion using Lottery Ticket Hy-
pothesis (Frankle and Carbin, 2019). We then fuse

the less utilized adapters after training the model.
The whole framework is presented in Figure 1. To
identify the roles of adapters, we firstly define a
new indicator LIA (Layer Influence Of Adapter)
for the adapter module to measure its utilization in
each layer.

2.1 Pruning single task adapter with Lottery
Ticket Hypothesis

Since not all adapters in the model are created
equal, removing some of the adapters does not com-
promise the performance too much. We will prune
the single task adapter before the Adapterfusion.

Inspired by Lottery Ticket Hypothesis (Frankle
and Carbin, 2019), we prune the adapter iteratively
to find the sub-network (winning ticket) that can
reach the same accuracy when trained in isolation.
After every pruning, we reinitialize the weights
of the adapter to the initial values when the first
iteration starts .

We explore to find the winning ticket in adapters
by training and pruning them iteratively. Since the
importance of adapters is different in each layer,
we are performing the pruning globally. We train
the transformer model with adapters as f (x; θ0;α)
with initial parameter in adapters θ = θ0 ∼ Dθ

and transformer parameter α = α ∼ Dα. Then the
winning ticket can be found by the following steps:

1. Randomly initialize adapter parameters in the
model f (x; θ0;α).

2. Train the adapters for j iterations, arriving at
parameters θj .

3. Prune p% of the adapters in θj .

4. Reset the remaining parameters in adapters
to θ0, and go back step 2 to train the model
f (x; θ0;α) if it is not a winning ticket yet.

We prune adapters based on their sum of weights.
Here we do not use LIA yet because it only repre-
sents the influence of adapter at each layer and it
can not distinguish the influence between layers.

Let θt,l be the weights of the adapter at layer
l at iteration t and ai,j denote the parameters in
θt,l. The importance of an adapter of size N with
input size of H is

∑N,H
i,j |ai,j |. Adapters are then

sorted by the sum of weights in the descending
order as well, and the p% smallest adapters in list
R are removed from the model. And the remaining
adapters step back to their initial weights for the

1633

re-training. The whole procedure is elaborated in
Algorithm 1. See Appendix B for more details.

Algorithm 1: Sort the importance of
adapter layers
Result: a list of tuple containing values of

importance and the number of
layers

R is an empty list;
The size of adapter is N ;
Input size of adapter is H ;
Weights of adapter at iteration t as θt;
for layer l in θt do

if layer l not pruned then
Value of importance
Impl =

∑N,H
i,j=0 |ai,j | ;

Append tuple (Impl, l) to list R ;
end

end
Sort list R with Imp

2.2 Layer influence of Adapter
To identify the usage of adapter module, we
propose a new indicator LIA(Layer influence of
Adapter).

a

b

c

d

e Up-projection

b

a

c

Down-projection

Figure 2: Layer influence of Adapter.

In a adapter module, let a⃗ denote the output of
adapter up projection module, b⃗ be the residual
connection of the adapter, and c⃗ be the output of
the adapter. See Figure2 for more detail. Their
connection can be modeled as equation 1:

a⃗+ b⃗ = c⃗ (1)

Let d⃗ denote the projection of a⃗ on c⃗, e⃗ be the
projection of b⃗. Therefore c⃗ is the combination of
d⃗ and e⃗.

Since the activation of adapters varies between
different inputs and different layers, it’s difficult to

see the influence of adapter in each layer based on
the activation. So we use the projection vector d⃗ to
represent a⃗ influence and normalize it by the length
of c⃗. We name this quantity as Layer Influence Of
Adapter (LIA), which is defined as:

LIAa⃗ =
|⃗a| × cos θ

|⃗c| =
a⃗ · c⃗
|⃗c|2 (2)

With LIA, we can model the importance of
adapters and streamline the model accordingly. We
compare the LIAs of adapter before and after the
pruning.

In Adapterfusion model, adapters are fused with
a adapterfusion layer which is a self-attention layer.
It calculate the attention of adapters and use the
weighted sum of adapters as the output. Their con-
nection can be modeled as equation 3:

c⃗ = b⃗+
n∑

i=1

Wi ∗ a⃗i (3)

We use Wi ∗ a⃗i to calculate the LIA of each
adapter. We compare LIA between different
adapters to show whether the adapters are fully
utilized, and identify which adapter is more useful
for certain layer.

3 Experimental studies

In this section, we examine the influence of the sin-
gle task adapter under different downstream tasks,
and present the results of our proposed pruning
scheme evaluated on the prestigious GLUE datasets
(Wang et al., 2018).

3.1 Experimental settings
We use the public BERT-Based uncased model
which has 12 layers and a total of 110M param-
eters as our base model. And we apply the similar
approach in (Devlin et al., 2019b) to perform a text
classification task. In each input sequence, the first
token is a classification token. Its embedding is
then fed into a linear layer to make a prediction. In
the training of Adapterfusion, a new linear layer
is initialized for classification and Adapterfusion
model is inserted in each transformer layer.

In the experiment of pruning single task adapters,
we set the adapter size to 128 because engineering
practices (Bengio et al., 2005) suggest that overpa-
rameterized networks are easier to train. We use
Adam optimizer to train the single task adapter
model and perform hyperparameter search using
TPE algorithm (Bergstra et al., 2011). We run 30

1634

trials on learning rate settings in {1 × 10−4, 5 ×
10−4, 1×10−3}, and number of epochs in {3, 4, 5}.
We select the best settings for pruning experiments.
We prune 20% of the adapters from the model at
each pruning iteration, and use an early-stopping
strategy with patience of 3 to speed up training,
and we use the minimum validation loss for early-
stopping criterion.

In the experiment of pruning Adapterfusion
model, we set the learning rate to 5 × 10−5 and
use AdamW optimizer as suggested by Pfeiffer
et al. (2021). We run each task with 4 epochs and
set the batch size to 32, and each model for each
task with five different random seeds.

We have evaluated the single adapter with prun-
ing, and Adapterfusion on GLUE datasets (Wang
et al., 2018), which contain eight sentence or
sentence-pair language understanding tasks.1 And
we treat MNLI mm, MNLI m equally. We have
reported the test results of the single task adapter
through the GLUE submission website.2

3.2 LIAs in single task adapter

In order to analyse the influence of single task
adapter at each layer, we run a test on the stan-
dard adapters and analyse the utilization of each of
them.

In the evaluation step, we store the residual out-
put and the output of each adapter to calculate the
LIAs at each step. We then average LIAs of each
adapter across the datasets. And we run the test
from tasks with small datasets to large datasets,
whose results are shown in Figure 3.

We have found that as the size of dataset gets
bigger, LIAs of adapters also become larger, im-
plying that the size of target task dataset affects
the influence of the adapters. After training on
larger datasets, adapters learn more and extract
more knowledge, and thus become more essential
for the whole model. This could explain why in
Adapterfusion (Pfeiffer et al., 2021), using adapters
from large datasets can help improve the perfor-
mance of the task with small datasets.

For adapters in large dataset task (QQP3,
QNLI(Rajpurkar et al., 2016), MNLI(Williams
et al., 2018)), most of them have large LIAs, sug-
gesting they are already concise and there are no

1We omit WNLI because it is not evaluated in BERT (De-
vlin et al., 2019a).

2https://gluebenchmark.com
3https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

many redundant parameters in them.

3.3 Pruning single task adapter

We insert adapters of size 128 into each layer of
transformers in the BERT-Based model. For differ-
ent text classification task, we put a task-specific
classifier at the end of the model. Only the parame-
ters in the adapters and task-specific classifier are
fine-tuned, and the rest of the parameters in the
model are untouched.

We iteratively prune the parameters in the
adapter by 20% per iteration. We perform 11 itera-
tions for layer pruning since there will be less than
one adapter left after the 11-th iteration.

Results on GLUE test sets are presented in Ta-
ble 1. We select the best result in all iterations of
pruning. The best model is chosen by metrics of
the corresponding task. And we evaluate the re-
sult on GLUE testing sever. We can see there is a
0.2 percentage performance gap between the full
fine-tuning model and the adapter model, and there
is a small performance gap between the adapter
model and the pruned adapter model. Therefore,
we preserve most of the essential adapters while
pruning the redundant ones.

We evaluate the adapter model on GLUE de-
velopment datasets after each iteration of pruning
and obtain the average score of three runs, see Fig-
ure 5. We discover that there is no major perfor-
mance loss before the number of adapters drops
below 9 (40%). By contrast, AdapterDrop model
(Rücklé et al., 2020a) removed the first 5 layers of
adapters and preserve most of the performance with
about 60% of the adapters left. We thus can prune
adapters 20% further than their work. The speed
comparison between the two models is shown in
Table 2. We discover that our model is faster than
AdapterDrop in most tasks.

We further analyse how the adapters are dis-
tributed when there is only nine adapters left, see
Figure 6. Interestingly, we can see that most of
the adapters close to the output layer are pruned.
These layers are removed but no harm is done to
the performance, and we think that maybe the last
few layers are just a redundant extension of classi-
fication layer.

We also find that there are more adapters after
feed-forward layers than self-attention layers, im-
plying that adapters after feed-forward layers are
more valuable. Similar phenomena can be found
in the experiments of ALBERT (Lan et al., 2020),

1635

https://gluebenchmark.com
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

1.7% 0.4% 0.7% 0.5% 1.6% 1.1% 4.3% 0.8% 0.6% 0.1% 0.6% 0.2% 0.5% 0.6% 0.3% 0.0% 0.2% 0.8% 0.9% 0.6% 2.3% 1.0% 2.0% 2.6%

2.8% -0.1% 3.8% 1.4% 0.8% 2.7% 1.0% 1.2% 1.5% 0.9% 2.7% 0.9% 1.3% 0.7% 15.3% 4.0% 2.4% 2.4% 2.1% 0.8% 1.1% 0.4% 1.1% 5.1%

1.5% 0.6% 2.4% 0.7% 1.0% 2.9% 3.8% 1.1% 2.8% 2.3% 3.7% 1.5% 5.4% 0.9% 2.3% 2.4% 2.0% 3.6% 2.4% 1.7% 1.2% 1.7% 1.1% 3.0%

2.7% 3.9% 2.0% 2.1% 1.0% 1.5% 1.6% 1.5% 1.5% 1.4% 2.1% 1.2% 1.9% 1.2% 0.8% 1.3% 2.9% 2.0% 2.0% 0.9% 3.7% 1.0% 2.8% 1.4%

11.4% 1.0% 18.9%10.9% 7.9% 4.2% 2.7% 9.8% 4.7% 16.8%22.4% 8.6% 6.5% 7.2% 16.0% 7.1% 20.4% 5.7% 45.0%26.7%18.6% 8.5% 4.1% 22.2%

46.5% 2.7% 27.5%29.3% 6.7% 13.3%26.3%15.5%16.6%40.3% 8.0% 24.5%20.9%17.9%42.2%14.3% 4.3% 35.5%34.3%11.9%17.3%20.6% 1.2% 8.3%

43.7%30.0%49.4%29.8%48.9%21.7%34.3%28.8%42.5%25.7%61.2%31.7%58.9%24.8%35.5%22.8%45.4%27.0%39.8%39.5%67.1%53.2%73.5%67.8%

20.6%14.5%58.3%27.3%58.2%16.6%36.0%25.7%41.0%27.9%49.7%44.8%27.9%31.5%18.3%31.2%44.4%41.3%57.5%68.6%73.4%38.3%18.7%60.4%

0

10

20

30

40

50

60

70

LIA [percent/layer]

Figure 3: LIAs of each layer in single task adapter for different tasks. att denotes the adapter after self-attention
layer, out is the adapter after output layer. Darker colors represent higher values of LIA. The target tasks are
arranged in the order of the size of datasets from small to large.

CoLA SST-2 MRPC STSB QQP MNLI QNLI RTE AVG
Full fine-tuning 52.10 93.50 88.90 85.80 71.20 84.60 90.50 66.40 79.60
Adapter128 51.70 93.10 88.50 85.60 71.50 83.40 90.50 67.30 79.42
Prune layer 49.50 92.60 88.00 83.50 71.50 84.10 90.80 70.60 79.30

Table 1: Test results on GLUE test sets using GLUE server. CoLA is evaluated using Matthew’s Correlation. STS-B
is evaluated using Spearman’s correlation coefficient. MRPC and QQP are evaluated using F1 score. The rest of the
tasks are evaluated by accuracy.

rte mrpc stsb cola sst2 qnli qqp mnli
Tasks

0

10

20

30

40

LI
A

1.0
2.3 2.2 1.9

12.8

20.2

41.8

38.8

4.7

11.2

3.4
4.7

17.0

25.7

43.8

38.0

Adapter LIA
Origin model
Pruned model

Figure 4: LIAs of adapters before and after pruning with
Lottery Ticket Hypothesis

where most of the performance drop appears to
come from sharing the feed-forward layer param-
eters, while sharing the attention layer parameters
results in no performance loss.

Since different tasks require different number of
adapters, in the following experiments, we use the
best adapter model of all iterations of pruning in
each task.

After using layer pruning with Lottery Ticket
Hypothesis, the average influence of each adapter
increases as shown in Figure 4. In most tasks, the
LIAs increase after the pruning, which means the

Origin AD LTH Speed up
AD LTH

RTE 208.3 203.9 203.5 2.11% 2.30%
MRPC 227.6 222.7 218.3 2.15% 4.09%
STSB 221.6 216.9 217.8 2.12% 1.71%
COLA 63.5 62.1 61.7 2.20% 2.83%
SST2 127.5 124.7 123.9 2.20% 2.82%
QNLI 41.4. 40.5 40.2 2.17% 2.90%
QQP 85.8 83.9 83.7 2.21% 2.45%
MNLI 42.8 41.9 41.5 2.10% 3.04%

Table 2: Floating points (109) operation origin adapter
(Origin), AdapterDrop (AD) and Pruned adapters
(LTH) in each tasks and percentage change in speed
after using AdapterDrop or Pruned adapters.

redundant part of the adapters are removed. And
we can see a significant LIA boost, mostly in tasks
of small datasets, especially in MRPC. However, in
larger dataset task like MNLI, pruning the adapters
causes a small decrease in LIAs, implying that most
of the adapters for large datasets are playing an
important role for the task. In summary, we have
greatly increased the utilization of each adapter
after pruning, because we deleted most of the less
essential layers, and the model is thus streamlined
to perform better.

1636

5101520
82

84

86

88

90

92 sst2-91.62
mrpc-90.50

mnli-83.12

qqp-86.74

5101520

84

86

88

90

qnli-91.09

stsb-88.97

5101520

52.5

55.0

57.5

60.0

62.5

65.0

67.5 rte-67.51

cola-57.14

Figure 5: Performance of pruning schemes on GLUE validation sets at every pruning iteration. Horizontal line
represents the performance of adapters before pruning starts. X-axis denotes the number of adapters remains, and
Y-axis denotes the score in corresponding task metrics.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of adapters left

Att-0FF-0Att-1FF-1Att-2FF-2Att-3FF-3Att-4FF-4Att-5FF-5Att-6FF-6Att-7FF-7Att-8FF-8Att-9FF-9Att-10FF-10Att-11FF-11

Ad
ap

te
r l

ay
er

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of adapters left

FF-0
FF-1
FF-2
FF-3
FF-4
FF-5
FF-6
FF-7
FF-8
FF-9

FF-10
FF-11

Ad
ap

te
r F

ee
d-

fo
rw

ad
 la

ye
r

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of adapters left

Att-0
Att-1
Att-2
Att-3
Att-4
Att-5
Att-6
Att-7
Att-8
Att-9

Att-10
Att-11

Ad
ap

te
r A

tte
nt

io
n

la
ye

r

Figure 6: Left:Percentage of adapter remaining in each adapter layer when there is only 9 adapters left. Center:
Adapter distribution inserted after Feed-forward layer (Extracted from the Left image).Right: Adapter distribution
inserted after attention layer (Extracted from the Left image)

3.4 Merging pruned adapters to
Adapterfusion

In this experiment, we fuse eight single task
adapters to construct the Adapterfusion model.
An extra self-attention layer is inserted in each
layer of the model to fuse the results of multiple
adapters. Only the parameters in these newly in-
serted self-attention layers are fine-tuned, and the
rest of the parameters (including adapters) remains
unchanged.

We run our test on the same eight tasks of GLUE
datasets as in the previous experiment. We com-
pare the fusion of full-size adapters and the pruned
adapters with 5 runs each. We use the best adapter
model of all iterations of pruning for the fusion.
Then, we calculate the mean and variance of each
task, whose results are in Table 3. It shows that
there is not much difference between the pruned
Adapterfusion model and the full-size Adapterfu-
sion model. And there is even a mild improvement
of performance using the pruned one. Therefore,
it justifies that the proposed pruning of adapters
is very effective and we can obtain a small and
dense version of the general Adapterfusion model
for GLUE datasets.

The original Adapterfusion model has 192
adapters (8tasks × 12layer × 2adapter/layer),
while after pruning the redundant adapters from the

AF AF w. LTH
CoLA 55.16 ±1.1 55.96 ±2.3
SST-2 91.67±0.7 91.87±0.4
MRPC 91.46 ±1.6 92.16 ±1.5
STSB 89.83±0.33 89.27±0.64
QQP 86.74±0.39 86.88±0.22
MNLI 83.13±0.42 83.16±0.18
QNLI 90.84±0.21 90.73±0.33
RTE 75.90±3.43 73.00±6.68

Table 3: Development score of Adapterfusion and
Adapterfusion pruned with Lottery Ticket Hypothesis
(LTH). CoLA is evaluated using Matthew’s Correlation.
STS-B is evaluated using Spearman’s correlation coef-
ficient. MRPC and QQP are evaluated using F1 score.
The rest of the tasks are evaluated by accuracy.

model, it only has 89, with more than half of the
adapters removed. For layers left without adapters,
there isn’t a self-attention layer insertion for fusion,
resulting in the reduction of depth as well.

We also have measured the total number of float-
ing point operations (FLOPs) for each task in the
evaluation process. We average the FLOPs across
different tasks, as shown in Table 4 and Table 5.
And it reveals that after pruning, we reduce the
computation by about 40%, which is a very signifi-
cant improvement for the inference speed.

To better analyse the training and inference
speed, we use the basic fine-tuning model as the
base model and calculate the relative speed of dif-

1637

Num of adapter FLOPs (109) Steps/sec
AF 192 554.8 9.86
AF-LTH 89 332.8 13.86

Table 4: FLOPs of the standard Adapterfusion and
pruned Adapterfusion

AF AF-LTH Saved (%)
RTE 1157.9 703.1 39.23%
MRPC 934.9 565.6 39.50%
STSB 805.9 487.4 39.52%
COLA 221.3 133.6 39.62%
SST2 513.2 310.1 39.57%
QNLI 248.4 150.3 39.49%
QQP 356.1 215.3 39.53%
MNLI 432.2 261.4 39.51%

Table 5: Floating points (109) operation of standard
Adapterfusion and pruned Adapterfusion in each tasks

ferent models including single task adapter model,
Adapterfusion model and pruned Adapterfusion
model. We use one NVIDIA RTX 3090 with a
batch size of 16 to test the models and results are
shown in Table 6. We can see that fusing 8 adapters
slow down the model both in training and inference.
However, using pruning the model can reduce the
effect of slowing down to a certain level.

Adapter AF AF-LTH
Train 0.93 0.52 0.79
Eval 0.63 0.12 0.18

Table 6: The average relative training speed and in-
ference speed of Adapter, Adapterfusion and pruned
Adapterfusion

Moreover, we analyse the LIAs of each adapter
for different target tasks. LIAs of the original
Adapterfusion and the pruned Adapterfusion are
shown in 3D heat map in Figure 74, where X-axis
represents eight different target tasks for the model,
y-axis is the source of each fused adapters, z-axis
denotes the adapters in different layers ranging
from 1 to 24, the odd number layers in z-axis rep-
resent the adapter modules inserted after attention
layers, and the even number layers in z-axis are the
ones inserted after the output layer.

Figure 7(a) shows the LIAs of the original
Adapterfusion model. We discover that there are
a number of adapters not utilized in the original
Adapterfusion model and most of the essential
adapters are at the back of the cube which are the
adapters trained on large datasets. As the layers

4In Appendix A, we present an in-depth visualization of
the Adapterfusion with LIAs

get deeper, more adapters in the model are utilized.
Figure 7(b) shows the LIAs of the pruned Adapter-
fusion model. Compared to the original Adapter-
fusion model, the pruned Adapterfusion model has
much fewer adapters. Furthermore, most of the
adapter modules have larger LIA values, which
implies that most of the adapters become more im-
portant for the task.

Then, we average the LIAs of adapters in
Adapterfusion across 12 layers and 5 test runs, as
shown in Figure 8. We find that for the original
Adapterfusion model, most of the adapters’ LIAs
are zeros, which means that most of them are not
used in the model. And most of the tasks use the
adapters trained in QQP and MNLI, both of which
are tasks with large datasets. Moreover, with a
larger dataset, the model will utilize more of the
adapters trained from the same task.

By comparing the original Adapterfusion and
the pruned Adapterfusion model, we have seen that
more of the adapters are utilized after the pruning.
And there are fewer zeros of LIAs in the pruned
Adapterfusion model, suggesting that remaining
adapters after pruning have become much more
influential on average and the model are using more
adapters from different tasks.

4 Related work

Pre-trained language model Language models
pre-trained on large corpora are widely used in
multiple NLP tasks to improve performance. How-
ever, these models are often very large. Recently,
Transformer-based (Vaswani et al., 2017) models
have become the most popular pre-trained language
models. There are plenty of model variants, such as
BERT (Devlin et al., 2019a), GPT-3 (Brown et al.,
2020), XLNET (Yang et al., 2019), and Roberta
(Liu et al., 2019), etc. Transformer models are huge
models, ranging from 110M parameters in BERT-
Base to trillions (Fedus et al., 2021; Lepikhin et al.,
2020) in the largest, best-performing models. Due
to the resource constraints in GPU/TPU memory
and computational power, it is difficult to run a
large model. So Lan et al. (2020) propose an ap-
proach to reduce the amount of training parameters
by sharing weights among all transformer layers.
The model named ALBERT can lower the usage
of memory and speed up the training process of
BERT. By contrast, ALBERT reduces the amount
of parameters needed to be trained, while adapters
introduce new parameters and deepen the model.

1638

Task:rteTask:mrpc
Task:sts

b
Task:cola

Task:sst
2

Task:qnli
Task:qqp

Task:mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

70

(a) Adapterfusion

Task:rteTask:mrpc
Task:sts

b
Task:colaTask:sst
2

Task:qnli
Task:qqp

Task:mnli

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0

5

10

15

20

0

10

20

30

40

50

60

(b) Adapterfusion with LTH

Figure 7: LIAs of Adapterfusion w/o pruning.

rte
mrpc stsb cola sst2 qnli qqp mnli

task-rte

task-mrpc

task-stsb

task-cola

task-sst2

task-qnli

task-qqp

task-mnli

0.0% 0.1% 0.0% 0.1% 0.7% 1.2% 6.5% 5.9%

0.0% 1.0% 0.1% 0.0% 0.4% 1.0% 10.6% 4.6%

0.0% 0.1% 0.5% 0.1% 0.4% 0.9% 7.4% 4.8%

0.0% 0.0% 0.1% 0.9% 0.6% 1.2% 9.1% 2.8%

0.0% 0.1% 0.0% 0.0% 9.4% 0.4% 5.5% 2.3%

0.0% 0.0% 0.0% 0.0% 0.2% 18.0% 1.8% 0.7%

0.0% 0.1% 0.1% 0.0% 0.8% 0.2% 39.9% 1.6%

0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.8% 36.2%
5

10

15

20

25

30

35
IM

P [percent/task]

(a) Adapterfusion

rte
mrpc stsb cola sst2 qnli qqp mnli

task-rte

task-mrpc

task-stsb

task-cola

task-sst2

task-qnli

task-qqp

task-mnli

1.2% 0.8% 0.4% 0.4% 0.8% 2.1% 4.1% 4.7%

0.8% 3.7% 0.6% 0.3% 0.8% 2.8% 7.1% 5.0%

1.0% 1.3% 2.2% 0.2% 0.9% 3.8% 6.8% 6.7%

1.0% 0.8% 0.6% 2.7% 0.7% 1.3% 4.2% 2.2%

3.0% 0.1% 0.8% 0.0% 17.5% 0.2% 2.7% 1.2%

0.7% 0.4% 0.5% 0.1% 0.2% 19.8% 0.9% 1.0%

1.6% 0.6% 1.2% 0.0% 0.2% 0.1% 45.3% 0.6%

2.2% 0.6% 1.0% 1.7% 0.1% 0.6% 0.2% 44.4%

10

20

30

40

IM
P [percent/task]

(b) Adapterfusion with LTH

Figure 8: LIAs of Adapterfusion w/o pruning

Adapters and fine-tuning Since fine-tuning ap-
proaches have proven to have better performance
than feature-based approaches (Peters et al., 2019),
researchers often prefer fine-tuning approaches to
feature-based ones. Most of the state-of-the-art re-
sults of NLP tasks are achieved by fine-tuning a
complex pre-trained model. Fine-tuning does not
require a task-specific design beforehand, which is
more general across tasks than feature-based ones.
However, every time a model is fine-tuned on a
new task, a new set of parameters are created and
trained, leading to pretty low degree of parameter
sharing among tasks.

Adapter model is a lightweight fine-tuning ap-
proach introduced by Houlsby et al. (2019). They
insert a small set of newly initialized neural net-
works named adapters in each layer of the trans-
formers. At training step, only parameters of
adapters will be updated and the parameters in
the pre-trained language model will be unchanged.

Therefore it reduces the number of parameters to be
trained in the training phase and enables efficient
parameter sharing between tasks by combining
many task-specific or language-specific adapters.

Merging and pruning adapters Adapters have
achieved great results in multi-task (Pfeiffer et al.,
2021), cross-lingual transfer learning (Pfeiffer
et al., 2020) and infusing knowledge (Wang et al.,
2021). Adapters are capable of extracting knowl-
edge from different tasks that can be applied to
fuse knowledge they learned from different tasks
(Rücklé et al., 2020b; Pfeiffer et al., 2020; Wang
et al., 2021). There are plenty of ways to merge
multiple adapters, including stacking (Pfeiffer et al.,
2020), fusing and concatenating adapters (Pfeif-
fer et al., 2021). However, adapters are still far
from being concise, and merging multiple adapters
from different tasks will introduce redundancies
and slow down the inference speed of the model.
Therefore, Rücklé et al. (2020a) have firstly intro-

1639

duced a way to remove adapters from lower trans-
former layers. By removing the first few layers of
the adapters, it effectively speeds up the training
and inference of the adapter models.

Neural networks are easily overparameterized
and carry plenty of redundancies. To tackle this
problem, distillation (Ba and Caruana, 2014; Hin-
ton et al., 2015) and pruning (LeCun et al., 1990;
Han et al., 2015) are introduced to streamline the
model while perserving good performance. And
there are several research directions in this field.
For pruning before training, MobileNets (Howard
et al., 2017) is designed for image-recognition net-
works. For pruning after training, LeCun et al.
(1990) use the second derivatives to truncate the
neural networks. For pruning during training, Bel-
lec et al. (2018) reinitialize weights near zeros with
random number after training the model. More-
over, we can prune models based on activations
(Hu et al., 2016), filters (Li et al., 2017; Molchanov
et al., 2017) or channels (He et al., 2017).

The most influential theory recently for pruning
comes from Frankle and Carbin (2019), in which
they prove that a dense neural network contains sub-
networks (winning ticket) that can have the same
performance as the original network when trained
isolated. Their experiments reveal that not only
the structure of the pruned networks matters but
also the initial weights of these networks can affect
the performance of the model. They also find that
a subnetwork extracted from pruning learns faster
than the original model and even reaches higher test
accuracy. Our pruning approach is inspired by this
theory and can prune the original Adapterfusion
model to a much more concise one.

5 Conclusion and future work

In this paper, we propose a new approach to model
the utilization of the adapters at each layer by
defining a new indicator LIA (Layer Influence Of
Adapter) with which we can identify the most in-
fluential adapters. Moreover, we introduce a novel
way of pruning adapter modules inspired by the
prestigious Lottery Ticket Hypothesis. The pro-
posed pruning strategy has been extensively evalu-
ated on the GLUE datasets, whose results show that
we can prune adapters up to 40% of its original size
while keeping the performance intact. We further
examine the performance and LIAs of the pruned
adapters in the latest state-of-the-art Adapterfusion
model, and we can remove more than half of the

adapters and reduce computation of the Adapterfu-
sion model by nearly 40% with little performance
loss.

This work can be further extended in many ways.
For instance, iterative pruning is time-consuming.
Running 10 iterations of pruning also means train-
ing the model for almost 10 times. We can try to
find the redundant adapters before and after the
training by introducing new elaborate measure-
ments.

Acknowledgements

This research is supported by Qinghai Provincial
Science and Technology Research Program (grant
No.2021-QY-206) , National Natural Science Foun-
dation of China (grant No. 62071201), and the
Natural Science Foundation of Guangdong (grant
No. 2022A1515010119).

1640

References
Jimmy Ba and Rich Caruana. 2014. Do deep nets really

need to be deep? In Advances in Neural Information
Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 2654–
2662.

Guillaume Bellec, David Kappel, Wolfgang Maass, and
Robert A. Legenstein. 2018. Deep rewiring: Train-
ing very sparse deep networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net.

Yoshua Bengio, Nicolas Le Roux, Pascal Vincent,
Olivier Delalleau, and Patrice Marcotte. 2005. Con-
vex neural networks. In Advances in Neural Infor-
mation Processing Systems 18 [Neural Information
Processing Systems, NIPS 2005, December 5-8, 2005,
Vancouver, British Columbia, Canada], pages 123–
130.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. In Advances in Neural Information
Processing Systems 24: 25th Annual Conference on
Neural Information Processing Systems 2011. Pro-
ceedings of a meeting held 12-14 December 2011,
Granada, Spain, pages 2546–2554.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1135–1143.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel
pruning for accelerating very deep neural networks.
In IEEE International Conference on Computer Vi-
sion, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 1398–1406. IEEE Computer Society.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vi-
sion applications. arXiv preprint arXiv:1704.04861.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung
Tang. 2016. Network trimming: A data-driven neu-
ron pruning approach towards efficient deep architec-
tures. arXiv preprint arXiv:1607.03250.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

1641

https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://openreview.net/forum?id=BJ_wN01C-
https://openreview.net/forum?id=BJ_wN01C-
https://proceedings.neurips.cc/paper/2005/hash/0fc170ecbb8ff1afb2c6de48ea5343e7-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/0fc170ecbb8ff1afb2c6de48ea5343e7-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
http://arxiv.org/abs/1503.02531
http://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS

Yann LeCun, John Denker, and Sara Solla. 1990. Opti-
mal brain damage. In Advances in Neural Informa-
tion Processing Systems, volume 2, pages 598–605.
Morgan-Kaufmann.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2017. Pruning filters for ef-
ficient convnets. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. In Proceedings of
the 4th Workshop on Representation Learning for
NLP (RepL4NLP-2019), pages 7–14, Florence, Italy.
Association for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020a. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Andreas Rücklé, Jonas Pfeiffer, and Iryna Gurevych.
2020b. MultiCQA: Zero-shot transfer of self-
supervised text matching models on a massive scale.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2471–2486, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1405–1418,
Online. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5754–5764.

1642

https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2010.11918
https://arxiv.org/abs/2010.11918
https://doi.org/10.18653/v1/2020.emnlp-main.194
https://doi.org/10.18653/v1/2020.emnlp-main.194
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

A Detail Results: AdapterFusion model
LIA

We calculate the LIA of each adapters in the
Adapterfusion model. In order to have a better
insight of the model, we gradually remove adapters
with small LIA from the 3D heatmap, see Figure
9. In standard adapters modules, we discover that
there are a number of adapters not utilized in the
original Aadapterfusion model and most of the es-
sential adapters are at the back of the cube which
are the adapters trained on large datasets. In pruned
Adapterfusion model, most of the adapters are es-
sential and most of the adapters become more im-
portant for the task.

Figure 10 and Figure 11 shows the LIAs of
each adapters in Adapterfusion model in each tasks
which is cross-section of the cube. We find that in
tasks with small datasets, the model uses adapters
from different tasks, while in tasks with large
datasets, the model mainly uses the adapter trained
from the same task (e.g. QNLI, QQP and MNLI).
However, after pruning the Adaterfusion model, it
uses adapters trained on different tasks even when
the target task is the one with a large dataset.

B Detail of Pruning Adapters

The single task adapter model contains 24 adapter
modules. There are 12 layer of transformers block
in Bert-base. Each layer with 2 adapter modules.
We prune 20% of the adapters for each iteration of
pruning.

For a better understanding of the pruning algo-
rithm 1. We summarized the proposed pruning
strategy and demonstrate the inner structure of
adapter in Figure 12.

1643

task-rte
task-mrpc

task-stsb
task-cola

task-sst2
task-qnli

task-qqp
task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

(a) Standard Adapterfusion with LIA

task-rte
task-mrpc

task-stsb
task-cola

task-sst2
task-qnli

task-qqp
task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

(b) Pruned Adapterfusion with LIA

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

(c) Standard Adapterfusion with LIA > 0.1%

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

(d) Pruned Adapterfusion with LIA > 0.1%

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

(e) Standard Adapterfusion with with LIA > 1%

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

(f) Pruned Adapterfusion with LIA > 1%

Figure 9: LIAs of Adapterfusion w/o pruning

1644

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% -0.0% -0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1%

-0.0% -0.0% -0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.1% 0.0% 0.0% 0.1% 0.4% 0.1%

0.0% 0.0% -0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% -0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.2% -0.0% 0.3%

0.1% 0.8% -0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.1% -0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.4%

0.3% 0.0% -0.1% 0.1% -0.0% 0.2% 0.1% -0.0% 0.3% 0.2% 2.0% 0.2% 0.3% 0.2% 0.9% 0.3% 3.1% 0.2% 0.4% 0.3% 2.4% 0.2% 2.1% 2.3%

2.9% 0.6% 1.3% 0.3% 2.1% 0.3% 0.5% 0.2% 3.0% 0.9% 1.3% 0.9% 3.8% 0.4% 2.1% 0.4% 1.0% 0.4% 1.0% 0.3% 0.9% 0.7% 0.9% 2.4%

3.9% 7.0% 0.1% 11.6%21.4% 0.6% 6.5% 0.8% 8.8% 1.0% 4.3% 4.4% 6.4% 0.8% 22.3% 1.1% 9.2% 1.5% 2.3% 1.8% 14.9% 3.0% 16.4% 5.9%

0.9% 2.2% 20.0% 4.2% 7.8% 0.3% 25.2% 1.6% 7.1% 3.3% 5.6% 2.7% 7.3% 1.6% 9.8% 1.8% 10.3% 1.4% 5.4% 1.6% 8.7% 4.3% 3.5% 4.4%

0

5

10

15

20

25

(a) RTE

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

0.1% -0.0% 0.1% 0.1% -0.0% 0.2% 0.0% 0.1% 0.0% 0.0% 1.5% 0.1% 0.0% 0.1% 14.6% 0.1% 6.8% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1%

0.0% -0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1% -0.0% 0.1% 0.0% 0.1% 0.0% 0.1% -0.0% 0.0% 0.2% -0.0% 0.3%

0.1% 0.0% -0.0% 0.0% -0.0% 0.1% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% -0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.0%

0.3% 0.0% 0.0% 0.2% 0.0% 0.1% 0.2% 0.0% 0.6% 0.2% 1.0% 0.2% 0.5% 0.7% 0.3% 0.4% 1.5% 0.3% 0.9% 0.3% 0.2% 0.3% 1.3% 0.7%

2.5% 0.1% 0.5% 0.6% 0.1% 0.5% 0.3% 0.2% 0.4% 0.9% 1.6% 0.4% 2.3% 0.5% 2.1% 0.7% 0.5% 0.6% 2.6% 0.3% 1.3% 0.6% 1.8% 2.4%

14.3%15.3%15.5% 7.3% 17.6% 0.5% 10.2% 0.9% 7.3% 2.2% 14.6% 1.9% 18.2% 1.0% 9.6% 1.7% 14.8% 1.6% 19.1% 1.1% 25.1% 4.1% 45.6% 4.5%

0.4% 3.6% 14.6% 1.5% 5.4% 0.6% 8.6% 1.3% 1.2% 2.7% 6.8% 4.3% 6.0% 1.0% 1.2% 2.3% 7.3% 1.2% 2.3% 1.7% 13.1% 3.1% 5.2% 15.9%

0

10

20

30

40

(b) MRPC
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% -0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1%

-0.0% -0.0% 0.0% 0.0% 0.0% 0.1% 0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1% 0.0% 0.2%

0.5% 0.1% 0.9% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 2.0% 0.1% 4.9% 0.1% 1.9% -0.0% 0.1% 0.8% 0.2% 0.0% 0.0% 0.4% 0.5% 0.1%

0.0% 0.0% -0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.1% 0.0% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.1% 0.8% 0.1%

0.0% 0.1% 0.1% 0.2% 0.0% 0.1% 0.1% 0.0% 0.2% 0.3% 0.7% 0.2% 0.1% 0.1% 0.2% 0.2% 0.3% 0.1% 0.4% 0.3% 0.3% 0.3% 3.3% 2.8%

3.0% 1.5% 0.8% 0.6% 0.5% 0.3% 1.3% 0.2% 2.1% 1.5% 2.4% 0.6% 0.5% 0.4% 0.4% 0.7% 0.8% 0.6% 0.3% 0.3% 0.8% 1.1% 0.3% 0.7%

6.5% 3.6% 2.7% 2.5% 18.5% 0.8% 13.6% 0.9% 1.8% 1.9% 3.1% 12.5% 9.8% 2.3% 18.7% 1.4% 19.6% 1.1% 4.3% 1.8% 15.7% 8.5% 9.0% 17.2%

1.7% 1.6% 6.1% 2.2% 7.3% 0.2% 8.7% 0.6% 10.2% 1.6% 4.5% 1.5% 2.4% 1.2% 3.5% 1.7% 7.7% 1.3% 8.5% 1.8% 13.1% 2.3% 5.8% 20.4%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(c) STSB

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.1% 0.2%

0.0% -0.0% -0.0% 0.0% -0.0% -0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% -0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.2% -0.0% 1.4%

0.2% 2.3% 0.3% 0.0% 0.0% 0.1% 0.0% 0.3% 0.1% 0.2% 0.2% 0.0% 0.0% 1.0% 0.1% 1.0% 13.0% 0.3% 0.6% 0.1% 0.8% 0.1% 0.2% 0.1%

0.1% 0.1% 0.0% 0.3% -0.0% 0.1% 0.1% 0.1% 0.6% 0.3% 0.7% 0.3% 0.7% 0.3% 0.6% 0.4% 0.8% 0.2% 0.8% 0.3% 0.6% 0.2% 5.9% 0.6%

5.9% 0.0% 0.5% 0.5% 0.1% 0.3% 2.2% 0.2% 1.7% 1.0% 3.2% 0.6% 0.6% 0.3% 2.8% 0.5% 0.2% 0.4% 0.7% 0.4% 2.8% 0.7% 1.1% 1.3%

2.0% 0.4% 21.8% 3.9% 20.4% 0.4% 12.7% 0.6% 2.4% 1.4% 3.1% 2.4% 6.9% 1.0% 18.4% 0.9% 7.0% 0.9% 6.9% 1.0% 35.6% 5.1% 54.7% 9.0%

-0.1% 0.2% 4.8% 1.9% 3.4% 0.2% 8.6% 0.8% 6.0% 1.2% 2.3% 0.6% 8.2% 0.4% 7.3% 0.5% 1.6% 0.6% 4.0% 1.4% 4.4% 2.3% 0.9% 6.4%

0

10

20

30

40

50

(d) CoLA
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.1% 0.0% -0.0% 0.0% -0.0% 0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% -0.0% 0.0% -0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 2.9%

0.0% 0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% -0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% -0.0% 0.2%

0.0% 0.5% -0.0% 0.0% -0.0% 0.0% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% -0.0% 0.0%

12.9% 0.7% 12.6% 2.5% 0.6% 1.8% 2.8% 1.0% 9.1% 4.5% 16.6% 1.4% 7.6% 3.6% 21.3% 2.2% 34.2% 4.8% 44.3% 3.3% 11.7% 0.6% 5.1% 20.3%

-0.0% 0.0% 0.3% 0.2% 0.1% 0.1% 1.7% 0.0% 0.0% 0.7% 0.0% 0.3% 0.0% 0.2% 2.6% 0.2% 0.8% 0.3% 0.1% 0.3% 1.4% 0.3% 0.0% 0.1%

0.8% 3.4% 6.0% 0.4% 3.8% 0.3% 0.1% 1.1% 0.0% 0.4% 7.2% 0.6% 3.0% 1.3% 0.0% 0.2% 1.2% 7.3% 1.2% 0.9% 12.2% 9.4% 59.9%11.5%

-0.0% 0.0% 5.1% 0.8% 0.2% 0.0% 0.3% 0.2% 0.0% 0.7% 0.2% 0.3% 0.6% 0.3% 2.2% 0.8% 0.4% 0.2% 11.9% 1.3% 18.6% 2.0% 8.3% 0.5%

0

10

20

30

40

50

(e) SST-2

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

-0.0% 0.0% 0.0% 0.0% -0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.3% 0.0% 0.2%

0.0% 0.0% 0.0% 0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.1% 0.0% 0.6% -0.0% 0.0%

0.0% 0.0% 0.0% -0.0% -0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1%

-0.0% 0.0% -0.0% 0.0% -0.0% 0.0% 0.0% -0.1% 0.0% 0.1% 0.0% 0.2% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.2% 1.2% 0.1% 0.4% 1.3%

42.9% 3.1% 24.0%19.1% 3.5% 1.8% 30.4% 3.3% 18.7%17.6%14.9%15.8%30.4%12.2%51.4% 6.2% 16.1%45.6%45.9% 1.5% 19.0% 7.1% 0.1% 1.0%

0.9% 0.2% 0.6% 0.2% 2.1% 0.5% 0.1% 0.4% 0.1% 0.2% 3.0% 3.5% 0.0% 0.3% 0.1% 0.1% 0.1% 0.1% 3.3% 0.6% 0.5% 1.1% 15.3%11.1%

0.0% 0.1% 0.0% 0.4% 0.7% 0.0% 0.1% 0.2% 0.1% 0.3% 0.6% 0.3% 0.0% 0.1% 0.1% 0.7% 0.1% 0.1% 0.0% 1.9% 0.1% 0.5% 5.3% 4.2%

0

10

20

30

40

50

(f) QNLI
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.0% 0.1% 0.0% 0.1%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 2.0% 0.1%

0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.5% 0.2%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6%

0.3% 0.0% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.1% 0.0% 0.5% 0.0% 0.0% 0.1% 0.1% 0.1% 0.4% 0.2% 7.2% 10.1%

0.0% 0.7% 0.2% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.2% 0.0% 0.4% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.9% 1.0% 0.1% 1.5%

41.8%29.3%38.0%32.0%53.6%28.3%42.5%34.5%48.3%34.7%52.7%40.8%44.9%35.5%54.3%36.6%57.2%34.5%38.9%39.0%56.3%40.6%35.5% 9.0%

0.3% 0.2% 0.2% 0.1% 0.2% 0.0% 0.1% 0.1% 0.1% 0.3% 0.3% 0.1% 5.8% 0.0% 0.5% 0.0% 0.2% 0.4% 1.1% 0.2% 3.5% 1.3% 14.3% 9.3%

0

10

20

30

40

50

(g) QQP

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.5%

0.0% -0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.6%

0.0% 0.0% 0.1% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% -0.0% 0.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% -0.0% 0.0% 0.0% 0.8% 0.1% 0.1% 2.2%

0.1% 0.0% 0.1% 0.0% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.3% 0.0% 0.1% 0.1% 0.1% 1.6%

1.0% 0.1% 0.1% 0.1% 0.2% 0.0% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 1.0% 5.9% 8.9%

23.1%14.6%51.9%28.6%47.9%24.5%44.3%29.4%32.4%30.2%56.2%32.9%37.8%29.2%45.4%30.7%52.5%36.6%49.7%44.0%53.7%53.7%19.4% 0.5%

0

10

20

30

40

50

(h) MNLI

Figure 10: LIAs of Standard Adapterfusion on different target tasks

1645

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.7% 1.0% 0.0% 0.2% 1.7% 0.0% 0.3% 0.1% 6.6% 0.1% 2.5% 0.9% 1.0%

0.2% 0.1% 0.2% 3.3% 0.3%

0.1% 1.8% 0.0% 0.8% 0.2% 0.1% 0.1% 0.0% 0.1% 0.0% 0.3% 0.1% 0.2% 0.3% 0.4% 1.4%

1.8% 0.3% 0.0% 0.1% 0.0% 0.2% 0.0% 0.7% 0.0% 0.5% 0.2%

0.6% 0.1% 0.5% 0.5% 0.2% 0.8% 3.4% 0.4% 0.3% 1.2% 1.0%

4.6% 1.2% 0.7% 0.6% 0.1% 8.1% 3.1% 0.8% 0.8% 1.2% 2.3%

4.4% 0.9% 2.7% 1.0% 2.1% 14.4% 3.0% 3.5% 5.3% 7.6% 1.5% 2.5% 4.0%

4.1% 11.3% 1.7% 2.1% 7.9% 9.2% 0.8% 1.4% 3.3% 2

4

6

8

10

12

14

(a) RTE

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.1% 0.4% 0.0% 0.3% 1.7% 0.1% 0.1% 0.1% 4.3% 0.2% 2.1% 0.9% 0.8%

0.3% 1.0% 1.1% 15.1% 1.0%

0.2% 3.8% 0.1% 1.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.3% 1.1% 0.5% 1.7%

1.1% 0.0% 0.0% 0.1% 0.2% 0.1% -0.0% 1.4% 0.0% 0.3% 0.3%

3.5% 0.1% 0.6% 0.4% 0.2% 0.5% 1.3% 0.5% 0.3% 1.1% 0.6%

6.8% 0.4% 0.2% 0.5% 0.1% 11.8% 3.5% 1.0% 0.8% 2.9% 2.3%

16.0% 4.1% 6.8% 0.8% 0.8% 17.6% 2.1% 18.7% 3.5% 12.4% 2.2% 3.1% 3.7%

14.9% 3.1% 1.5% 3.0% 6.5% 8.0% 1.8% 2.7% 3.6%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(b) MRPC
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.1% 0.1% 0.4% 0.2% 0.0% 0.1% 0.1% 7.3% 0.2% 1.4% 0.8% 2.1%

0.3% 0.2% 0.5% 4.9% 0.4%

0.3% 5.7% 0.2% 2.6% 0.6% 0.5% 0.2% 0.1% 0.7% 0.1% 9.1% 0.1% 0.2% 9.1% 1.9% 4.6%

0.3% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.9% -0.0% 0.3% 0.3%

2.6% 0.3% 0.4% 0.6% 0.3% 0.7% 1.4% 0.4% 0.5% 2.7% 0.5%

22.8% 0.9% 0.7% 0.6% 0.3% 11.4% 0.9% 1.8% 0.9% 0.9% 1.0%

4.8% 5.1% 5.3% 1.9% 1.3% 15.4% 2.7% 25.5% 1.4% 10.3% 2.4% 4.3% 7.8%

9.1% 2.1% 0.7% 2.7% 8.9% 25.7% 2.2% 3.1% 6.0%

0

5

10

15

20

25

(c) STSB

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.6% -0.0% 0.2% 1.1% 0.0% 0.3% 0.0% 7.8% 0.1% 0.8% 0.8% 0.9%

0.0% -0.0% 0.3% 2.9% 0.5%

0.0% 2.1% -0.1% 1.1% 0.3% 0.1% 0.1% 0.1% 0.3% 0.0% 0.5% 0.0% 0.2% 1.8% 0.6% 1.7%

11.2% 0.8% 0.2% 0.2% 0.2% 1.7% 0.2% 1.1% 0.7% 3.7% 6.7%

0.1% 0.1% 0.3% 0.5% 0.3% 0.5% 1.1% 0.4% 0.2% 4.4% 0.3%

2.4% 0.0% 0.4% 0.5% 0.1% 0.7% 3.2% 1.1% 0.0% 0.2% 5.6%

0.7% 3.6% 12.0% 0.9% 1.2% 8.5% 1.5% 5.0% 3.0% 10.4% 2.2% 0.9% 3.3%

0.2% 8.2% 0.3% 1.9% 1.5% 6.9% 0.1% 0.9% 2.6%

0

2

4

6

8

10

12

(d) CoLA
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 3.0% 0.1% 0.0% 0.4% 0.1% 0.0% 0.0% 12.9% 0.1% 18.4% 0.5% 4.0%

0.1% -0.0% 0.0% 0.0% 0.3%

0.0% 1.8% -0.1% 0.5% 0.0% 0.6% 0.1% 0.0% 0.9% 0.0% 0.0% 0.0% 0.2% 4.7% 0.8% 3.0%

0.0% 0.0% -0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0%

36.5% 1.7% 4.3% 9.5% 7.6% 7.1% 21.7%21.7% 8.9% 50.7%22.4%

0.0% 0.0% -0.1% 0.0% 0.0% 0.0% 1.6% 0.0% 0.0% 0.1% 1.0%

1.1% 0.0% 3.9% 0.0% 0.1% 11.4% 0.9% 0.0% 0.1% 1.0% 0.5% 0.2% 15.8%

0.8% 0.2% 0.1% 0.4% 0.8% 0.4% 0.1% 0.0% 7.6%

0

10

20

30

40

50

(e) SST-2

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.6% 0.0% 1.2% 1.5% 0.0% 0.3% 0.0% 3.5% 0.0% 1.0% 0.8% 0.5%

0.0% 0.0% 0.2% 1.5% 0.3%

0.2% 1.7% 0.0% 0.9% 0.2% 0.0% 0.0% 0.0% 0.7% 0.0% 0.8% 0.1% 0.1% 1.0% 0.5% 1.6%

0.0% 0.0% -0.0% 0.1% 0.1% 0.0% -0.0% 1.0% -0.0% 0.0% 0.3%

-0.0% 0.0% 0.1% 0.1% 0.3% 0.1% 0.5% 0.1% 0.1% 1.0% 0.1%

42.8% 3.8% 3.1% 13.6% 2.0% 57.2%18.4% 20.5% 18.2% 12.2% 25.9%

0.0% 0.5% 2.1% 0.5% 0.4% 0.3% 0.4% 0.5% 0.1% 5.3% 0.2% 0.3% 1.0%

0.3% 0.8% 0.2% 0.6% 0.1% 6.3% 0.1% 0.2% 0.7%

0

10

20

30

40

50

(f) QNLI
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 1.6% 0.0% 0.2% 0.3% 0.0% 2.4% -0.0% 7.1% 0.0% 1.2% 2.7% 5.3%

0.0% 0.0% -0.0% 3.0% 0.0%

0.0% 8.3% 0.0% 2.2% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 1.5% 0.0% 0.0% 3.3% 2.3% 1.4%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% -0.0% 0.0% 0.0%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 1.5% 0.0%

0.0% 0.1% 0.2% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0%

54.4%36.8% 33.2% 33.6% 35.8%57.9%43.3%51.8%32.5%50.3%47.7% 52.2% 59.0%

0.2% 5.0% 0.2% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1%

0

10

20

30

40

50

(g) QQP

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

2.0% 1.5% 0.2% 1.0% 0.0% 0.0% 3.0% 0.0% 8.2% 0.0% 2.3% 8.1% 2.8%

0.1% 0.0% 0.0% 2.9% 0.0%

0.0% 3.8% 0.4% 1.3% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 3.8% 2.2% 2.9%

14.6% 0.2% 0.0% 0.1% 0.0% 3.2% 0.0% 0.9% -0.0% 0.0% 0.0%

0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.8% 0.0% 0.0% 0.1% 0.0%

1.1% 0.0% 0.0% 0.1% 0.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.1%

0.1% 0.1% 0.9% 0.3% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.1% 0.0%

26.4% 33.3% 46.8% 41.3% 42.4%62.0%34.6% 55.2% 57.7%

0

10

20

30

40

50

60

(h) MNLI

Figure 11: LIAs of Adapterfusion with pruning on different target tasks

Multi-Head Attention

FF Up

FF Down

LayerNorm

+

Feed Forward

FF Up

FF Down

LayerNorm

+

FF Up

FF Down

Saved Initial parameters

Adapter 5

Adapter 2

Adapter 3

Adapter 4

Adapter 7

Adapter 6

Rank Sum of weights

Adapter 8

Adapter 1

Adapter 10

Adapter 9

Multi-Head Attention

LayerNorm

Feed Forward

FF Up

FF Down

LayerNorm

+

Back to Training stage, Iterate multiple times

12 X

Prune the last 20%

Train model Reinitial the parameters

Figure 12: The Process of Pruning adapters using Lottery Ticket Hypothesis

1646

