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Abstract

Large pre-trained language models (PLMs)
such as GPT-3 have shown strong in-context
learning capabilities, which are highly appeal-
ing for domains such as biomedicine that fea-
ture high and diverse demands of language tech-
nologies but also high data annotation costs. In
this paper, we present the first systematic and
comprehensive study to compare the few-shot
performance of GPT-3 in-context learning with
fine-tuning smaller (i.e., BERT-sized) PLMs
on two representative biomedical information
extraction (IE) tasks: named entity recogni-
tion and relation extraction. We follow the
true few-shot setting (Perez et al., 2021) to
avoid overestimating models’ few-shot perfor-
mance by model selection over a large vali-
dation set. We also optimize GPT-3’s perfor-
mance with known techniques such as contex-
tual calibration and dynamic in-context exam-
ple retrieval. However, our results show that
GPT-3 still significantly underperforms com-
pared to simply fine-tuning a smaller PLM. In
addition, GPT-3 in-context learning also yields
smaller gains in accuracy when more training
data becomes available. More in-depth anal-
yses further reveal issues of in-context learn-
ing that may be detrimental to IE tasks in gen-
eral. Given the high cost of experimenting with
GPT-3, we hope our study provides helpful
guidance for biomedical researchers and practi-
tioners towards more practical solutions such as
fine-tuning small PLMs before better in-context
learning is available for biomedical IE.1

1 Introduction

Given the overwhelming pace of biomedical re-
search and clinical text production, transforming
large amounts of biomedical text into structured
information has become increasingly important for
researchers and practitioners alike. In recent years,

1Our source code is available at https://github.
com/dki-lab/few-shot-bioIE.

Figure 1: Main findings: (Left) fine-tuning BERT-sized
PLMs substantially outperforms GPT-3 in-context learn-
ing under true few-shot setting. (Right) Feature compar-
ison for consideration of practical applications.

pre-trained language models (PLMs), both general-
domain and biomedicine-specific ones, have re-
markably boosted performance on biomedical in-
formation extraction (IE) tasks (Lee et al., 2019;
Peng et al., 2019; Gu et al., 2021; Alsentzer et al.,
2019; Beltagy et al., 2019).

The latest round of PLMs such as GPT-3 (Brown
et al., 2020), Megatron-Turing NLG (Smith et al.,
2022), the Switch Transformer (Fedus et al., 2022),
among others, feature hundreds of billions of pa-
rameters and have achieved impressive perfor-
mance in many NLP tasks using in-context learn-
ing—a new few-shot learning paradigm first intro-
duced by Brown et al. (2020). In-context learning
allows PLMs to use their natural language gen-
eration capabilities to solve any task almost like
how humans would—by completing a piece of
text or prompt. This paradigm allows large PLMs
to solve various NLP problems without updating
their parameters, potentially resulting in massive
savings in both data annotation and engineering
overhead compared with standard model training.
Even more impressively, GPT-3 in-context learn-
ing yields competitive performance against fully
supervised baselines in many NLP tasks by adding
only a handful of demonstrative examples in the
prompt (Brown et al., 2020).

The variety of potential biomedical information
extraction applications, the high cost of biomedical
annotations, and the complexity of model training
make in-context learning particularly appealing for
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biomedical applications. To investigate its prac-
ticality, we present the first systematic and com-
prehensive comparative study of GPT-3 in-context
learning and BERT-sized (Devlin et al., 2019) PLM
fine-tuning in the few-shot setting on named entity
recognition (NER) and relation extraction (RE),
two representative and highly valued biomedical IE
tasks. For consistency and comprehensiveness, we
use all the biomedical NER and RE tasks compiled
in the BLURB benchmark (Gu et al., 2021). We
operate under the true few-shot setting introduced
by Perez et al. (2021) to avoid overestimating mod-
els’ few-shot performance via model selection over
a large validation set.

We optimize GPT-3’s in-context learning per-
formance for biomedical information extraction
by leveraging multiple recent techniques. Firstly,
inspired by studies that show the importance of op-
timal prompt selection (Perez et al., 2021; Schick
and Schütze, 2021; Gao et al., 2021), we formulate
a prompt structure which allows us to construct
prompt designs and select optimal ones systemat-
ically. Secondly, similar to Liu et al. (2022), we
introduce a k-nearest neighbor (kNN) module for
in-context example retrieval. Finally, for NER, we
also use logit biases to ensure that the generated
tokens are from the input sentence; for RE, we use
contextual calibration (Zhao et al., 2021) to reduce
contextual bias.

Even when equipped with these latest techniques,
which indeed improve GPT-3’s performance as
shown in ablation studies, we find that fine-tuning
BERT-sized PLMs substantially outperforms GPT-
3 in-context learning across all biomedical infor-
mation extraction datasets when using the same
small training set (e.g., 100 labeled examples). We
also find that fine-tuning small PLMs yields a more
reliable return in terms of data annotation: as train-
ing data size increases, fine-tuning performance
steadily improves while in-context learning per-
formance lags behind. In-depth analyses further
reveal that in-context learning struggles with the
null class, e.g., sentences that contain no named
entity (for NER) or entity pairs that hold none of
the target relations (for RE), which is likely detri-
mental to IE tasks in general. In summary, our
findings suggest that fine-tuning PLMs is still a
more cost-effective option than GPT-3 in-context
learning for biomedical IE tasks, at least before
qualitatively better methods for in-context learning
are discovered.

2 Approach

In this section, we describe the two paradigms we
explored under the true few-shot setting for NER
and RE: BERT-sized PLM fine-tuning and GPT-3
in-context learning.

2.1 Tasks

We use named entity recognition (NER) and re-
lation extraction (RE) as two representative and
highly valued tasks to comprehensively evalu-
ate the potential of GPT-3 in-context learning in
biomedical IE.

2.2 True Few-Shot Setting

Recent work has questioned the performance of
few-shot learning in very large PLMs like GPT-3
as well as small PLM fine-tuning, arguing that large
validation sets have played a strong biasing role in
model and prompt selection (Perez et al., 2021).
To avoid overestimating the few-shot learning per-
formance of PLMs, we follow their proposed true
few-shot setting. In this setting, all model selection
decisions are made systematically on the few-shot
training set rather than on a large validation set. For
our main experiments, we use cross-validation on
100 training examples to choose the prompt struc-
ture, the number of few-shot examples per prompt
and the fine-tuning hyperparameters.

2.3 BERT-Sized PLM Fine-Tuning

We follow the standard PLM fine-tuning process
for NER and RE used in Gu et al. (2021). We use
5-fold cross-validation on the 100 example training
set mentioned above to select the best performing
values for learning rate, batch size, warm-up ratio,
weight decay, and stopping checkpoint for all of
our fine-tuning experiments. The hyperparameter
values we select from are specified in Appendix C.

Named Entity Recognition. For NER, we use
the BIO tag token classification formulation and
fine-tune a separate model for each entity type.

Relation Extraction. For RE, we mask the ob-
ject and subject entities in the input sentence and
use the [CLS] token to classify the relation be-
tween them.

2.4 GPT-3 In-Context Learning

In this section, we first describe how we reformu-
late the NER and RE tasks for in-context learn-
ing. We then provide thorough descriptions of our
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Figure 2: Overall architecture for GPT-3 in-context learning for both NER and RE (left). One-shot learning example
prompt for NER (middle) and RE (right). Different colors indicate different prompt design elements: orange for
overall task instructions, red for sentence introduction and purple for the retrieval message portion. The current
input sentence and the completion by GPT-3 are highlighted.

prompt design and in-context example retrieval ap-
proaches as well as other recent techniques we
use to improve GPT-3’s in-context learning perfor-
mance for biomedical IE.

2.4.1 Task Linearization
As shown in the examples in Figure 2, in order to
use in-context learning, we must first reformulate
NER and RE as language generation tasks.

For NER, we extract all entity spans from the
original sentence and combined them using a sep-
arator (entities are only added once), as was done
in previous work (Raval et al., 2021). GPT-3 will
then be expected to generate a list of entities joined
by the chosen separator when conditioned on the
current input and its context, as shown in Figure 2
(middle).

For relation extraction, we draw inspiration from
Huguet Cabot and Navigli (2021) and transform
every example into a prompt as shown in Figure 2
(right). For all our prompt templates shown in Ap-
pendix D, we add the subject and object entities, in
their verbatim lexical form in the original sentence,
to the prompt.

2.4.2 Prompt Design
Given the importance of prompt selection in ob-
taining strong performance from GPT-3 in-context
learning (Perez et al., 2021; Schick and Schütze,
2022, 2021; Gao et al., 2021), we provide a system-
atic and task-agnostic process for constructing GPT-
3 prompts. As shown in the examples in Figure
2, we identify three main parts of a prompt: over-
all task instructions, a sentence introduction and a
retrieval message. The overall task instruction pro-
vides broad instructions for the task as concisely as
possible. The sentence introduction describes the

input text (i.e., scientific article excerpt, tweet, sen-
tence, etc.). Finally, the retrieval message directly
precedes the expected completion and is meant to
reiterate what is needed for the task. For relation
extraction, similar to Schick et al. (2020), we also
define a label verbalizer which maps relation cat-
egories to plausible natural language phrases to
facilitate generation.

For each task, we manually create a set of alter-
natives for each prompt section and select their
best combination. We use leave-one-out cross-
validation (LOOCV) to choose the best combina-
tion of the prompt alternatives as well as the num-
ber of in-context examples included in the prompt.
To keep costs reasonable, we compare 8 prompt al-
ternatives for each dataset. A list of all the options
for each dataset can be found in Appendix D.

2.4.3 Logit Biases
In order to prevent GPT-3 from generating tokens
that are not in the original sentence, we use the logit
bias option from the OpenAI Completion API.2

This option allows us to add a fixed value to the
final probability of a specified set of tokens, re-
stricting the possible tokens that GPT-3 can gener-
ate. Specifically, we add a value of 10 to all tokens
present in the original sentence, our chosen sepa-
rator and the newline token (used to designate the
end of the entity list). Additionally, any predicted
entities that do not match any span in the original
sentence are discarded during post-processing.

2.4.4 Contextual Calibration
During preliminary studies, we found that each
set of few-shot in-context examples biased GPT-3

2https://beta.openai.com/docs/
api-reference/completions
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Task Train Dev Test Eval. Metric

BC5CDR-disease NER 4,182 4,244 4,424 F1 entity-level
BC5CDR-chem NER 5,203 5,347 5,385 F1 entity-level
NCBI-disease NER 5,134 787 960 F1 entity-level
JNLPBA NER 46,750 4,551 8,662 F1 entity-level
BC2GM NER 15,197 3,061 6,325 F1 entity-level

DDI RE 25,296 2,496 5,716 Micro F1
ChemProt RE 18,035 11,268 15,745 Micro F1
GAD RE 4,261 535 534 Micro F1

Table 1: Dataset statistics.

towards certain labels regardless of the test input.
Previous work (Zhao et al., 2021) proposes to ad-
dress these biases by calibrating the output using
a linear transformation which equalizes all label
probabilities generated by GPT-3 when conditioned
on a null prompt (a version of the original prompt
in which the test input is replaced by a null value
such as “N/A”). This linear transformation is then
used to update the output probabilities of the true
few-shot prompt, thereby removing the context in-
duced biases. We adopt this approach for RE and
create the null prompt by replacing the original sen-
tence as well as the subject and object entities in
the retrieval message with “N/A”.

2.4.5 Retrieval Module

Several studies (Liu et al., 2022; Rubin et al., 2022;
Shin et al., 2021) suggest that choosing few-shot
in-context examples for each test example dynami-
cally instead of using a fixed set of in-context ex-
amples yields strong improvements for GPT-3 in-
context learning. Following Liu et al. (2022), we
use a k-nearest neighbor (kNN) retrieval module
to select the most similar examples in our train-
ing set as the few-shot in-context prompt for each
test example. We opt for RoBERTa-large as the
encoder for our kNN retrieval module after pre-
liminary experiments showing its advantages over
other alternatives including biomedical PLMs (Lee
et al., 2019; Gu et al., 2021), sentence-transformer
models (Reimers and Gurevych, 2019) and a BM25
baseline (Robertson and Zaragoza, 2009).

3 Experiments

3.1 Datasets

We use all NER and RE datasets exactly as they
are used in the BLURB benchmark (Gu et al.,
2021) to evaluate biomedical IE. Table 1 lists the
datasets and their statistics. For processing and
train/dev/test splits, we refer the interested reader
to Section 2.3 of Gu et al. (2021).

3.1.1 Named Entity Recognition
BC5CDR. The BioCreative V Chemical-Disease
Relation corpus (Li et al., 2016) contains PubMed
abstracts with both disease and chemical annota-
tions; we evaluate models on each entity type sepa-
rately following previous work (Gu et al., 2021).
NCBI-disease. The Natural Center for Biotech-
nology Information Disease corpus (Doğan et al.,
2014) contains disease name and concept annota-
tions for 793 PubMed abstracts.
JNLPBA. The Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Appli-
cations dataset (Collier and Kim, 2004) contains
2,000 abstracts from MEDLINE selected and an-
notated by hand for gene related entities.
BC2GM. The Biocreative II Gene Mention corpus
(Smith et al., 2008) contains 17,500 sentences from
PubMed abstracts labeled for gene entities.

3.1.2 Relation Extraction
DDI. The DDI dataset (Herrero-Zazo et al., 2013)
consists of sentences from MEDLINE and Drug-
Bank labeled with drug-drug interactions catego-
rized into 4 true and one vacuous relation.
ChemProt. ChemProt (Krallinger et al., 2017)
is a dataset consisting of 1,820 PubMed abstracts
with annotated chemical-protein interactions cate-
gorized into 5 true and one vacuous relation.
GAD. The Genetic Association Database corpus
(Bravo et al., 2015) consists of scientific excerpts
and abstracts distantly annotated with gene-disease
associations.

3.2 Compared Methods

In our main experiments, we compare three pre-
trained language models, PubMedBERT-base (Gu
et al., 2021),3 BioBERT-large (Lee et al., 2019) and
RoBERTa-large (Liu et al., 2019), fine-tuned on
100 training examples, with GPT-3 in-context learn-
ing where each test example’s in-context prompt
was retrieved from the same 100 training exam-
ples.4 Both PubMedBERT and BioBERT were
pre-trained on a large corpus of PubMed articles;
PubMedBERT was pre-trained from scratch with
a biomedical-specific vocabulary while BioBERT
was initialized from a BERT checkpoint. We
use RoBERTa-large as a strong representative for
general-domain PLMs. We refer the interested

3We use the base version of PubMedBERT since larger
versions are not publicly available.

4We used the original davinci model for all GPT-3 ex-
periments.
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PubMedBERT-base BioBERT-large RoBERTa-large GPT-3 In-Context

Precision / Recall / F1 Precision / Recall / F1 Precision / Recall / F1 Precision / Recall / F1

BC5CDR-disease 67.43.7/ 67.51.2/ 67.42.4 62.95.0/ 69.03.0/ 65.84.1 66.91.7/ 68.74.7/ 67.71.8 57.92.3/ 35.02.9/ 43.62.2
BC5CDR-chem 86.11.9/ 88.64.8/ 87.31.3 84.82.6/ 87.33.3/ 86.01.1 82.11.8/ 87.31.0/ 84.61.3 74.72.5/ 71.42.2/ 73.00.3
NCBI-disease 68.54.7/ 67.62.4/ 68.02.9 59.610.6/ 67.06.1/ 63.08.7 64.33.7/ 68.76.7/ 66.45.1 55.26.7/ 49.06.1/ 51.41.4
JNLPBA 56.92.9/ 67.91.7/ 61.92.4 57.41.9/ 73.71.8/ 64.61.8 57.22.9/ 75.12.4/ 65.02.7 44.71.0/ 52.43.7/ 48.32.1
BC2GM 55.40.4/ 57.97.2/ 56.53.2 53.60.8/ 59.22.0/ 56.21.0 49.72.1/ 56.35.3/ 52.72.2 43.08.2/ 40.82.3/ 41.42.7

NER Average 66.91.0/ 69.90.9/ 68.20.8 63.71.8/ 71.30.4/ 67.10.9 64.01.6/ 71.20.5/ 67.20.9 55.13.6/ 49.70.6/ 51.51.3

DDI 19.92.0/ 79.13.0/ 31.82.7 17.31.4/ 75.41.2/ 28.21.9 25.52.2/ 77.93.5/ 38.42.6 9.61.1/ 48.61.9/ 16.11.6
ChemProt 17.92.2/ 62.03.9/ 27.72.9 19.06.8/ 60.68.2/ 28.78.7 22.00.3/ 69.71.2/ 33.40.4 15.90.8/ 68.91.9/ 25.91.3
GAD 63.76.6/ 57.27.9/ 60.27.4 63.25.8/ 72.75.7/ 67.65.8 64.14.0/ 78.511.5/ 70.35.6 51.40.9/ 92.34.2/ 66.01.8

RE Average 33.82.0/ 66.12.8/ 39.92.2 33.20.6/ 69.62.3/ 41.51.4 37.21.8/ 75.44.5/ 47.41.9 25.60.1/ 70.01.4/ 36.00.4

Table 2: Comparison of the true few-shot performance of fine-tuned BERT-sized PLMs with GPT-3 in-context
learning on biomedical IE datasets from the BLURB benchmark (Gu et al., 2021). We run all experiments on
at most 1,000 test examples from each dataset and use 3 different 100-example training sets to account for data
variance (standard deviation found in subscripts).

reader to Appendix E for results on the base ver-
sions of BioBERT and RoBERTa.
Implementation Details. We choose 100 train-
ing examples for our experiments as a reasonable
number of annotated examples with which to start
training an IE model for a new task.5 For the RE
tasks, we use a balanced set of 100 examples evenly
distributed over all relation types. All BERT-sized
PLMs are fine-tuned using the HuggingFace Trans-
formers library (Wolf et al., 2020). For our GPT-3
experiments, we use a maximum of 10 and 5 in-
context examples for NER and RE respectively to
remain within GPT-3’s input length limit. Due to
the high cost of GPT-3, we evaluate all methods
on at most 1,000 test examples from each dataset,
using the same subset for all methods. For RE,
the test examples are sampled in a stratified fash-
ion to reflect the original test set distribution of
relation types. Model and prompt design selection
are done following the true few-shot framework
we described in §2.2. To account for training data
variance, we run all experiments using 3 different
100-example training sets and report the mean and
standard deviation.

4 Results & Discussion

4.1 Main Results
Our main experimental results can be found in Ta-
ble 2. We first note that fine-tuned BERT-sized
PLMs outperform GPT-3 in-context learning across
all datasets, often by a large margin (on average
15.6-16.7% for NER and 3.9-11.4% for RE in F1).

5A smaller training size (e.g., 10) would likely work in
GPT-3’s favor but is less representative of practical applica-
tions: a serious practitioner would likely annotate 100 (com-
pared to 10) examples if it would bring significant gains.

For NER, even though GPT-3’s precision already
drops by an average of 10 points, recall drops by
twice as much. This indicates that entity under-
prediction is an important factor for GPT-3’s poor
in-context learning performance. In contrast, GPT-
3’s precision decreases much more steeply in the
RE tasks due in part to the poor performance on
the none relation class. In §4.4, we explore the
reasons behind these issues in greater depth.

Drilling down into the fine-tuning results, we
note that BERT-sized PLMs obtain reasonable per-
formance on the NER tasks, considering the ex-
tremely small size of the training sets. We obtain
strong performance in the mid 80s for the drug
extraction task (BC5CDR-chem) due to the high
lexical regularity of drug names (e.g., suffixes like
“-ate”, “-ine” or “-ol” are very frequent). On other
biomedical NER datasets such as disease and gene
extraction, performance stalls in the high and low
60s, respectively. This performance gap is likely
due to the higher lexical diversity present in gene
and disease names and is also observed in PLMs
fine-tuned on the full training sets, which typi-
cally achieve scores in the low or mid 80s com-
pared to low 90s for disease recognition (Gu et al.,
2021). It is also worth noting that the base ver-
sion of PubMedBERT outperforms the larger ver-
sions of the general-domain RoBERTa model and
biomedicine-specific BioBERT model, suggesting
that pre-training on domain-specific text and vocab-
ulary from scratch is especially beneficial for NER,
reinforcing the findings in Gu et al. (2021).

Given the higher complexity of the task, it is not
surprising that performance deteriorates for all eval-
uated methods on RE tasks (especially for DDI and
ChemProt since they contain more relation types
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and higher class imbalance). In contrast with the
NER task and previous work using larger training
sets (Gu et al., 2021), RoBERTa-large notably out-
performs PubMedBERT-base and BioBERT-large
in the RE task. This suggests that, in the low-
resource setting, larger-scale general-domain pre-
training offsets the advantage of domain-specific
pre-training in tasks which require more advanced
syntactic and semantic understanding such as RE.

4.2 Ablation Studies for GPT-3
In Tables 3 and 4, we present ablation studies
demonstrating the effectiveness of the techniques
used to improve GPT-3 performance. These studies
are done on a subset of 250 validation examples
from one representative dataset for each task. We
follow the LOOCV process discussed in §2.4.2
and use the same experimental setup as the main
experiments with the exception of using only one
100-example training set instead of three.

We ablate the kNN module for both tasks, replac-
ing it with a module which randomly assigns ex-
amples from the training set to each test example’s
in-context prompt. As we can see in both Table
3 and 4, removing the kNN module reduces GPT-
3 in-context learning performance. Performance
drops more steeply for RE than NER, indicating
that NER is more resilient to different in-context
examples. This is to be expected given that there
are only a limited number of completions to choose
from in the RE task and thus having similar exam-
ples (with likely the same class label as the test
example) would favorably bias GPT-3 towards pre-
dicting that class label. For NER, conversely, the
diversity of entities is large and so it is rare that a
training sentence would have similar completions
to a given test example in the low-resource setting.

F1 Precision Recall

Best Model 46.3 42.5 50.9
− kNN Module 45.3 42.7 48.2
− Logit Biases 42.6 66.7 31.3
− Both 38.7 60.2 28.5

Table 3: NER ablation study on BC5CDR-disease.

F1 Precision Recall

Best Model 26.1 16.1 68.0
− kNN Module 18.6 11.5 48.0
− Calibration 23.6 14.6 62.0
− Both 16.9 10.9 38.0

Table 4: RE ablation study on DDI.

In our NER-specific ablation study, we find that

Figure 3: Data efficiency curves for BC5CDR disease
NER dataset (left) and DDI RE dataset (right).

removing the logit bias option leads to a large drop
in performance even though precision improves.
This boost in precision is due to our post-processing
which removes predicted entities that are not in
the original sentence and eliminates false positives.
However, since invalid entities are generated in-
stead of the valid spans which could be correct, re-
call drops. When ablating the kNN module and re-
moving the logit bias option, we see an even greater
drop, indicating that they are complementary. As
for our RE-specific ablation study, removing the
calibration module results in a drop in both preci-
sion and recall, with or without the kNN module,
verifying its effectiveness.

4.3 Data Efficiency

In practice, choosing an optimal machine learn-
ing model requires considering not only a model’s
overall performance but also, crucially, its data
efficiency, i.e., how performance improves w.r.t
the amount of labeled data added. Previous work
shows that GPT-3 in-context learning performance
improves as dataset size increases when using kNN
retrieval (Liu et al., 2022). Thus, we explore
whether adding more training examples to sam-
ple from leads to performance improvements via
more relevant in-context examples. In this experi-
ment, we expand the training dataset to 200 and 500
training examples for one representative dataset
from each task: BC5CDR-disease and DDI. For
the BERT-sized PLMs, we carry out the same cross-
validation procedure for model selection as in the
main experiments. For GPT-3, we utilize the same
optimal prompt design obtained from the main ex-
periments to keep costs manageable. As shown in
Figure 3, for NER, we find that performance for
in-context learning improves at a similar rate as
the small PLMs, keeping the large gap between
them constant. On the other hand, for RE, GPT-3’s
performance quickly falls behind. This behavior
can be partially explained by the fact that none
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relation examples are more challenging to retrieve
by leveraging simple lexical features than their pos-
itive class counterparts.6 Overall, GPT-3 in-context
learning does not seem to yield a high return for
more data annotation to compensate for its lower
few-shot performance, so fine-tuning BERT-sized
PLMs is likely still a better choice in the medium
to high-data regime.

4.4 Detailed Error Analysis

In this section, our in-depth analysis reveals the
difficulty of in-context learning in handling the
null class,7 such as sentences that contain no
entities (for NER) and entity pairs that hold none
of the target relations (for RE). Such issues do not
seem to be specific to biomedical applications but
are likely detrimental for IE tasks in general.

4.4.1 NER Error Analysis
When applying an NER (or similar span extraction
tasks such as slot filling) model in practice on an
input sentence, it may, more often than not, contain
no relevant entity at all (what we call null class
examples). For example, up to 50% sentences in
the BC5CDR-disease dataset contain no disease.
However, existing work on GPT-3 in-context learn-
ing has ignored this issue. For instance, Zhao et al.
(2021) chose to remove all examples that contain
no relevant slots from their slot filling experiment.
Unfortunately, as we will show, such null class
examples turn out to be a major culprit of in-context
learning’s poor performance.

Original BC5CDR-disease

F1 Precision Recall

GPT-3 In-Context 43.6 57.9 35.0
RoBERTa-large 67.7 66.9 68.7

Modified BC5CDR-disease

F1 Precision Recall

GPT-3 In-Context 59.8 60.3 59.3
RoBERTa-large 70.4 68.0 72.9

Table 5: Evaluation on modified BC5CDR-disease
where sentences with no disease entity are removed.

To explore the effect of such null examples, we
compare GPT-3 in-context learning with fine-tuned
RoBERTa-large on a modified BC5CDR-disease
dataset in which all sentences containing no dis-
ease entities are removed. As shown in Table 5,

6See §4.4.2 for more discussion.
7It is named after the null hypothesis for its similar nature.

recall for GPT-3 improves by around 24%, com-
pared to only 4% for RoBERTa-large, indicating
that including null examples in a prompt biases
GPT-3 much more strongly to predict few entities
than adding them to the fine-tuning data.

Number of
Entities

P(null)
2-Shot

P(null)
3-Shot

Absolute
∆

%
Increase

Zero (null) 19.4 49.1 29.7 153%
One or More 15.8 40.9 25.1 159%

Table 6: We compare the null token probability as-
signed by GPT-3 to examples with zero and non-zero
entities in the BC5CDR-disease training dataset. We
run GPT-3 on 2-shot and 3-shot prompts (the 3-shot
prompts contain one extra null example to examine
its effect). We present the average over 3 randomly cho-
sen prompts.

We hypothesize that this bias is due, at least in
part, to the fact that GPT-3 in-context learning must
infer that relevant entities should only be predicted
if they are present in the given sentence, in contrast
with smaller PLMs using the token-classification
formulation. In order to examine this hypothesis
more closely, we simplify our experimental setting
to isolate the effect that an additional null ex-
ample has on GPT-3’s predictions. We run GPT-3
on the BC5CDR-disease training dataset without
the k-NN retrieval module, instead using the same
randomly chosen two-shot prompt (containing an
example with no entities and one with at least one)
across all examples. We then add one more ran-
dom example without entities to every prompt and
compare the probability of a null prediction in
each setting.8 As shown in Table 6, we find that,
while adding the second null example increases
the null probability slightly more for zero en-
tity examples than ones with entities in absolute
terms, accounting for the lower initial null prob-
ability that is assigned to examples with one entity
or more reverses this effect. The absence of a sig-
nificantly larger increase on the null probability
for examples with zero entities over others suggests
that GPT-3 struggles to infer the appropriate pre-
diction constraint for this task and rather increases
the null probability somewhat uniformly across
examples.

8We measure null prediction probability instead of per-
formance since entity-level F1 would not capture any informa-
tion about examples with no entities.
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Label Example Model Correct

Effect
Concurrent use of phenothiazines may antagonize the anorectic effect of diethylpropion. RoBERTa-large ✓

Concurrent use of phenothiazines may antagonize the anorectic effect of diethylpropion. GPT-3 ✓

None

Other strong inhibitors of CYP3A4 (e.g., itraconazole, clarithromycin, nefazodone, troleandomycin,
ritonavir, nelfinavir) would be expected to behave similarly.

RoBERTa-large ✓

Other strong inhibitors of CYP3A4 (e.g., itraconazole, clarithromycin, nefazodone, troleandomycin,
ritonavir, nelfinavir) would be expected to behave similarly.

GPT-3
✗

(Mechanism)

Table 7: We compare LIME-based saliency scores for two DDI examples predicted by GPT-3 in-context learning
and RoBERTa-large. Masking out words highlighted in blue changes the model’s current prediction (the color’s
intensity indicates the effect of removing each word on the final prediction). The drugs shown in bold are the head
and tail entities for the relation being queried. The second example shows that GPT-3 in-context learning is more
prone to spurious surface-level signals and thus suffers in correctly predicting the none class.

4.4.2 RE Error Analysis

We similarly examine the effect of the null class
for RE, which is denoted as the none relation in
the DDI dataset analyzed. As seen in Table 2, GPT-
3 in-context learning achieves high recall but low
precision on RE datasets that have multiple rela-
tion types such as DDI and ChemProt. Based on
the confusion matrices derived from LOOCV (Ap-
pendix F.1), the none relation in DDI is rarely pre-
dicted by GPT-3. This bias against the none class
greatly degrades the model’s precision given that
the DDI dataset is, rightfully so, heavily skewed
towards this class.

In order to further understand this bias, we use
LIME (Ribeiro et al., 2016)9 to analyze the predic-
tions for both GPT-3 and RoBERTa on an effect
example and a none example.10 The first example
in Table 7 was labeled correctly by both models by
relying on "anorectic effect" as a relevant signal.
For none examples, however, correct predictions
often require the use of more implicit structural un-
derstanding rather than reliance on surface level sig-
nals, as can be seen in the second example in Table
7. In this none example, we note that RoBERTa-
large’s prediction is strongly affected by the phrase
“of CYP3A4 (e.g.,” which helps express that the
drugs within the parenthesis are examples of the
same drug class and therefore do not interact with
each other. This suggests that RoBERTa correctly
leverages the linguistic structure of the sentence.
On the other hand, GPT-3’s incorrect mechanism
prediction appears to be supported by the phrase
“expected to behave similarly”, which is not rele-
vant to the relation between the drugs being queried.
This suggest that GPT-3 in-context learning is more
prone to spurious surface-level signals and thus suf-

9Our LIME process is described in Appendix F.3.
10Other similar examples are discussed in Appendix F.2.

fers in predicting the none class.

4.4.3 General Limitation or Domain Shift?
Our analysis suggests that GPT-3’s in-context learn-
ing faces a broader issue concerning the higher
complexity of null examples compared to posi-
tive examples. However, given that there is little
work thoroughly studying GPT-3 for general do-
main IE, we leave it for future work to determine to
what extent our findings stem from this null class
limitation, the biomedical domain shift, or some
other unforeseen reasons.

5 Related Work

In-Context Learning. GPT-3 in-context learning
(Brown et al., 2020) has been found to be com-
petitive against supervised baselines in a broad
range of tasks including text classification, natural
language inference, machine translation, question
answering, table-to-text generation and semantic
parsing (Brown et al., 2020; Zhao et al., 2021; Liu
et al., 2022; Shin et al., 2021). Many techniques
have been introduced to bolster its performance by
removing biases through calibration (Zhao et al.,
2021; Malkin et al., 2022) as well as by optimiz-
ing prompt retrieval (Liu et al., 2022; Rubin et al.,
2022; Shin et al., 2021), prompt ordering (Lu et al.,
2022) and prompt design (Perez et al., 2021).

Previous work exploring GPT-3’s in-context
learning performance for information extraction
tasks is limited. Zhao et al. (2021) evaluate smaller
GPT-3 models on a modified slot filling task in
which all examples have at least one entity of
interest. Additionally, Epure and Hennequin (2021)
evaluate the in-context learning performance of
GPT-2 on open-domain NER datasets, modified
to keep a specific ratio of empty to non-empty
examples. Our prompt design for biomedical
NER draws heavily from both of these works.
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As far as we know, our work is among the first
to comprehensively evaluate GPT-3’s in-context
learning performance on IE tasks.

Prompt Design. Apart from work on in-context
learning, several other research directions study
how to reformulate NLP tasks as language genera-
tion tasks. Schick and Schütze (2021) reformulate
text classification and natural language inference
tasks using a diverse set of manually constructed
cloze-style templates as prompts to improve few-
shot learning in smaller pretrained language mod-
els. Gao et al. (2021) explore a similar setting but
leverage an external language model to generate
such templates. Both of these demonstrate the im-
portance of using a variety of prompt designs.

In a related direction, Huguet Cabot and Navigli
(2021) achieve state-of-the-art performance on
relation extraction benchmarks by reformulating
it as an end-to-end sequence-to-sequence task. In
the biomedical domain, several works (Raval et al.,
2021; Phan et al., 2021; Parmar et al., 2022) follow
the multi-task sequence-to-sequence paradigm
introduced by Raffel et al. (2020) and outperform
previous methods on many tasks such as side
effect extraction, NER, RE, natural language
inference and question answering. Our prompt
design is heavily inspired by many of these efforts
to reformulate IE tasks as sequence-to-sequence
tasks.

True Few-Shot Learning. Perez et al. (2021)
argue that previous work overestimates the
few-shot learning abilities of PLMs by using large
validation sets for model and prompt selection.
This setting has been adopted by many works
in this direction in an effort to more accurately
estimate few-shot performance (Logan IV et al.,
2022; Schick and Schütze, 2022; Lu et al., 2022).

Biomedical In-Context Learning. Previous work
evaluating GPT-3’s in-context learning abilities
on biomedical NLP tasks suggests that using the
GPT-3 API directly yields poor performance in the
biomedical domain (Moradi et al., 2021). Their
work provides experimental results on 5 biomedi-
cal NLP datasets on distinct tasks including relation
extraction. In our study, we aim to provide a com-
prehensive and in-depth evaluation on biomedical
IE by using an established multi-dataset biomedi-
cal NLP benchmark and leverage recent in-context

learning techniques to obtain the highest possible
performance to our knowledge and ability. How-
ever, our results ultimately provide more evidence
for the inadequacy of GPT-3 in-context learning
for biomedical IE tasks, which cannot be easily
overcome with existing techniques. Interestingly, a
concurrent work (Agrawal et al., 2022) finds that
GPT-3 perform well on a different set of clinical IE
tasks, including one on biomedical evidence extrac-
tion that is clinical in nature. More work is needed
to ascertain the cause of this surprising gap in IE
performance between the clinical and biomedical
domains for in-context learning.

6 Conclusions

In this work, we explored the potential of GPT-3 in-
context learning for the high impact task of biomed-
ical information extraction (IE). Given that such a
paradigm would provide significant advantages for
biomedical IE applications, we spent considerable
efforts exploring available techniques that have
been proven effective for other in-context learn-
ing settings. We showed, however, that current
techniques do not enable GPT-3 in-context learn-
ing to surpass BERT-sized PLM fine-tuning on a
range of benchmark datasets for biomedical NER
and RE. Additionally, we discussed some poten-
tially general limitations of in-context learning in
biomedical IE to be explored in future work: its dif-
ficulty in handling the null class, such as entity-
less NER examples and vacuous relation examples
for RE. Apart from posing this question for further
study, we hope our work provides helpful guid-
ance to biomedical researchers and practitioners
towards more promising and cost-effective tools
for low-resource IE such as small PLM fine-tuning
or perhaps even directly fine-tuning GPT-3.

Limitations

While we have uncovered a large performance gap
between current GPT-3 in-context learning tech-
niques and standard fine-tuning in the true few-
shot setting, there are several important limitations
that are worth discussing. Our limited budget re-
stricted our study to a small set of prompt styles
and number of examples in the prompt. Although
our experiments suggest otherwise, it is possible
that having a larger prompt design search space
or using more examples per prompt could narrow
the gap between small PLM fine-tuning and GPT-3
in-context learning. Additionally, it is still unclear
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to what degree using larger validation sets, at the
cost of compromising the few-shot assumption, for
prompt selection could improve GPT-3’s in-context
learning performance. Perhaps more notably, the
kNN retrieval module used in this study relies on
whole sentence embeddings, as commonly done in
the existing literature. However, intuitively, tasks
like relation extraction require a more focused view
around the target entity pair. We speculate that de-
veloping a better retrieval module that is able to
incorporate such task-specific inductive biases will
likely be beneficial for in-context learning, but we
leave it for future work. Finally, it is important to
note that while contextual calibration (Zhao et al.,
2021) is shown to work well in some text classifica-
tion tasks, it is unclear whether other more recent
methods such as that by Malkin et al. (2022) could
better address GPT-3’s text generation biases or
if more task-specific calibration mechanisms are
necessary for IE tasks.
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A Experimental Setup Details

A.1 Named Entity Recognition
We follow the BIO tag formulation for NER and
use standard fine-tuning process for PLMs used in
Gu et al. (2021). Given a sentence containing n
tokens X = [x1, ..., xn], an NER system attempts
to predict a tag for each token: Y = [y1, ..., yn],
which can then be translated into a set of k enti-
ties. An encoder H is used to obtain a contextual-
ized representation for the sentence X: H(X) =
[v⃗1, ..., v⃗n]. Each embedding v⃗i is then used to pre-
dict yi using a linear layer. The encoder H and
the linear layer are then fine-tuned using a standard
cross entropy objective. We use NLTK (Bird et al.,
2009) to tokenize all NER sentences.

A.2 Relation Extraction
For RE we use the simplest formulation in stan-
dard fine-tuning, the subject and object entities for
each relation are replaced in the original sentence
by new special tokens [ENT1] and [ENT2]. An
encoder H is then used as in NER to obtain a con-
textualized representation H(X) = [v⃗1, ..., v⃗n] of
the now masked sentence. As is standard for text
classification tasks, the [CLS] token embedding is
then used to predict each relation type. As with the
NER task, a standard cross entropy loss is used to
fine-tune the encoder and linear layer.

B Computational Cost

For our experiments, we used 4 NVIDIA GeForce
RTX 2080 Ti GPUs. The number of parameters for
each model we used as well as the total GPU hours
and costs associated with using GPT-3 are listed in
Table 8.

# of Parameters
(millions)

Total GPU
Hours

Total
Cost

RoBERTa-large 354 338 -
PubMedBERT-base 100 138 -
BioBERT-large 345 344 -
GPT-3 (davinci) 175,000 - ∼$1,500

Table 8: Total GPU Hours and GPT-3 costs associated
with our experiments.

C Fine-Tuning Hyperparameters

We run 5-fold cross validation for each 100 sample
training subset to choose between all hyperparame-
ters listed in Table 9.

Learning
Rate

Batch
Size

Warmup
Ratio

Weight
Decay

Early Stopping
Checkpoint

Search
Space

1e-5
2e-5
3e-5
5e-5

16
32

0.0
0.06

0.0
0.01
0.1

5
10
15
20
25

Table 9: Hyperparameter search grid used with k-fold
cross-validation to obtain the optimal hyperparameters
for all PLM fine-tuning experiments.

D Prompt Designs

We run leave-one-out cross validation for each
100 sample training subset to choose between all
choices listed in Table 10. Prompt design selections
were completely independent for each training sub-
set to maintain the true few-shot learning setting.

E Base Models

As expected, the base models added to Table 11
underperform their large counterparts on almost all
datasets. Consistent with previous work (Gu et al.,
2021), benefiting from the biomedical-specific vo-
cabulary, PubMedBERT-base handily outperforms
other base models on the NER task (as well as some
large models on several tasks). However, on the RE
tasks, RoBERTa models perform the best. Since
RE tasks requires more holistic understanding of
the whole sentence, this suggests that RoBERTa
provides more general linguistic knowledge than
other PLMs specific to biomedicine.

F DDI Error Analysis

F.1 Confusion Matrices
Figure 4 shows the error distribution for both GPT-
3 and RoBERTa-large in a 100 example training
set for the DDI relation extraction dataset. We
obtain these by combining all folds from 5-fold and
leave-one-out cross-validation for RoBERTa-large
and GPT-3 respectively. From the figure, we can
see that GPT-3 in-context learning rarely predicts
the none class which indicates two drugs bare no
relation to each other. We note that RoBERTa-large
also suffers from a larger error rate for the none
class than other classes, indicating that this class is
challenging for both models, however, the gap is
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NER

Overall
Instructions

Sentence
Introduction

Retrieval
Message

# of
In-Context
Examples

Label Verbalizer

BC5CDR-disease
"" Sentence:

Diseases:
5

N/A

List the diseases mentioned
in the following sentences.

Scientific
Article Excerpt:

10

BC5CDR-chemical
"" Sentence:

Drugs:
5

List the drugs mentioned
in the following sentences.

Scientific
Article Excerpt:

10

NCBI-disease
"" Sentence:

Diseases:
5

List the diseases mentioned
in the following sentences.

Scientific
Article Excerpt:

10

JNLPBA
"" Sentence:

Genes:
5

List the genes mentioned
in the following sentences.

Scientific
Article Excerpt:

10

BC2GM
"" Sentence:

Genes:
5

List the genes mentioned
in the following sentences.

Scientific
Article Excerpt:

10

RE

Overall
Instructions

Sentence
Introduction

Retrieval
Message

# of
In-Context
Examples

Label Verbalizer

DDI

"" Sentence:
Drug 1: <DRUG1>
Drug 2: <DRUG2>
Interaction:

5

DDI-effect > effect
DDI-false > none
DDI-advise > advice
DDI-mechanism > mechanism
DDI-int > other

Classify the interaction
between drugs based on
the provided scientific
article excerpts.

Scientific
Article Excerpt:

How do <DRUG1>
and <DRUG2>interact
according to the previous
sentence? Which word
best describes their
interaction: advice, effect,
mechanism, other or none?
Interaction:

ChemProt

"" Sentence:
Drug: <DRUG>
Gene: <GENE>
Effect:

5

false > none
CPR:3 > activator
CPR:4 > inhibitor
CPR:5 > agonist
CPR:6 > antagonist
CPR:9 > substrate

Classify the effect drugs
have on the genes
mentioned in the following
scientific article excerpts.

Scientific
Article Excerpt:

What effect does the drug
<DRUG>have on gene
<GENE>according to the
previous sentence? Choose
from the following: none,
activator, inhibitor, agonist,
antagonist or substrate.
Effect:

GAD

"" Sentence:
Gene: <GENE>
Disease: <DISEASE>
Interaction:

5
0 > no
1 > yes

Determine if there is
any interaction between
the diseases and genes
mentioned in the
provided scientific
article excerpts.

Scientific
Article Excerpt:

Based on the previous sentence,
is there any interaction between
gene <GENE>and disease
<DISEASE>?

Table 10: For each element in our proposed prompt design (overall task instruction, sentence introduction and
retrieval message), we list every option used for each dataset. For our main experiments, we used LOOCV on 100
training examples to select among 8 combinations of our 3 design elements and the number of in-context examples
added to the prompt for each task. We also list the label verbalization used for each relation extraction dataset.

4539



PubMedBERT-base BioBERT-base RoBERTa-base BioBERT-large RoBERTa-large GPT-3 In-Context

Precision / Recall / F1 Precision / Recall / F1 Precision / Recall / F1 Precision / Recall / F1 Precision / Recall / F1 Precision / Recall / F1

BC5CDR-disease 67.43.7/ 67.51.2/ 67.42.4 60.65.1/ 66.15.7/ 63.02.0 60.42.8/ 61.94.4/ 61.23.6 62.95.0/ 69.03.0/ 65.84.1 66.91.7/ 68.74.7/ 67.71.8 57.92.3/ 35.02.9/ 43.62.2
BC5CDR-chem 86.11.9/ 88.64.8/ 87.31.3 77.83.3/ 85.14.6/ 81.20.5 74.63.8/ 84.12.1/ 79.01.2 84.82.6/ 87.33.3/ 86.01.1 82.11.8/ 87.31.0/ 84.61.3 74.72.5/ 71.42.2/ 73.00.3
NCBI-disease 68.54.7/ 67.62.4/ 68.02.9 58.85.4/ 65.92.7/ 62.14.0 60.63.2/ 61.94.6/ 61.23.5 59.610.6/ 67.06.1/ 63.08.7 64.33.7/ 68.76.7/ 66.45.1 55.26.7/ 49.06.1/ 51.41.4
JNLPBA 56.92.9/ 67.91.7/ 61.92.4 49.10.2/ 66.71.9/ 56.60.8 54.62.7/ 71.42.6/ 61.92.7 57.41.9/ 73.71.8/ 64.61.8 57.22.9/ 75.12.4/ 65.02.7 44.71.0/ 52.43.7/ 48.32.1
BC2GM 55.40.4/ 57.97.2/ 56.53.2 46.42.5/ 57.31.0/ 51.31.9 46.23.0/ 53.70.4/ 49.71.6 53.60.8/ 59.22.0/ 56.21.0 49.72.1/ 56.35.3/ 52.72.2 43.08.2/ 40.82.3/ 41.42.7

NER Average 66.91.0/ 69.90.9/ 68.20.8 58.60.9/ 68.21.6/ 62.81.0 59.32.8/ 66.61.7/ 62.62.2 63.71.8/ 71.30.4/ 67.10.9 64.01.6/ 71.20.5/ 67.20.9 55.13.6/ 49.70.6/ 51.51.3

DDI 19.92.0/ 79.13.0/ 31.82.7 18.90.6/ 78.34.4/ 30.50.9 19.61.3/ 68.83.9/ 30.51.6 17.31.4/ 75.41.2/ 28.21.9 25.52.2/ 77.93.5/ 38.42.6 9.61.1/ 48.61.9/ 16.11.6
ChemProt 17.92.2/ 62.03.9/ 27.72.9 18.70.9/ 59.45.0/ 28.40.9 18.10.7/ 56.81.6/ 27.50.7 19.06.8/ 60.68.2/ 28.78.7 22.00.3/ 69.71.2/ 33.40.4 15.90.8/ 68.91.9/ 25.91.3
GAD 63.76.6/ 57.27.9/ 60.27.4 60.55.0/ 62.814.3/ 61.28.1 60.21.4/ 71.220.1/ 64.49.1 63.25.8/ 72.75.7/ 67.65.8 64.14.0/ 78.511.5/ 70.35.6 51.40.9/ 92.34.2/ 66.01.8

RE Average 33.82.0/ 66.12.8/ 39.92.2 32.71.7/ 66.85.1/ 40.02.7 35.14.6/ 68.010.7/ 43.57.7 33.20.6/ 69.62.3/ 41.51.4 37.21.8/ 75.44.5/ 47.41.9 25.60.1/ 70.01.4/ 36.00.4

Table 11: Main experimental results from Table 2 with additional results from BioBERT and RoBERTa base models
for appropriate comparison.

Figure 4: Confusion matrices on 100 validation examples from DDI for GPT-3 (left) and RoBERTa-large (right).

much smaller for RoBERTa than GPT-3 in-context
learning.

F.2 Qualitative Analysis
In Table 12, we present 3 positive and 3 none
DDI examples respectively to help illustrate the
more challenging nature of the none class as well
as RoBERTa-large’s superior ability to attend to
more relevant implicit signals. In all three positive
examples, the saliency scores attributed by LIME
for RoBERTa and GPT-3 agree closely, suggest-
ing that both models are able to leverage relevant
surface level signals. The feature attribution for
the none examples, however, suggests that GPT-
3 continues leveraging surface level signals when
more complex sentence level information is needed
which RoBERTa seems to extract and use more
effectively.

The first none example shows GPT-3’s predic-
tion is affected by several irrelevant features such as
other drugs in the drug list (“channel”, “quinidine”
and “carbamazepine”), the initial phrase explain-
ing that specific studies have not been performed
and the word “metabolized”. In contrast, RoBERTa
is unaffected by the removal of drugs from the drug
list and is correctly affected by important signals
such as the removal of “CYP3A4 (eg.”, similar to

the example in Table 7. For the second none exam-
ple, GPT-3’s incorrect prediction is most strongly
affected by the words “binding”, “diuretic” and
“gastrointestinal” while for RoBERTa the effect of
removing words is more uniformly distributed over
the phrase “binding thiazide diuretics and reduc-
ing diuretic absorption from the gastrointenstinal
tract”. This indicates that RoBERTa’s prediction re-
lies on broader phrase level information rather than
word level signals. In the last example, we note
that removing the phrase “with L-tryptophan” from
the sentence would create an interaction between
the drugs being queried by yielding the phrase “Us-
ing these medicines may increase the chance of
side effects”. The fact that RoBERTa’s prediction
is strongly affected by the removal of this phrase
indicates that its decision boundary uses more com-
plex linguistic signals than GPT-3 which leverages
single words such as “inhibitors”, “Using” and “in-
crease” to arrive at its prediction.

F.3 LIME Details
We choose LIME (Ribeiro et al., 2016) to perform
our RE error analysis because it enables us to obtain
faithful local explanations for GPT-3 in-context
learning which are directly comparable with the
ones from RoBERTa or other small PLMs. We
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Label Example Model Correct

Advice
Concomitant use of bromocriptine mesylate with other ergot alkaloids is not recommended. RoBERTa-large ✓

Concomitant use of bromocriptine mesylate with other ergot alkaloids is not recommended. GPT-3 ✓

Advice

Consequently, it is recommended not to exceed a single 2.5 mg Vardenafil dose in a 72-hour period when used in combination with
ritonavir.

RoBERTa-large ✓

Consequently, it is recommended not to exceed a single 2.5 mg Vardenafil dose in a 72-hour period when used in combination with
ritonavir.

GPT-3 ✓

Effect
However, reports suggest that NSAIDs may diminish the antihypertensive effect of ACE inhibitors. RoBERTa-large ✓

However, reports suggest that NSAIDs may diminish the antihypertensive effect of ACE inhibitors. GPT-3 ✓

None

Although specific studies have not been performed, coadministration with drugs that are mainly metabolized by CYP3A4
(eg, calcium channel blockers, dapsone, disopyramide, quinine, amiodarone, quinidine, warfarin, tacrolimus, cyclosporine, ergot
derivatives, pimozide, carbamazepine, fentanyl, alfentanyl, alprazolam, and triazolam) may have elevated plasma
concentrations when coadministered with saquinavir;

RoBERTa-large ✓

Although specific studies have not been performed, coadministration with drugs that are mainly metabolized by CYP3A4
(eg, calcium channel blockers, dapsone, disopyramide, quinine, amiodarone, quinidine, warfarin, tacrolimus, cyclosporine, ergot
derivatives, pimozide, carbamazepine, fentanyl, alfentanyl, alprazolam, and triazolam) may have elevated plasma
concentrations when coadministered with saquinavir;

GPT-3
✗

(Other)

None

- Cholestyramine and colestipol resins: Cholestytamine and colestipol resins have the potential of binding thiazide diuretics and
reducing diuretic absorption from the gastrointestinal tract

RoBERTa-large ✓

- Cholestyramine and colestipol resins: Cholestytamine and colestipol resins have the potential of binding thiazide diuretics and
reducing diuretic absorption from the gastrointestinal tract

GPT-3
✗

(Mechanism)

None

Monoamine oxidase (MAO) inhibitors such as isocarboxazid (e.g., Marplan), phenelzine (e.g., Nardil), procarbazine (e.g.,
Matulane), selegiline (e.g., Eldepryl), and tranylcypromine (e.g., Parnate): Using these medicines with L-tryptophan may
increase the chance of side effects.

RoBERTa-large ✓

Monoamine oxidase (MAO) inhibitors such as isocarboxazid (e.g., Marplan), phenelzine (e.g., Nardil), procarbazine (e.g.,
Matulane), selegiline (e.g., Eldepryl), and tranylcypromine (e.g., Parnate): Using these medicines with L-tryptophan may
increase the chance of side effects.

GPT-3
✗

(Effect)

Table 12: LIME-based saliency scores for more DDI examples. We present 3 examples with true drug-drug
interactions predicted correctly by both models and 3 none examples predicted correctly by RoBERTa-large but
incorrectly by GPT-3 in-context learning. As in Table 7, masking out words highlighted in blue changes the model’s
current prediction and the color’s intensity indicates the strength of the effect on the final prediction. The drugs
shown in bold are the head and tail entities for the relation being queried.

use a modified version of the original LIME im-
plementation11 (Ribeiro et al., 2016) to carry out
our analysis in Appendix F.2 and §4.4.2. Due to
resource constraints, we modify the token removal
method in the original implementation from ran-
domly masking out tokens to a sliding window of
3 tokens. This allows us to look at how phrase
removal changes predictions while still using a rea-
sonable number of neighbor examples. Since we
use this tool for analyzing relation extraction only,
we do not remove the entities that are being queried.
For GPT-3 in-context learning, we keep the few-
shot prompts constant and use BLANK as the re-
placement token given that GPT-3 does not have a
mask token. We do not observe a large difference
in the saliency scores when this mask token was
changed. In our visualizations, the saliency score
for each word is normalized by the largest score
found for that example in order to make effects
more apparent.

11https://github.com/marcotcr/lime
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