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Abstract
Machine Translation task has made great
progress with the help of auto-regressive de-
coding paradigm and Transformer architecture.
In this paradigm, though the encoder can ob-
tain global source representations, the decoder
can only use translation history to determine
the current word. Previous promising works at-
tempted to address this issue by applying a draft
or a fixed-length semantic embedding as target-
side global information. However, these meth-
ods either degrade model efficiency or show
limitations in expressing semantics. Motivated
by Functional Equivalence Theory, we extract
several semantic kernels from a source sen-
tence, each of which can express one seman-
tic segment of the original sentence. Together,
these semantic kernels can capture global se-
mantic information, and we project them into
target embedding space to guide target sentence
generation. We further force our model to use
semantic kernels at each decoding step through
an adaptive mask algorithm. Empirical stud-
ies on various machine translation benchmarks
show that our approach gains approximately an
improvement of 1 BLEU score on most bench-
marks over the Transformer baseline and about
1.7 times faster than previous works on average
at inference time.

1 Introduction

Machine Translation has been a long-standing
task in natural language processing (Brown et al.,
1990). Recently, Neural-based Machine Transla-
tion (NMT) models (Bahdanau et al., 2015; Wu
et al., 2016; Vaswani et al., 2017) have made great
progress and become the mainstream of machine
translation frameworks. Most NMT models adopt
the encoder-decoder framework. The encoder trans-
forms the source sentence into source-side global
representations. And the decoder generates the tar-
get sentence auto-regressively, based on the source-
side representations and translation history.
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Figure 1: Comparison among methods with target-side
global information. “red”, “blue” and “purple” color
indicate source space, target space and semantic space,
respectively. In (b), “D” means the draft generated by
the first decoder. In (c), “Net” denotes the inference
model in Semantic-based model and “S” is the semantic
embedding. (d) shows our SKAM model, where “KS”
and “KT ” represent source and target semantic kernels,
respectively. “Proj” is our projector.

However, one limitation of such auto-regressive
decoding is that the generation of word yt only
has access to target-side partial information y<t.
If translation history is mistranslated, this error
will be propagated to all subsequent words (Bengio
et al., 2015). Also, this makes the generation heav-
ily dependent on the source sentence, and minor
changes in source sentence may lead to dramatic
degradation in translation outcome (Cheng et al.,
2019). Intuitively, using target-side global informa-
tion to guide translation progress can alleviate this
problem.

Attempts have been made to apply global infor-
mation to guide the decoding process. Basically,
we categorize them into two main lines. One is
draft (Xia et al., 2017; Wang et al., 2019; Li et al.,
2018; Zhang et al., 2018; Zhou et al., 2019), which
generates a coarse target sequence to guide the
translation progress, as depicted in Figure 1 (b).
However, a coarse draft sentence requires delicate
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design to be generated. Thus, these methods often
require multiple decoding steps. The other one is
latent semantics (Shah and Barber, 2018; Zheng
et al., 2020; Ai and Fang, 2021; Eikema and Aziz,
2019; Zhang et al., 2016; Su et al., 2018), which
adopts generative methods ( i.e., VAE (Kingma and
Welling, 2014) ) to model the semantics of source
and target sentences in the latent semantic space.
As in Figure 1 (c), such methods usually project se-
mantics into one fixed-length vector, which shows
limitations in expressing semantics for long sen-
tences. Although above methods have successfully
injected global information into decoding progress,
they both incur extra computational cost, which
greatly degrades the inference time compared to
vanilla transformer model.

Motivated by the Functional Equivalence The-
ory (Nida and Taber, 1982), we propose Semantic
Kernels with Adaptive Mask (SKAM) for NMT.
To guide translation, we extract several semantic
kernels from source sentence, each of which can
express one semantic segment of the original sen-
tence, as shown in Figure 1 (d). All semantic ker-
nels together can capture the essential meaning of
the source sentence, and they are later mapped from
source space to target space with N -gram smooth-
ing loss as target-side global information. We also
improve auto-regressive decoding with an adaptive
mask mechanism to guarantee the usage of seman-
tic kernels in decoding progress. We evaluate the
performance on several MT benchmarks that cover
various data scales, languages and domains. Ex-
periments show that our approach achieves signifi-
cant improvement compared to the baselines and
is about 1.7 times faster at inference than previous
works on average. In total, our contributions can
be summarized as:

• Inspired by Functional Equivalence Theory,
we extract several semantic kernels from a
source sentence to capture source semantics,
which express sentence semantics at a new
granularity.

• To map semantic kernels from source-side to
target-side, we propose an N -gram smoothing
loss, which guarantees each semantic kernel
to capture one semantic segment, not one spe-
cific word.

• We design an adaptive mask mechanism to
guarantee each decoding step can access com-
prehensive information, both preceding words

(translation history) and subsequent words (se-
mantic kernels).

2 Preliminaries and Related Work

2.1 Functional Equivalence Theory

The main point of Functional Equivalence Theory
(Nida and Taber, 1982) is that translation should
focus on the functional equivalence of information
(sense-for-sense translation) rather than the direct
formal equivalence (word-for-word translation). To
do this, Nida and Taber (1982) proposes a transla-
tion framework, which consists of three parts:

Decompose: To get rid of the complex and
ambiguous structure of the source sentence, the
source sentence is split into several simple, short
sentences, each of which captures one semantic
segment of the original sentence. These simple
sentences are called “kernel sentences”, based on
Transformational Generative Grammar (Chomsky,
2009).

Transfer: The kernel sentences are translated
into receptor language. For the simplicity of the ker-
nel sentences, they can be translated easily. And the
translated kernel sentences can capture all source
semantics, since languages agree far more on the
level of the kernel sentences than on the level of the
more elaborate structures (Nida and Taber, 1982).

Restructure: Transferred kernel sentences are
restructured semantically and stylistically into the
surface structure of target language.

Inspired by this theory, we try to make the trans-
lation comply more with source sentence meanings
‘than source words in NMT model. Hence, we pro-
pose SKAM, which first decomposes source sen-
tence to form semantic kernels (Kernel Selection
Module), then transfers the semantic kernels into
target embedding space (Kernel Projection Mod-
ule), and finally restructures to a target sentence
(Decoding Module).

2.2 Neural Machine Translation

Formally, let X = {x0, x1, ..., xI} and Y =
{y0, y1, ..., yJ} denote a source and a target se-
quence respectively, where I and J are the sentence
lengths. Given a bilingual sentence pair ⟨X,Y ⟩, an
NMT model learns a set of parameters Θ to maxi-
mize the posterior probability P (Y |X; Θ):

P (Y |X; Θ) =

J∏

t=0

P (yt|y<t, X; Θ) (1)
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where y<t is the partial translation that contains the
target tokens before position t.

2.3 Transformer
Transformer model is based solely on attention
mechanism. Given query Q, key K and value V, the
output ATT(Q,K,V) is calculated as:

ATT(Q,K,V) = softmax(
QK⊤
√
d
)V (2)

where
√
d is the scaling factor with d being the

dimension of embedding size.
Transformer model employs multiple-layer en-

coder and decoder to perform the translation task
with residual connections among layers. Denote
the output of the l-th layer as Hl, the encoder cal-
culates:

Ol
e = ATT(Hl−1

e ,Hl−1
e ,Hl−1

e ) + Hl−1
e

Hl
e = LN(FFN(LN(Ol

e)) + LN(Ol
e))

(3)

where LN(·) and FFN(·) are layer normalization
and feed-forward networks with ReLU activation in
between. As all of the Q,K,V come from the same
place, this attention is referred to as self-attention.

The decoder is similar in structure to the encoder
except that it includes another attention mechanism,
called cross-attention, which attends to the output
of the encoder stack HL

e :

Ol
d = ATT(Hl−1

d ,Hl−1
d ,Hl−1

d ) + Hl−1
d

Sl
d = ATT(LN(Ol

d),HL
e ,HL

e ) + LN(Ol
d)

Hl
d = LN(FFN(LN(Sl

d)) + LN(Sl
d))

(4)

where the top layer of the decoder HL
d is used to

generate the final output sequence.

2.4 Target Information Enhanced NMT
Some impressive works have considered adding tar-
get information for better translation quality. Most
closely related to our work are Deliberation Net-
work (Xia et al., 2017) and Soft-prototype (Wang
et al., 2019). These methods first generate a coarse
draft to guide translation progress. Their main idea
is to deliberate the wrong parts in the previous
decoding step. Some other works have adopted bi-
directional decoding (Li et al., 2018; Zhang et al.,
2018; Zhou et al., 2019) or multi-pass decoding
(Geng et al., 2018). Ma et al. (2018) applies tar-
get bag of words as targets to train NMT model.
In comparison, our motivation is to extract seman-
tic kernels that capture the essential meanings of

the source sentence, and replenish these semantic
segments to form a final target sentence.

Also related are the works of Zheng et al. (2020);
Ai and Fang (2021); Shah and Barber (2018);
Zhang et al. (2016); Su et al. (2018), which apply
generative methods (VAE (Kingma and Welling,
2014)) to sample latent semantic embedding. Com-
pared with these methods, we select different num-
bers of semantic kernels according to source sen-
tence and avoid the EM-like decoding progress,
which is more expressive and efficient.

In work similar to SKAM, Zhao et al. (2018)
and Wang et al. (2017) integrate a phrase memory
from a phrase-based statistical machine translation
(SMT) system to guide the NMT model. Niehues
et al. (2016) first adopts a phrase-based SMT sys-
tem to pre-translate and then generates the final
translation with an NMT model. However, these
methods can not work without an SMT system at
inference time, which limits their usage for transla-
tion.

3 NMT with Semantic Kernels

To make NMT model comply more with source
sentence meaning than source sentence form, we
propose SKAM, which consists of three modules:
kernel selection module, kernel projection module,
and decoding module, as depicted in Figure 2. We
will explain each module in the following section.

3.1 Semantic Kernels Selection
Semantic kernels aim at capturing the essential
meaning of the source sentence, and each of them
should contain a semantic segment of the original
sentence. Following Nida and Taber (1982), which
claims that words acquire meaning through their
context, we apply the contextual embedding of the
content words to represent semantic kernels. For-
mally, semantic kernels are defined as:

KS(X) := {ENC(xi|X) | s(xi) > 0, xi ∈ X}
(5)

where ENC denotes transformer encoder and s(·) is
a norm-based significance score to locate the con-
tent words of the source sentence. To be mentioned,
this definition of semantic kernel is simple, we will
try to extract semantic kernels directly from the
latent semantic space in future works.

Norm-based Significance Score
The significance score measures the ability of
words to express essential meaning using the L2-
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Figure 2: An overview of our SKAM model. SKAM
contains three modules: 1. kernel selection module, to
extract semantic kernels from source sentence; 2. kernel
projection module, to map semantic kernels into target
latent space; and 3. decoding module, which receives
comprehensive target information via adaptive attention
module. The N -gram Smoothng loss (dashed block) is
only applied during training process.

norm of the word embedding. Intuitively, words
that have higher L2-norms will play a leading role
when adding up all word embeddings to form a
sentence embedding. This feature of L2-norm has
already been proven by some promising previous
works (Luhn, 1958; Chen et al., 2020a; Liu et al.,
2020).

We use the embedding matrix in our model to
calculate L2-norm. As the norm of embedding ma-
trix varies during training process, we scale each
word norm ||xi|| with the current largest word norm
maxv∈VS

(||v||) in source embedding. Our signifi-
cance score s(·) is formulated as:

s(xi) =
||xi||

maxv∈VS
(||v||) − γ (6)

where γ ∈ [0, 1] is a norm threshold value. We only
choose words whose score s(xi) is larger than γ
as content words. To better understand what kinds
of words are selected by Norm-based Significance
Score, we sample some cases and illustrate them in
Appendix A.

3.2 Semantic Kernels Projection

We try to apply a projector to map source-side
semantic kernels KS to target-side KT :

KT = fS→T (KS) (7)

where fS→T is a neural projector, KS ,KT ∈
RQ×d, Q is the number of semantic kernels and
d means embedding size.

For words acquire meaning through their context
(Nida and Taber, 1982), we train the projector to
predict both content words and their context to
better capture the deep meaning beneath surface
expression. We propose N -gram smoothing loss to
train the projector to concentrate on representing
meaning, not a specific word.

N -gram Smoothing Loss
Given the encoder output of each source word
ENC(xi|X), the Projector is trained to predict the
corresponding target N -gram span Span(yi). We
apply external alignment tool to find the aligned tar-
get word ỹi and group every N consecutive target
words as an N -gram span. Formally,

Span(yi) = {ỹi−k, ỹi−k+1, ..., ỹi, ..., ỹi+k−1, ỹi+k}
(8)

where k = (N − 1)/2 and N is a hyper-parameter
to control how many words we select each time.
The N -gram span is then used as label to train the
projector with ENC(xi|X) as input. The N -gram
smoothing loss Lg for one sample X formulates:

Lg =
∑

xi∈X

1

N

2k∑

m=0

logP (ỹi−k+m|ENC(xi|X))

(9)
The output word embedding matrix in projector

shares the same parameters with decoder and it is
removed at inference time, as shown in Figure 2.

3.3 Decoding with Semantic Kernels
To give decoding progress comprehensive target-
side information, we modify the original self-
attention module in decoder to adaptive attention
module, which can utilize both preceding words
(from translation history) and subsequent words
(from semantic kernels) to predict. Specifically, we
concatenate semantic kernels to the K,V parts of
the self-attention module in all decoder layers.

ATT(Hl−1
d , [KT : Hl−1

d ], [KT : Hl−1
d ]) (10)

Similar to Zheng et al. (2019), we explicitly
separate semantic kernels into two groups: fully-
accessed and not-yet-accessed. As translation pro-
gresses, we propose an Adaptive Mask to gradu-
ally remove the semantic kernels fully-accessed in
translation history.
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Figure 3: An illustration of our adaptive mask mecha-
nism. The white “M” indicates the maximum attention
score at current time step. After one semantic kernel
gets the highest attention score, we mask it in the subse-
quent decoding step.

Adaptive Mask
Assuming 0 means unmask operation and 1 indi-
cates mask operation, the attention mask M for
semantic kernels should be like:

M(κTq , yt) =

{
0, κTq is not contained in y<t

1, κTq is contained in y<t

(11)
where κTq ∈ KT and q means the q-th semantic ker-
nel. We use the previous attention score A<t as a
measurement whether semantic kernel κTq has been
fully-accessed in translation history. That is to say,
if κTq appears to have the largest attention score at
time step t, we assume κTq is fully-accessed at time
step t and mask it in subsequent time steps, as illus-
trated in Figure 3. Formally, we update attention
mask M(κTq , yt) based on previous attention mask
and attention score:

M(κTq , yt) = M(κTq , yt−1)∨
(
argmax(At−1) = q

)

(12)
where [∨] is logical operator OR, and At−1 denotes
the attention score at t− 1 time step. To preserve
parallel training in transformer, we mask semantic
kernel after its aligned target token (from external
alignment tool) is generated at training.

3.4 Training Strategy
The overall loss function is divided into two parts:
a translation loss LD and an N -gram smoothing
loss Lg for Projector. The overall loss function
formulates:

L = LD + λ · Lg (13)

where λ ∈ [0, 1] is a hyper-parameter to balance
the impact between two losses. Details about N -
gram smoothing loss can be found in Sec-3.2. After

integrating semantic kernels, the translation loss is
like:

LD =
∑

⟨X,Y ⟩∈C

∑

y∈Y
logP (y|y<t,KT , X) (14)

We set a norm threshold γ to control how strict
we choose content words, explained in Sec-3.1.
However, the norm calculation made at early stages
is usually unreliable. We propose norm threshold
annealing, which is computed as e · γ + (1 − e)
where e is gradually annealed from 0 to 1 during
the first 1/3 of training steps.

4 Experiments

We conduct experiments on the following bench-
marks: NIST Chinese to English (Zh→En),
WMT14 English to German (En→De), WMT14
English to French (En→Fr), IWSLT14 English
to/from German (En↔De) translation tasks.

4.1 Datasets
For WMT 14 En→De, the training corpus is iden-
tical to previous work (Wang et al., 2019), which
consists of about 4.5M sentence pairs. The valida-
tion set is newstest2013 and test set is newstest2014.
For WMT 14 En→Fr, this dataset contains 36M
sentences. The validation set is the concatena-
tion of newstest2012 and newstest2013. Test re-
sults are reported on newstest2014 as (Wang et al.,
2019). Following previous work (Yang et al., 2020),
IWSLT 14 En→De dataset contains 160k sentence
pairs for training and 7584 sentence pairs for vali-
dation. The concatenation of validation sets is used
as the test set (dev2010, dev2012, tst2010, tst2011,
tst2012). For NIST Zh→En, we use the LDC cor-
pus with 1.25M sentence pairs with 27.9M Chinese
words and 34.5M English words, respectively. We
select the best model using the NIST 2002 as the
validation set for model selection and hyperparam-
eter tuning. The NIST 2004 (MT04), 2005 (MT05),
2006 (MT06) and 2008 (MT08) datasets are used
as test sets.

We choose the Stanford segmenter (Tseng et al.,
2005) for Chinese word segmentation and apply the
script tokenizer.pl of Moses (Koehn et al., 2007)
for English, French, and German tokenization. All
data has been jointly byte pair encoded (BPE) (Sen-
nrich et al., 2016). For WMT/IWSLT, we create
a joint vocabulary with 32k and 10k merge oper-
ations respectively. For NIST Zh→En, BPEs are
learnt separately with 60k operations.
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En→De En→Fr Zh→En Params Time Ratio ↓
Transformer (Vaswani et al., 2017) 28.40 41.80 - 213M -
Transformer+Deli (Xia et al., 2017) 29.11+ 42.58+ - 372M+ 1.79 ×
Soft-Prototype (Wang et al., 2019) 29.46 42.99 - 200.2M 1.35 ×
GNMT (Shah and Barber, 2018) 28.81† 42.20† 46.69‡ 289M* 2.08 ×
Mirror-GNMT (Zheng et al., 2020) 29.22† - 46.98 474M* 2.70 ×
SD-NMT (Ai and Fang, 2021) 29.49 42.97 - - 2.44 ×
Transformer (our implementation) 28.55 41.84 45.88 214M -
SKAM 29.52 42.95 47.00 252M 1.20 ×

Table 1: Results on WMT14 En→De, WMT14 En→Fr and NIST Zh→En translation tasks. Results marked +, ‡, †

are from Wang et al. (2019); Zheng et al. (2020); Ai and Fang (2021), respectively. Numbers marked with * are from
our implementation. “Params” denotes the number of model parameters for En→De. “Time Ratio” is calculated as
the ratio of inference time between each model and transformer baseline.

Figure 4: BLEU scores according to the sentence length.
Results are on WMT14 En→De. Apparently, the longer
the sentence, the better the performance that SKAM
outperforms Transformer baseline.

We use GIZA++ (Och and Ney, 2003) as the
external word alignment tool. As the whole model
works on the sub-word level, following previous
work (Chen et al., 2020b; Zenkel et al., 2020), we
apply BPE units instead of words for alignment.

4.2 Model Configuration
Fundamental Transformer is implemented
with fairseq (Ott et al., 2019). We follow the
most common model configuration for each dataset.
For IWSLT/NIST/WMT, we use the small/base/big
transformer model. In detail, the encoder and de-
coder include 6 layers. All layers have an embed-
ding size of 512/512/1024, a feed-forward size of
1024/2048/4096 and 4/8/16 attention heads, respec-
tively. In order to prevent overfitting, we use a
dropout rate of 0.3 (except for WMT 14 En→Fr,
which is 0.1), and label smoothing of 0.1. For

IWSLT and NIST, we train the model on a single
P100 GPU, with each batch containing 4096 to-
kens. For WMT, we train the model on 6 P100
GPUs with update frequency set to 2, which results
in 2500×6×2 tokens per batch. We average the last
5/20 checkpoints for base/big model and use the
checkpoint that has the best valid performance for
small model. We use the case-sensitive tokenized
BLEU multi-bleu.perl (Papineni et al., 2002) to
evaluate WMT tasks and case-insensitive tokenized
BLEU mteval-v11b.pl for NIST Zh→En. We re-
port sacrebleu (Post, 2018) results for IWSLT. All
experiments are run 4 times and report the average
BLEU.

Projector is implemented as transformer encoder
with 3 layers. The feed-forward size and attention
heads are the same as fundamental transformer for
each dataset. After adding projector, the training
speed is on average about 80% of the vanilla trans-
former. For all benchmarks, we set λ = 0.3 heuris-
tically. Norm threshold γ is set to 0.5 and N = 3
in our main experiment unless otherwise specified.
We update adaptive mask with attention score from
the top layer of decoder.

4.3 Baselines

For strictly consistent comparison, we involve the
following strong baselines: Transformer (Vaswani
et al., 2017) is a strong baseline which we build
our model upon. Deliberation Network (Xia et al.,
2017) and SoftPrototype (Wang et al., 2019) first
generate the draft and polish the draft for the fi-
nal translation. GNMT (Shah and Barber, 2018),
Mirror-GNMT (Zheng et al., 2020) and SD-NMT
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IWSLT14 En→De De→En Params Avg.∆
SKAM 29.61 35.68 43M -

w/o Lg 28.95 35.11 43M -0.62
w/o AM 29.26 35.29 43M -0.37
w/o s(·) 29.02 35.21 43M -0.53

Transformer 28.60 34.56 37M -1.06

Table 2: Results on IWSLT14 En↔De translation tasks
and Ablation Study. Avg.∆ means the gap between
each model setting and SKAM. “w/o s(·)” means the
semantic kernels are selected randomly from source
sentences.

Figure 5: Test of different norm thresholds γ on
IWSLT14 En→De. γ = 0 means that all source words
are treated as semantic kernels, while γ = 1 indicates
no semantic kernels are selected at all.

(Ai and Fang, 2021) sample a latent semantic em-
bedding from semantic space and consider it as
global information for decoding.

4.4 Results and Comparison

The results for WMT14 En →{De, Fr} and NIST
Zh→En are presented in Table 1 and results on
IWSLT14 En↔De are in Table 2. For convenience,
we refer to our model as “SKAM” in these tables.
We summarize the results as:

Semantic kernels improve model performance.
Compared with transformer baseline, our approach
on all four benchmarks brings substantial improve-
ments, 1.07 BLEU points on average. Our model
obtains competitive performance compared with
previous methods on several benchmarks, and even
surpasses all previous methods with a 29.52 BLEU
score on WMT14 En-De benchmark. All results
are statistically significant with p < 0.01 in paired
bootstrap sampling (Koehn, 2004).

N -gram 0 1 3 5
SKAM 28.95 29.25 29.61 29.43

Table 3: Test of our N -gram smoothing supervision.
The experiments are conducted on IWSLT14 En → De.
N = 0 means no supervision is applied on Projector
module.

Semantic kernels are time efficiency. As
our semantic kernels are generated in a non-
autoregressive way, our model only needs about
17% extra time to generate them. Compared with
previous work, our model achieves about 1.7 times
faster on average, even 2 times faster than some
latent semantic-based methods.

4.5 Ablation Study

We perform an ablation study to show the effec-
tiveness of each module on IWSLT14 En↔De
benchmarks. The results are shown in Table 2.
Specifically, “w/o s(·)” compares our model with
a baseline in which the decoder extends its K, V
matrix with random parameters. Also, the results
show that the improvements mainly come from our
design, not an increase in parameters.

4.6 Parameter Analysis

Effect of Norm Threshold Norm threshold γ
controls how strict we select semantic kernels. In
general, the bigger γ is, the fewer words are se-
lected as semantic kernels. To further examine the
impact of norm threshold γ, we conduct experi-
ments on IWSLT14 En→De benchmark. From the
results, we find that when γ < 0, 5, the perfor-
mance increases, for we filter out more and more
irrelevant words in expressing semantics. When
γ > 0.5, performance gradually decreases and the
model eventually deteriorates to transformer base-
line.

Effect of N -gram We also test the impact of N -
gram smoothing supervision on the Projector and
depict the results in Table 3. Intuitively, the bigger
N is, the better to disambiguate each word while
the smaller N is, the better the discrepancy among
each representation. From Table 3, we find that
N -gram smoothing loss is critical to Projector and
N = 3 is a balance point between the discrepancy
and disambiguation.
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Source So I want you to think about a thought experiment .

Reference Daher möchte ich , dass Sie über ein Gedankenexperiment nachdenken .

Transformer Denken Sie also an ein Gedankenexperiment .

Keywords So, I, want, you, think, thought, experiment

SKAM Ich möchte , dass Sie über ein Gedankenexperiment nachdenken .

Source " Bottom line is that with costs rising , people in the middle to lower end ( of the income scale ) will be
looking to supplement their income wherever they can , " says Song Seng Wun , economist at CIMB , a
Malaysian bank .

Reference „ Im Endeffekt bedeutet das , dass angesichts steigender Kosten die Menschen im mittleren bis unteren
Segment ( der Einkommensskala ) versuchen werden , ihr Einkommen zu ergänzen , wo immer das
möglich ist “ , sagt Song Seng Wun , Ökonom bei CIMB , einer malaysischen Bank .

Transformer „ Bei steigenden Kosten versuchen die Menschen in der Mitte bis unten ( der Einkommensskala )
, ihr Einkommen überall dort aufzubessern , wo sie können “ , sagt Song Seng Wun , Ökonom der
malaysischen Bank CIMB .

Keywords Bottom, line, costs, rising, people, middle, lower, end, income, scale, will, be, looking, supplement,
their, income, wherever, they, can, says, Song, Seng, Wun, economist, at, CIMB, Malaysian, bank

SKAM „ Unterm Strich geht es darum , dass die Menschen im mittleren bis unteren Bereich ( der Einkom-
mensskala ) bei steigenden Kosten versuchen werden , ihr Einkommen zu erhöhen , wo immer sie können
“ , sagt Song Seng Wun , Ökonom bei der CIMB , einer malaysischen Bank .

Table 4: Translation examples extracted from WMT 14 En→De task. “Keywords” denotes the words selected by
our Norm-based Significance Score. The same color across different sentences refers to the same aligned sentence
piece.

4.7 Performance w.r.t Sentence Length

Following previous work (Wang et al., 2019), we di-
vide source sentences into different groups accord-
ing to sentence length and compute the BLEU score
separately for each group on WMT14 En→De task,
as shown in Figure 4. Generally, the longer the
source sentence is, the more influential semantic
kernels are. This demonstrates that semantic ker-
nels are especially helpful for the generation of
longer sentences.

4.8 Case Study

We present examples from WMT 14 En→De task
to illustrate the impact of semantic kernels, shown
in Table 4, including source sentence, the gold
target sentence (reference), translation generated by
the vanilla Transformer model (Transformer) and
translation given by ours (SKAM). From Table 4,
we find that semantic kernels can help transformer
baseline in two ways:

Select Words More Appropriately. In the first
example, nachdenken is a more appropriate transla-
tion of think than Denken from Transformer. Simi-
larly, in the second example, Transformer mistrans-
lates lower into unten (bottom). We conjecture that
the semantic kernels can help our model focus on
meanings not word forms.

Capture Source Semantics More Comprehen-
sively. In the first example, the sentence piece
So I want you is missing by transformer, while
SKAM successfully captures this meaning. This
circumstance can also be found in the second exam-
ple, where Bottom line is that is missing in trans-
former. This implies that SKAM is particularly
helpful for the generation of longer and harder sen-
tences. However, SKAM still shows some limita-
tions. In the first example, the meaning daher (so)
is missing in SKAM. More cases can be found in
Appendix A.

5 Conclusion

Following Functional Equivalence Theory, we
propose Semantic Kernels with Adaptive Decod-
ing, which extracts several semantic kernels and
projects them into target embedding space to guide
translation. We propose adaptive mask mechanism
to enable each decoding step to access target-side
global information. Several empirical results reveal
that our SKAM is both expressive in semantics and
efficient in time.

Our way of representing kernel sentences in
NMT is intuitive and simple. In future work, we
would like to explore better methods to capture
sentence semantics.
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Limitations

As we tentatively give a successful implementa-
tion of leveraging Functional Equivalence Theory
into Neural Machine Translation framework, such
paradigm deserves a further and more detailed ex-
ploration. First, our representation of semantic
kernels is quite intuitive and simple, how to align
semantics between source and target languages is
still challenging and thrilling, yet still in its fledge-
less stage. Aside from it, while extensive exper-
iments demonstrate that SKAM consistently im-
proves translation quality, applying our approach
on other language generation tasks will evaluate the
effectiveness of our work in a more general way.
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A More Analysis on Norm-based
Significance Score

To give a better view of what kinds of words are se-
lected by Norm-based Siginificance Score and how
these words affect translation progress, we sample

En→De WMT19 WMT20 WMT21
SKAM 46.23 37.76 30.58
Transformer 45.57 36.81 29.61

Table 5: Results on WMT19, WMT20, WMT21
En→De newstest benchmarks.

more sentences from WMT14 En→De benchmark
and present them in Table 6.

A.1 Words Selected by Norm-based
Significance Score

In Table 6, we show the words selected by Norm-
based Significance Score as “Keywords”. As you
can tell, our Norm-based Significance Score tends
to select content words from source sentences.
Though some prepositions and conjunctions are
wrongly selected, most words selected by Norm-
based Significance Score are content words.

A.2 Impact of Semantic Kernels
From Table 6, we can tell that before applying
semantic kernels, some colored sentence pieces
are not covered in translation results, while after
applying semantic kernels, the translation results
are more complete. Also, in the first two cases,
applying semantic kernels further helps our model
translate words more accurately. From the results,
it is clear that semantic kernels help transformer
model obtain a more comprehensive view of the
source sentence.

B More Results on WMT Benchmarks

We also report the results on WMT19, WMT20,
WMT21 En→De newstest benchmarks. We build
SKAM model upon Transformer Big baseline and
the model is trained on 282M bilingual language
pairs, which is the combination of all parallel data
released by WMT21. All words are split into sub-
word units with 40k merge operations. The model
is trained on 8 V100 (16G) GPUs with a batch size
of 48k tokens in total (3000× 8× 2). We trained
10 epochs and averaged the last 5 checkpoints. The
results are reported in Table 5. SKAM outperforms
transformer baseline with 0.86 BLEU score on av-
erage on these 3 benchmarks.
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Source The concept is not a universal hit .

Reference Das Konzept ist kein universeller Hit .

Transformer Das Konzept ist kein Universalschlag .

Keywords concept, universal, hit

SKAM Das Konzept ist kein universeller Hit .

Source However , speaking the truth is not a crime .

Reference Die Wahrheit zu sagen ist aber kein Verbrechen .

Transformer Die Wahrheit ist jedoch kein Verbrechen .

Keywords However, speaking, truth, crime

SKAM Die Wahrheit zu sagen , ist jedoch kein Verbrechen .

Source Whether producing soap , turning candles , felting or making silk , there is a suitable activity whatever
your age .

Reference Ob Seife herstellen , Kerzen drehen , filzen oder Seile fertigen , für jedes Alter ist das Passende dabei .

Transformer Ob Seife , Kerzen drehen , Filzen oder Seidenherstellung – für jedes Alter ist etwas dabei .

Keywords Whether, producing, soap, turning, candles, felting, or, making, milk, there, suitable, activity, whatever,
age

SKAM Ob Seife herstellen , Kerzen drehen , filzen oder Seide herstellen , in jedem Alter gibt es eine passende
Aktivität .

Source The backlog in the aerospace division was $ 32.9 billion as of September 30 , unchanged from December
31 .

Reference Der Auftragsbestand in der Luft- und Raumfahrtsparte betrug am 30. September 32,9 Milliarden Dollar
und war damit gegenüber dem 31. Dezember unverändert .

Transformer Der Auftragsbestand des Geschäftsbereichs Luft- und Raumfahrt belief sich zum 30. September unverän-
dert auf 32,9 Milliarden US-Dollar .

Keywords backlog, aerospace, division, was, $, 32.9, billion, as, September, 30, unchanged, from, December, 31

SKAM Der Auftragsbestand im Geschäftsbereich Luft- und Raumfahrt belief sich zum 30. September auf 32,9
Milliarden US-Dollar , unverändert zum 31. Dezember .

Source In addition , visitors will have the special opportunity to get to know the open air museum on a carriage
journey drawn by Black Forest Chestnut horses .

Reference Darüber hinaus haben die Besucher die besondere Gelegenheit , das Freilichtmuseum während einer
Kutschfahrt mit Schwarzwälder Füchsen kennenzulernen .

Transformer Auf einer Kutschenfahrt mit Schwarzwaldkutschenpferden lernen die Besucher das Freilichtmuseum
näher kennen .

Keywords addition, visitors, will, special, opportunity, get, know, open, air, museum, on, carriage, journey, drawn,
by, Black, Forest, Chestnut, horses

SKAM Darüber hinaus haben die Besucher die besondere Gelegenheit , das Freilichtmuseum auf einer
Kutschenfahrt von Schwarzwald-Kastanienpferden kennen zu lernen .

Source Following the renovation , plastering and planting of trees in the old internal school yard , within the
two wings of the 1912 school , as a subsequent measure the boundary wall , which is in need of
refurbishment , must be renovated from the ground up within the foreseeable future .

Reference Nach der Sanierung , Pflasterung und Baumbepflanzung des alten Schulinnenhofes innerhalb der beiden
Seitenflügel der 1912 erbauten Schule muss in absehbarer Zeit als Folgemaßnahme , die sanierungs-
bedürftige Begrenzungsmauer von Grund auf saniert und auf neuen Unterbau gestellt werden .

Transformer Nach der Renovierung , Verputzung und Bepflanzung des alten Schulhofs in den zwei Flügeln der Schule
von 1912 muss die sanierungsbedürftige Grenzmauer in absehbarer Zeit von Grund auf erneuert werden .

Keywords Following, renovation, plastering, planting, trees, old, internal, school, yard, within, two, wings, 1912,
school, as, subsequent, measure, boundary, wall, which, need, refurbishment, must, be, renovated,
from, ground, up, within, foreseeable, future

SKAM Nach der Renovierung , Verputzung und Anpflanzung von Bäumen im alten Schulhof , innerhalb der
beiden Flügel der Schule von 1912 , muss als Folgemaßnahme in absehbarer Zeit die renovierungs-
bedürftige Grenzmauer von Grund auf erneuert werden .

Table 6: Translation examples extracted from WMT 14 En→De task.“Keywords” denotes the words selected by our
Norm-based Significance Score. Same color across different sentences refers to the same aligned sentence piece.
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