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Abstract

Inspired by human fact checkers, who use dif-
ferent types of evidence (e.g. tables, images,
audio) in addition to text, several datasets with
tabular evidence data have been released in re-
cent years. Whilst the datasets encourage re-
search on table fact-checking, they rely on in-
formation from restricted data sources, such as
Wikipedia for creating claims and extracting
evidence data, making the fact-checking pro-
cess different from the real-world process used
by fact checkers. In this paper, we introduce
PubHealthTab, a table fact-checking dataset
based on real-world public health claims and
noisy evidence tables from sources similar to
those used by real fact checkers. We outline our
approach for collecting evidence data from var-
ious websites and present an in-depth analysis
of our dataset. Finally, we evaluate state-of-the-
art table representation and pre-trained models
fine-tuned on our dataset, achieving an overall
F1 score of 0.73.

1 Introduction

Fact-checking is the task of establishing the verac-
ity of factual information, commonly performed
manually by journalists. In addition to classifying
how truthful claims are, human fact checkers also
provide evidence for their judgements. To support
this process with computational tools, researchers
have compiled several datasets for evidence-based
automated fact-checking (AFC), which include in-
formation about the sources supporting or refuting
the claims alongside veracity labels (Thorne et al.,
2018; Chen et al., 2020b; Aly et al., 2021; Schuster
et al., 2021; Nørregaard and Derczynski, 2021).

While a large share of the datasets used in
evidence-based AFC focus on textual evidence
(e.g. (Thorne et al., 2018; Augenstein et al., 2019;
Diggelmann et al., 2020; Schuster et al., 2021)),
some recent datasets also cover structured data, for
instance in the form of web tables (Chen et al.,

2020b; Aly et al., 2021). This is useful, as hu-
man fact checkers often need to consider a range
of data modalities to verify claims. However, two
main limitations remain. First, existing table fact-
checking datasets consist largely of claims which
have been ‘artificially’ created via online crowd-
sourcing, starting from randomly selected evidence
tables. Second, the datasets use single sources of
evidence, for instance Wikipedia; this is different
from how human fact checkers go about the task -
more often than not, they consult multiple primary
sources, including websites, databases, and public
reports.

To overcome these limitations, we propose Pub-
HealthTab1, a new table fact-checking dataset,
using the PubHealth dataset (Kotonya and Toni,
2020) as a seed. PubHealth has a number of advan-
tages. It contains public health claims that human
fact-checkers work on. The authors compared the
complexity of these claims to real-world political
claims, as well as to claims created by crowdwork-
ers (Kotonya and Toni, 2020). As a proxy for com-
plexity, they determined the reading skills needed
to understand the claims. They established that
public health claims are much more challenging,
requiring high school levels of reading of 10 to 12
rather than 6 to 8 for political and crowdsourced
claims. PubHealth also includes multiple sources
of evidence for the claims, however, the evidence
is purely text-based. In our dataset, we include web
tables as evidence, extracted from different web-
sites, similar to those used by human fact-checkers.

We designed a hybrid dataset pipeline, which
takes PubHealth claims and links them, via
Wikipedia articles, to other websites containing
potential evidence tables. We used crowdsourc-
ing in three ways: to establish the relevance of the
extracted tables; to adjust PubHealth claims to sup-
port or refute the tables; and finally to assess the

1https://github.com/mubasharaak/
PubHealthTab
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quality of the new claims. The result is a dataset of
1, 942 claim-table pairs about public health, draw-
ing on evidence from more than 300 websites.

We analysed the dataset to spot potential biases
in the way we collected the data and compared
PubHealthTab with other table-based fact-checking
datasets. Moreover, we experimented with several
BERT-based models and table representations to
understand how our dataset performs on state-of-
the-art AFC, achieving an overall F1 score of 0.73.
Both allowed us to identify areas of future improve-
ment, in particular to refute claims against evidence
consisting of mostly numerical data or with noisy
text headers.

2 Background & Related Work

2.1 Evidence-based Fact-Checking

Evidence-based AFC requires one to predict a
veracity label against the evidence. While most
datasets focus on textual sources of evidence
(Thorne et al., 2018; Jiang et al., 2020; Diggel-
mann et al., 2020; Schuster et al., 2021), human fact
checkers use a wider range of modalities (Nakov
et al., 2021). To verify factual information, they
commonly ask experts, search in databases, and
consult text, tables, and graphics from a multitude
of sources, including scholarly literature, public
reports, and official statistics.2

2.2 Table Fact-Checking Datasets

There is a small number of datasets that consider
tables in AFC. However, in all cases, the claims
are created by crowdworkers given evidence from
Wikipedia. For instance, TabFact (Chen et al.,
2020b) contains tables extracted from Wikipedia
and considers two classes for the claim veracity:
entailment and contradiction. The InfoTabs dataset
(Gupta et al., 2020) has claims that can be veri-
fied using information from Wikipedia info-boxes,
with an additional “neutral” class. In FEVEROUS
(Aly et al., 2021), claims are verified using text,
tables, and lists from Wikipedia. Finally, the recent
Sem-Eval fact-checking challenge, Sem-Tab-Facts
(Wang et al., 2021), released a table fact-checking
dataset with tables extracted from scientific articles.
Claims were created by crowd workers based on
sentences in the article describing these tables.

2https://ballotpedia.org/The_
methodologies_of_fact-checking

2.3 Tables in Other NLP Tasks

There is an increasing body of literature looking
at tables alongside text for NLP tasks such as ta-
ble question answering (tableQA) or table-to-text
natural language generation (NLG). The former
aims to find answers to natural language questions
in tabular data (Pasupat and Liang, 2015; Zhong
et al., 2017; Iyyer et al., 2017) and inspired the first
table fact-checking dataset (Chen et al., 2020b).
Researchers later introduced variations of the task
with additional modalities (Chen et al., 2020c; Han-
nan et al., 2020) or sub-tasks such as table retrieval
(Chen et al., 2021). There are also several table-
to-text NLG datasets, for instance numericNLG
(Suadaa et al., 2021) with tables extracted from sci-
entific papers, and LogicNLG (Chen et al., 2020a)
with Wikipedia tables. We used some of the meth-
ods proposed by the numericNLG team (Suadaa
et al., 2021) to represent tables in our experiments.

2.4 The PubHealth Dataset

As noted earlier, we used PubHealth (Kotonya and
Toni, 2020) as a starting point for creating our table
fact-checking dataset. PubHealth consists of real-
world claims about public health extracted from
fact-checking and news review websites. The au-
thors comment that the majority of fact-checking
datasets either concentrate on politics (Wang, 2017;
Augenstein et al., 2019) or are built for research
purposes (Thorne et al., 2018; Chen et al., 2020b).
Each record in the PubHealth dataset consists of
a claim, the full text of the fact-checking or news
article, which discusses its veracity, and the article
summary or a justification for the veracity label.

3 The PubHealthTab Dataset

Figure 1 shows an overview of the data construc-
tion pipeline. In the top half, we automatically
create pairs of claims and tables. We start from
the PubHealth claims, assess them for relevance
and then match the remaining ones with web tables
(see Section 3.1). In the bottom half, we use crowd-
sourcing to filter tables, adjust claims to tables, and
check for quality (see Section 3.1.2).

3.1 Dataset Construction

3.1.1 Steps 1 to 3: From Claims to Tables

In Step 1 we removed ambiguous and out-of-
domain claims from the PubHealth dataset using a
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Figure 1: Dataset creation process.

lexicon of 4132 medical terms from: Wikipedia;3

medical dictionaries from Harvard University,4

University of Michigan5, and Schulich School of
Medicine and Dentistry6; as well as the Concept-
Net knowledge graph.7 We retained the claims that
contained at least one token matching the lexicons.
For the other claims, we carried out NER to de-
tect medical entities that the lexicons might have
missed, using SciSpacy (Neumann et al., 2019).
We kept the claims for which we could find an
entity in the claim text whose ConceptNet node
was liked to a lexicon term via the “hasContext”
relation.8

In Step 2 we linked the claims from Step 1 to
Wikipedia articles using two entity linking services:
ELQ (Li et al., 2020) and WAT,9 for better cover-
age. We then took the websites referenced by the
articles as a source of evidence tables. In Step 3,
from all Wikipedia references, we kept those in
English that could be scraped and which contained
at least one table HTML tag (⟨table⟩). We heuristi-
cally removed all tables that were used purely for
formatting reasons, and then ranked the remaining
tables based on their BM25 similarity to the claim
text. The result of this step was a set of 1915 claim-
table pairs (1010 claims and 1422 tables from 1196
websites), which was fed to the crowdsourced half

3https://en.wikipedia.org/wiki/
Glossary_of_medicine

4https://www.health.harvard.edu/
a-through-c

5https://apps.lib.umich.edu/
medical-dictionary/

6https://www.schulich.uwo.ca/pathol/
about_us/resources/glossary_of_medical_
terms.html

7https://conceptnet.io/
8https://github.com/commonsense/

conceptnet5/wiki/Relations
9https://sobigdata.d4science.org/web/

tagme/wat-api

of the pipeline.

3.1.2 Steps 4 to 6: Crowdsourcing
We ran three crowdsourcing tasks on Amazon Me-
chanical Turk (MTurk) in May-June 2021: ta-
ble relevance, claim adjustment, and verification,
loosely following the “find-fix-verify" crowdsourc-
ing workflow for text processing by Bernstein et al.
(2015). For each of the three tasks, we checked
for quality, evaluated worker agreement, and aggre-
gated the results before feeding them to the subse-
quent task.

Recruitment and training of workers. We al-
located each task to three crowdworkers. Only
workers with minimum 1000 previously-approved
tasks and an approval rate of 95% or above were
eligible to work on the tasks. Moreover, all work-
ers had to pass a table literacy qualification test
(see appendix). To train the workers, we followed
the recommendations from Gadiraju et al. (2015);
Doroudi et al. (2016) and included examples of
expert-labelled tasks in the instructions, including
the rationales for the chosen labels.

Tasks design. The tasks were designed as fol-
lows (see appendix for instructions and interfaces):

1. Task 1 - table relevance: We asked crowd-
workers if claims and tables were related
to each other. This was needed to evaluate
the ranked list of tables from Step 3 (Fig-
ure 1), where we matched claims to tables
using BM25. For each claim-table pair, work-
ers could choose between four options: ta-
ble supports, refutes, is related but more in-
formation is needed, and is unrelated to the
claim. In addition, we also asked the crowd to
name the columns which contributed to their
choice. Each task had seven claim-table pairs,
of which two were from the gold standard (see
quality assurance below). We used majority
voting to aggregate the answers.

2. Task 2 - claim adjustment: The input for this
task were only the claim-table pairs which
were judged as related but not enough infor-
mation in the previous step. We asked crowd-
workers to adjust a claim so that they could be
supported or refuted by the table. The workers
also had to flag whether the table supported
or refuted the claim. Each task consisted of
five claim-table pairs. As this was an open-
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K-α F-κ R-κ
Table relevance 0.26 0.38 0.65
Verification 0.60 0.60 0.67

Table 1: Inter-annotator agreement scores for the table
relevance task and the verification task.

ended task, we evaluated the results in the
third crowdsourcing task.

3. Task 3 - verification: We asked crowdworkers
to verify the adjusted claims. Again, each task
had seven pairs of claims and tables, with two
gold pairs. Workers could choose between
four labels: supports, refutes, related but not
enough information, and unrelated. We per-
formed majority voting to aggregate the an-
swers.

For the final dataset (see Section 3.2), we dis-
carded the pairs of adjusted claims and tables la-
belled as unrelated by the majority of workers.

Quality assurance. For each task, we followed
best practices to maintain annotation quality and
detect malicious behaviour. One of the authors
created a gold standard of 30 claim-table pairs for
the close-ended tasks (table relevance and verifi-
cation); we used two gold pairs per task. Workers
who failed those two gold pairs could not submit
their work. For the remaining submissions, we
computed the inter-annotator agreement.

Table 1 shows the inter-annotator agreement
scores using Krippendorff’s alpha (K-α), Fleiss’
kappa (F-κ), and Randolph’s kappa (R-κ). F-κ
is prone to the high agreement but low kappa phe-
nomenon when the dataset is imbalanced (Feinstein
and Cicchetti, 1990); this was the case for the table
relevance task: after aggregating the answers with
majority voting, we had the following distribution:
less than 1% support, less than 1% refute, 22%
related but not enough information, and 77% unre-
lated. This is why we used R-κ, which yields more
accurate results for imbalanced data. For the ver-
ification task, the data was more balanced, which
is reflected in the similar scores. For both tasks,
we obtained a R-κ value of at least 0.65, which in-
dicates substantial agreement according to Landis
and Koch (1977).

The claim adjustment task was open-ended. We
allowed only submissions which met a set of cri-
teria, for instance by looking at the time spent per
task and comparing the original and adjusted claim;

Figure 2: A support example from PubHealthTab.

the full list of criteria is in the appendix. We also
manually inspected the adjusted claims before ac-
cepting them. We randomly sampled one claim
for each submission and accepted the work if its
quality was sufficient. After a first pilot round,
we banned workers with malicious behaviour, e.g.
workers who did not adjust the claims, but only
added or removed one token.

3.2 Dataset Statistics

Our PubHealthTab dataset comprises 1, 942 claim-
table pairs. A claim is a natural language sentence
checked against a table. Each pair is labelled as
support, refute, or not enough information (NEI),
following Thorne et al. (2018); Gupta et al. (2020);
Diggelmann et al. (2020); Aly et al. (2021). The
dataset has 1, 019 supported claims, 462 refuted
claims, and 461 NEI claims. Figure 2 shows an
example.

The evidence table is organised as a list of n
rows. Each row is a list of cells, where m, the num-
ber of cells, can vary across rows. If the first row is
a header, it is instead saved as “header_horizontal”.
Similarly, if the first column is a header, it is saved
as “header_vertical”. For each table, we provide
the source website and, if available, the table cap-
tion. Moreover, each record also includes the orig-
inal PubHealth claim text, which was adjusted by
crowdworkers in Step 5 (Figure 1).

Table 2 compares the original PubHealth dataset
with our dataset, PubHealthTab.
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PubHealthTab PubHealth
Entries 1,942 11,832
Evidence type Table Text
Claim length 20 - 194 25 - 400

Veracity labels {supports,
refutes, NEI}

{true, mixture,
false, unproven}

Table 2: Comparison between our dataset and Pub-
Health (Kotonya and Toni, 2020).

4 Dataset Analysis

We analysed the PubHealthTab dataset for biases
and correlations, and compared it to other table
fact-checking datasets. We applied three methods:
(i) correlation analysis of table attributes; (ii) Local
Mutual Information (LMI) on adjusted claims; and
(iii) claim-only veracity prediction.

4.1 Correlation analysis of table attributes

While correlations between claims and veracity la-
bels in fact-checking datasets have been previously
explored (Schuster et al., 2019; Aly et al., 2021;
Thorne et al., 2021), such underlying relationships
might also be present in the evidence data. Thus,
we examined correlations related to tables in the
PubHealthTab dataset. We analysed if the veracity
labels and the length of adjusted claims were corre-
lated with the following table attributes that were
visible to crowdworkers during annotation: table
length (i.e. number of rows), availability of table
captions, and availability of table headers.

Depending on the type of the attribute analysed,
we used: the Pearson correlation coefficient, the χ2

test, and the Anova F-test and a significance level
α of 0.05 to examine correlations. The p-values for
all attribute pairs are shown in Table 3. No signifi-
cant correlations were found between the adjusted
claim length and the table attributes’ length, cap-
tion availability, and header availability. Given p-
values ≥ α, the hypothesis of independence holds
for these pairs of variables. Similarly, the veracity
labels were not significantly correlated with the ta-
ble length, caption availability, and adjusted claim
length. For the correlation between veracity labels
and header availability, we calculated a p-value of
0.03 indicating an underlying relationship between
the variables. Examining the attributes in detail, we
found that tables with headers were more promi-
nent for supported and refuted claims than for NEI
claims in the PubHealthTab dataset.

Adj. claim length Veracity label
Table length 0.05 (Pearson) 0.35 (F-test)
Adj. claim length - 0.47 (F-test)
Caption available 0.36 (F-test) 0.05 (χ2 test)
Header available 0.16 (F-test) 0.03 (χ2 test)

Table 3: Calculated p-values for the significance tests.

Bigram b LMI p(l, b) count

Su
pp

or
te

d
cl

ai
m

s the highest 1009 0.86 44
has the 989 0.8 60
percentage of 579 0.88 24
had a 423 0.88 17
highest number 418 0.93 14
there is 376 0.79 24
more than 364 0.73 37

R
ef

ut
ed

cl
ai

m
s found on 1030 0.61 28

breast cancer 617 0.46 35
is found 599 0.48 29
be found 493 0.62 13
on page 471 0.42 36
is about 450 0.64 11
has a 433 0.34 86

N
E

Ic
la

im
s

the table 675 0.46 13
of domestic 621 0.8 5
health care 584 0.25 36
domestic violence 564 0.67 6
in a 516 0.57 7
for health 398 0.6 5
to the 365 0.28 18

Table 4: Top LMI-ranked bigrams for support, refute
and NEI claims (including probability and count).

4.2 Local Mutual Information

Following Schuster et al. (2019), we analysed the
correlation between frequently occurring phrases in
adjusted claims and their veracity labels. We com-
puted the Local Mutual Information (LMI) score
(Evert, 2005) between a bigram b and the claim’s
veracity label l: LMI(b, l) = p(b, l) ∗ log(p(l|b)p(l) ).
Unlike the Point-wise Mutual Information (PMI)
score, PMI = log(p(l|b)p(l) ), the LMI score avoids
over-weighting bigrams with no or low occurrences
in the overall dataset by multiplying it with the
probability p(b, l), where p(b, l) is approximated
by count(b,l)

|B| , |B| is the number of all bigrams in
the dataset and count(b, l) is the number of times
b and l occur together.

Table 4 shows the top LMI-ranked bigrams for
PubHealthTab claims. We found similar bigrams in
different classes, for example “has a” appears in re-
futed claims and “had a” in supported claims. Fur-
thermore, no top-ranked bigram of refuted claims
contains negation tokens such as “not”, “never” or
“false”. Thus, we conclude that the top-ranked bi-
grams occurring in claims are not specific to their
veracity labels.
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4.3 Claim-only Veracity Prediction

We fine-tuned a BERT base model (Devlin et al.,
2019) on PubHealthTab claims to predict their ve-
racity labels using only the text as input and ig-
noring evidence tables. A claim-only model that
performs well could indicate underlying correla-
tions between the claims and the veracity labels. A
similar approach was used by Schuster et al. (2019)
to evaluate claim-only biases in the FEVER dataset
(Thorne et al., 2018). Using the fine-tuned claim-
only BERT model, we obtain an F1 score of 0.51
on our test set. Comparing the F1 score of the
claim-only model to the performance of models
using evidence data (see Section 5), we conclude
that claims alone are not sufficient for the BERT
model to predict the veracity labels.

4.4 Table Analysis

We compared PubHealthTab to three fact-checking
datasets that use tables, TabFact, InfoTabs, and
FEVEROUS (Table 5). Whilst almost all TabFact,
InfoTabs and FEVEROUS tables have headers, this
is not the case in more than half (56.9%) of Pub-
HealthTab tables. Similarly, all TabFact and In-
foTabs tables include captions and approximately
only one-fifth of PubHealthTab tables (21%) and
FEVEROUS tables (22%) have captions. While
captions and headers can be useful for understand-
ing the context of a table, these attributes are not
always present in real-world tables.

The average number of characters per cell is 13.4
for PubHealthTab tables, more than the average cell
length of TabFact tables (8.6) and less than for In-
foTabs (22.6) and FEVEROUS (17.3). Moreover,
PubHealthTab tables show the highest ratio of cells
with numerical content (59%) and the smallest ra-
tio with text-only content compared to the other
datasets. Numerical content can pose a challenge
for state-of-the-art NLP models as previous works
have shown (Suadaa et al., 2021).

5 Experiments and Results

We experimented with several table representa-
tion techniques and state-of-the-art models on Pub-
HealthTab to understand related challenges.

5.1 Table Representation

To assess the impact of different table represen-
tation methods on the table fact-checking task,
we used five table representation techniques. We
also used the BERT-based TAPAS model which

extends the BERT model architecture with three
additional embeddings to encode table structure.
We describe the TAPAS model in more detail when
we discuss the modelling approaches in Section
5.2. We describe the table representations in detail
below:
Concatenation: transforms the entire content
of a table into one flat string ignoring the table
structure. The table caption, headers, and content
are concatenated and used jointly as input for label
prediction.
Template-based concatenation: maps table
columns and cell values into a structured form
using the following template applied to each
row: row_1: column_1:cell_value,
column_2:cell_value, [...]. The
row and column tokens were replaced by the
corresponding vertical header (for row) and
horizontal header (for column), if available.
Template-based sentences: We defined a template
to convert table content to one sentence per row.
For example, given a table with headers “medicine”
and “price”, and two cells in the first row, we
generate the following template-based sentence
for this row: In row one column one (medicine) is
Panadol, column two (price) is £15.
T5 (concatenation): Similarly to Suadaa et al.
(2021), we used text from representation concate-
nation as input to the T5 text generation model
(Raffel et al., 2020) to generate sentences that
describe the tables.
T5 (template): We used text from representation
template-based sentence as input to the T5 model.

5.2 Modelling Approaches

Based on the previously described table represen-
tation methods, we evaluated state-of-the-art NLP
models on PubHealthTab. We use models previ-
ously applied in table fact-checking (BERT, AL-
BERT, RoBERTa) (Chen et al., 2020b; Gupta et al.,
2020; Aly et al., 2021), as well as domain-specific
models (BioBERT, BlueBERT, ClinicalBERT), pre-
trained on large-scale health datasets. We describe
the models below:
BERT: We used the uncased BERT-base (Devlin
et al., 2019) model from huggingface library10.
ALBERT: A transformer-based model that extends
BERT with a parameter-reduction technique, re-
sulting in lower memory consumption and higher
training speed (Lan et al., 2020).

10https://huggingface.co
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Our Dataset TabFact InfoTabs FEVEROUS
Total number of tables 1,942 16,573 2,540 28,760
% of tables with caption 21% 100% 100% 22%
% of tables with header 56.9% 100% 100% 97%
% of tables with <5 rows 23.1% 0.1% 7.5% 18%
% of tables with =>5 rows & <= 10 rows 53.8% 40.7% 56% 44%
% of tables with >10 rows 23.1% 59.2% 36.5% 38%
Ratio of cells with only string content 30.6% 40.1% 45.8% 34%
Ratio of cells with numerical content 59% 53.6% 35.5% 40%
Avg number of characters per cell 13.4 8.6 22.6 17.3

Table 5: Comparison of table fact checking datasets.

Train Valid Test Sum
Support 810 106 103 1019
Refute 370 46 46 462
NEI 373 43 45 461
Sum 1553 195 194 1942

Table 6: Class distribution across dataset split.

RoBERTa: We used the RoBERTa-Large model
released by Nie et al. (2020). The model was pre-
trained on SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), ANLI (Nie et al., 2020),
and FEVER (Thorne et al., 2018).
BioBERT: A domain-specific BERT model, pre-
trained on PubMed abstracts and PMC full-text
articles (Lee et al., 2020). The model was fine-
tuned on two NLI datasets, SNLI and MultiNLI.
BlueBERT: The model was pre-trained on
PubMed abstracts and MIMIC-III clinical notes,
a database of electronic health records from ICU
patients at a Boston hospital (Peng et al., 2019).
ClinicalBERT: A BERT model which was pre-
trained on MIMIC-III data (Huang et al., 2019).
TAPAS: An extension to BERT which uses ad-
ditional, table-specific embeddings (column em-
beddings, row embeddings, rank embeddings) that
capture the table structure (Herzig et al., 2020).
We experiment with TAPAS on our dataset as it
achieved good performance on the TabFact dataset.

We partitioned the dataset into training (80%),
test (10%), and validation (10%) sets. Table 6
shows the class distribution across the dataset
split. We performed hyper-parameter search on
the validation set and evaluated the following pa-
rameters for each model before selecting the best-
performing combination: {4, 8, 16} for batch size,
{1e-3, 1e-5, 1e-7} for learning rate, {2, 3, 4, 5}
for training epochs, and {0.01, 0.001, 0.0001} for

Represent. All Sup. Ref. NEI

B
E

R
T

concatenation 0.60 0.72 0.28 0.81
template sent. 0.57 0.78 0.04 0.89
template concat. 0.57 0.75 0.11 0.85
T5 concat. 0.55 0.75 0.07 0.83
T5 template 0.53 0.71 0.03 0.84

A
L

B
E

R
T

concatenation 0.55 0.72 0.15 0.79
template sent. 0.58 0.69 0.27 0.79
template concat. 0.55 0.71 0.17 0.78
T5 concat. 0.54 0.74 0.07 0.83
T5 template 0.55 0.75 0.11 0.79

R
oB

E
R

Ta

concatenation 0.69 0.79 0.44 0.84
template sent. 0.70 0.77 0.48 0.84
template concat. 0.66 0.75 0.39 0.84
T5 concat. 0.73 0.78 0.52 0.89
T5 template 0.68 0.74 0.45 0.84

B
io

B
E

R
T

concatenation 0.57 0.68 0.29 0.76
template sent. 0.60 0.71 0.33 0.76
template concat. 0.58 0.68 0.3 0.75
T5 concat. 0.58 0.68 0.33 0.73
T5 template 0.58 0.71 0.30 0.74

B
lu

eB
E

R
T concatenation 0.50 0.72 0.04 0.77

template sent. 0.56 0.71 0.23 0.74
template concat. 0.54 0.69 0.20 0.75
T5 concat. 0.52 0.70 0.13 0.72
T5 template 0.54 0.68 0.22 0.72

C
lin

ic
al

B
E

R
T concatenation 0.51 0.75 0 0.78

template sent. 0.58 0.72 0.20 0.83
template concat. 0.58 0.74 0.19 0.80
T5 concat. 0.55 0.76 0.10 0.80
T5 template 0.55 0.73 0.13 0.78
TAPAS 0.48 0.67 0.28 0.48

Table 7: F1 (macro) score for different state-of-the-art
models and table representations on PubHealthTab.

weight decay.

5.3 Discussion
We evaluated and compared the table representa-
tion and modelling approaches, and report the over-
all (macro) F1 score and the F1 scores for each
class in Table 7.

Table Representations. The resulting F1 scores
across all models and veracity classes remained
overall the same when different methods for table
representation were applied. The template-based
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Dataset All Sup. Ref. NEI

C
on

ca
t. PubHealthTab 0.69 0.79 0.44 0.84

InfoTabs 0.78 0.78 0.76 0.81
TabFact 0.49 0.34 0.65 -
FEVEROUS 0.68 0.89 0.87 0.29

T.
se

nt
. PubHealthTab 0.70 0.77 0.48 0.84

InfoTabs 0.77 0.77 0.73 0.81
TabFact 0.44 0.23 0.65 -
FEVEROUS 0.66 0.88 0.85 0.27

T.
co

nc
at

. PubHealthTab 0.66 0.75 0.39 0.84
InfoTabs 0.78 0.78 0.75 0.81
TabFact 0.50 0.36 0.65 -
FEVEROUS 0.67 0.88 0.86 0.26

T
5

co
nc

at
. PubHealthTab 0.73 0.78 0.52 0.89

InfoTabs 0.73 0.72 0.69 0.77
TabFact 0.47 0.29 0.65 -
FEVEROUS 0.64 0.86 0.83 0.22

T
5

te
m

p. PubHealthTab 0.68 0.74 0.45 0.84
InfoTabs 0.72 0.72 0.68 0.77
TabFact 0.46 0.25 0.67 -
FEVEROUS 0.64 0.86 0.83 0.24

Table 8: F1 score for RoBERTa with different represen-
tation methods on various table fact-checking datasets.

sentence approach outperforms other representa-
tion techniques in terms of the overall F1 score for
four out of six models (i.e. ALBERT, BioBERT,
BlueBERT, and ClinicalBERT). However, for all
four models, the difference to the second high-
est scoring representation was relatively small, be-
tween 0.02 and 0.03. Thus, choosing between con-
catenation and template did not seem to influence
the overall claim classification.

Models. RoBERTa outperformed the other
models across all representations, followed by
BioBERT. The highest macro F1 score (0.73) was
obtained using RoBERTa with T5 concatenation.
The BioBERT model outperformed BERT, AL-
BERT and all other domain-specific models for all
representations except concatenation where BERT
yielded a slightly higher overall F1 score. Sur-
prisingly, TAPAS achieved the lowest score. We
believe that this is attributed to the small dataset;
while TAPAS is one of the best-performing models
on TabFact (Eisenschlos et al., 2020), our training
set is much smaller, which can pose a challenge to
the BERT-based model.

Performance on refuted claims. Across all
applied models and table representations, we ob-
tained a noticeable low F1 score for PubHealthTab
refuted claims compared to the two other veracity
classes, support and NEI. The F1 scores ranged
from 0 (ClinicalBERT with concatenation) to 0.52
(RoBERTa and T5 concatenation).

To determine if this scenario was specific to our
dataset, we compared the F1 scores we obtained

on our dataset using RoBERTa with other table
fact-checking datasets. The results are shown in
Table 8. While the F1 score for PubHealthTab
refuted claims was between 0.39 and 0.52 us-
ing RoBERTa, this value was between 0.65 and
0.87 for refuted claims from TabFact, InfoTabs
and FEVEROUS. Whilst the low performance of
RoBERTa on FEVEROUS NEI claims can be at-
tributed to the imbalanced class distribution (Aly
et al., 2021), this is not the case for PubHealthTab
as the three veracity classes {support, refute, NEI}
are present in a ratio of 2:1:1 in our training set.
We believe that the comparably low performance
of RoBERTa on PubHealthTab refute claims is due
to the fact that state-of-the-art representation and
modelling approaches were previously evaluated
on Wikipedia evidence tables. These approaches
seem to struggle with noisy web tables: lacking
table captions and headers, a higher ratio of nu-
merical content, and a lower ratio of string-only
content (see Section 4.4) could pose a challenge for
generating table representations and for pre-trained
models previously evaluated on tables from single
data sources.

The results we obtained using RoBERTa on
TabFact are lower compared to the other datasets.
Whilst Chen et al. (2020b) do not report the re-
sults per class, the overall F1 score we obtained is
comparable to their baseline.

6 Conclusion

We introduced PubHealthTab, a table-based dataset
for evidence-based fact checking centred on real-
world public health claims. Our dataset comprises
1, 942 claim-table pairs, with tabular evidence data
extracted from websites similar to those used by
fact checkers. We described the dataset creation
process and the steps taken to minimise biases and
correlations. We evaluated state-of-the-art repre-
sentation and modelling approaches and showed
that the RoBERTa model achieves the highest per-
formance on PubHealthTab across all representa-
tion methods compared to other models. In con-
trast to previous table-based fact-checking datasets
that contain tables from single data sources, state-
of-the-art models struggle to correctly classify re-
fute claims from PubHealthTab against evidence
consisting of mostly numerical data or with noisy
text headers, making PubHealthTab a challenging
dataset for table-based fact-checking research.
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Ethics Statement

The PubHealthTab dataset can be used for develop-
ing and evaluating fact checking systems intended
for a real-world context. The labels supports, re-
futes and not enough information describe a claim’s
veracity given the evidence table. We do not make
any statement on PubHealthTab claims’ truthful-
ness in a real-world context.

We obtained ethical clearance prior to crowd-
sourcing from the relevant authority in the aca-
demic institution. We informed the participants
about the data being collected and its purpose. Par-
ticipants had the opportunity to withdraw at any
time and to provide feedback at the end of each task.
All workers were from English speaking countries.
The payment was above the minimum wage and
decided based on the time workers spent on the
pilot tasks. For the first and third tasks we paid
0.75USD (2.5 minutes per task on average) and
for the second 1.35USD (average 5 minutes per
task).
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A Supplementary Materials

A.1 Dataset Creation
We evaluated the following conditions for the sec-
ond crowdsourcing task. Workers could only sub-
mit their work if all checks were passed:

• A veracity label is selected for the adjusted
claim.

• Minimum 2.5 seconds are spend on each HIT
page for adjusting the claim.

• Adjusted claim length is between 5 and 30
tokens.

• The adjusted claim is different from the initial
claim.

• The adjusted claim text does not contain am-
biguous words, i.e. maybe, probably, mostly,
occasionally, frequently, might, many, few,
some, several, most of, sometimes.

• The adjusted claim does not contain negation
words, i.e. not, never, none, nobody.

A.2 Experiments
After hyperparameter tuning on the validation set,
we selected the following parameters for the differ-
ent modelling approaches displayed in Table 9.
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Figure 3: Introduction text for table relevance and verification task.

Figure 4: Introduction text for claim adjustment task.

Model TE BS LR WD
BERT 5 4 1e-5 0.001
AlBERT 5 16 1e-5 0.001
RoBERTa 4 8 1e-5 0.01
BioBERT 5 4 1e-5 0.001
BlueBERT 5 8 1e-5 0.001
ClinicalBERT 4 4 1e-5 0.01

Table 9: Hyperparameters evaluated on the Pub-
HealthTab dataset: training epochs (TE), batch size
(BS), learning rate (LR), weight decay (WD).
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Figure 5: Crowdsourcing qualification test.
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Figure 6: Author-annotated crowdsourcing example.
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Figure 7: User Interface for the table relevance and verification task.
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Figure 8: User Interface for the claim adjustment task.
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