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Abstract

Transformer-based language models achieve
state-of-the-art results on several natural lan-
guage processing tasks. One of these is tex-
tual entailment, i.e., the task of determining
whether a premise logically entails a hypoth-
esis. However, the models perform poorly
on this task when the examples contain nega-
tions. In this paper, we propose a new defi-
nition of textual entailment that captures also
negation. This allows us to develop TINA (Tex-
tual Inference with Negation Augmentation),
a principled technique for negated data aug-
mentation that can be combined with the un-
likelihood loss function. Our experiments with
different transformer-based models show that
our method can significantly improve the per-
formance of the models on textual entailment
datasets with negation – without sacrificing per-
formance on datasets without negation.

1 Introduction

Textual entailment (TE, also called Natural Lan-
guage Inference) is the task of recognizing whether
one natural language sentence (the premise) seman-
tically entails another one (the hypothesis). For
example, the premise “I live in Paris” entails the hy-
pothesis “I live in France”. TE is at the heart of nat-
ural language understanding, as it is closely related
to question answering and natural language reason-
ing (Dagan et al., 2005; Poliak, 2020). Nowadays,
the state of the art performance in TE is achieved by
transformer-based models such as BERT (Devlin
et al., 2019).

However, transformer-based models can get
derailed easily by trap words or syntactic variations
(see, e.g., Helwe et al. (2021) for a survey). In
particular, such models have difficulties with
negation in textual entailment (Hossain et al.,
2020; Hosseini et al., 2021). Here is an example
from Hossain et al. (2020)’s dataset:

Premise: Green cards are not beco-
ming more difficult to obt-
ain.

Hypothesis: Green card is now difficult
to receive.

BERT Prediction: Entailment
Label: Not Entailment

In this paper, we provide a principled analysis
of negation in textual entailment. In particular, we
propose a probabilistic definition of entailment that
can capture also negation. This allows us to de-
velop TINA (Textual Inference with Negation Aug-
mentation), an approach to automatically augment
TE training datasets with negated instances. TINA
uses logical deduction to generate new negated
training examples from existing ones. For example,
we can generate that “I don’t live in France” entails
“I don’t live in Paris”. We can then show that mod-
els finetuned on our augmented datasets are more
resilient to negation, especially when combined
with the unlikelihood loss. At the same time, the
finetuned models perform just as well on datasets
without negation. The contributions of our paper
are as follows:

• a novel probabilistic definition of entailment
that considers also negation;

• provably correct rules to derive new entail-
ment relationships;

• a method to automatically augment TE
datasets using these derivations;

• experiments showing that models that are fine-
tuned on the augmented datasets are more re-
silient to negation in TE.

The rest of the paper is organized as follows. In
Section 2, we review the related work. Section 3
describes TINA, our approach to defining textual
entailment, and to making transformer-based mod-
els robust to negation in textual entailment. In
Section 4, we evaluate our approach on different
datasets. We conclude in Section 5, and list limita-
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tions of our approach afterwards.
Appendix A contains the proofs of correctness,

Appendix B contains the the hyperparameters used
in our experiments, Appendix C shows a graphical
representation of our evaluation results, and Ap-
pendix D contains a supplementary table of deriva-
tions. All data and code is available on GitHub1.

2 Related Work

2.1 Negation in Language Models

Transformer-based models such as BERT (Devlin
et al., 2019) achieve state-of-the-art results on a
broad range of different NLP tasks, including ma-
chine translation, named entity recognition, and rec-
ognizing textual entailment. However, one of the
pitfalls for such models is negation (Ettinger, 2020;
Helwe et al., 2021; Kassner and Schütze, 2020). As
shown by Kassner and Schütze (2020) and Ettinger
(2020), a pretrained BERT-based model cannot dif-
ferentiate between affirmative and negative state-
ments. In addition, Niven and Kao (2019) have
found that a finetuned BERT relies on simple cue
words such as “not”, and can thus be misled. To the
best of our knowledge, the only attempt to improve
the robustness of language models to negation is
BERTNOT (Hosseini et al., 2021), a BERT-based
model that adopts an unlikelihood objective func-
tion during training for the task of language mod-
eling to learn to differentiate between affirmative
and negative sentences.

2.2 Data Augmentation

Data augmentation is a technique to automatically
create new instances in order to increase the size of
a training dataset. It can mitigate problems of low-
resource languages, class imbalance, and bias in
datasets. Data augmentation techniques can be cat-
egorized into rule-based approaches, model-based
approaches, and example interpolation (Feng et al.,
2021). We are interested here in the rule-based cat-
egory, which uses predefined rules to generate new
instances (Hariharan and Girshick, 2017; Schwartz
et al., 2018; Paschali et al., 2019; Wei and Zou,
2019; Xie et al., 2020; Şahin and Steedman, 2018;
Wang et al., 2022). Our approach is inspired by
the work of Wang et al. (2022), which uses logi-
cal rules for data augmentation. We go further by
logically deriving new rules for data augmentation,
and by combining the data augmentation with the

1https://github.com/ChadiHelwe/TINA

unlikelihood loss for finetuning transformer-based
models.

2.3 Textual Entailment

Textual Entailment is a task that was created to
evaluate the “understanding capabilities” of NLP
systems. The goal of this task is to determine
if a hypothesis can be inferred from a premise
(Dagan et al., 2005; Poliak, 2020). Different
textual entailment datasets have been proposed.
The most popular ones are SNLI (Stanford Nat-
ural Language Inference) (Bowman et al., 2015),
MNLI (Multi-Genre Natural Language Inference)
(Williams et al., 2018), and Pascal RTE (Dagan
et al., 2005; Haim et al., 2006; Giampiccolo et al.,
2007, 2008; Bentivogli et al., 2009).

SNLI is a large human-annotated corpus
consisting of over 550K premise-hypothesis
pairs that are labeled with one of the following
classes: entailment, contradiction, and neutral. The
premises of this dataset are image captions from
Flickr30k, while its hypotheses were generated by
human annotators. Here is an example from the
SNLI dataset:

Premise: A smiling costumed woman is
holding an umbrella.

Hypothesis: A happy woman in a fairy
costume holds an umbrella.

Label: Neutral

MNLI is a large dataset of around 433K instances
that are labeled in the same way as SNLI. However,
unlike SNLI, MNLI covers different text genres
such as fiction, telephone speech, and letters, and
has longer instances. It also has a large portion of
less grammatical text, as in this example:

Premise: yes now you know if if
everybody like in August when
everybody’s on vacation or
something we can dress a little
more casual or

Hypothesis: August is a black out month for
vacations in the company.

Label: Contradiction

RTE is much smaller than SNLI and MNLI, with
around 5K premise-hypothesis pairs. Different
from the other datasets, it has just two classes,
entailment and non-entailment. Here is an
instance:
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Premise: Valero Energy Corp., on
Monday, said it found "extensive"
additional damage at its 250,000
-barrel-per-day Port Arthur refinery.

Hypothesis: Valero Energy Corp. produces
250,000 barrels per day.

Label: Entailment

The state of the art achieves an accuracy of around
92-95% on these datasets. The best models are
EFL (Wang et al., 2021) for SNLI, T5-11B (Raffel
et al., 2020) for MNLI , and Google’s Pathways
Language Model (PaLM) (Chowdhery et al., 2022)
for RTE.

2.4 Negated Textual Entailment

The good performance of language models on
textual entailment datasets raises the question of
whether this good performance persists in the pres-
ence of negation (Hossain et al., 2020, 2022). Nega-
tion is generally underrepresented in TE datasets
(Hossain et al. (2020)), with 7.16% of SNLI’s sen-
tences containing a negation, 22.63% in MNLI,
and 1.19% in RTE. Therefore, Hossain et al. (2020)
created new benchmarks by taking instances from
SNLI, MNLI, and RTE and introducing a nega-
tion. They showed that language models perform
poorly on these datasets. Hosseini et al. (2021)
introduced the previously mentioned BERTNOT
model to improve performance. In our work, we
will show how that performance can be improved
even further by using a principled way to augment
the training datasets.

3 Our Approach: TINA

TINA (Textual Inference with Negation Augmen-
tation) is our proposed approach to build a lan-
guage model that is robust to negation in textual
entailment tasks. Our main idea is to finetune
transformer-based models on a textual entailment
dataset that has been augmented with negated in-
stances. For this purpose, let us first revisit the
definition of entailment.

3.1 Defining Entailment

We say that a text fragment A entails a text frag-
ment B (written A ▷ B) if, typically, a hu-
man reading A would infer that B is most likely
true (Dagan et al., 2005). Here, A is called the
premise and B is called the hypothesis. For our
purposes, we need a more formal definition of en-
tailment. i.e. a definition in mathematical terms

that matches the intuitive definition.
Entailment cannot be modeled as a material im-

plication A ⇒ B for two reasons: First, a material
implication A ⇒ B is true if B is true. Thus, “It
rains” would entail “Paris is in France” – which is
not the usual understanding of entailment. Proposi-
tional logic knows no satisfying way to avoid this.
We could write A ▷ B := (A ⇒ B) ∧ (¬A ⇒
¬B); but that is just equivalent to A ⇔ B, which
is not what entailment means. The second problem
with defining entailment as a logical implication
is that it does not allow for exceptions. For exam-
ple, “I obtained a university diploma” entails “I
have a university diploma”, even if diplomas can
be withdrawn in rare cases of fraud. Propositional
logic has no means to say that an implication holds
“usually” or “in the majority of cases”.

Therefore, previous work (Glickman et al., 2005)
has proposed a probabilistic definition of entail-
ment. In what follows, we assume a probabilistic
universe Ω and two events (the premise A and the
hypothesis B). Glickman et al. (2005) then defines

Definition 3.1 (Entailment (Glickman et al., 2005)).

A ▷G B := P (B|A) > P (B)

This definition says that A entails B if A increases
the probability of B. Unfortunately, this defini-
tion has several problems: First, it is symmetric.
We show in Proposition A.1 in the appendix that
(A ▷G B) ⇔ (B ▷G A). For example, “I live
in Paris” ▷G “I live in France”, because the prob-
ability of living in France increases to 100% once
we know the person lives in Paris. However, know-
ing that someone lives in France also increases the
probability that this person lives in Paris (from one
in several million cities in the world to one in sev-
eral thousand cities in France). Therefore “I live
in France” ▷G “I live in Paris” – which is not our
common understanding of entailment.

The second problem with Definition 3.1 is that
A ▷G B even if A increases the probability of
B only marginally. For example “I play in the
lottery” ▷G “I win the lottery”. This is because
the probability of winning the lottery increases by
playing in the lottery. Again, this is not our usual
understanding of entailment.

Therefore, we propose to add the condition
P (B|A) > θ, where θ is a threshold for the
acceptance of an entailment (say, 90%). Thus,
our definition becomes A ▷θ B := P (B|A)>
P (B) ∧ P (B|A)>θ. This also makes the defini-
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tion asymmetric, thus solving both the first problem
and the second problem.

However, the definition is still vulnerable to a
third problem: It may get carried away by hypothe-
ses B with a high baseline probability. For ex-
ample, most people survive the yearly Flu season.
Washing your hands further decreases the risk of
attracting the Flu (and thus increases the probabil-
ity of survival). Hence “Alice washes her hands
this Monday” ▷θ “Alice survives this year’s Flu
season”. This is because (1) washing hands indeed
increases the probability of survival, and (2) the
probability of surviving is already larger than θ (for
θ = 90%). However, we would not say that the
entailment holds. To guard against such cases, we
propose to add another condition, P (¬A|¬B) > θ.
Our definition is thus:

Definition 3.2 (Entailment).

A ▷ B := P (B|A) > P (B)

∧ P (B|A) > θ

∧ P (¬A|¬B) > θ

with a given constant parameter θ ∈ [0; 1].

We write A ̸▷ B to say that A does not entail B.
We can then use our notion of entailment to define
contradiction and neutrality.

Definition 3.3 (Contradiction).

A ▶ B := A ▷ ¬B

Definition 3.4 (Neutrality).

A ⊸ B := A ̸▷ B ∧A ̸▶ B

3.2 Deriving New Instances
We can now use our definition of entailment to
derive new premise-hypothesis pairs from a given
pair. In what follows, let us denote the negation
of a sentence A by ¬A. Formally, ¬A := Ω − A.
For example, the negation of “I live in Paris” is
“I don’t live in Paris”. The negation of natural
language sentences is a research topic on its own.
For example, the negation of Noam Chomsky’s fa-
mous nonsensical sentence “Colorless green ideas
sleep furiously” is not “Colorless green ideas do
not sleep furiously”, as both are nonsensical. We
refer the reader to Horn (1989); Löbner (2000);
Penka (2015) and Homer et al. (2019) for a discus-
sion. Here, we assume that both the premise and
the hypothesis of a textual entailment instance are
simple sentences that can be negated.

Now assume that we have A ▷ B. Then Defi-
nition 3.2 allows us to formally derive ¬B ▷ ¬A
(Proposition A.2 in the appendix). For example,
“I live in Paris” ▷ “I live in France”, and hence
“I don’t live in France” ▷ “I don’t live in Paris”.
This type of reasoning is known as Modus Tollens.
Table 1 shows other ways to derive new instances
from a given instance, together with references to
their proofs. A particularly interesting result is that
▶ is symmetric, i.e., (A ▶ B) ⇔ (B ▶ A).

Some of the derivations in Table 1 give us a label
that an instance cannot have, rather than telling us
which label it must have. We call such a label a
rejected label. For example, an instance with the
label A ▷ B (entailment) generates a new instance
with the rejected label ¬A ̸▷ B (non-entailment,
¬A does not entail B). This means that the true
label cannot be an entailment, and that it has to be
either neutral or a contradiction.

We are interested in entailments that logically
follow from A ▷ B, from A ▶ B, from A ⊸ B
and from A ̸▷ B, as these are the labels that com-
mon textual entailment datasets use: MNLI and
SNLI use the first three labels, while RTE uses
the first and last label. While Table 1 shows all
derivations that must hold, Table 8 (in the appendix)
shows all other hypothetical derivations, and proves
them wrong. We can thus use Table 1 to derive,
for a given labeled instance, new labeled instances.
Most of these contain negation.

3.3 Unlikelihood Loss
The previous step has given us a way to derive new
labeled instances – with either rejected or accepted
labels. For the rejected labels, we want to penalize
the likelihood of a language model predicting the
rejected label. For this purpose, we use the Un-
likelihood Loss. This loss has been used in many
tasks, including in language modeling (Hosseini
et al., 2021; Noji and Takamura, 2020) and text
generation (Welleck et al., 2019). In our case, the
loss is defined as:

L = − 1

N

N∑

n=1

vnlog(pn,yn)+(1−vn)log(1−pn,yn)

Here, n runs over all N instances of the dataset. For
each instance n and label y, pn,y is the score that
the model assigns to the label y for the instance
n. To each n we associate a ground truth label
yn, and we know whether this label is accepted
or rejected. To distinguish these two cases, vn is
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Original Derivation Proof Example

A ▷ B

A ▷ B - I live in Paris ▷ I live in France
A ▶ ¬B Per definition of ▶ I live in Paris ▶ I don’t live in France
¬B ▷ ¬A Proposition A.2 (Modus Tollens) I don’t live in France ▷ I don’t live in Paris
¬A ̸▷ B Proposition A.3 I don’t live in Paris ̸▷ I don’t live in France
¬B ▶ A Per definition of ▶ with Modus Tollens I don’t live in France ▶ I live in Paris
A ̸▷ ¬B Proposition A.4 I live in Paris ̸▷ I don’t live in France
B ̸▷ ¬A Proposition A.5 I live in France ̸▷ I don’t live in Paris
¬B ̸▷ A Proposition A.6 I don’t live in France ̸▷ I live in Paris

A ▶ B

A ▶ B - I live in Paris ▶ I live in Italy
A ▷ ¬B Per definition of ▶ I live in Paris ▷ I don’t live in Italy
¬A ̸▶ B Proposition A.7 I don’t live in Paris ̸▶ I live in Italy
B ▷ ¬A Equivalent to Proposition A.2 by definition I live in Italy ▷ I don’t live in Paris
B ▶ A Per definition of ▶ I live in Italy ▶ I live in Paris
B ̸▶ ¬A Reduces to A ▷ B′ ⇒¬B′ ̸▷ A with B′ = ¬B I live in Italy ̸▶ I don’t live in Paris
¬B ̸▶ A Apply Proposition A.2 then A.3 I don’t live in Italy ̸▶ I live in Paris
A ̸▷ B Reduces to A ▷ B′ ⇒ A ̸▷ ¬B′ with B′ = ¬B I live in Paris ̸▷ I live in Italy

A ⊸ B
A ⊸ B - I live in France ⊸ I live in Paris
A ⊸ ¬B Proposition A.8 I live in France ⊸ I don’t live in Paris

A ̸▷ B
A ̸▷ B - I live in France ̸▷ I live in Paris
¬B ̸▷ ¬A Proposition A.9 I don’t live in Paris ̸▷ I don’t live in France

Table 1: Rules for deriving textual entailment instances. The propositions and their proofs are in Appendix A.

an indicator that takes the value 1 if the label is
accepted, and the value 0 if the label is rejected.
Our loss is thus the sum of the cross-entropy loss
of the accepted labels and the unlikelihood loss of
the rejected labels.

3.4 Dataset Augmentation

To augment a textual entailment dataset with
negated instances, we consider all instances one
by one. We first check if the instance consists of a
grammatically correct single-sentence premise and
single-sentence hypothesis. We use DistillBERT
(Sanh et al., 2019) to that end, a model that was
finetuned on the The Corpus of Linguistic Accept-
ability (COLA) dataset (Warstadt et al., 2019). If
the instance does not pass this test, we skip it. Oth-
erwise, we check if we can negate both the premise
and the hypothesis of the instance. We use the
method developed by Hosseini et al. (2021) for this
purpose, a rule-based approach with pre-defined
rules written in Semgrex (Chambers et al., 2007).
It takes as input a sentence with part-of-speech tags
(POS tags), the dependency parse, and the morpho-
logical features of the words, and it produces as
output a negated sentence. We used Stanza (Qi
et al., 2020) to get the POS tags, the dependency
parse, and the morphological features. Here is an
example: “The man is somewhere near the parade”

; “The man is nowhere near the parade” .
If both the premise and the hypothesis can be

negated, we derive possible new instances as per
Table 1. We illustrate this data augmentation
process with an instance from SNLI2:

Premise: The two boys are in martial arts
poses in an outside basketball
court.

Hypothesis: The two boys are outdoors.
Label: A ▷ B (Entailment)

Derivation Example A ▶ ¬B

Premise: The two boys are in martial arts
poses in an outside basketball
court.

Hypothesis: The two boys are not outdoors.
Label: Contradiction

Derivation Example ¬B ▷ ¬A

Premise: The two boys are not outdoors.
Hypothesis: The two boys are not in martial

arts poses in an outside basketball
court.

Label: Entailment

2Since SNLI instances are always about a given scene, we
added the determiner “the” here.

4119



Derivation Example ¬B ▶ A

Premise: The two boys are not outdoors.
Hypothesis: The two boys are in martial arts

poses in an outside basketball
court.

Label: Contradiction

Derivation Example ¬A ̸▷ B

Premise: The two boys are not in martial
arts poses in an outside basketball
court.

Hypothesis: The two boys are outdoors.
Label: Not Entailment

This last example should actually be labeled neu-
tral, as the boys can be outside without martial
arts poses. However, not all pairs of ¬A and B
are neutral when A ▷ B, they can also be in a
contradiction: with A=“I live in Paris” and B=“I
live in the capital of France”, we have A ▷ B, and
¬A ▶ B. The relation of ¬A and B thus cannot
be determined just by knowing A ▷ B. However,
our approach can still generate a rejected label that
can be used for training.

4 Experiments

We conducted several experiments to investigate
the robustness of models trained with our data aug-
mentation technique, TINA, for the task of textual
entailment with negation.

4.1 Settings

Datasets. We use the most common datasets for
textual entailment, namely Stanford Natural Lan-
guage Inference (SNLI) (Bowman et al., 2015),
Multi-Genre Natural Language Inference (MNLI)
(Williams et al., 2018), and Pascal RTE (RTE) (Da-
gan et al., 2005; Haim et al., 2006; Giampiccolo
et al., 2007, 2008; Bentivogli et al., 2009). Each
dataset comes with a Train dataset for training, and
a Dev dataset for development. Following Hos-
sain et al. (2020), we used the development dataset
as the testing set because the GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) bench-
marks do not provide gold labels for the test splits.

In addition, each dataset also has a negated vari-
ant Neg, created by Hossain et al. (2020) to evaluate
the understanding of negation in language models.
Each negated benchmark was created by randomly
selecting 500 premise-hypothesis pairs from the

Dataset Train Negated Train

SNLI 550,152 78,116
MNLI 392,702 199,648
RTE 2,490 2,308

Table 2: Number of instances in each training dataset
that were negated

Dataset Train Dev Aug Neg

SNLI 550,152 10,000 233,024 1,500
MNLI 392,702 9,815 601,441 1,500
RTE 2,490 277 2,408 1,500

Table 3: Number of instances in each dataset

datasets of SNLI, MNLI, and RTE. For each in-
stance, 3 new pairs were generated by adding the
negation “not”, as follows:

• Adding a negation to the premise and keeping
the original hypothesis

• Adding a negation just to the hypothesis and
keeping the original premise

• Adding a negation to the premise and the hy-
pothesis

Finally, for each dataset, we generate an augmented
variant Aug by our methodology from Section 3.
We made sure that the generated instances are not in
the negated benchmarks. Table 2 shows the number
of instances from the training set of each dataset
that were negated before deriving new instances.
Table 3 shows the sizes of the datasets.

Models. We want to see whether TINA makes
transformer-based models more robust to negation
in textual entailment. Our experiments cover the
following models:

BERT (Devlin et al., 2019) is a pretrained lan-
guage model that consists of an encoder block
of a stack of transformer layers. It was pre-
trained on two tasks: Masked Language Mod-
eling (MLM) and Next Sentence Prediction
(NSP). In our experiments we use BERT-Base
Cased with 110M parameters.

RoBERTa (Liu et al., 2019) is a pretrained model
that has a similar architecture to BERT but
achieves better performance on many NLP
tasks. In contrast to BERT, it was pretrained
longer with bigger batches on a larger dataset,
and only for the MLM task, by dynamically
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changing the masked tokens after each train-
ing epoch. In our experiments, we used
RoBERTa-Base with 123M parameters.

XLNet (Yang et al., 2019) is a transformer-based
model that was pretrained on a task called Per-
mutation Language Modeling (PLM). PLM is
the task of capturing bidirectional context by
training a model on all possible permutation
of words in a sentence. In our experiments,
we used XLNet-Base Cased with 110M pa-
rameters.

BART (Lewis et al., 2020) is a sequence-to-
sequence model composed of an encoder
block like BERT and a decoder block like
GPT. The pretrained task consists of recon-
structing a corrupted text to its original after
applying different noising functions such as
token masking, token infilling, and sentence
permutations. In our experiments, we used
BART-base with 139M parameters.

GPT-2 (Radford et al., 2019) is a model consisting
of a decoder block of transformers layers. It
was pretrained to predict the next word given
all the previous words in a sentence. GPT-2
has 1.5 billion parameters.

We finetune BERT (Base Cased), RoBERTa (Base),
and XLNet (Base Cased) on each training set and
evaluate them on each testing set. We use the same
hyperparameters as Hossain et al. (2020) for the
number of epochs, batch size, learning rate, and
weight decay. We recall them in Table 6. How-
ever, unlike the original work, we set the maximum
sequence length to 512 instead of 128. We also
applied our approach to BART (Base) and GPT-2.
We split the training dataset as 90/10 for training
and validation sets for these two models. We eval-
uated on each testing set with the best-performing
models based on the validation set. We carried out
a basic hyperparameter search and describe the hy-
perparameters that we found in Table 7. All models
were trained on an NVIDIA A100 GPU with 40GB
memory.

Competitors. The only other approach that
specifically targets negation in textual entailment is
BERTNOT (Hosseini et al., 2021). It was trained
to model negation in the MLM task, and then it
was finetuned on each TE training set. For refer-
ence, we also show the performance of a T5-Base

model. This model is very powerful, as it was
pretrained on a mixture of NLP tasks that include
textual entailment, coreference resolution, linguis-
tic acceptability, and semantic equivalence.

4.2 Results

Table 4 shows the performance of TINA applied to
different transformer-based models averaged over 3
runs. TINA– is a variant of TINA that does not gen-
erate instances with rejected labels. We show, for
each model, how the performance changes when
TINA– and TINA are used. We compute a binomial
confidence interval for each result (at a confidence
level of α = 0.05), based on the total number of
instances and the number of correctly predicted
labels.

The main outcome is that, on the negated
datasets, TINA– always improves the results, and
TINA improves the results even more. At the same
time, the augmentation techniques do not lower the
results significantly on the original datasets. This
is true across all models.

On the SNLI dataset, the improvement of the per-
formance is considerable, with gains up to 20 per-
centage points, depending on the model. On MNLI,
the gains are less. We assume that this is because
MNLI contains many ungrammatical sentences,
and also because it already contains some propor-
tion of negated training examples. Nevertheless,
the gains of TINA are still significant. On RTE,
TINA and TINA– are identical, as the dataset only
has two labels (entailment and non-entailment).
The confidence intervals on RTEDev are much
larger, because the dataset is much smaller. Nev-
ertheless, the gains on the negated dataset are sig-
nificant, and can reach up to 21 percentage points,
depending on the model.

For reference, we also show the performance of
an off-the-shelf pretrained T5-Base model. It has
a very good performance, and most notably out-
performs our competitor BERTNOT significantly
on the negated datasets. We assume that this is be-
cause it was pretrained on a large mixture of NLP
tasks. Nevertheless, our method comes close to T5
on RTE, and outperforms the T5 model on SNLI
and MNLI.

Most importantly, however, our approach serves
its purpose, in that it increases the performance of
transformer-based models on negated textual en-
tailment by a large margin, across different models
and all datasets. With this, our approach improves
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Model
SNLI MNLI RTE

SNLIDev. SNLINeg. MNLIDev. MNLINeg. RTEDev. RTENeg.

BERTNOT (Hosseini et al., 2021) 89.00±0.62 45.96±2.53 84.31±0.73 60.89±2.51 69.68±5.65 74.47±2.27

Pretrained T5-Base (Beam Search) 78.61±0.81 60.33±2.56 86.04±0.70 66.46±2.48 66.06±6.12 83.13±2.04

Pretrained T5-Base (Greedy Search) 78.29±0.81 61.40±2.48 85.61±0.71 67.00±2.42 67.87±6.08 82.60±2.00

BERT 89.19±0.62 49.10±2.55 83.38±0.75 65.21±2.45 67.62±5.83 58.30±2.54

+ TINA– + 0.0 + 3.56 - 1.33 + 4.29 + 0.84 + 21.63
+ TINA - 0.21 + 20.09 - 2.81 + 4.21 - -

RoBERTa 90.18±0.59 54.46±2.58 86.55±0.69 66.93±2.48 76.54±5.33 74.35±2.28

+ TINA– - 0.1 + 0.89 - 0.45 + 1.62 + 0.11 + 7.18
+ TINA - 0.05 + 13.05 - 0.45 + 2.04 - -

XLNet 89.98±0.60 53.77±2.56 85.76±0.70 67.06±2.48 70.15±5.75 68.08±2.41

+ TINA– - 0.26 + 2.31 - 0.31 + 3.03 - 5.66 + 6.65
+ TINA - 0.34 + 12.8 - 1.01 + 3.8 - -

BART 89.79±0.60 53.17±2.56 84.90±0.73 66.60±2.49 70.51±5.73 60.30±2.53

+ TINA– - 0.20 - 0.6 - 0.65 + 3.04 + 0.10 + 17.03
+ TINA - 0.09 + 17.6 - 1.37 + 3.66 - -

GPT-2 87.56±0.66 48.77±2.55 80.94±0.79 62.24±2.52 61.97±6.08 57.37±2.55

+ TINA– + 0.04 + 2.09 - 0.37 + 4.73 + 4.45 + 17.56
+ TINA + 0.01 + 6.67 - 0.42 + 5.93 - -

Table 4: Results of our approach applied to different language models on different textual-entailment datasets.
Accuracies are averaged across 3 runs. Significant changes have a gray background.

over the current state of the art (Hosseini et al.,
2021).

4.3 Qualitative Analysis

To better understand the performances of TINA,
we manually checked a sample of sentences from
each augmented dataset. For SNLI, we find that
the sentences are simple. They just contain one
verb, which is easy for Hosseini et al. (2021)’s
tool to negate. In contrast, MNLI and RTE have
longer and more complex premises, which are not
always grammatical. This leads to problematic
cases where the negation does not work, which we
group into the following categories:
Ungrammatical sentences cannot be negated

properly: “would i swim that river every
night twice if that’s what it took you know i
don’t care whatever it would take i have real
sympathy for those people i really do and you
can.” ; “would not i swim that river every
night twice if that ’s what it took you know i
don’t care whatever it would take i have real
sympathy for those people i really do and you
can.”

Conjunctions are negated only in their first con-
junct: “The motion set waves of nausea run-
ning through him, but he could see the doctor”

; “The motion did not set waves of nausea
running through him, but he could see the doc-
tor” . The same goes for adjectives and prepo-
sitions that take a role akin to a conjunction,
as in “despite concerns about the drinking wa-
ter”.

Verbs of assertion are negated, but not the as-
sertion itself: “The actor was outside a
movie theater in central London’s Leicester
Square, London’s Metropolitan Police said”
; “The actor was outside a movie theater in
central London’s Leicester Square, London’s
Metropolitan Police did not say”. In this case,
the negation does not work as intended, as
the main verb merely states the source of the
assertion. In other cases, the main verb may
indeed be the intended target of the negation.

Negation errors occur at times with Hosseini et al.
(2021)’s tool, as e.g. in “cannot not do” and
“has did not given”.

Our filtering step with DistillBERT (Sanh et al.,
2019) was apparently insufficient to remove the
ungrammatical sentences. For the conjuncts, we
found that the erroneous negation is mostly harm-
less: if a conjunction is negated only in its first
conjunct, that might still be the conjunct that is rel-
evant for the entailment. The same goes for verbs
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of assertion: the entailment may sometimes target
the fact of asserting something (in which case the
negation works correctly). Negation errors, too,
may be harmless: while these can disturb a hu-
man reader, they may still yield useful signals for a
machine learning model.

The negation of sentences thus remains a chal-
lenge in practice. It is, however, largely orthogonal
to our contribution of creating negated training ex-
amples for textual entailment. We are thus hopeful
that an improvement of these tools will confer even
higher performance gains to TINA.

5 Conclusion

In this paper, we have studied the problem of nega-
tion in textual entailment in detail. We have argued
that the previous formal definition of textual en-
tailment is problematic, and we have proposed a
new probabilistic definition. Based on this defini-
tion, we have proposed TINA, a principled negated
data augmentation technique. TINA can be com-
bined with the unlikelihood loss to improve the ro-
bustness of language models to negation in textual
entailment tasks. Our experimental results across
different negated textual entailment benchmarks
show that our method can significantly increase the
performance of different transformer-based models.
Future work can explore how different loss func-
tions, such as contrastive loss, could be used with
our augmented datasets.
Acknowledgements. This work was partially
funded by ANR-20-CHIA-0012-01 (“NoRDF”).

Limitations

One limitation of our approach is that it presup-
poses premise-hypothesis pairs that consist of sim-
ple, negatable sentences. We already filter out sen-
tences that do not conform, but many cases of in-
correct negations remain (Section 4.3). The correct
negation of sentences thus remains an open chal-
lenge.

Our probabilistic definition of entailment can
also be further scrutinized. While we believe that it
filters out most counter-intuitive entailments, it may
still be possible to come up with counter-intuitive
examples that fulfill our definition. It is even pos-
sible that this cannot be avoided at all, as the tex-
tual entailment task itself suffers from a degree of
vagueness.

Finally, our method focuses purely on the gen-
eration of training instances. However, it may be

possible that specified models (one for negated in-
stances and one for affirmative instances) lead to
better results.
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A Proofs

Proposition A.1. For all events A and B,
if A ▷G B then B ▷G A (with ▷G defined in
Definition 3.1).

Proof. Let A and B be two events with A ▷G B. We have:

P (B|A) =
P (A ∩B)

P (A)
> P (B)

⇒ P (A|B) =
P (A ∩B)

P (B)
> P (A)

⇒ B ▷G A

Proposition A.2 (Modus Tollens). For all events
A and B, if A ▷ B then ¬B ▷ ¬A.

Proof. By definition of A ▷ B we have all the followings:
• P (B|A) > P (B)
• P (B|A) > θ
• P (¬A|¬B) > θ

We need to prove all the followings:
• P (¬A|¬B) > P (¬A)
• P (¬A|¬B) > θ
• P (¬¬B|¬¬A) > θ

The last condition is equivalent to P (B|A) > θ. Hence we
need to prove only P (¬A|¬B) > P (¬A).

To simplify the proof we introduce: a = P (A ∩ ¬B) b =
P (¬A∩B) c = P (A∩B) d = P (¬A∩¬B) (summarized
in Table 5). Then we have:

P (B|A) =
P (A ∩B)

P (A)
> P (B)

⇒ P (A ∩B)

P (A ∩B) + P (A ∩ ¬B)
> P (A ∩B) + P (¬A ∩B)

⇒ c

a+ c
> b+ c

⇒ 1− a− b− d

1− b− d
> 1− a− d

⇒ d

a+ d
> b+ d

⇒ P (¬A|¬B) > P (¬A)

Proposition A.3. For all events A and B, if A ▷ B
then ¬A ̸▷ B.

Proof. Assume that there exist A and B such that A ▷ B
and ¬A ▷ B. Then P (B|A) > P (B) and P (B|¬A) >
P (B). Hence, we have:

P (B) = P (A)× P (B|A) + P (¬A)× P (B|¬A)

⇒ P (B) > P (A)× P (B) + P (¬A)× P (B)

⇒ P (B) > P (B)

This is a contradiction, which proves the claim.

Proposition A.4. For all events A and B, if A ▷ B
then A ̸▷ ¬B.

Proof. Assume A ▷ B and A ▷ ¬B. We have P (B|A) >
P (B) and P (B|¬A) > P (B). Hence P (B) > P (B). Con-
tradiction.

Proposition A.5. For all events A and B, if A ▷ B
then B ̸▷ ¬A.

Proof. If B ▷ ¬A then by Modus Tollens (Proposition
A.2), A ▷ ¬B. By proposition A.4 we have A ̸▷ ¬B.
Contradiction.

Proposition A.6. For all events A and B, if A ▷ B
then ¬B ̸▷ A.

Proof. If ¬B ▷ A then by Modus Tollens (Proposition
A.2), ¬A ▷ B. By proposition A.3 we have ¬A ̸▷ B.
Contradiction.

Proposition A.7. For all events A and B, if A ▶ B
then ¬A ̸▶ B.

Proof. By definition, our proposition is equivalent to (A ▷
¬B) ⇒ (¬A ̸▷ ¬B). This is true according to Proposition
A.3.

Proposition A.8. For all events A and B, if A ⊸
B then A ⊸ ¬B.

Proof.
A ⊸ B ≡ (A ̸▷ B and A ̸▷ ¬B)

≡ A ̸▷ ¬B and A ̸▷ ¬¬B
≡ A ⊸ ¬B

Proposition A.9. For all events A and B, if A ̸▷ B
then ¬B ̸▷ ¬A.

Proof. Assume A and B such that A ̸▷ B and ¬B ▷ ¬A.
Then by Modus Tollens (Proposition A.2), ¬¬A ▷ ¬¬B,
which we can restate as A ▷ B. Contradiction.

B ¬B
A c a

¬A b d

Table 5: Shorthand notations. For example, b is equal to
P (¬A ∩B).
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B Hyperparameters

Tables 6 and 7 show the hyperparameters that we used in our experiments (Section 4).

SNLI MNLI RTE
BERT RoBERTa XLNet BERT RoBERTa XLNet BERT RoBERTa XLNet

Epochs 3 3 3 3 3 3 50 10 50
Batch Size 32 32 32 32 32 32 8 16 8
Learning Rate 1e-5 1e-5 1e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Weight Decay 0.1 0.1 0.1 0 0 0 0 0 0

Table 6: Hossain et al. (2020) hyperparameter configurations

SNLI MNLI RTE
BART GPT-2 BART GPT-2 BART GPT-2

Epochs 10 10 10 10 10 10
Batch Size 32 32 32 32 8 8
Learning Rate 1e-5 1e-5 2e-5 2e-5 2e-5 2e-5
Weight Decay 0.1 0.1 0 0 0 0

Table 7: BART and GPT-2 hyperparameter configurations

C Figures

Figure 1 shows a graphical illustration of the performances in Table 4.
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Figure 1: Evaluation of different finetuning methods applied to different transformer-based models on the negated
textual entailment datasets. Accuracies are averaged across 3 runs.
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D Table of Derivations

Table 8 presents all derivations that are not in Table 1. We show for each of them that they do not hold.
This is done either by a counterexample, by reducing them to another derivation that does not hold, or by
showing they contradict other true derivations. As before, we use the notations from Table 5.

Original Derivation Counterexample, reduction, or proof Illustrative counterexample

A ▷ B

A ̸▷ B Trivial I live in Paris ▷ I live in France
A ▷ ¬B a = 0, b = 0, c = 0.125, d = 0.875, θ = 0 I live in Paris ̸▷ I don’t live in France
¬A ▷ B a = 0, b = 0, c = 0.125, d = 0.875, θ = 0 I don’t live in Paris ̸▷ I live in France
¬A ▷ ¬B a = 0.02, b = 0.72, c = 0.18, d = 0.08, θ = 0 I don’t live in Paris ̸▷ I don’t live in France
B ▷ A a = 0, b = 0.01, c = 0.01, d = 0.98, θ = 0.8 I live in France ̸▷ I live in Paris
B ▷ ¬A Contradicts propositions A.3 and A.2 (Modus Tollens) I live in France ̸▷ I don’t live in Paris
¬B ▷ A a = 0, b = 0, c = 0.01, d = 0.99, θ = 0 I don’t live in France ̸▷ I live in Paris
¬A ̸▷ ¬B a = 0, b = 0, c = 0.01, d = 0.99, θ = 0 I don’t live in France ▷ I don’t live in France
B ̸▷ A a = 0, b = 0, c = 0.01, d = 0.99, θ = 0 I live in France ▷ I live in France

A ▶ B

A ̸▶ B Trivial I live in Paris ▶ I live in Italy
A ▶ ¬B Reduces to A ▷ B′ ⇒ A ▷ ¬B′ with B′ = ¬B I live in Paris ̸▶ I don’t live in Italy
¬A ▶ B Reduces to A ▷ B′ ⇒¬A ▷ B′ with B′ = ¬B I don’t live in Paris ̸▶ I live in Italy
¬A ▶ ¬B Reduces to A ▷ B′ ⇒¬A ▷ ¬B′ with B′ = ¬B I don’t live in Paris ̸▶ I don’t live in Italy
B ▶ ¬A Reduces to A ▷ B′ ⇒¬B′ ▷ A with B′ = ¬B I live in Italy ̸▶ I don’t live in Paris
¬B ▶ A Reduces to A ▷ B′ ⇒ B′ ▷ ¬A with B′ = ¬B I don’t live in Italy ̸▶ I live in Paris
¬B ▶ ¬A Reduces to A ▷ B′ ⇒ B′ ▷ A with B′ = ¬B I don’t live in Italy ̸▶ I don’t live in Paris
¬A ̸▶ ¬B Reduces to A ▷ B′ ⇒¬A ̸▷ ¬B′ with B′ = ¬B I don’t live in Paris ▶ I live in Paris
B ̸▶ A Contradicts Proposition A.2 (Modus Tollens) I live in Italy ▶ I live In Paris
¬B ̸▶ ¬A Reduces to A ▷ B′ ⇒ B′ ̸▷ A with B′ = ¬B I don’t live in Paris ▶ I live in Paris

A ⊸ B

¬A ⊸ B a = 0.02, b = 0.69, c = 0.06, d = 0.23, θ = 0 I don’t live in France ̸⊸ I live In Paris
¬A ⊸ ¬B a = 0.02, b = 069, c = 0.06, d = 0.23, θ = 0 I don’t live in France ̸⊸ I don’t live in Paris
B ⊸ A a = 0.02, b = 0.72, c = 0.08, d = 0.18, θ = 0 I live in Paris ̸⊸ I live in France
B ⊸ ¬A a = 0.02, b = 0.72, c = 0.08, d = 0.18, θ = 0 I live in Paris ̸⊸ I don’t live in France
¬B ⊸ A a = 0.02, b = 0.69, c = 0.06, d = 0.23, θ = 0 I win the lottery ̸⊸ I play the lottery
¬B ⊸ ¬A a = 0.02, b = 0.69, c = 0.06, d = 0.23, θ = 0 I don’t live in France ̸⊸ I live in Paris

A ̸▷ B

A ̸▷ ¬B a = 0.01, b = 0.01, c = 0, d = 0.98, θ = 0 I live in Paris ▷ I don’t live in Italy
¬A ̸▷ B a = 0.01, b = 0.01, c = 0, d = 0.98, θ = 0 I don’t live in France ▷ I don’t live in Paris
¬A ̸▷ ¬B a = 0.02, b = 0.69, c = 0.06, d = 0.23, θ = 0 I live in France ▷ I don’t live in Paris
B ̸▷ A a = 0.01, b = 0, c = 0.01, d = 0.98, θ = 0.8 I live in Paris ▷ I live in France
B ̸▷ ¬A a = 0.01, b = 0.01, c = 0, d = 0.98, θ = 0 I live in Paris ▷ I don’t live in France
¬B ̸▷ A a = 0.01, b = 0.01, c = 0, d = 0.98, θ = 0 I don’t live in France ▷ I don’t live in Paris

Table 8: False derivations
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