
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 471 - 485
December 7-11, 2022 ©2022 Association for Computational Linguistics

LEMON: Language-Based Environment Manipulation via
Execution-Guided Pre-training

Qi Shi†∗ , Qian Liu♢∗, Bei Chen§, Yu Zhang†, Ting Liu†, Jian-Guang Lou§

†Research Center for Social Computing and Information Retrieval,
Harbin Institute of Technology, Harbin, China

♢Beihang University, Beijing, China; §Microsoft Research Asia, Beijing, China
{qshi, zhangyu, tliu}@ir.hit.edu.cn

qian.liu@buaa.edu.cn; {beichen, jlou}@microsoft.com

Abstract

Language-based environment manipulation re-
quires agents to manipulate the environment
following natural language instructions, which
is challenging due to the huge space of the
environments. To address this challenge, vari-
ous approaches have been proposed in recent
work. Although these approaches work well
for their intended environments, they are diffi-
cult to generalize across environments. In this
work, we propose LEMON, a general frame-
work for language-based environment manip-
ulation tasks. Specifically, we first specify a
task-agnostic approach for language-based en-
vironment manipulation tasks, which can deal
with various environments using the same gen-
erative language model. Then we propose an
execution-guided pre-training strategy to inject
prior knowledge of environments to the lan-
guage model with a pure synthetic pre-training
corpus. Experimental results on tasks including
ALCHEMY, SCENE, TANGRAMS, PROPARA
and RECIPES demonstrate the effectiveness of
LEMON: it achieves new state-of-the-art re-
sults on four of the tasks, and the execution-
guided pre-training strategy brings remarkable
improvements on all experimental tasks1.

1 Introduction

Building agents that can understand human lan-
guage and accordingly manipulate the environment
around them has been a long-standing goal of arti-
ficial intelligence (Winograd, 1971). Various tasks
focus on this scene, including collaborative build-
ing (Narayan-Chen et al., 2019), state tracking
(Dalvi et al., 2018; Tandon et al., 2020) and instruc-
tion following (Andreas and Klein, 2015; Long
et al., 2016; Suhr et al., 2019). What these tasks
have in common is that the agents are required to
manipulate the environment based on the natural

∗Work done during internship at Microsoft Research Asia.
1Our code is available at: https://github.com/

microsoft/ContextualSP

Natural Language Instruction

Throw out first beaker. Pour sixth beaker into

last one. It turns brown. Pour purple beaker into

yellow one. Throw out two units of brown one.

Program

POUR (BEAKER (1), BEAKER (2, g));

DRAIN (BEAKER (3),
1

3
);

MIX (BEAKER (3))

Environment (Initial State)

Pre-training Fine-tuning

Environment (Goal State)

Environment (Initial State)

Environment (Goal State)

Figure 1: The schematic illustration of the pre-training
(left) and fine-tuning (right) procedure of LEMON. The
environment is from ALCHEMY (Long et al., 2016). In
the pre-training stage, the input of LEMON includes an
initial environment state and a program, and the goal
environment state is served as the supervision. The fine-
tuning stage is similar to the pre-training stage, except
that the program in the model input is replaced by the
natural language instruction.

language. To seize the commonality of existing
tasks, we define such tasks as language-based en-
vironment manipulation (LEM) tasks. Generally,
these tasks are challenging due to the large explo-
ration space of the environment itself and the com-
plexity of human-agent interactions. For example,
in the environment shown in Figure 1, the agent
needs to manipulate seven beakers with various
colored liquids correctly according to the long in-
struction.

To address these challenges, recent work have
proposed various specialized models to deal with
different environments (Suhr and Artzi, 2018;
Dalvi et al., 2018; Gupta and Durrett, 2019b; Tang
et al., 2020). Although these models work well,
they are difficult to generalize across environments
since they contain environment-specific modules.
For example, Suhr and Artzi (2018) design differ-
ent encoder modules for different environments.

Different from previous work focusing on spe-
cialized models, we argue that with formulating

471

https://github.com/microsoft/ContextualSP
https://github.com/microsoft/ContextualSP

LEM tasks as sequence generation problems, the
family of generative language models (GLMs),
such as BART (Lewis et al., 2020), can be an
environment-generic agent for various environ-
ments. Taking advantage of GLMs, such a task-
agnostic solution greatly reduces the difficulty of
modeling different environments. However, GLMs
generally lack prior knowledge of downstream en-
vironments since they have not seen even similar
ones during pre-training. To unleash the power
of GLMs in downstream environments, we argue
that GLMs should be continually pre-trained to un-
derstand these environments, and the pre-training
should engage GLMs to explore as much of the en-
vironment space as possible. We believe if GLMs
can understand the environment well, they will
more easily manipulate the environment with re-
spect to human language.

Inspired by the above, in this paper, we pro-
pose LEMON (for Language-based Environment
Manipulation via Execution-guided Pre-training),
a general framework for LEM tasks. As shown
in Figure 1, LEMON consists of two parts: 1) A
task-agnostic approach that uses the same proto-
col to tackle different LEM tasks (right). 2) An
execution-guided pre-training strategy, which in-
jects prior knowledge about environments into the
GLM (left). For the first part, we employ the popu-
lar BART (Lewis et al., 2020) as the model back-
bone, and take five representative tasks ALCHEMY,
SCENE, TANGRAMS (Long et al., 2016), PROPARA

(Dalvi et al., 2018) and RECIPES (Bosselut et al.,
2018) as the testbed. For the pre-training part, it
is to engage our model to explore the environment
space. Considering that the environment space
mainly consists of the state space (i.e., valid envi-
ronment states) and the action space (i.e., possible
actions to manipulate the environment), we sug-
gest pre-training the model via synthesizing data
involving these two spaces. Specifically, given an
environment, we begin with randomly sampling its
relevant initial states and programs 2. With feeding
the random initial state and the random program as
input for LEMON, we leverage the goal state after
executing the program as supervision for LEMON.
Since the program execution is easy to carry out
in symbolic environments 3, our execution-guided
pre-training is suitable for various symbolic envi-

2A program consists of a sequence of functions, of which
each function is an action or a composition of actions.

3Symbolic environments stand for the environments that
can be represented by semantic symbols.

ronments. Meanwhile, since the random initial
states and the programs can be sampled system-
atically, we can readily obtain a large-scale high-
quality pre-training corpus without human labeling
or data cleaning. To the best of our knowledge,
LEMON is the first work to explore pre-training
in language-based environment manipulation. In
summary, the main contributions of our framework
LEMON are three-fold:

• We suggest a task-agnostic approach that can
be tailored to various environments. By for-
mulating LEM tasks as sequence generation
problems, our approach leverages one archi-
tecture to tackle them.

• We propose a novel execution-guided pre-
training strategy, which can inject prior knowl-
edge of environments by continually pre-
training with only synthetic data.

• Experimental results on five tasks demonstrate
that our task-agnostic approach is compara-
ble or prior to previous systems, and our pre-
training strategy further improves the perfor-
mance by a significant margin (e.g., +4.1% on
ALCHEMY). Finally, our approach achieves
new state-of-the-art results on ALCHEMY,
SCENE, PROPARA, and RECIPES.

2 LEMON Framework

We now discuss the LEMON framework (Figure 1)
in more detail. Specifically, we introduce the task-
agnostic approach for language-based environment
manipulation (§2.1) and the execution-guided pre-
training (§2.2). As for LEMON instantiations for
different tasks, we leave the descriptions to §3.

2.1 Task-Agnostic Approach for LEM

As mentioned in §1, the existence of environment-
specific modules makes previous models difficult
to generalize across environments. To eliminate
this issue, we propose a task-agnostic approach to
tackle different environments.

Task Formulation An environment space con-
sists of a state space and an action space. And
a state can be further decomposed into a set of
entities (e.g., beakers in ALCHEMY) and proper-
ties (e.g., colors in ALCHEMY). Generally, the
goal of LEM tasks is to manipulate the environ-
ment state with natural language. Formally, given

472

water light carbon water light carbon

Random ProgramRandom Environment (Initial State)

DRAIN(BEAKER(1, r), 1) ; ⋯

MOVE(water, soil, leaf) ; ⋯

ALCHEMY

SCENE

TANGRAMS

PROPARA

Executed Environment (Goal State)

PERSON(1, p) ; ⋯

REMOVE(5) ; ⋯

RECIPES
beef apple buffer beef apple buffer

MOVE(beef, oven, blender) ; ⋯

Figure 2: The illustration of the pre-training procedure of LEMON framework on five tasks including ALCHEMY,
SCENE, TANGRAMS, PROPARA and RECIPES.

an initial environment state S0, the goal of LEM
tasks is to predict the goal environment state S
based on the human language instruction I . In
most cases, the LEM task is performed in an inter-
active manner, and there would be a sequence of
context-dependent instructions. Again, given an ini-
tial environment state S0 and a sequence of natural
language instructions I = (I1, I2, ..., IT), where T
stands for the total number of instructions in one
conversation, the goal turns to predict the goal envi-
ronment states at each step as S = (S1, S2, ..., ST).
In the following, we use the conversational formu-
lation to illustrate.

Model Architecture With formulating LEM
tasks as sequence generation problems, we lever-
age BART (Lewis et al., 2020), a powerful encoder-
decoder language model, to generate the goal en-
vironment state token-by-token. Formally, at t-th
step, the input to our model consists of three parts,
namely the initial environment state S0, the history
(I1, I2, ..., It−1) and the current instruction It. Fol-
lowing previous work (Liu et al., 2020), we directly
concatenate the history and the current instruction
to form It = (I1, I2, ..., It), which contains all his-
torical instructions. The final input to our model is
the concatenation of S0 and It with a [SEP] token
as a separator between them. The output is the
corresponding goal environment state St.

2.2 Execution-Guided Pre-training

We propose an execution-guided pre-training strat-
egy to explore the environment space as much as
possible through synthetic data. In the following,

we will introduce the pre-training task and the pre-
training corpus generation procedure in turn.

Pre-training Task As described in §1, to encour-
age the model to understand and explore the envi-
ronment, LEMON adopts the program execution
as the pre-training task. Formally, given a ran-
domly sampled initial environment state S0 and a
randomly sampled program A, the model is pre-
trained to predict the goal environment state S,
as shown in Figure 2. Such a pre-training task
fulfills our expectations of both environment ex-
ploration and environment understanding, which
can be explained from two aspects. From the in-
put perspective, such a task involves all essential
elements of an environment (i.e., state and action).
Together with large-scale random sampling, it al-
lows the model to fully explore the environment
space. From the output perspective, such a task
is challenging – the model must understand the
environment to predict S correctly. Meanwhile,
the program execution as a pre-training task is
highly flexible. As shown in Figure 2, it works
well for five different tasks. In the implementation
of pre-training, we first concatenate S0 and A us-
ing the same [SEP] token as a separator and then
feed the concatenated sequence into LEMON. The
pre-training supervision, i.e., the goal environment
state S, is obtained from a task-dependent executor.
In LEM tasks, the executor is designed to interpret
each task-dependent program and change the cur-
rent environment state to another state accordingly.
In practice, the executor can be easily implemented
since the environments are symbolic.

473

⟨state⟩ → ⟨action⟩; ⟨state⟩ | ⟨action⟩
⟨action⟩ → ⟨mix⟩ | ⟨pour⟩ | ⟨drain⟩
⟨mix⟩ → MIX (⟨beaker⟩)
⟨pour⟩ → POUR (⟨beaker⟩, ⟨beaker⟩)
⟨drain⟩ → DRAIN (⟨beaker⟩, ⟨integer⟩) |

DRAIN (⟨beaker⟩, ⟨fraction⟩)
⟨beaker⟩ → BEAKER (⟨index⟩) |

BEAKER (⟨index⟩, ⟨color⟩)
⟨index⟩ → 1 | 2 | · · · | 7 | −1 | −2 | · · · | −7
⟨color⟩ → r | g | o | p | y | b

⟨integer⟩ → 1 | 2 | 3 | 4
⟨fraction⟩ → 1

2
| 1
3

| 1
4

| 2
3

| 2
4

| 3
4

Table 1: Grammar rules of the program used in
ALCHEMY. The grammar rules of other domains and
the descriptions can be found in Appendix A.

Pre-training Corpus Generation Unlike most
pre-training work that employs web crawling to
collect pre-training corpus, we synthesize the pre-
training corpus directly by randomly sampling the
environment states and programs. Compared to hu-
man language, high-quality environment states and
programs are easier to sample since they are highly
structured. As introduced above, each pre-training
example contains a sampled initial environment
state, a sampled executable program, and a goal
environment state obtained from the executor. One
by one, the pre-training corpus can be generated
by repeating the sampling process. Concretely, for
the initial environment state sampling, it can be
achieved by randomly selecting a valid value for
each property defined in the corresponding envi-
ronment. As for the program sampling, a valid
program can be generated by randomly selecting a
valid function and then randomly sampling from all
suitable parameters of the selected function. The
valid values for each property and function will be
discussed later.

3 LEMON Instantiations

To demonstrate the capabilities of LEMON, we ap-
ply our framework on five exemplary tasks, namely,
ALCHEMY, SCENE, TANGRAMS, PROPARA, and
RECIPES. Examples of each task are shown in
Figure 2, including visualizations of the initial en-
vironment state and the goal environment state, as
well as a schematic representation of the program.
In this section, for each task, we elaborate the defi-
nition of the environment and the applied program
to instantiate LEMON.

3.1 ALCHEMY

Environment State Definition The environment
state in ALCHEMY contains seven beakers, each

containing up to four units of colored chemi-
cals. Each environment state contains three prop-
erties, including beaker IDs (from 1 to 7), liq-
uid colors (brown, green, orange, purple, red,
and yellow), and liquid amounts (from 0 to 4).
Figure 2 shows an example, and the example
initial environment state can be represented as
1:r|2:o|3:r|4:g|5:y|6:oo|7:r in text, where
different letters represent different colors. Note
that if a beaker does not contain any liquid, it can
be represented by _. And | stands for the delimiter
that splits the state of each beaker, which is also
applicable for the following tasks.

Program Definition The action space of
ALCHEMY contains three kinds of actions to
manipulate the environment, namely, POUR,
DRAIN and MIX. We use the program proposed
by Guu et al. (2017), where the functions are the
same as the actions defined in the environment.
The detail program grammar is shown in Table 1.

3.2 SCENE

Environment State Definition The environment
state in SCENE contains ten positions, with up
to one person in each position. A person is de-
fined by a shirt color and optionally a hat color.
Formally, each environment state contains three
properties, including position IDs (from 1 to 10),
shirt colors (brown, green, orange, purple, red,
and yellow), and hat colors (the same as shirt
colors). As shown in Figure 2, the example
initial environment state can be represented as
1:__|2:bp|3:__|4:oy|5:__ (only five positions
are shown in Figure 2 for brevity) in text, where the
first character in each position represents the shirt
color and the second one represents the hat color.
_ indicates either an empty position or a person
without a hat. Note that the hat can only appear
when the position is occupied.

Program Definition Four actions are defined in
the SCENE environment to manipulate the environ-
ment, namely, ENTER, LEAVE, MOVE and TRADE-
HATS. For the program, we use the one proposed
by Suhr and Artzi (2018). The functions include
PERSON, HAT, RMPERSON and RMHAT, which
represent inserting / removing a person / hat in the
state. The permutations of the defined functions in
the program are sufficient to represent all actions
defined in the environment.

474

Models ALCHEMY SCENE TANGRAMS

Inst 3utts 5utts Inst 3utts 5utts Inst 3utts 5utts

Fully Supervised Approaches
(Fried et al., 2018) – – 72.0 – – 72.7 – – 69.6
(Huang et al., 2019) – – 76.4 – – 74.5 – – 72.3
(Yeh and Chen, 2019) – – 76.1 – – 75.1 – – 72.5

Weakly Supervised Approaches
(Long et al., 2016) – 56.8 52.3 – 23.2 14.7 – 64.9 27.6
(Guu et al., 2017) – 66.9 52.9 – 64.8 46.2 – 65.8 37.1
(Suhr and Artzi, 2018) w. REINFORCE 89.1 74.2 62.7 87.1 73.9 62.0 86.6 80.8 62.4
(Suhr and Artzi, 2018) w. HEURISTIC 89.4 73.3 62.3 88.8 78.9 66.4 86.6 81.4 60.1

LEMON 97.1 85.3 75.4 92.7 85.8 72.3 92.3 82.4 60.0
w.o. pre-training 96.9 84.0 71.3 91.6 83.1 68.9 92.8 83.4 56.7

Table 2: Experimental results on the test set of ALCHEMY, SCENE and TANGRAMS. Fully supervised approaches
(in grey background) are the approaches that use annotated programs as labels, while weakly supervised approaches
are the approaches that no golden program is provided. Although the comparisons are not fair, we report the results
of fully supervised approaches for reference. Note that our ablation w.o. pre-training is identical to fine-tuning
BART on the downstream task, and the same for Table 3 and Table 4.

3.3 TANGRAMS

Environment State Definition The environment
state in TANGRAMS contains a list of up to five
unique objects. Similarly, the environment state
can be represented by the object indexes (from 1
to 5) and the object names (A, B, C, D, and E). For
example, the initial environment state in Figure 2
can be represented as 1:A|2:B|3:C|4:D|5:E. The
same object cannot appear in one environment state.
If the number of objects is less than 5, we fill the
sequence with _ to make it 5 in length.

Program Definition Three actions are involved
to manipulate the TANGRAMS environment,
namely, ADD, REMOVE and SWAP. And we use
the program proposed by Suhr and Artzi (2018),
which defines the functions including INSERT and
REMOVE. Similar to the two kinds of programs
mentioned above, permuting these two functions
can achieve the goal of representing all actions
defined in the environment.

3.4 PROPARA & RECIPES

Environment State Definition The PROPARA

environment describes real-world scientific pro-
cesses such as photosynthesis, erosion, etc. Each
environment state in PROPARA contains a set of en-
tity participants and their corresponding locations,
and the locations vary with the natural language
procedural text being described. Unlike the three
environments mentioned above, the properties of
an environment state in PROPARA are not fixed,
but are dynamically constructed from the natural
language text. Figure 2 shows an example, where

the initial state stands for participants water, light,
carbon are located in locations soil, sun, cloud re-
spectively. The environment state in PROPARA

can be naturally represented in key-value for-
mat. For example, the initial state in Figure 2
can be represented as ent:water|light|carbon
loc:soil|sun|cloud, here ent: and loc: are
special tokens that indicate the boundaries of entity
participants and locations, respectively.

Program Definition In the PROPARA environ-
ment, the procedural text describes four actions,
namely, CREATE, MOVE, DESTROY and NONE.
In practice, we use the program proposed by Dalvi
et al. (2019), in which the functions also con-
tain CREATE, MOVE and DESTROY, which are
aligned with the action space of PROPARA. As
for RECIPES, the environment describes the state
tracking process in the cooking domain. And the
definition of the environment states and the pro-
grams are similar with PROPARA.

4 Experiments

In this section, we compare LEMON with baseline
methods on the tasks discussed in §3 to demon-
strate its effectiveness. Due to space limitation, we
do not introduce these baselines below.

4.1 Data and Evaluation

ALCHEMY, SCENE & TANGRAMS These three
tasks are introduced with different environments
in the SCONE corpus (Long et al., 2016). Each
human-agent interaction has 5 instructions. Fol-
lowing Long et al. (2016), we evaluate LEMON

475

Models Sentence-Level Document-Level

Cat-1 Cat-2 Cat-3 Macro-Avg Micro-Avg Precision Recall F1

EntNet (Henaff et al., 2017) 51.6 18.8 7.8 26.1 26.0 54.7 30.7 39.4
QRN (Seo et al., 2017) 52.4 15.5 10.9 26.3 26.5 60.9 31.1 41.1
ProLocal (Dalvi et al., 2018) 62.7 30.5 10.4 34.5 34.0 81.7 36.8 50.7
ProGlobal (Dalvi et al., 2018) 63.0 36.4 35.9 45.1 45.4 61.7 48.8 51.9
AQA (Ribeiro et al., 2019) 61.6 40.1 18.6 39.4 40.1 62.0 45.1 52.3
ProStruct (Tandon et al., 2018) – – – – – 74.3 43.0 54.5
XPAD (Dalvi et al., 2019) – – – – – 70.5 45.3 55.2
LACE (Du et al., 2019) – – – – – 75.3 45.4 56.6
KG-MRC (Das et al., 2019) 62.9 40.0 38.2 47.0 46.6 69.3 49.3 57.6
ProGraph (Zhong et al., 2020) 67.8 44.6 41.8 51.4 51.5 67.3 55.8 61.0
IEN (Tang et al., 2020) 71.8 47.6 40.5 53.3 53.0 69.8 56.3 62.3
NCET (Gupta and Durrett, 2019b) 73.7 47.1 41.0 53.9 54.0 67.1 58.5 62.5
ETBERT (Gupta and Durrett, 2019a) 73.6 52.6 – – – – – –
DYNAPRO (Amini et al., 2020) 72.4 49.3 44.5 55.4 55.5 75.2 58.0 65.5
TSLM (Rajaby Faghihi and Kordjamshidi, 2021) 78.8 56.8 40.9 58.8 58.4 68.4 68.9 68.6
KOALA (Zhang et al., 2021) 78.5 53.3 41.3 57.7 57.5 77.7 64.4 70.4
REAL (Huang et al., 2021) 78.4 53.7 42.4 58.2 57.9 81.9 61.9 70.5

LEMON 81.7 58.3 43.3 61.1 60.7 74.8 69.8 72.2
w.o. pre-training 78.8 57.2 42.9 59.6 59.2 69.9 68.1 69.0

Table 3: Experimental results of our method LEMON and baselines on the test set of PROPARA.

with denotation accuracy. In addition, the evalu-
ation metrics can be divided into the denotation
accuracy of a single instruction (Inst), of the first
three instructions (3utts), and of the complete inter-
actions (5utts).

PROPARA & RECIPES These two tasks is intro-
duced in two procedural text understanding datasets
(Dalvi et al., 2018; Bosselut et al., 2018), and are
designed to track entity states through natural lan-
guage paragraphs. For PROPARA, the evaluation
metrics are composed of two levels: the sentence-
level and the document-level. The sentence-level
evaluates the model based on its prediction for the
following three questions: Is entity Created, Moved
or Destroyed in the process? When is entity Cre-
ated, Moved or Destroyed? Where is entity Created,
Moved or Destroyed? The sentence-level metrics
include the accuracy of the above questions (Cat-
1, Cat-2, Cat-3), and their micro / macro-average.
The document-level evaluates the model based on
its prediction on four document-level questions:
What are the inputs? What are the outputs? What
are the conversions? What are the moves? The
document-level metrics report the average preci-
sion, recall, and F1 score of the four questions. For
RECIPES, following previous work (Zhang et al.,
2021; Huang et al., 2021), we report the location
changes of each entity, and take precision, recall
and F1 scores as the evaluation metrics. The statis-
tics of 5 datasets can be found in Appendix B.

Models Precision Recall F1

NCET (re-implementation) 56.5 46.4 50.9
IEN (re-implementation) 58.5 47.0 52.2
KOALA (Zhang et al., 2021) 60.1 52.6 56.1
REAL (Huang et al., 2021) 55.2 52.9 54.1

LEMON 56.0 67.1 61.1
w.o. pre-training 53.9 63.6 58.4

Table 4: Experimental results of our method LEMON
and baselines on the test set of RECIPES.

4.2 Experimental Setup
We use BART-Large in fairseq (Ott et al., 2019) to
implement LEMON. During pre-training, we syn-
thesize 1 million pre-training examples for each ex-
perimental task. The learning rate is set to 3×10−5

in all experiments of pre-training and fine-tuning.
During pre-training, the maximum training step is
set to 10, 000 for ALCHEMY, SCENE, TANGRAMS

and 2, 000 for PROPARA and RECIPES, while the
batch size is set to around 1, 000 for all tasks. Dur-
ing fine-tuning, the maximum training step is set to
10, 000 for all tasks, while the batch size is set to
64 for ALCHEMY, SCENE, TANGRAMS and 32 for
PROPARA and RECIPES, respectively.

4.3 Experimental Results
ALCHEMY & SCENE From Table 2, we can
observe that LEMON outperforms previous best-
performing systems under weak supervision on
both ALCHEMY and SCENE, with significant im-
provements of 13.1% and 5.9% in the 5utts deno-
tation accuracy, respectively. Notably, LEMON

476

0 0.1 0.5 1.0 2.0
Amount of Pre-training Corpus (Millions)

60

65

70

75

80

5u
tt

s
D

en
ot

at
io

n
A

cc
ur

ac
y

(%
)

60

62

64

66

68

70

72

F
1

S
co

re
(%

)Alchemy

Scene

Tangrams

ProPara

Recipes

Figure 3: The performance of downstream tasks with
respect to the amount of pre-training corpus. We plot the
5utts denotation accuracy on ALCHEMY, SCENE and
TANGRAMS (circle), and plot the F1 score on PROPARA
and RECIPES (triangle).

not only achieves new state-of-the-art performance
among weakly supervised approaches, but also
comes close to the performance of fully super-
vised approaches that leverage extra annotated pro-
grams. Moreover, the results also show that the
execution-guided pre-training brings significant im-
provements (e.g., 4.1% of ALCHEMY in the 5utts
denotation accuracy), which demonstrates that our
pre-training strategy provides considerable prior
knowledge for LEMON.

TANGRAMS Similarly, the results on TAN-
GRAMS in Table 2 show that our execution-guided
pre-training strategy improves LEMON by 3.3% in
the 5utts denotation accuracy, further illustrating
the effectiveness of our approach. Nevertheless,
LEMON does not perform as well compared to
previous state-of-the-art method (Suhr and Artzi,
2018). We suppose this is because Suhr and Artzi
(2018) carefully model the historical instructions,
while LEMON directly concatenates them. We
leave the fine-grained context modeling of our ap-
proach for future work.

PROPARA Table 3 summarizes the results of
the PROPARA task, in which LEMON achieves
new state-of-the-art performance based on both
the sentence-level and the document-level evalua-
tion. On the sentence-level evaluation, LEMON

shows stable improvements in most metrics com-
pared to both previous approaches and LEMON

w.o. execution-guided pre-training, which demon-
strates that LEMON achieves an overall improve-
ment in the understanding of procedural texts with
respect to the environment. On the document-
level evaluation, LEMON achieves an F1 score

20 40 60 80 100

−8

−4

0

4

8

Overlap Ratio (%)

R
el

at
iv

e
Pe

rf
or

m
an

ce
(%

)

Figure 4: The relative performance of downstream tasks
with respect to the overlap ratio.

of 72.2%, which is 1.7% higher than the previous
best-performing system REAL (Huang et al., 2021)
and 1.8% higher than KOALA (Zhang et al., 2021).
Note the improvement is highly non-trivial since
KOALA leverages external knowledge, which in-
dicates that the prior knowledge LEMON learns
during pre-training is more effective than external
knowledge. Similarly, the execution-guided pre-
training brings a 3.2% improvement, which again
demonstrates that the pre-training in LEMON can
significantly facilitate the interaction procedure be-
tween natural language and environments.

RECIPES Table 4 shows the experimental re-
sults of the RECIPES task that LEMON reach state-
of-the-art performance and surpass previous best-
performing systems (Huang et al., 2021) with a
large margin by 7.0%. Besides, the proposed
execution-guided pre-training also brings a 2.7%
improvement. These results further illustrate the
effectiveness of LEMON.

4.4 Pre-training Analysis
Scaling up pre-training has a positive impact
Previous work (Lewis et al., 2020) has shown that
the scale of the pre-training corpus is an important
factor in pre-training, and thus we analyze the ef-
fect of our pre-training scale on downstream tasks.
Figure 3 shows the performance of downstream
tasks with respect to the size of the pre-training cor-
pus, which are obtained from the validation set of
each task. As seen, the performance of the model
generally improves by scaling up the pre-training
corpus, consistent with previous observations on
pre-training (Liu et al., 2021).

Improvements do not come from data leakage
Since the pre-training corpus of LEMON contains
various randomly sampled environment states, this
may raise the doubt that the improvements of
LEMON is due to the data leakage, that is, LEMON

has seen some environments in the downstream val-

477

Type (Percent) Example Environment (Goal State) Comparison

Operation
Correctness
(68.3%)

Environment (Initial State): The difference lies in the third beaker, (w.o. pre-training) versus (w.
pre-training). Without pre-training, the model does not correctly understand
the semantics of “add”, i.e., removing the liquid from the third beaker.

Instruction: Empty out the first beaker, add
the orange chemical to the red.

Instruction
Completeness
(18.3%)

Environment (Initial State): The difference lies in the first beaker, (w.o. pre-training) versus (w.
pre-training). As observed, without pre-training, the model seems to ignore
the instruction “throw out one unit of the second beaker”.

Instruction: Throw out one unit of the second
beaker, pour the second beaker into first one.

Grounding
Correctness
(8.5%)

Environment (Initial State): The whole states are (w.o. pre-training) versus (w.
pre-training). Without pre-training, the model does not find the correct
beaker according to the instructions.

Instruction: Pour out one part of the second
yellow beaker.

Table 5: The main types of the improvements by the execution-guided pre-training in the validation set of ALCHEMY.
For the all domains, please refer to Appendix D.

idation sets. Although we have already ensure that
the pre-training corpus does not contain the envi-
ronment states in the validation set and the test set,
it is still interesting to investigate the potential im-
pact of data leakage on LEMON. To analyze the
effect, we create a validation corpus of size 40, 000
for each task, which contains only the environment
states in the validation set, and then merge the cases
from the validation corpus into the pre-training cor-
pus with certain ratios (denoted as overlap ratio).
Figure 4 shows the box plot of the relative perfor-
mance to the reported performance (vertical axis)
with respect to the overlap ratio (horizontal axis).
We can observe that from the perspective of the
vertical axis, the vertical axis of the densest area is
near 0, indicating that the two variables are irrele-
vant, thus proving that the effectiveness of LEMON

hardly relies on the overlap between corpus size
and validation set. For the detailed downstream per-
formance with respect to the overlap ratio, please
refer to Appendix C.

Improvements come from prior knowledge ac-
quirement To show what LEMON obtain from
the execution-guided pre-training procedure, we
manually analyze examples in the validation set
where predictions are wrong before pre-training
and correct after pre-training. Table 5 shows the
main types of the improvements caused by the
execution-guided pre-training. We can see that
with the execution-guided pre-training, LEMON

successfully masters the prior knowledge of dif-
ferent environments. Specifically, LEMON can
manipulate the environments better, as reflected in
the correctness of operations, the completeness of
instructions, and the correctness of grounding.

5 Related Work

Language-based Environment Manipulation
The first line of our related work is the previous

work on LEM tasks. According to the output, exist-
ing methods on LEM tasks can be mainly divided
into two categories: program prediction and state
prediction. Prior work always treat the LEM task
as a program prediction problem (Long et al., 2016;
Guu et al., 2017; Suhr and Artzi, 2018; Fried et al.,
2018; Huang et al., 2019; Yeh and Chen, 2019;
Dalvi et al., 2019). However, these approaches
are environment-dependent and cannot be easily
adapted to other environments. Besides, they either
rely on natural language-program pairs as super-
vision or require complex heuristic rules, which
is costly. Recent approaches generally treat the
LEM task as a state prediction problem by predict-
ing the goal state directly (Dalvi et al., 2018; Du
et al., 2019; Das et al., 2019; Tang et al., 2020; Ra-
jaby Faghihi and Kordjamshidi, 2021; Zhang et al.,
2021). These models can eliminate the data collec-
tion issue, but require complex models designed
to meet the needs of different kinds of environ-
ments. Compared with the above work, LEMON

has the following advantages: 1) The proposed task-
agnostic approach does not require additional an-
notations and is easy to generalize across different
environments. 2) The proposed execution-guided
pre-training strategy can further improve the model
performance with synthetic data only.

Program Execution The second line of our re-
lated work is the execution-guided work, of which
the most related work are ProTo (Zhao et al., 2021)
and TAPEX (Liu et al., 2021). ProTo learns to
execute given programs on the observed task speci-
fications, which focuses on following a given pro-
gram to perform the corresponding task. Differ-
ent from ProTo, LEMON focuses on pre-training
with program execution to enhance the downstream
performance. Following a similar idea, TAPEX

(Liu et al., 2021) improves the table pre-training
by learning SQL execution over tables. The main

478

difference between TAPEX and LEMON is that
TAPEX choose SQL execution as the pre-training
task, which is suitable for a single environment
only. While, LEMON is more flexible, and en-
ables us to systematically design the pre-training
task and synthesize pre-training corpus based on
environment properties, and proven effective on
multiple environments.

6 Conclusion & Future Work

In this work, we propose LEMON, a general frame-
work for language-based environment manipula-
tion tasks that not only models different environ-
ments using the same protocol, but also injects prior
knowledge of environments into our model. Ex-
perimental results on five tasks demonstrate the ef-
fectiveness of LEMON: the execution-guided pre-
training strategy brings significant improvements
on all of them and LEMON achieves the state-of-
the-art performance on four of them. For future
work, we hope to extend our approach to more
complex environments and tasks such as image
editing (Fu et al., 2020) and text editing (Faltings
et al., 2021).

Limitations

The main limitation in this paper is that LEMON

focus on symbolic environments instead of raw en-
vironments with only visual features. Compared to
the latter, the former can be represented by seman-
tic symbols, and thus enjoys better controllability
and interpretability. We leave the exploration of
raw environments for future work.

Ethics Statement

In this paper, we propose LEMON, a general
framework for language-based environment ma-
nipulation tasks, consisting of a task-agnostic ap-
proach and an execution-guided pre-training strat-
egy. We conduct experiments on five bench-
marks, namely, ALCHEMY, SCENE, TANGRAMS,
PROPARA, RECIPES. All benchmarks are free and
open for research use. The pre-training corpus
is generated based on open-source program gram-
mars, which are no ethics issues.

Acknowledgement

We would like to thank the anonymous reviewers
for their helpful comments.

References
Aida Amini, Antoine Bosselut, Bhavana Dalvi Mishra,

Yejin Choi, and Hannaneh Hajishirzi. 2020. Proce-
dural reading comprehension with attribute-aware
context flow. In Conference on Automated Knowl-
edge Base Construction, AKBC 2020, Virtual, June
22-24, 2020.

Jacob Andreas and Dan Klein. 2015. Alignment-based
compositional semantics for instruction following.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1165–1174, Lisbon, Portugal. Association for Com-
putational Linguistics.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin En-
nis, Dieter Fox, and Yejin Choi. 2018. Simulating
action dynamics with neural process networks. In
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for
process paragraph comprehension. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1595–1604, New Orleans, Louisiana.
Association for Computational Linguistics.

Bhavana Dalvi, Niket Tandon, Antoine Bosselut, Wen-
tau Yih, and Peter Clark. 2019. Everything happens
for a reason: Discovering the purpose of actions in
procedural text. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4496–4505, Hong Kong, China. Association
for Computational Linguistics.

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan,
Adam Trischler, and Andrew McCallum. 2019.
Building dynamic knowledge graphs from text us-
ing machine reading comprehension. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Xinya Du, Bhavana Dalvi, Niket Tandon, Antoine
Bosselut, Wen-tau Yih, Peter Clark, and Claire
Cardie. 2019. Be consistent! improving procedu-
ral text comprehension using label consistency. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2347–2356,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Felix Faltings, Michel Galley, Gerold Hintz, Chris
Brockett, Chris Quirk, Jianfeng Gao, and Bill Dolan.

479

https://doi.org/10.24432/C5C883
https://doi.org/10.24432/C5C883
https://doi.org/10.24432/C5C883
https://doi.org/10.18653/v1/D15-1138
https://doi.org/10.18653/v1/D15-1138
https://openreview.net/forum?id=rJYFzMZC-
https://openreview.net/forum?id=rJYFzMZC-
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/D19-1457
https://doi.org/10.18653/v1/D19-1457
https://doi.org/10.18653/v1/D19-1457
https://openreview.net/forum?id=S1lhbnRqF7
https://openreview.net/forum?id=S1lhbnRqF7
https://doi.org/10.18653/v1/N19-1244
https://doi.org/10.18653/v1/N19-1244

2021. Text editing by command. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5259–5274,
Online. Association for Computational Linguistics.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018. Uni-
fied pragmatic models for generating and following
instructions. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1951–1963,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tsu-Jui Fu, Xin Wang, Scott Grafton, Miguel Eckstein,
and William Yang Wang. 2020. SSCR: Iterative
language-based image editing via self-supervised
counterfactual reasoning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4413–4422, On-
line. Association for Computational Linguistics.

Aditya Gupta and Greg Durrett. 2019a. Effective use of
transformer networks for entity tracking. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 759–769, Hong
Kong, China. Association for Computational Lin-
guistics.

Aditya Gupta and Greg Durrett. 2019b. Tracking dis-
crete and continuous entity state for process under-
standing. In Proceedings of the Third Workshop
on Structured Prediction for NLP, pages 7–12, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridging
reinforcement learning and maximum marginal like-
lihood. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1051–1062, Vancouver,
Canada. Association for Computational Linguistics.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Hao Huang, Xiubo Geng, Jian Pei, Guodong Long, and
Daxin Jiang. 2021. Reasoning over entity-action-
location graph for procedural text understanding. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5100–
5109.

Hsin-Yuan Huang, Eunsol Choi, and Wen-tau Yih. 2019.
Flowqa: Grasping flow in history for conversational

machine comprehension. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Jian-Guang Lou, Bin
Zhou, and Dongmei Zhang. 2020. How far are we
from effective context modeling? an exploratory
study on semantic parsing in context. In Proceedings
of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pages 3580–
3586. ijcai.org.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
TAPEX: table pre-training via learning a neural SQL
executor. CoRR, abs/2107.07653.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1456–1465,
Berlin, Germany. Association for Computational Lin-
guistics.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415, Florence, Italy. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Hossein Rajaby Faghihi and Parisa Kordjamshidi. 2021.
Time-stamped language model: Teaching language
models to understand the flow of events. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4560–4570, Online. Association for Computational
Linguistics.

Danilo Ribeiro, Thomas Hinrichs, Maxwell Crouse,
Kenneth Forbus, Maria Chang, and Michael Wit-
brock. 2019. Predicting state changes in procedural
text using analogical question answering. In Proc. of
ACS.

480

https://doi.org/10.18653/v1/2021.naacl-main.414
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/2020.emnlp-main.357
https://doi.org/10.18653/v1/2020.emnlp-main.357
https://doi.org/10.18653/v1/2020.emnlp-main.357
https://doi.org/10.18653/v1/D19-1070
https://doi.org/10.18653/v1/D19-1070
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://openreview.net/forum?id=rJTKKKqeg
https://openreview.net/forum?id=rJTKKKqeg
https://openreview.net/forum?id=ByftGnR9KX
https://openreview.net/forum?id=ByftGnR9KX
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2020/495
https://doi.org/10.24963/ijcai.2020/495
https://doi.org/10.24963/ijcai.2020/495
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/2107.07653
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2021.naacl-main.362
https://doi.org/10.18653/v1/2021.naacl-main.362

Min Joon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017. Query-reduction networks for ques-
tion answering. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Alane Suhr and Yoav Artzi. 2018. Situated mapping of
sequential instructions to actions with single-step re-
ward observation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2072–2082,
Melbourne, Australia. Association for Computational
Linguistics.

Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu,
Hadi Khader, Marwa Mouallem, Iris Zhang, and
Yoav Artzi. 2019. Executing instructions in situ-
ated collaborative interactions. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2119–2130, Hong Kong,
China. Association for Computational Linguistics.

Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih,
Antoine Bosselut, and Peter Clark. 2018. Reasoning
about actions and state changes by injecting com-
monsense knowledge. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 57–66, Brussels, Belgium.
Association for Computational Linguistics.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6408–6417, Online. Association for Computa-
tional Linguistics.

Jizhi Tang, Yansong Feng, and Dongyan Zhao. 2020.
Understanding procedural text using interactive entity
networks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7281–7290, Online. Association for
Computational Linguistics.

Terry Winograd. 1971. Procedures as a representation
for data in a computer program for understanding
natural language. Technical report.

Yi-Ting Yeh and Yun-Nung Chen. 2019. Flowdelta:
Modeling flow information gain in reasoning for con-
versational machine comprehension. In Proceedings
of the 2nd Workshop on Machine Reading for Ques-
tion Answering, MRQA@EMNLP 2019, Hong Kong,
China, November 4, 2019, pages 86–90. Association
for Computational Linguistics.

Zhihan Zhang, Xiubo Geng, Tao Qin, Yunfang Wu,
and Daxin Jiang. 2021. Knowledge-aware procedu-
ral text understanding with multi-stage training. In
WWW ’21: The Web Conference 2021, Virtual Event

/ Ljubljana, Slovenia, April 19-23, 2021, pages 3512–
3523. ACM / IW3C2.

Zelin Zhao, Karan Samel, Binghong Chen, and Le Song.
2021. Proto: Program-guided transformer for
program-guided tasks. CoRR, abs/2110.00804.

Wanjun Zhong, Duyu Tang, Nan Duan, Ming Zhou, Ji-
ahai Wang, and Jian Yin. 2020. A heterogeneous
graph with factual, temporal and logical knowl-
edge for question answering over dynamic contexts.
CoRR, abs/2004.12057.

A Program Grammar in Each Domain

Table 6, Table 7, Table 8 and Table 9 show the
grammar rules of used programs in each domain.

B Statistics of Each Dataset

Table 10 show the data statistics for ALCHEMY,
SCENE, TANGRAMS, PROPARA, RECIPES.

C Downstream Performance w.r.t
Overlap Ratio

Table 11 shows the downstream performance on
the validation sets with respect to the overlap ratio
in the pre-training corpus.

D Pre-training Improvement Analysis

The main types of the improvements by the
execution-guided pre-training on the five tasks are
shown in Table 12 and Table 13.

E Example Program, Initial State and
Goal State of Each Domain

Table 14 shows the examples of each domain, in-
cluding the initial environment state, the program,
and the corresponding goal environment state.

F Case Study

Figure 5 shows two cases in ALCHEMY and
SCENE, providing a more intuitive view of the
role played by the execution-guided pre-training in
LEMON. We display the initial environment states,
the natural language instructions, and the goal en-
vironment states predicted with / without applying
the execution-guided pre-training strategy, respec-
tively. In the first case (a), when pouring yellow
liquid from the 5-th beaker into the 3-th beaker,
the latter receives red liquid, which is clearly an
inconsistent change. However, with pre-training,
LEMON can predict the correct goal environment
state via deeply understanding the actions conveyed

481

https://openreview.net/forum?id=B1MRcPclx
https://openreview.net/forum?id=B1MRcPclx
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/D19-1218
https://doi.org/10.18653/v1/D19-1218
https://doi.org/10.18653/v1/D18-1006
https://doi.org/10.18653/v1/D18-1006
https://doi.org/10.18653/v1/D18-1006
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.591
https://doi.org/10.18653/v1/2020.emnlp-main.591
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.1145/3442381.3450126
https://doi.org/10.1145/3442381.3450126
http://arxiv.org/abs/2110.00804
http://arxiv.org/abs/2110.00804
http://arxiv.org/abs/2004.12057
http://arxiv.org/abs/2004.12057
http://arxiv.org/abs/2004.12057

Grammar Rule Description

⟨state⟩ → ⟨action⟩ ⟨state⟩ | ⟨action⟩ A list of actions.
⟨action⟩ → ⟨mix⟩ | ⟨pour⟩ | ⟨drain⟩ One of the three actions.
⟨mix⟩ → MIX (⟨beaker⟩) Mix the liquid in the ⟨beaker⟩ beaker.
⟨pour⟩ → POUR (⟨beaker⟩, ⟨beaker⟩) Pour the liquid from the first beaker to the second beaker.
⟨drain⟩ → DRAIN (⟨beaker⟩, ⟨integer⟩) | Pour out the ⟨integer⟩ unit from the ⟨beaker⟩ beaker.

DRAIN (⟨beaker⟩, ⟨fraction⟩) Pour ⟨fraction⟩ of the liquid out of the ⟨beaker⟩ beaker.
⟨beaker⟩ → BEAKER (⟨index⟩) | The ⟨index⟩-th beaker.

BEAKER (⟨index⟩, ⟨color⟩) The ⟨index⟩-th beaker of ⟨color⟩ color.
⟨index⟩ → 1 | 2 | · · · | 7 | −1 | −2 | · · · | −7 The index of the certain components in the environment.
⟨color⟩ → r | g | o | p | y | b The symbols corresponding to the color red, green, orange, purple,

yellow and brown.
⟨integer⟩ → 1 | 2 | 3 | 4 The unit of the liquid.
⟨fraction⟩ → 1

2
| 1
3

| 1
4

| 2
3

| 2
4

| 3
4

The percentage of the liquid.

Table 6: Grammar rules and corresponding descriptions of used program in ALCHEMY.

Grammar Rule Description

⟨state⟩ → ⟨action⟩ ⟨state⟩ | ⟨action⟩ A list of actions.
⟨action⟩ → ⟨person⟩ | ⟨rmperson⟩ | ⟨hat⟩ | ⟨rmhat⟩ One of the four actions.
⟨person⟩ → PERSON (⟨index⟩, ⟨color⟩) Add a person with ⟨color⟩ shirt on the ⟨index⟩-th position.

⟨rmperson⟩ → RMPERSON (⟨index⟩) Remove the person on the ⟨index⟩-th position.
⟨hat⟩ → HAT (⟨index⟩, ⟨color⟩) Add a hat of ⟨color⟩ color for the person on the ⟨index⟩-th

position.
⟨rmhat⟩ → RMHAT (⟨index⟩) Remove the person’s hat on the ⟨index⟩-th position.
⟨index⟩ → 1 | 2 | 3 | · · · | 10 The index of the certain components in the environment.
⟨color⟩ → r | g | o | p | y | b The symbols corresponding to the color red, green, orange,

purple, yellow and brown.

Table 7: Grammar rules and corresponding descriptions of used program in SCENE.

Throw out last beaker. Pour fifth beaker into
third one. Pour red beaker into third one.

A person with a green shirt appears to the
right of the person with a green shirt and

yellow hat. They trade hats.

Figure 5: Two cases of LEMON and LEMON w.o. pre-
training in ALCHEMY and SCENE. The predictions of
LEMON are more consistent with the semantics of the
natural language instruction.

by natural language. Similarly, in the second case
(b), when swapping the hats in the last step, the
model does not understand the TRADE-HAT action
correctly, while it can be well understood to gen-
erate the goal state after pre-training. The above
two cases indicate that the execution-guided pre-
training strategy is able to inject prior knowledge of
environments into LEMON and benefit the down-
stream tasks.

482

Grammar Rule Description

⟨state⟩ → ⟨action⟩ ⟨state⟩ | ⟨action⟩ A list of actions.
⟨action⟩ → ⟨insert⟩ | ⟨remove⟩ One of the two actions.
⟨insert⟩ → INSERT (⟨index⟩, ⟨object⟩) Insert the ⟨object⟩ object at the ⟨index⟩ position.

⟨remove⟩ → REMOVE (⟨index⟩) Remove the object at the ⟨index⟩ position.
⟨index⟩ → 1 | 2 | 3 | 4 | 5 The index of the certain components in the environment.
⟨object⟩ → A | B | C | D | E The object name.

Table 8: Grammar rules and corresponding descriptions of used program in TANGRAMS.

Grammar Rule Description

⟨state⟩ → ⟨action⟩ ⟨state⟩ | ⟨action⟩ A list of actions.
⟨action⟩ → ⟨create⟩ | ⟨move⟩ | ⟨destroy⟩ One of the three actions.
⟨create⟩ → CREATE (⟨participant⟩, ⟨location⟩) Create ⟨participant⟩ at the ⟨location⟩.

CREATE (⟨participant⟩, ?) Do not fill the location if ⟨location⟩ is not given.
⟨move⟩ → MOVE (⟨participant⟩, ⟨location1⟩, ⟨location2⟩) Move ⟨participant⟩ from ⟨location1⟩ to ⟨location2⟩.

⟨destroy⟩ → DESTROY (⟨participant⟩) Remove ⟨participant⟩ from the current location.
⟨participants⟩ → water | light | carbon | ... Entities in the environments.

⟨locations⟩ → soil | sun | cloud | ... Entities’ locations in the environments

Table 9: Grammar rules and corresponding descriptions of used program in PROPARA and RECIPES.

Dataset Statistics Train Dev Test Total

ALCHEMY

#Interaction 3657 245 899 4801
#Instruction 18285 1225 4495 24005
Avg.inst/inte 5 5 5 5

Avg.word/inst - - - 8.0

SCENE

#Interaction 3352 198 1035 4585
#Instruction 16760 990 5175 22925
Avg.inst/inte 5 5 5 5

Avg.word/inst - - - 10.5

TANGRAMS

#Interaction 4189 199 800 5188
#Instruction 20945 995 4000 25940
Avg.inst/inte 5 5 5 5

Avg.word/inst - - - 5.4

PROPARA

#Paragraph 391 43 54 488
#Sentence 2639 290 373 3302

Avg.sent/para 6.7 6.7 6.9 6.8
Avg.word/para 61.1 57.8 67.0 61.4

RECIPES

#Paragraph 693 86 87 866
#Sentence 6101 766 781 7648

Avg.sent/para 8.8 8.9 9.0 8.8
Avg.word/para 93.1 89.1 93.9 92.8

Table 10: Data statistics for ALCHEMY, SCENE, TANGRAMS, PROPARA, RECIPES.

Datasets Overlap Ratio (%)

0% 20% 40% 60% 80% 100%

ALCHEMY 81.0 83.2 81.2 80.8 82.0 83.3
SCENE 65.5 63.1 59.6 62.6 63.1 64.6

TANGRAMS 62.8 63.3 62.8 64.3 62.8 63.3
PROPARA 72.5 70.7 72.7 70.0 70.8 72.8
RECIPES 61.7 59.5 59.3 62.4 60.8 59.8

Table 11: Downstream Performances on the validation sets of five datasets with respect to the overlap ratio. For
ALCHEMY, SCENE and TANGRAMS, we report the 5utts denotation accuracy, while we report the F1 score on
PROPARA and RECIPES.

483

Type (Percent) Example Environment (Goal State) Comparison

ALCHEMY

Operation
Correctness
(68.3%)

Environment (Initial State) : 1:p | 2:r |
3:o

The difference lies in the third beaker, o (w.o. pre-training) versus _ (w.
pre-training). Without pre-training, the model does not correctly understand
the semantics of “add”, i.e., removing the liquid from the third beaker.Instruction: Empty out the first beaker,

add the orange chemical to the red.

Instruction
Completeness
(18.3%)

Environment (Initial State): 1:o | 2:rr The difference lies in the first beaker, orr (w.o. pre-training) versus or (w.
pre-training). As observed, without pre-training, the model seems to ignore
the instruction “throw out one unit of the second beaker”.

Instruction: Throw out one unit of the
second beaker, pour the second beaker
into first one.

Grounding
Correctness
(8.5%)

Environment (Initial State): 1:y | 2:yyy
| 3:yy

The whole states are 1:y | 2:yyy | 3:y (w.o. pre-training) versus 1:y | 2:yy |
3:yy (w. pre-training). Without pre-training, the model does not find the
correct beaker according to the instructions.Instruction: Pour out one part of the

second yellow beaker.

SCENE

Operation
Correctness
(22.7%)

Environment (Initial State): 1:og | 2:oo
| 3:__ | 4:__

The difference lies in the second position, __ (w.o. pre-training) versus oo
(w. pre-training). Without pre-training, the oo disappears for no reason,
which indicates that the “move” operation cannot be performed correctly.Instruction: The man in an orange shirt

and green hat moves to the right end.

Instruction
Completeness
(15.2%)

Environment (Initial State): 1:__ | 2:bo
| 3:__ | 4:__

The difference lies in the second position and the third position, b_, yo (w.o.
pre-training) versus bo, y_ (w. pre-training). The model requires to swap
hats twice, but without pre-training, only once performed, which indicates
that one of the TRADE-HATS operations is ignored.

Instruction: A person in a yellow shirt
enters from the right, the person in yellow
takes the hat from the person in blue, the
person in blue retrieves the hat from the
person in yellow.

Grounding
Correctness
(62.1%)

Environment (Initial State): 1:rg | 2:__
| 3:gr | 4:__

The whole states are 1:rg | 2:__ | 3:gr | 4:o_ (w.o. pre-training) versus 1:rg |
2:o_ | 3:gr | 4:__ (w. pre-training). Without pre-training, the model does not
find the correct position according to the instructions.Instruction: A man in an orange shirt

appears to the right of the man in a red
shirt and green hat.

TANGRAMS

Instruction
Completeness
(52.7%)

Environment (Initial State): 1:A | 2:C |
3:D

The state is 1:C (w.o. pre-training) versus 1:A (w. pre-training). Without
pre-training, the model does not correctly understand the semantics of
“swap”, i.e. change the positions of two figures.Instruction: Delete the 3rd figure, swap

the two figures, delete the 1st figure.

Grounding
Correctness
(47.3%)

Environment (Initial State): 1:A | 2:E |
3:B | 4:C | 5:D

The whole states is 1:A | 2:E | 3:D (w.o. pre-training) versus 1:A | 2:E | 3:C
(w. pre-training). After performing the first instruction, the positions of each
item have changed. When performing the second instruction, without
pre-training, the model does not find the correct positions.

Instruction: Delete the 3rd figure, delete
the 4th figure.

Table 12: The main types of the improvements by the execution-guided pre-training in the validation set of
ALCHEMY, SCENE, and TANGRAMS.

484

Type (Percent) Example Environment (Goal State) Comparison

PROPARA

Operation
Correctness
(12.0%)

Environment (Initial State): ent: algae
| plankton | sediment; loc: ? | ? | seafloor

The whole predicted locations contains 2 items (w.o. pre-training) versus 3
items (w. pre-training). Without pre-training, the amount of the predicted
locations is inconsistent with the entities, namely, the instructions cannot be
performed correctly.

Instruction: Algae and plankton die.
The dead algae and plankton end up part
of sediment on a seafloor.

Instruction
Completeness
(28.0%)

Environment (Initial State): ent: bacte-
ria | enzymes; loc: ground | bacterium

The predicted location of enzymes is bacterium (w.o. pre-training) versus
plant material (w. pre-training). The most potential reason is that the
second instruction is ignored by the model without pre-training.Instruction: Bacteria from the ground

migrate to the plant material. Bacteria
release enzymes onto the plant material.

Grounding
Correctness
(60.0%)

Environment (Initial State): ent: silk |
web; loc: - | -

The predicted location of silk is spider (w.o. pre-training) versus abdomen
(w. pre-training). Without pre-training, the model does not find the most
suitable location of the entity based on the instructions.Instruction: The spider picks a suitable

place. The spider produces sticky silk
from its abdomen.

RECIPES

Operation
Correctness
(9.1%)

Environment (Initial State): ent: scal-
lion | cloves garlic | canola oil states: - | -
| -

The whole predicted locations contain 4 items (w.o. pre-training) versus 3
items (w. pre-training). Without pre-training, the amount of the predicted
locations is inconsistent with the entities, namely, the instructions does not
be performed correctly.Instruction: First to go in the wok was

the oil, scallions , and garlic .heat these
ingredients until the garlic starts to turn
brown.

Instruction
Completeness
(21.8%)

Environment (Initial State): ent: green
pepper | tomato | green onion states: - | -
| -

All of the predicted locations of the three entities are ? (w.o. pre-training)
versus foil (w. pre-training). The most potential reason is that the second
instruction is ignored without pre-training.

Instruction: Cut tin foil into 12x16 inch
rectangle. Place green pepper, tomato
and green onion on lower half of foil
sheet.

Grounding
Correctness
(69.1%)

Environment (Initial State): ent: salt |
olive oil; loc: - | -

The predicted location of olive oil is bowl (w.o. pre-training) versus pan (w.
pre-training), which indicates that the model does not find the most suitable
location of the entity based on the instructions without pre-training.Instruction: Lightly grease large bowl

and two loaf pans with olive oil.

Table 13: The main types of the improvements by the execution-guided pre-training in the validation set of PROPARA
and RECIPES.

Domain Program Initial State & Goal State Description

ALCHEMY POUR (BEAKER (1), BEAKER (2, g))
1:rr | 2:gg | 3:g | 4:ooo

1:_ | 2:gg | 3:grr | 4:ooo
Pour the liquid from the first beaker
into the second green beaker.

SCENE PERSON (2, r); HAT (2, y)
1:__ | 2:__ | 3:__ | 4:__ | 5:ob

1:__ | 2:ry | 3:__ | 4:__ | 5:ob
A person with a red shirt and a yellow
hat appears on the second position.

TANGRAMS REMOVE (2); INSERT (4, B)
1:A | 2:B | 3:C | 4:D | 5:E

1:A | 2:C | 3:D | 4:B | 5:E
Remove the second figure, and add it
back into the fourth position.

PROPARA MOVE (bacteria, cell, bladder)

ent : bacteria | sickness
loc : cell | -

ent : bacteria | sickness
loc : bladder | -

Move bacteria from cell to bladder.

RECIPES CREATE (beef, oven)

ent : beef | pepper
loc : - | -

ent : beef | pepper
loc : oven | -

Beef appears in the oven.

Table 14: Example programs, initial states, and goal states for each domain.

485

