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Abstract
‘Actions’ play a vital role in how humans inter-
act with the world. Thus, autonomous agents
that would assist us in everyday tasks also
require the capability to perform ‘Reasoning
about Actions & Change’ (RAC). This has been
an important research direction in Artificial In-
telligence (AI) in general, but the study of RAC
with visual and linguistic inputs is relatively re-
cent. The CLEVR_HYP (Sampat et al., 2021)
is one such testbed for hypothetical vision-
language reasoning with actions as the key fo-
cus. In this work, we propose a novel learning
strategy that can improve reasoning about the
effects of actions. We implement an encoder-
decoder architecture to learn the representation
of actions as vectors. We combine the afore-
mentioned encoder-decoder architecture with
existing modality parsers and a scene graph
question answering model to evaluate our pro-
posed system on the CLEVR_HYP dataset. We
conduct thorough experiments to demonstrate
the effectiveness of our proposed approach and
discuss its advantages over previous baselines
in terms of performance, data efficiency, and
generalization capability1.

1 Introduction

Humans interact with their environment to accom-
plish desired goals. Object manipulation (i.e., per-
forming “actions” over the objects) is a fundamen-
tal concept that makes this interaction possible. In
other words, actions in their simplest form have
the power to change the state of a world and hence
play a vital role in enabling humans to perform day-
to-day tasks. As we are developing autonomous
agents that can assist us in everyday tasks, they
would also require to interact with complex envi-
ronments. Hence, the development of autonomous
agents that can perform actions to effectively ma-
nipulate objects and understand corresponding ef-
fects is of great importance. As a result, Reasoning

1Dataset setup scripts and code for baselines are available
at https://github.com/shailaja183/ARL

about Action and Change (RAC) has been a long-
standing research problem, since the rise of AI.

The work of McCarthy et al. (1960) was the
earliest to emphasize the importance of reasoning
about actions. They developed an advice taker
system that can do deductive reasoning about sce-
narios such as “going to the airport from home”
requires “walking to the car” and “driving the car
to airport”. Since then, many real-life use cases
have been identified which require AI models to
understand interactions among the current states
of the world, actions being performed over various
objects, and most likely following states (Banerjee
et al., 2020). While RAC has been more popular
among knowledge representation and logic com-
munities, it has recently piqued the interest of re-
searchers in NLP and vision domains. A recent
survey by Sampat et al. (2022) compiled a compre-
hensive list of works that explore neural network’s
ability to reason about actions and changes, pro-
vided a dataset of linguistic and/or visual inputs.

In a recent tweet, Prof. Yann LeCunn also em-
phasized the importance of this research direc-
tion. He mentions that “while we progress towards
human-level AI, I believe we need to find new con-
cepts that would (i) allow machines to learn to
predict how one can influence the world through
taking actions, (ii) learn hierarchical representa-
tions that allow long-term predictions in abstract
spaces, (iii) enable agents to predict the effects of
sequences of actions so as to be able to reason &
plan - all of this in ways that are compatible with
gradient-based learning” (LeCun, 2022).

In this work, we aim to better tackle the hypothet-
ical action reasoning task of CLEVR_HYP dataset
(Sampat et al., 2021). An example from this dataset
is shown in Figure 1). The key objective is to un-
derstand changes caused over a visual scene by an
action described in the natural language and answer
a reasoning question. In Figure 2, we describe two
possible action-effect learning strategies (LS1 and
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Figure 1: Revisiting CLEVR_HYP task (Sampat et al.,
2021): Answer a reasoning question (QH ) about
changes caused over the given image (I) by performing
a hypothetical action (TA).

Figure 2: Two possible ways (LS1 and LS2) to learn
action-effect dynamics in a supervised learning setting.
In this paper, we implement LS2 which demonstrates
improvements over LS1. Blue box denotes vector repre-
sentation.

LS2) through a toy example to convey our intu-
ition behind this work. LS1 uses visual features
(i.e. features from the image of an apple) and a rep-
resentation of actions (i.e. text “rotten”) through
sentence embeddings to imagine the effects (i.e.
how a rotten apple would look like). This can be
an intuitive choice to model the CLEVR_HYP task
using pre-trained vision-language models.

In our hypothesis, LS1 does not improve the
model’s understanding of what effects the actions
will produce. Thus, we propose an alternative strat-
egy, LS22. Specifically, we let the model observe
the difference between pairs of states before and
after the action is performed (i.e. decayed por-
tion of the apple that distinguishes a good apple
from the rotten one), then associate those visual
differences with the corresponding linguistic ac-
tion descriptions (i.e. text “rotten”). LS2 is likely
to better capture action-effect dynamics, as action
representations are learned explicitly.

To empirically test the above hypothesis, we de-
velop a model (which is described in Section 3) and
evaluate it on the CLEVR_HYP dataset. We hope
that our exciting results would enable the develop-
ment of AI agents that can better collaborate with
humans in the physical world and encourage further
investigations in this research area. In summary,
our key contributions are as follows;
• We propose a novel learning strategy for predict-

ing the “effects of actions” in the vision-language
domain (shown in Figure 2).

• We develop a 3-stage model to implement the pro-
posed learning strategy and evaluate on the exist-

2Figure 2 is meant to convey our intuition behind the pro-
posed model in this work at a very high level. Figure 5 is more
complex in comparison and accurately describes the working
of our model, considering the format of CLEVR_HYP dataset,
decomposing the task into various neural components, and
measuring them using appropriate loss functions.

ing CLEVR_HYP (Sampat et al., 2021) dataset.
• Through ablations and analysis, we demonstrate

the effectiveness of our model in terms of per-
formance (5.9% accuracy improvements), data
efficiency (one-third of training data required),
and better generalization capability in compari-
son with the best existing baselines.

2 CLEVR_HYP

In this section, we briefly summarize important as-
pects of the CLEVR_HYP dataset (Sampat et al.,
2021) and related terminologies used in the subse-
quent sections.

2.1 Problem Formulation

The task aims at understanding changes caused
over an image by performing an action described
in natural language and then answering a reasoning
question over the resulting scene. Consult Figure 1
for better understanding of the following;

• Inputs:
1. Image (I)- Visual scene with rendered objects
2. Action Text (TA)- Textual modality describ-

ing action(s) to be performed over I
3. Hypothetical Question (QH )- Textual ques-

tion that will assess the system’s capability to
understand changes caused by TA on I

• Output: Answer (A) for the given QH

• Answer Vocabulary: [0-9, yes, no, cylinder,
sphere, cube, small, big, metal, rubber, red, green,
gray, blue, brown, yellow, purple, cyan]

• Evaluation: 27-class Answer Classification / Ac-
curacy (%)

2.2 Dataset Details and Partitions

The CLEVR_HYP dataset assumes to have a closed
set of object attributes, action types, and question
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Object Attributes in Visual Scenes Action Text Types Question Reasoning Types

1. Shape: cylinder, sphere or cube 1. Add new objects to the scene 1. Counting objects fulfilling the condition
2. Size: small or big 2. Remove objects from the scene 2. Verify existence of certain objects
3. Material: metal or rubber 3. Change attribute of the objects 3. Query attribute of a particular object
4. Spatial: left, right, front, behind or on 4. Move objects in or out of plane 4. Compare attributes of two objects
5. Color: red, green, gray, blue,

brown, yellow, purple or cyan
5. Integer comparison of two object sets

(same, larger or smaller)

Table 1: Summary of object attributes, actions, and reasoning types in CLEVR_HYP dataset (Sampat et al., 2021)

reasoning types which are summarized in Table 1.
The dataset is divided into the following partitions;
• Train (67.5k) / Val (13.5k) sets have <I, TA, QH ,

A> tuples along with the scene graphs as a vi-
sual oracle and functional programs3 as a textual
oracle.

• Test sets consist of only <I, TA, QH , A> tuples,
and no oracle annotations are available. There
are three different test sets,
1. Ordinary test (13.5k) consists of examples

with the same difficulty as train/val
2. 2HopTA test (1.5k) consists of examples

where two actions are performed ex. ‘Move a
purple object on a red cube then paint it cyan.’

3. 2HopQH test (1.5k) consists of examples
where two reasoning types are combined ex.
‘How many objects are either red or cylinder?’

2.3 Baseline Models

Following is a brief description of two top-
performing baselines reported in Sampat et al.
(2021), to which we will compare the results of
our proposed approach in this paper.

• (TIE) Text-conditioned Image Editing: Text-
adaptive encoder-decoder with residual gating
(Vo et al., 2019) is used to generate new im-
age conditioned on the action. Then, new im-
age along with the question is fed into LXMERT
(Tan and Bansal, 2019) (which is a pre-trained
vision-language transformer), to generate an an-
swer. The model can be visualized in Figure 3.

Figure 3: Architecture of TIE baseline

3Originally introduced in CLEVR (Johnson et al., 2017).
For example, a question ‘How many red metal things
are there?’ can be represented as a functional program
‘count(filter_color(filter_material(scene(),metal),red))’

• (SGU) Scene Graph Update: In this model, un-
derstanding changes caused by an action text is
considered as a graph-editing problem. First, an
image is converted into a scene graph and ac-
tion text is converted into a functional program
(FP). Sampat et al. (2021) developed a module in-
spired by Chen et al. (2020) that can generate an
updated scene graph based on the original scene
graph and a functional program of an action text.
It is followed by a neural-symbolic VQA model
(Yi et al., 2018) that can generate an answer to
the question provided the updated scene graph.
The model can be visualized in Figure 4.

Figure 4: Architecture of SGU baseline

There are important distinctions between base-
lines developed by Sampat et al. (2021) and our
proposed method. Both the above baselines rely on
pre-learned word representation of actions- either
by a word-vector algorithm or a learned functional
program and use that to conditionally update the
visual scene (at pixel level or through graph opera-
tions). Thus, TIE and SGU resembles more to LS1
in Figure 2. Note that in SGU baseline, individual
functions (in their functional program representa-
tions) are human authored i.e. what kind of inputs
it accepts and what it will return when executed.
For example, ‘remove <attribute>’ function will
take a set of objects as input and return a subset of
objects which do not have <attribute>.

In contrast, we learn action representations
through two-step process. First, we learn to predict
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Figure 5: Detailed visualization of our proposed 3-stage Action Representation Learner (ARL) model: (left) training
phase (right) testing phase (bottom) terms and notations used. Best viewed in color.

changes in a pair of scene-graphs (before and after
the action is performed). And second, we minimize
the loss between changes in the scene with the rep-
resentation of linguistic action descriptions. Thus,
our proposed model resembles more to LS2 in Fig-
ure 2. Our method is purely based on data and does
not require any human intervention. Also, note that
oracle scene graphs post-actions are not available
at the test-time. By enforcing two-way representa-
tion learning, we are able to predict changes in the
scene graph using and action vector from linguistic
action description for a given test instance.

3 Proposed Model: Action
Representation Learner (ARL)

In this section, we describe the architecture of our
proposed model Action Representation Learner
(ARL).

In our point of view, the most critical component
of a model that attempts to solve CLEVR_HYP
is the one where mapping between visual changes
and actions are learned. In Figure 2, we graphically
demonstrated our intuition behind how we can do
so. Our hypothesis is that a model can learn bet-
ter action representations by observing difference
between a pair of states (before and after the ac-
tion is performed) and then associate those visual
differences with given linguistic description of ac-
tions. In this regard, we attempt to create a 3-stage
model shown in Figure 5, which we believe would
better capture the causal structure of this task. De-
tailed description of each individual component is
provided below and can be visualized in Figure 6.

Figure 6: Internal details of the components used in
ARL model. Red denotes entities predicted, Blue de-
notes entities utilized from the dataset.

3.1 Stage-1

Actions have the power to change the state of the
world. In other words, difference between a pair of
states can be considered as a function of performing
actions. For example, consider two states ‘green
cube’ and ‘red cube’. The change between above
states is ‘green→red’, which is a function of action
‘paint’ or ‘change color’. Conversely, if one is
provided with a state ‘green cube’ and knowing
that the ‘paint red’ action is performed, then one
can visualize that the next state would be ‘red cube’.
We aim to capture such relationship between state
changes and actions in this stage.

Specifically, we setup an encoder-decoder model
to achieve this objective. Since our objective is to
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learn action and effects, we refer to them as ‘Action
Encoder’ and ‘Effect Decoder’. As described in
Section 2.2, the training set of CLEVR_HYP pro-
vides oracle annotations for an initial scene graph
S (using which the image is rendered) and a scene
graph after executing the action text S′. We take
a random subset of 20k4 scene graph pairs from
CLEVR_HYP training set that are balanced by ac-
tion types (add, remove, change, move) to train this
encoder-decoder.

We capture the difference between states S and
S′ i.e. AS,S′ using the encoder. At the test time, we
do not have the updated scene graph S′ available.
To address this issue, the encoder is followed by a
decoder, which can reconstruct S′ provided S and
the learned scene difference AS,S′ in the encoder
network. Formally,

AS,S′ = ActionEncoder(S, S′) (1)

S′ = EffectDecoder(S,AS,S′) (2)

Where (S, S′) ∈ CLEVR_HYP training set, red
denotes entities predicted, blue denotes entities
utilized from the dataset. We jointly train action
encoder-effect decoder networks with the following
objective;

argmaxΘActionEncoderΘEffectDecoder

[logP (S′| S, ActionEncoder(S, S′))] (3)

Note that, in common applications involving
encoder-decoder architecture, the decoder part of
the model is removed once the desired performance
is achieved and the encoder is used to encode input
sequences to a fixed-length vector at test-time. Con-
trary, here we discard the encoder part and keep the
decoder part to obtain updated scene representation
from the initial scene and learned action vector.

3.2 Stage-2
As explained in stage-1, we do not have the S′ at the
test time and we cannot compute AS,S′ . However,
provided that changes in the scene are a function
of the action, we can approximate Arep Arep is a
vector representation corresponding to natural lan-
guage action. A network is trained which can con-
vert ‘Natural language to Action Representation’
with the help of encoder-decoder network trained

4We experiment with different data sizes and discuss re-
sults in Section 4.3, but obtain the optimal results for 20k
samples when action vector length is 125

in Stage-1 that maximizes the log probability that
outputs the correct state S′ as below.

argmaxΘNL2ActionRep

[logP (S′| S, NL2ActionRep(TA))] (4)

At the core, lies LSTM encoder, which precedes
by an embedding layer and followed by dense lay-
ers. During model training, in addition to finding
the values for the weights of the LSTM and dense
layers, the word embeddings for each word in the
training set are computed. This is achieved using
nn.Embedding(vocabulary_size, embedding_size)
layer defined in pytorch. This way, a fixed length
one-hot vector of given length is generated for each
word in the vocabulary depending on the position
of the word in context and updated using back-
propagation. Embedding layer is similar to a linear
layer, which returns the index where one is located
instead of returning the whole one-hot vector. It
takes an action text TA as a sequence of learned
word embeddings, runs an LSTM over them, then
projects from the final cell state to get the output
Arep. The LSTM has a hidden layer of size 200.

3.3 Stage-3
For each image, we use Mask R-CNN (He et al.,
2017) to generate segment proposals of all objects.
Along with the segmentation mask, the network
also classifies the objects based on their visual
attributes- color, material, size, and shape. The
threshold for segment proposals is set to 0.9 i.e.
segments with bounding-box score less than 0.9
are dropped. The segment for each single object,
paired with the original image (resized to 224x224)
is sent to ResNet-34 (He et al., 2016) to extract
3D coordinates of objects in the scene. Inclusion
of original full image is observed to enhance the
performance by incorporating contextual informa-
tion. Note that scene-parsing is pre-trained and not
fine-tuned with rest of the network.

4 Results and Analysis

In this section, we discuss the performance of our
model quantitatively and qualitatively. Addition-
ally, we discuss our findings from three ablations
for our model.

4.1 Quantitative Results
Once we complete the aforementioned 3-stage
training process, we leverage a couple of existing
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models along with the trained components to make
predictions on CLEVR_HYP (Sampat et al., 2021)
test data (as shown in the right part of the Figure
5). The CLEVR_HYP has three test sets- Ordinary,
2HopTA and 2HopQH . Refer to Section 2.2 for the
description of each test setting with examples.

Test performance on CLEVR_HYP
TIE SGU ARL

Ordinary 64.7 70.5 76.4
2HopAT 55.6 64.4 69.2
2HopQH 58.7 66.5 70.7

Table 2: Performance of two baselines (TIE, SGU) re-
ported in (Sampat et al., 2021) and our proposed model
(ARL) on three test sets of CLEVR_HYP

Accuracy(%) by Action Types

Validation TIE SGU ARL
Add 58.2 65.9 70.3
Remove 89.4 88.6 94.1
Change 88.7 91.2 95.8
Move 61.5 69.4 72.6

2HopTA TIE SGU ARL
Add + Remove 53.6 63.2 66.7
Add + Change 55.4 64.7 70.6
Add + Move 49.7 57.5 63.2
Remove + Change 82.1 85.5 91.6
Remove + Move 52.6 66.4 68.3
Change + Move 53.8 63.3 67.1

Table 3: Performance breakdown of models by different
action types in validation and 2HopTA test set

Accuracy(%) by Reasoning Types
Validation TIE SGU ARL

Count 60.2 74.3 78.6
Exist 69.6 72.6 77.3
CompareInteger 56.7 67.3 70.7
CompareAttribute 68.7 70.5 73.4
QueryAttribute 65.4 68.1 74.9

2HopQH TIE SGU ARL
And 59.2 67.1 70.3
Or 58.8 67.4 71.5
Not 58.1 65.0 68.4

Table 4: Performance breakdown of models by different
question types in validation and 2HopQH test set

The CLEVR_HYP dataset is formulated as a
classification task with exactly one correct answer.

Therefore, the exact match accuracy (%) metric
is used for evaluation. Table 2 demonstrates the
performance of our proposed model in compari-
son with the two best performing existing mod-
els TIE and SGU, described in Section 2.3. Our
proposed approach outperforms those baselines by
5.9%, 4.8% and 4.2% on Ordinary, 2HopTA Test
and 2HopQH Test respectively. This demonstrates
that our model not only achieves better overall ac-
curacy but also has improved generalization capa-
bility when multiple actions have to be performed
on the image or understand logical combinations
of attributes while performing reasoning.

In Table 3, we analyze the ability of models
to perform a particular action. For validation set,
the model is expected to perform one of the four
actions- add objects, remove objects, change in at-
tributes or move objects. Overall, we can observe
that our proposed method ARL achieves better fine-
grained accuracy for all action types compared to
existing models. All three models do quite well
on ‘remove’ and ‘change’ actions whereas struggle
when new objects are added or existing objects are
moved around. Yet, our model shows 4.4% and
3.2% improvements on ‘add’ and ‘move’ respec-
tively compared to the best previous baseline.

For 2HopTA test set, the model is expected to
perform two different actions (among add, remove,
change and move) one after the other. Our obser-
vation from the Validation results remains consis-
tent when multiple actions are combined. In other
words, models were able to achieve relatively high
accuracy for actions ‘remove’ and ‘change’, hence
their combination ‘remove+change’ also has high
model performance. Whereas other combinations
of actions accomplish relatively lower performance.
It leads to the conclusion that understanding the
effect of different actions is of varying complexity.
It also indicates that the learned action representa-
tions in our proposed model are helpful as it shows
better generalization by action types.

Though understanding changes caused by ac-
tions is the core challenge in CLEVR_HYP (Sam-
pat et al., 2021) task, it has a question answer-
ing downstream task. To answer questions in the
CLEVR_HYP dataset, models should be able to
perform counting, check the existence of objects
given the criteria, compare sets of objects, or re-
trieve attributes of the desired objects. We carry out
a similar analysis of models based on their capa-
bility to perform above-mentioned reasoning tasks.
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Figure 7: Correct scene graph predictions for the given (input image, action text) by our ARL model

The results are summarized in Table 4.
For validation set, our proposed method ARL

has better fine-grained accuracy across all reason-
ing types, but improvements on ‘query attribute’
and ‘exist’ types are maximum (6.8% and 4.7% re-
spectively). For the 2HopQH test set, the model is
expected to perform logical operations within a par-
ticular reasoning type. For example, ‘How many
objects are either red or cylinder?’ and ‘Are there
any rubber cubes that are not green?’. Though we
see some gains here as well, our overall pipeline is
limited by the capabilities of the question answer-
ing model of Yi et al. (2018) we use in stage-3.

4.2 Qualitative results

In Figure 7, we visually demonstrate scene graphs
predicted by our ARL model over a variety of ac-
tion texts. From examples 1-6, we can observe
that the model can correctly identify objects that
match the object attributes (color, size, shape, ma-
terial) provided in the action text. Examples 4 and
6 demonstrate that our system is consistent in pre-
dictions when we use synonyms of various words
(e.g. sphere∼ball, shiny∼metallic) in the dataset.
Finally, examples 7-9 show that our model does rea-
sonably well on other actions (add, change, move).

We further generate a t-SNE plot of action vec-
tors learned by our best proposed model, which
is shown in Figure 8. At a first glance, we can
say that the learned action representations formu-
late well-defined and separable clusters correspond-
ing to each action type. Clusters for add, re-
move and change actions are closer and somewhat
overlapping. We observed that many samples of

type ‘change’ is interpreted by the reasoner as ‘re-
move+add’ action. For example, if a color of ’small
blue metal sphere’ is changed to ’red’, the action
reasoner interprets it as removal of the ’small blue
metal sphere’ followed by an addition of a ’small
red metal sphere’ on the same location.

4.3 Ablations

Importance of stage-1 training Cause-effect
learning with respect to actions is a key focus in
CLEVR_HYP. In existing models, it is formulated
as a updated scene graph prediction task (i.e. given
an initial scene and an action, determine what the
resulting scene would look like after executing
the action). In our opinion, stage-1 plays a crit-
ical role in learning causal structure of the world.
To demonstrate this, we set up two experiments;
first, where training takes place in a sequential man-
ner (stage-1 followed by stage-2), where trained
encoder-decoders from stage-1 are frozen and uti-
lized in stage-2. Second experiment, where there is
no separate stage-1 training and encoder-decoder
in stage-2 are randomly initialized.

The results are summarized in Table 5. We can
observe that inclusion of stage-1 training improves
the accuracy of scene graph prediction by ∼30%
compared to the stage(2 only) model. To evalu-
ate question answering task of CLEVR_HYP, both
setups are followed by stage-3 where the image
parser and scene-graph question answering mod-
ules are combined to predict the answer. It is known
that (Yi et al., 2018) has near-perfect performance
on the scene graph question answering task over
CLEVR (Johnson et al., 2017). As a result, the
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Figure 8: The t-SNE plot of learned action vectors Figure 9: Performance of our model with varying
(top) data size and (bottom) action vector lengths

gains achieved in the scene graph task directly ben-
efit the question answering performance without
much of a loss. In other words, there are only 0.2%
instances where the scene prediction is correct but
the final answer is incorrect.

Performance with different lengths of learned
action vector in stage-1 In this ablation, the goal
is to find out optimal length of action vectors that
can reasonably simulate the effects of the actions.
We experiment with different lengths of learned
action vector- from 25 to 200 in increment of 25.
Figure 9 (bottom) shows the effect of training with
diverse action vector lengths on scene graph up-
date and downstream question answering task. The
model learns better initially when the vector length
is increased, however performance reaches at peak
for the action vector length of 125.

Task Experiment Accuracy (%)

Scene Graph
Update

Stage(2 only) 56.3
Stage(1+2) 87.2

Question
Answering

Stage(2+3 only) 45.7
Stage(1+2+3) 76.4

Table 5: Performance of our model in the absence and
presence of stage-1 over ordinary test set

5 Related Works

In this section, we discuss existing research efforts
that align with our work in this paper. Specifically,
we elaborate on tasks involving learning action rep-
resentations, counterfactual reasoning, and what-if
question answering datasets.

Tasks involving learning representation of ac-
tions: Better representation learning is key to suc-
cess in all kinds of artificial intelligence problems
(Banerjee et al., 2021; Gan et al., 2020; Chen et al.,
2021; Lee et al., 2018b,a). Learning a mapping
from the goal (provided in natural language) to a
sequence of actions to be performed in a visual en-
vironment is a common task in robotics (Kanu et al.,
2020; Shridhar et al., 2020). Specifically, human-
in-the-loop methods for training robots to perform
various actions involve learning a mapping between
verbal commands and low-level motor controls of
a robot (Stepputtis et al., 2020). Another relevant
task is vision-and-language navigation (Anderson
et al., 2018; Chen et al., 2019; Nguyen et al., 2019),
where an agent navigates in a visual environment to
find the goal location by following natural language
instructions. Navigation tasks focus on selecting
the right actions to achieve desired goals provided
a visual environment and natural language instruc-
tions. Our focus in this paper is to develop models
that can implicitly reason about the effect of actions
rather than determining which action to perform.
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Counterfactual vision-language reasoning:
Counterfactual reasoning is termed as an ability to
develop mental representations to generate alter-
nate consequences about an event that happened in
the past based on given criteria. Inspired by this
human ability, there have been efforts to utilize this
concept to improve many aspects of language and
vision-language research; Kusner et al. (2017) and
Garg et al. (2019) proposed methods to measure
counterfactual fairness of models. A few recent
works incorporated counterfactual augmentation
of training sets (Zmigrod et al., 2019; Fu et al.,
2020b) to improve the robustness of models and
discourage biases. Contrary to that, the work of Fu
et al. (2020a) was the first to utilize counterfactual
instructions in training (ex. multiple questions
asked to the same image set) to deal with the data
scarcity issue and improve the generalization.

What-if question answering datasets: WIQA
(Tandon et al., 2019) is a testbed for what-if rea-
soning over natural language contexts. Provided
a procedural paragraph, the task is to answer the
question “Does change in X result in change in Y?”
(where X and Y are two events from the paragraph)
as a 3-way choice- correct, opposite, or no effect.
In the vision-language domain, TIWIQ (Wagner
et al., 2018) was among the earliest works. Given
a synthetically rendered table-top scene, the task is
to generate a textual response to the what-if ques-
tion when an action (push, rotate, remove or drop)
is performed on an object. However, the evalua-
tion of open-ended text generation is challenging.
To fill in this gap, Sampat et al. (2021) created
CLEVR_HYP dataset. It shares similarities with
TIWIQ for having rendered images, limited action
types, and QA as a task. However, the key differ-
ence is that in CLEVR_HYP, an action can cause
changes to multiple objects in the scene, which is
not the case with TIWIQ.

6 Conclusion

In the vision and language domain, several tasks
are proposed that require an understanding of the
causal structure of the world. In this work, we pro-
pose an effective way of learning action representa-
tions and implement a 3-stage model for the what-if
vision-language reasoning task CLEVR_HYP. We
provide insights on the learned action representa-
tions and validate the effectiveness of our proposed
method through ablations. Finally, we demonstrate
that our proposed method outperforms existing

baselines while being data-efficient and showing
some degree of generalization capability. By ex-
tending our approach to a larger set of actions, we
aim to develop AI agents which are equipped with
action-effect reasoning capability and can better
collaborate with humans in the physical world.

Limitations

In the CLEVR_HYP dataset, all actions are con-
sidered to be independent of each other and execu-
tion of actions is always guaranteed. However, we
found few instances in the CLEVR_HYP dataset
where two different actions taken over an initial
scene leads to the same resulting effects. Our pro-
posed 3-stage model has higher error rates and low
confidence for such samples. Further, in real world
situations, actions can have inter-dependencies on
world conditions or have other properties such as
order-sensitivity, symmetry with respect to other
actions, reversibility etc. Exploring hypothetical
reasoning problems from aforementioned aspects
is still an open research direction.

Computing Infrastructure

All experiments are done over Tesla V100-PCIE-
16GB GPU. Total time for all experiments (includ-
ing parameter search for best model) utilized ap-
proximately 70 GPU hours.

Ethical Considerations

In this paper, our experiments are limited to pub-
licly available CLEVR_HYP dataset that is synthet-
ically generated through controlled environment.
Thus, there are no ethical violations or known bias
issues, to our best knowledge.
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