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Abstract
Continual Language Learning (CLL) in mul-
tilingual translation is inevitable when new
languages are required to be translated. Due
to the lack of unified and generalized bench-
marks, the evaluation of existing methods
is greatly influenced by experimental design
which usually has a big gap from the indus-
trial demands. In this work, we propose the
first Continual Language Learning Evaluation
benchmark CLLE in multilingual translation.
CLLE consists of a Chinese-centric corpus —
CN-25 and two CLL tasks — the close-distance
language continual learning task and the lan-
guage family continual learning task designed
for real and disparate demands. Different from
existing translation benchmarks, CLLE con-
siders several restrictions for CLL, including
domain distribution alignment, content overlap,
language diversity, and the balance of corpus.
Furthermore, we propose a novel framework
COMETA based on Constrained Optimization
and META-learning to alleviate catastrophic
forgetting and dependency on historical train-
ing data by using a meta-model to retain the
important parameters for old languages. Our
experiments prove that CLLE is a challenging
CLL benchmark and that our proposed method
is effective when compared with other strong
baselines. Due to the construction of corpus,
the task designing and the evaluation method
are independent of the central language, we
also construct and release the English-centric
corpus EN-25 to facilitate academic research1.

1 Introduction

Training a multilingual Neural Machine Transla-
tion (NMT) model jointly in all the directions re-

∗ R. Xu and H. Wang are corresponding authors.
1The entire corpus is released at https://github.com/

HITSZ-HLT/CLLE

quires collecting in advance the parallel corpus
of all the languages, which is less practical due
to the continuously occurrence of the translation
requirement of the new languages. Adding new lan-
guages to a well-trained multilingual NMT model
is a resource-saving method compared with train-
ing from scratch. However, directly finetuning on
new languages will result in catastrophic forget-
ting of historical languages. Continual Language
Learning (CLL) methods (Berard, 2021; Garcia
et al., 2021; Lyu et al., 2020; Escolano et al., 2019,
2020, 2021), focus on gradually extending the lan-
guage capacity of multilingual NMT models with-
out forgetting old languages which is the major
challenge of CLL tasks.

The existing multilingual NMT evaluation
benchmarks (Akhbardeh et al., 2021; Qi et al.,
2018; Schwenk et al., 2021; Zhang et al., 2020)
focus more on multi-task NMT or continual do-
main learning (Thompson et al., 2019) but put little
emphasis on CLL restrictions. Hence, most of the
existing CLL methods (Berard, 2021; Garcia et al.,
2021) are evaluated on the traditional multilingual
NMT evaluation benchmarks and conducted on
a simple experiment (e.g. training a multilingual
NMT model and adding a specific new language)
which has a big gap from the realistic CLL. In the
industrial demands (Lyu et al., 2020), there are usu-
ally more new languages and families are required
to be continually learned in more continual learn-
ing stages. Due to the lack of CLL benchmark,
there are no rigorous evaluations of the CLL meth-
ods for the number of languages, language family
distribution, and learning order. The existed meth-
ods’ (Berard, 2021; Garcia et al., 2021; Lyu et al.,
2020; Escolano et al., 2019, 2020, 2021) experi-
ment settings such as the selection of the new and
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old languages, the availability of historical training
data, and the growth of model parameters are not
unified. However, the catastrophic forgetting ob-
served is sensitive to the experimental design more
than any inherent modeling limitations (Hussain
et al., 2021). Hence, it is urgent and necessary to
design a benchmark to unify the configurations of
the CLL tasks.

In this work, we propose the first CLL bench-
mark — CLLE for CLL in the multilingual NMT
scenario. CLLE consists of a Chinese-centric and
domain distribution-consistent multilingual paral-
lel corpus — CN-25, which is collected by extract-
ing and refining the CC-Matrix corpus (Schwenk
et al., 2021). Specifically, CN-25 includes 25 lan-
guages aligned with Chinese, 23 of which have
more than 650k sentence pairs. The corpus refine-
ment is processed with the text-based filter rules
and the LaBSE (Feng et al., 2022) multilingual
model. The content domain distribution of each
language is adjusted to be similar by adjusting the
number of samples for each topic clustered by K-
means.

We design the close-distance language contin-
ual learning (CLCL) task and the language family
continual learning (LFCL) task associated with the
CLLE benchmark to verify the CLL method on
disparate experiment settings. To be specific, in the
CLCL task, the new languages are from the learned
languages families, and the addition of new lan-
guages is needed at only one learning stage. In the
more challenging LFCL task, the new languages
are from the unseen languages families, and more
learning stages are introduced.

For the CLL tasks, we propose the COMETA
framework based on the Constrained Optimization
(Thompson et al., 2019; Aljundi et al., 2018) and
the META-learning (de Masson d'Autume et al.,
2019; Wang et al., 2020; Liang et al., 2022). We
train a CNN-based meta-model to predict the per-
formance of the NMT model in old languages ac-
cording to its parameters. Then we use the meta-
model to calculate the importance weights to retain
the language-specific embeddings (Qi et al., 2018;
Mathur et al., 2019; Liang et al., 2021) of old lan-
guages. Compared with standard constrained opti-
mization methods such as EWC (Thompson et al.,
2019) and MAS (Aljundi et al., 2018), COMETA
retains the knowledge of the old languages with-
out accessing the historical training data. And the
importance weights can be dynamically updated,

which is more flexible for the CLL process.
The main contributions of this work include:

• We introduce the first CLL benchmark CLLE
which includes the CN-25 corpus and two
CLL tasks, and the construction method of
the CN-25 corpus can be used for any central
language.

• We design two CLL tasks to verify the CLL
method on disparate experiment settings, and
the tasks are derived from the requirements in
real scenarios.

• We propose the COMETA method based on
constrained optimization and meta-learning,
which outperforms existing constrained opti-
mization methods without using the old train-
ing data.

2 Related work

Benchmarks in Multilingual Neural Machine
Translation In this section, we focus on multilin-
gual NMT benchmarks including Chinese. WMT
series (Bojar et al., 2016, 2017; Neves et al., 2018;
Barrault et al., 2019; Specia et al., 2020; Akhbardeh
et al., 2021) corpus includes the commonly used
of high-quality languages and most of them are
aligned with English. The corpus updates each
year, and the multilingual low-resource translation
corpus is now added such as the Indo-European
(Akhbardeh et al., 2021) translation. WAT series
(Nakazawa et al., 2014, 2015, 2016, 2017, 2018,
2019, 2020, 2021) provide a multilingual multi-
domain parallel corpus between Asian languages
and English, and the patent task includes a Chinese-
Japanese parallel corpus. FLORES-101 (Goyal
et al., 2022) includes the multilingual parallel cor-
pus of 101 languages, in which 3001 sentences
were extracted from English Wikipedia and trans-
lated into 101 languages by professional translators.
The corpus covers a variety of different topics and
domains, but it only has the test part. OPUS-100
(Zhang et al., 2020) is an English-centric dataset
sampled from the OPUS collection (Tiedemann,
2012) and covers a large variety of topics. CWMT
series (Yang et al., 2019; CCM, 2021) corpus pro-
vides the corpus of China’s ethnic minorities’ lan-
guages such as Mongolian, Tibetan, and Uyghur
aligned with simplified Chinese. However, the lan-
guage number is not enough to support Chinese-
centric CLL research. TED talks corpus (Qi et al.,
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2018) has 3540 (60×59) language pairs that rely on
volunteers to provide translations for public texts.
The content domain of TED corpus includes but not
limited to Technology, Entertainment, and Design.
Although many language corpora are aligned with
Chinese, the content’s overlap of different lan-
guages corpus can not meet the Chinese-centric
multilingual WMT models’ training requirements,
which are experimentally proved in Section 6.2.

The above benchmarks are designed for multi-
task multilingual NMT training or evaluation. Due
to limitations on language and content distributions,
they can not meet the CLL requirements. In Sec-
tion3.4, we compare CN-25 with the above bench-
marks in detail.

Continual language learning Due to the in-
troduction of Transformer to multilingual NMT,
adding new languages to translation models has
been increasingly studied in the past few years.
Thompson et al. (2019) use the diag Fisher ma-
trix as importance weights to retain the important
parameters for old tasks. Although it is a classi-
cal constrained optimization method designed for
continual domain learning, the idea is still suit-
able for the CLL scenario. Lyu et al. (2020) in-
troduces a modularized method by adding a new
language-specific encoder/decoder modules to the
multilingual NMT model, which can satisfy indus-
trial requirements. Similar architecture-based ap-
proaches (Escolano et al., 2019, 2020, 2021) have
proved valid in the CLL scenario, while the draw-
back is that the model size will grow concomitantly
as the task count increases. Garcia et al. (2021)
propose a “vocabulary substitution” approach to
augment untranslatable languages of the multilin-
gual NMT model. The core thought is reusing the
overlapped embedding parameters between new
and old multilingual vocabulary. And the author
declares that the success of the “vocabulary substi-
tution” approach is due to the large size vocabulary
of origin multilingual NMT model. Berard (2021)
proposes to add language-specific adapter mod-
ules and freeze the major structure when learning a
new language, and experimentally proves no degra-
dation of the existing language pairs. However,
learning a new long-distance language may be lim-
ited by the frozen major structure. Because these
models are executed in different continual learning
settings and evaluated by inconsistent methods, the
performance comparison is difficult to perform.

Rules / LaBSE

Model-based
evaluation

Chinese feature extraction

K-means 
Clustering Alignment CN-25CC-Matrix

Word2vec encodingChinese texts

Adjust rules 

Refine

Train Chinese 
Word2vec

Figure 1: The whole process of Chinese-centric parallel
corpus processing.

3 The CN-25 corpus

In this section, we introduce the domain-aligned
corpus CN-25 and compare it with existing multi-
lingual corpora. The processing pipeline of CN-25
is shown in Figure 1. In the first step, we utilize
the multilingual encoding model LaBSE and text-
based filter rules to refine the CC-matrix corpus.
Then we use a model-based method to evaluate
the refined corpus and the refinement process is
regulated according to the evaluation results. To
align the topic distribution of different languages,
we utilize the central language as the agent and
cluster the whole corpus into 100 topics through
K-means clustering. In each topic, the sentence
number is regulated according to the median value
and LaBSE score.

3.1 CC-Matirx data source
CC-Matrix (Schwenk et al., 2021) is a parallel cor-
pus containing a wide range of languages, which
is obtained from a large number of web snap-
shots through parallel corpus mining technologies.
Through exploiting the highly optimized FAISS
(Johnson et al., 2021) vector retrieval library and
language-agnostic BiLSTM (Artetxe and Schwenk,
2019) to encode and retrieve monolingual data, the
sentence pairs with a higher probability of trans-
lation relationship are preliminarily found. The
quality of the sentence pairs are further judged by
LASER 2 margin score with a threshold around
1.06.

3.2 Corpus refinement
LASER supports the encoding of more than 100
languages, but the language-agnostic BiLSTM is
not trained for translation ranking (Guo et al.,
2018). LaBSE (Feng et al., 2022) utilizes the com-
bination of pre-training and dual transformer en-
coder finetuning to boost the performance on the

2https://github.com/facebookresearch/LASER
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Figure 2: Correlation matrix of K-means topic distribution. Dark colors indicate low relevancy. Left: original
correlation matrix. Right: adjusted correlation matrix.

translation ranking task. We utilize it to re-score
the CC-Matrix dataset and refine the parallel corpus
with the threshold 0.8 which is selected manually
by inspecting the refined samples. Through man-
ual analysis, we find that parts of the corpus are
adulterated with other languages. We discard the
sentences containing too many foreign-language
texts according to the proportion of other language
characters.

3.3 Corpus domain alignment

The CLL task focuses more on processing lan-
guage expansion rather than domain shift which
is the main challenge of continual domain learn-
ing. Hence, the domain distribution alignment is
an important restriction of the CLL benchmark to
distinguish it from the benchmark of continual do-
main learning. We use the central language as the
agent to get the domain distribution of the refined
corpus. A word2vec (Mikolov et al., 2013) model
is trained on the monolingual sentences of the cen-
tral language to encode the sentences (averaging
the word embeddings in a sentence). After that, the
entire corpus is clustered into 100 topics (according
to the agent language) through the encoding and
the K-means clustering method. For each language,
we rank the sentences in each topic according to the
LaBSE score and only retain the sentences whose
scores are above the median value for all languages.
The correlation matrix of topic distribution before
and after adjustment is shown in Figure 2. The
valid and test set are sampled from the top 100 and
the top 100-150 sentences in each topic.

3.4 Compared with existing multilingual
corpus

We compare CN-25 with existing multilingual
benchmarks from multiple aspects including lan-
guage diversity, corpus amount, domain alignment,
and content overlap across languages. Table 1
shows the comparison of CN-25 with WMT-2022,
WAT-2022, CWMT-2022, TED talks, CC-matrix,
OPUS-100, and FLORES-101 benchmarks.

Language diversity and the count of sentences.
CN-25 includes 25 languages from 17 language
families. In each family, the typical and commonly
used languages are selected. In addition, the num-
ber of sentences in each language is controlled in
balance. Most languages (except for Tamil and
Swahili) have more than 650k sentences aligned
with Chinese. For the multilingual parallel corpus
including Chinese, as shown in Table 1, the cor-
pus size of CN-25 is greater than the widely used
corpora in CLL researches (Berard, 2021; Garcia
et al., 2021) such as TED and OPUS-100. And the
CN-25 corpus is the largest corpus satisfying the
domain alignment restriction.

Domain distribution alignment and content
overlap. The domain difference has a critical im-
pact on continual learning, which has been studied
in the continual domain learning scenario (Thomp-
son et al., 2019). In the CLL scenario, the do-
main distribution should be aligned to eliminate
the influence of domain differences. The content
overlap across languages refers to the central lan-
guage repetition across different language sentence
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Benchmarks Domain Content Language Sentence
alignment non-overlap diversity count (avg)

CCMT-2022 X ✓ 5 2.9m
WAT-2022∗ X ✓ 9 -
WMT-2022∗ X ✓ 10 -
CC-Matrix X ✓ 38 17.6m

TED† ✓ X 60 253k (en)
OPUS-100‡ X X 100 546k (en)

FLORES-101 ✓ X 101 3k

CN-25 ✓ ✓ 26 730k

Table 1: Compared with existed datasets from four as-
pects. Sentence count means the average count of all
translation directions. ∗We select the corpus of the gen-
eral machine translation task in WMT-2022 and the
corpus of the document-level translation task in WAT-
2022. †TED has average of 90k sentence pairs of Chi-
nese to/from other languages, and the average sentence
pairs of English to/from 20 commonly used languages
is about 253k. ‡OPUS-100 consists of 55M English-
centric sentence pairs covering 100 languages, and has
1000k English-Chinese pairs .

pairs. When trained on the content-overlapped cor-
pus, the central language sentences are repeatedly
learned in every translation direction, which in-
creases the overfitting risk of the central language.
None of the existing benchmarks considers both
constraints simultaneously. For instance, the TED
and FLORES-101 corpus translate a sentence from
one language to multiple languages. Although the
domain distribution of different languages is coin-
cident, the content overlap problem appears. We
experimentally analyze it in Section 6.2.

4 The continual language learning tasks

We then introduce two challenging tasks for CLL in
our benchmark with different language families and
CLL stage settings. Both the language families and
the number of learning stages have an impact on the
catastrophic forgetting, as the former is empirically
analyzed in Appendix A and the latter is shown by
Hsu et al. (2018). CLL models are evaluated on
the newly and historically learned languages by the
averaged BLEU score after each learning stage.

CLCL task: close-distance language continual
learning. In this scenario, the whole CLL task
consists of two stages: training a multilingual NMT
model at the first stage and then continuing learning
new languages at the second stage. The learning
sequence in this scenario is relatively short and
no new language families are added to the subse-
quent stage. The languages learned at the second
stage belong to the language families of the previ-
ous stage. For instance, participants are required

to train a multilingual NMT model on three lan-
guage families including Germanic (Dutch, Ger-
man, Swedish), Romance (Portuguese, Spanish),
and Slavic (Russian, Czech) at the first stage, and
then continuously train on three languages includ-
ing English (Germanic), French (Romance), and
Polish (Slavic).

LFCL Task: language family continual learning.
In this more challenging scenario, we set more
learning stages and introduce new language fami-
lies to add difficulty to CLL approaches. For exam-
ple, the Germanic family (Dutch, German, English,
and Swedish), the Romance family (French Por-
tuguese, and Spanish), and the Slavic family (Pol-
ish, Russian and Czech) are learned in sequence.
In the long sequence of learning, the catastrophic
forgetting problem could be serious. Existing CCL
models which try to retain knowledge from previ-
ous stages to alleviate catastrophic forgetting may
suffer more time and memory consumption. Take
EWC, a classical continual learning approach, for
example, as the learning stage increases, the time
of traversing old training sets and computing will
significantly increase when calculating the fisher
matrix for the parameters.

Performance metric. We use the average BLEU
from and to Chinese (the centrical language) to
evaluate the performance of methods on CLL tasks,
which is the commonly used metrics in CLL task
(Berard, 2021). Let Li represent the set of his-
torical learned languages up to stage-i, j ∈ Li

represent the learned language,
−→
bi,j and

←−
bi,j be the

test BLEUs of zh->j and j->zh after the model has
finished learning stage-i, the average BLEUs from
and to Chinese are respectively defined as

Bi =
1

2|Li|
∑

j∈Li

←−
bi,j +

−→
bi,j (1)

The average BLEU B−1 of the last stage represents
the performance on the CLL task.

5 COMETA framework for continual
language learning tasks

We propose the COMETA framework which
is based on constrained optimization and meta-
learning. The core idea is to utilize a new network
to evaluate the importance of the NMT model’s
parameters for old languages, where we call the
new network as meta-model. The meta-model is
trained to learn the training process of the NMT

432



元学习：预测遗忘

MNMT-Net

Embedding

Encoder

Decoder

Loss-Translation

Meta-Net

Meta-Loss

loss.detach()

Optimizer-1 Optimizer-2Stage-�

freezed

Loss for stage � − �

frequency 
toekns

backward()

importance 
weight

Index �
Index �－�
Meta-Net

(Source, Target)

(Input, Label)

emb.detach()

Figure 3: Framework of COMETA at stage-i.

LN FC
Max 
Pool

���2∗�

Soft+���3∗�

���4∗�

concat

Figure 4: The structure of meta-model.

model according to the NMT model’s parameters
and loss. After that, the meta-model calculates
importance weights to constrain the change to the
embeddings of old languages when learning new
languages. The framework of COMETA at stage-i
is shown in Figure 3. At stage-i, we employ two
independent computation graphs to train the multi-
lingual NMT model and meta-model respectively.

5.1 Meta model and importance weight

As shown in Figure 4, the meta-model, a CNN-
based network, predicts the translation loss accord-
ing to the language-specific embeddings which cor-
respond to the language-specific frequent tokens.
The LayerNorm and max-pooling operators are
used to rescale and resize the embedding, and then
multiple CNN kernels of different sizes are utilized
to extract the features. The features are concate-
nated and fed to the fully connected layer. To pre-
dict the loss, we use the SoftPlus (Dugas et al.,
2000) activation function which only returns non-
negative values. The input of the meta-model is the
language-specific embedding, and the objective is
to fit the translation loss.

We use the meta-model to predict a loss value,
and compute the gradient of the language-specific
embedding respect to the predicted loss. Then we
use the gradient (absolute value) as the importance
weights to constrain the change to embeddings
when learning new languages. We only penalize
the change to embeddings because the embeddings
are more language-specific than the parameters of

encoder/decoder layers, and the bias of the embed-
ding (Cao et al., 2021) is observed when learning
new languages.

5.2 Training progress

As shown in Figure 3, at each stage-i we train
the multilingual NMT model fθ(·) and train
meta-model giϕ(·) apart in two calculation graphs.
The embedding and the translation loss (θiemb,
Li
translate) in the left calculation graph are used to

train the meta-model in the right calculation graph.
Meta model training. The embeddings θiemb are
fed to the meta-model giϕ(·) to predict a translation
loss value, and the meta loss (loss of training meta-
model) is computed by the mean square error loss
function MSE(·):

Li
meta = MSE(g

i
ϕ(θ

i
emb), L

i
translate) (2)

Then the parameter ϕ is updated by Adam (Kingma
and Ba, 2015) optimizer:

ϕ← Adam1(∂Li
meta/∂ϕ, ϕ)

Multilingual NMT model training. At the learn-
ing stage-i, the total loss Li of NMT model com-
bines the translation loss Li

translate and the knowl-
edge retain loss Li

retain, namely

Li = Li
translate + γ · Li

retain (3)

Given a batch of source sentences srci, correspond-
ing target sentences tgti and cross entropy loss
function CE(·), the translation loss of Multilingual
NMT model fθ(·) is

Li
translate = CE(fθ(src

i), tgti) (4)

The knowledge retain loss is

Li
retain = W i · |θiemb − θi−1

emb|2 (5)

where the importance weights Wi is computed by
the meta-model gi−1

ϕ (·) trained at stage-(i-1)

W i = α · |∂gi−1
ϕ (θiemb)/∂θ

i
emb|2+

(1− α) ·W i−1
(6)

The parameters θ is updated by another Adam opti-
mizer:

θ ← Adam2(∂Li
oss/∂θ, θ)
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5.3 Training tricks

When continually learning new languages, the pa-
rameters of encoder and decoder layers are frozen
at early steps, and only the embeddings of the NMT
model are updated, which makes the new language
embedding adapt to the well-trained encoder and
decoder layers. Otherwise, the parameters of the
encoder and decoder layers will be updated sharply,
which leads to quick forgetting.For the language-
specific embeddings, we design a dynamic frozen
strategy to gradually unfreeze the embeddings that
corresponded tokens are not commonly used. As
observed in Appendix A Figure 5-6, at the early
stage of learning a new language, the gradient of
the embedding is large and the update of the op-
timizer is drastic. Hence, freezing part of word
embeddings in the early steps can avoid updating
the parameters drastically and erasing the learned
knowledge stored in the embedding.

6 Experiments

In this section, we evaluate the CN-25 corpus and
the COMETA method. All the experiments are
evaluated under SacreBLEU (Post, 2018) metric.

6.1 Corpus analysis

We list the language information and parallel sen-
tence amount in Table 2. To get the specific domain
distribution, we train a FastText model to classify
the Chinese sentences aligned with each language
into several categories. Same with the K-means
clustering results (Figure 2 right part), the Tamil
corpus domain distribution also has a large differ-
ence from other languages. Because the original
Tamil corpus in CC-Matrix is too scarce, it is hard
to adjust the count of samples in each cluster to sub-
ject to the similar distribution. The categories dis-
tribution by FastText model is shown in Appendix
B Table 9.

6.2 Corpus Qualitative evaluation

We assess the corpus quality of the CN-25 through
manual and model-based methods. For intuitive
comparison, we present top 30 Chinese-English
sentence pairs with the highest LASER score of
CC-Matrix and CN-25.

To quantitatively verify the refined data qual-
ity, we use the sentence pairs in CN-25 and the
sentence pairs that are filtered out (regarded as low-
quality) to finetune the M2M-418M (Fan et al.,
2021) model respectively, then evaluate the model

under WMT2020 and TED benchmarks. We select
the seven commonly used languages (200k sen-
tences per language) to finetune the M2M-418m
model for 90k step (128 sentences per batch) , as
shown in Table 3, in each translation direction,
the corpus in CN-25 brings more performance
improvement. And the corpus filtered out even
damages the original M2M model performance
in several directions. It proves that the refining
process can filter out low-quality parallel sentence
pairs. Analogously, we evaluate the model under
the WMT-2020 benchmark (only English corpus
aligned with Chinese) through finetuning and train-
ing from scratch, as shown in Table 4, the corpus
with a higher LaBSE score still keeps the advan-
tage.

To verify the performance of models trained
on CN-25, we train two Chinese-centric multilin-
gual NMT models respectively on TED and CN-25.
Both models are trained on 10 languages for 450k
steps (128 sentences per batch) and evaluated on
the test dataset of TED. As shown in Table 5, we
find two models have competitive performance in
"Chinese->xx" directions, which proves that the
CN-25 corpus has high data quality. While the
model trained on TED severely overfits Chinese
due to the content overlap problem.

6.3 Baselines evaluation

We reproduce EWC (Thompson et al., 2019) and
MAS (Aljundi et al., 2018) baselines and compare
them with COMETA under six experiment settings
(2 model sizes * 3 replay settings). Table 6 and 7
present the average BLEU at each learning stage on
CLCL task and LFCL task. Compared with EWC
and MAS, COMETA does not use the source and
target sentences of the historical training corpus,
while the average performance of COMETA still
has an advantage, which proves the meta-model can
identify the important parameters for old languages.
However, in each replay setting, the catastrophic
forgetting is remarkable, especially in the zero-
replay scenario. It proves that the CLCL and LFCL
tasks are challenging and the CLL methods still
have a large room to improve.

7 Conclusion

We propose the first CLL benchmark — CLLE with
the CN-25 corpus and two CLL tasks — CLCL
and LFCL. Compared with existing multilingual
benchmarks, CLLE considers several restrictions
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ISO Language Family Script Bitext Number (k)
Train Valid Test Aligned Refined Original

nl Dutch Germanic Latin 831.0 4.8 9.7 845.5 4.23E+03 8.20E+03
de German Germanic Latin 773.7 4.7 9.6 788.0 9.55E+03 1.86E+04
en English Germanic Latin 643.6 4.4 9.2 657.2 4.51E+04 7.14E+04
sv Swedish Germanic Latin 826.2 4.9 9.7 840.8 3.43E+03 7.45E+03

fr French Romance Latin 787.6 4.7 9.5 801.8 1.28E+04 2.14E+04
pt Portuguese Romance Latin 795.5 4.7 9.5 809.7 7.15E+03 1.22E+04
es Spanish Romance Latin 741.1 4.6 9.5 755.2 1.51E+04 2.41E+04

ja Japanese Japonic Kanji;Kana 700.7 4.9 9.7 715.3 7.18E+03 1.24E+04
ko Korean Koreanic Hangul 668.3 4.8 9.7 682.8 3.00E+03 5.10E+03
vi Vietnamese Vietic Latin 780.7 4.8 9.8 795.2 4.31E+03 8.05E+03

ar Arabic Arabic Arabic 743.9 4.8 9.7 758.4 4.10E+03 6.58E+03
fa Farsi Iranian Arabic 706.7 4.9 9.8 721.4 1.67E+03 4.92E+03
he Hebrew Semitic Hebrew 639.1 4.9 9.8 653.7 1.78E+03 5.24E+03

fi Finnish Uralic Latin 838.5 4.8 9.7 853.1 2.35E+03 4.61E+03
hu Hungarian Uralic Latin 834.8 4.8 9.7 849.3 2.46E+03 4.79E+03
lt Lithuanian Baltic Latin 835.5 4.8 9.8 850.2 1.54E+03 3.34E+03

pl Polish Slavic Latin 858.6 4.8 9.7 873.1 3.42E+03 7.45E+03
ru Russian Slavic Cyrillic 768.8 4.7 9.7 783.3 6.96E+03 1.31E+04
cs Czech Slavic Latin 808.0 4.8 9.7 822.5 3.40E+03 6.56E+03

hi Hindi Indo-Atyan Devanagari 693.1 4.8 9.7 707.7 8.00E+02 2.27E+03
ta Tamil Dravidian Tamil 107.1 4.0 9.1 120.2 1.20E+02 1.10E+03

id Indonesian Malayo-Polyn Latin 811.2 4.7 9.7 825.6 3.15E+03 6.24E+03

sw Swahili Niger-Congo Latin 199.3 4.7 9.6 213.6 2.10E+02 1.07E+03

tr Turkish Turkic Latin 784.8 4.9 9.8 799.5 3.32E+03 7.22E+03

el Greek Hellenic Greek 807.3 4.8 9.7 821.8 2.45E+03 4.97E+03

Table 2: The statistics of 25 languages aligned with Chinese. Groups are divided according to M2M-100. "Original":
the amount of CC-matrix corpus. "Refined": the amount of corpus after rules filtering, and LaBSE refining.
"Aligned": amount of corpus of domain alignment.

for CLL, including domain distribution alignment,
content overlap, language diversity, and the bal-
ance of corpus. For the CLL tasks, we introduce
a novel method COMETA based on constrained
optimization and meta-learning to retain the im-
portant parameters for old languages through the
meta-model. The experiments prove that CN-25 is
a high-quality corpus, that the CLL tasks are chal-
lenging and that our proposed method outperforms
other strong baselines.

Limitations

We discuss the limitations of the CN-25 corpus
and the COMETA method. For the CN-25 corpus,
the data quality of the refined corpus relies on the
LaBSE model, which prefers better on the high-
resource languages. Hence, we can’t guarantee
that each language of CN-25 has the same high-
quality corpus. Furthermore, the topic alignment is
a resource-consuming process. We need to cluster

nearly 1 billion sentences into 100 topics, if a new
corpus arrives, then the clustering process needs
to execute again. For the COMETA method, the
limitation is that the meta-model size increases with
the translation model size. And the meta-model
is hard to process the parameters with a complex
structure such as self-attention layers.

Ethics Statement

Training a multilingual NMT model from scratch
usually costs expensive computing resources, re-
searching CLL can effectively reduce resource con-
sumption and carbon emissions. And using the
meta-model to alleviate the catastrophic forgetting
provides a new perspective for studying continual
learning.
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M2M-418m FinetuneISO Dataset zh->xx xx->zh zh->xx xx->zh

CN-25 16.30 25.90en filtered out 14.90 22.03
15.10 22.41

CN-25 11.80 21.93de filtered out 10.60 19.11
11.30 19.42

CN-25 12.70 22.22fr filtered out 11.50 18.29
11.80 19.63

CN-25 8.00 17.49fi filtered out 7.40 16.06
7.30 15.08

CN-25 9.70 20.75cs filtered out 8.80 18.86
9.10 17.84

CN-25 11.20 19.54ru filtered out 10.10 17.65
10.20 17.39

CN-25 6.70 19.39tr filtered out 6.00 17.27
6.20 16.74

Table 3: M2M-418m is finetuned on CN-25 and filtered
out sentences, then evaluated on TED. The red font
means performance decline.

ISO Dataset M2M-418m Finetune From scratch

CN-25 18.8 10.0en filtered out 17.8
17.2 4.9

Table 4: M2M-418m is finetuned on CN-25 and filtered
out sentences, then evaluated on wmt20. The red font
means performance decline.

ISO xx->zh zh->xx
TED CN25 TED CN25

en 4.07 9.48 16.52 14.71
de 3.50 7.65 8.75 9.73
nl 3.45 7.76 9.94 9.46
sv 3.69 7.64 7.88 10.30
fr 3.94 8.12 16.69 9.63
pt 3.03 8.76 8.90 11.10
es 3.26 8.43 10.66 11.51
ja 1.96 4.69 1.44 0.65
ko 3.49 6.54 4.00 2.48
vi 3.66 7.49 12.80 14.50

Table 5: The performance of the transformer-base
trained on TED and CN-25 corpus respectively.
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A Analyze the continual language learning task

In this section, we empirically analyze the challenge in CLL. We train a multilingual NMT model based
on multilingual vocabulary released by M2M, then add new languages from different families. To be
specific, at the first stage, we train a multilingual NMT model on seven languages from three families
including Germanic (Dutch, German, Swedish), Romance (Portuguese, Spanish), and Slavic (Russian,
Czech) language families. At the second stage, we directly finetune the model on a new language and then
replay 2000 samples of each old direction. We execute the experiments on three new languages including
English (Germanic), French (Romance), and Polish (Slavic). As shown in Table 8, the old languages from
the same family with the new language have the minimum degree of forgetting. However, the forgetting
of all families is still remarkable.

A.1 Gradient visualization of the embedding
To investigate the reason for the remarkable forgetting, we visualize the gradients of language-specific
embeddings. We select 1000 frequent tokens of each language by traversing the entire corpus. Then, we
record the gradient of each embedding in the finetuning process and average the gradient along the feature
dimension. The visualization of gradients is shown in Figure 5, the vertical axis shows the frequent tokens
of different languages, the horizontal axis represents the training step of the new language.

Compare the magnitude of the gradient visualized in Figure 5, we can observe several phenomenons:

• If the new and old languages use different scripts, the gradient on the old languages’ embedding is
minimal. For example, Russian (ru, Slavic) uses Cyrillic script, and other languages use Latin script,
the magnitude of the gradient of Russian-specific embedding is very small when learning any new
languages.

• If the new and old languages use the same script, learning a new language will create a larger gradient
of the languages from the same family. For example, when learning English (en, Germanic), the
gradient of the Germanic languages (German, Dutch, Swedish) is large.

• At the beginning of learning a new language, the gradient magnitude is larger (in a darker color) than
the subsequent process.

Task zh-de zh-nl zh-sv AVG zh-pt zh-es AVG zh-ru zh-cs AVG zh-en zh-fr zh-pl

multi-tasks 11.79 13.61 13.63 13.01 18.26 18.77 18.52 11.66 9.21 10.43
+ en 6.13 6.96 6.97 6.69 9.34 9.33 9.33 6.96 4.14 5.55 22.79
+ fr 6.08 6.50 6.29 6.29 8.82 10.61 9.72 6.83 4.02 5.43 16.58
+ pl 5.99 5.87 6.50 6.12 9.27 9.38 9.32 7.75 4.65 6.20 9.63

Table 8: The influence of adding a new language on old languages. Languages in same color come from the same
family.

A.2 The semantic shift phenomenon
We guess that the above phenomenons are due to the BPE-based (Sennrich et al., 2016) multilingual
vocabulary. Under the multi-tasks scenario, employing a subword-shared vocabulary across multi-
languages can promote the semantic knowledge learning, multilingual semantic knowledge can be learned
from shared tokens embedding. While in the CLL scenario, shared token embeddings are trained across
multiple stages, and the new knowledge may wash out old knowledge. It is worth noting that the semantics
of embeddings does not change in the continual domain learning scenario. In the CLL scenario, the shared
token may represent different semantics in different languages. The language shared embedding will be
updated in new language learning stages, which brings more challenges for the CLL method. We call this
phenomenon as semantic shift.

To verify the existence of the semantic shift phenomenon, in Figure 6, we present the L2-Norm and
L2-Distance of embedding when continually learning the new languages. In each sub-figure, 1000 frequent
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tokens of new and old languages and 100 shared tokens (or less than 100 if not exist) are selected to plot
the curves. From the L2-Norm and L2-Distance curves, we observe that the shared token embedding
varies faster than the old languages’ embedding except for Russian (not Latin script), which proves the
existence of semantic shift. It is noticed that the semantic shift exists in the languages which use the
same script due to the BPE-based multilingual vocabulary. Inspired by the semantic shift phenomenon, to
reduce the catastrophic forgetting, we can 1) control the optimizer’s updating of the shared embedding
(the strategy of COMETA), or 2) utilize a new method to generate the multilingual vocabulary with fewer
shared tokens.
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Figure 5: Gradients of the language-specific embedding. The vertical axis shows the tokens of the old language, the
horizontal axis represents the finetuning step of new languages. The intensity of the color indicates the magnitude
of the gradient, red indicates a positive value while blue indicates a negative value.
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Figure 6: The L2-Norm and L2-Distance when finetuning new languages. The horizontal axis represents the
finetuning step. The L2-Distance is calculated according to step 0 and the current step.
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B The detail results and hyper-parameters of experiments

B.1 Text classification results by FastText

ISO Politics Education Fashion Sports Entertainme Technology Healthy Fiction Game Social Asset Stocks Lottery Economics Other

ar 26.91% 11.97% 8.15% 7.42% 5.49% 6.58% 6.38% 5.08% 4.04% 1.98% 2.29% 1.58% 0.58% 0.81% 10.73%
cs 20.56% 11.91% 8.57% 8.23% 6.68% 6.93% 6.96% 5.84% 4.74% 2.25% 2.68% 1.47% 0.58% 0.68% 11.89%
de 21.69% 10.74% 8.61% 7.97% 6.28% 7.78% 7.34% 5.48% 4.92% 1.86% 2.92% 1.54% 0.49% 0.65% 11.73%
el 21.29% 11.82% 8.39% 8.49% 6.57% 7.42% 6.04% 5.85% 4.51% 2.43% 2.11% 1.68% 0.58% 0.70% 12.13%
en 26.07% 8.62% 6.37% 10.40% 6.16% 7.09% 6.01% 6.65% 3.48% 1.79% 2.78% 1.69% 0.31% 0.69% 11.89%
es 24.99% 9.90% 7.69% 8.51% 5.98% 7.98% 6.70% 5.04% 4.37% 1.88% 2.66% 1.58% 0.43% 0.65% 11.63%
fa 15.75% 13.56% 11.42% 7.06% 9.11% 6.08% 5.09% 6.28% 6.18% 2.33% 1.66% 1.10% 0.66% 0.51% 13.20%
fi 16.52% 13.42% 9.88% 7.33% 7.72% 6.93% 6.69% 6.09% 5.57% 2.17% 2.52% 1.26% 0.62% 0.51% 12.78%
fr 22.50% 10.77% 8.89% 8.12% 6.43% 7.75% 6.68% 5.03% 5.44% 1.75% 2.74% 1.54% 0.52% 0.57% 11.29%
he 12.16% 13.04% 10.97% 8.84% 10.29% 5.21% 4.91% 6.52% 5.18% 3.07% 1.89% 0.95% 0.79% 0.32% 15.84%
hi 16.22% 12.64% 10.37% 8.55% 8.00% 5.51% 5.17% 7.43% 4.24% 3.01% 1.96% 1.16% 0.60% 0.55% 14.60%
hu 17.18% 12.98% 9.57% 7.63% 7.73% 7.45% 6.57% 5.28% 6.14% 2.15% 2.26% 1.42% 0.67% 0.54% 12.42%
id 18.61% 11.65% 9.47% 9.98% 7.06% 7.96% 5.56% 6.25% 5.09% 2.37% 1.93% 1.40% 0.54% 0.63% 11.49%
ja 18.58% 12.83% 9.84% 6.16% 9.09% 7.20% 5.69% 3.95% 6.99% 2.50% 2.00% 1.75% 0.74% 0.58% 12.11%
ko 11.45% 13.38% 12.72% 6.96% 9.88% 7.59% 5.58% 5.40% 8.02% 2.13% 1.95% 1.31% 0.75% 0.34% 12.53%
lt 18.45% 13.83% 9.43% 7.46% 7.45% 6.33% 6.32% 5.28% 5.05% 2.42% 2.13% 1.36% 0.65% 0.62% 13.22%
nl 18.41% 11.98% 9.86% 7.36% 6.86% 7.99% 7.24% 5.63% 5.54% 1.85% 2.91% 1.48% 0.52% 0.61% 11.76%
pl 17.62% 12.67% 9.64% 7.28% 7.61% 7.78% 6.95% 5.22% 5.92% 2.01% 2.37% 1.59% 0.63% 0.66% 12.04%
pt 22.08% 11.62% 8.60% 7.53% 6.22% 8.36% 6.59% 5.12% 5.35% 1.87% 2.44% 1.72% 0.49% 0.66% 11.35%
ru 26.95% 10.95% 7.96% 7.57% 6.82% 7.22% 5.72% 4.70% 4.50% 1.90% 2.20% 1.61% 0.49% 0.72% 10.70%
sv 15.14% 13.05% 10.64% 7.70% 7.52% 7.72% 7.15% 6.09% 5.94% 1.91% 2.61% 1.24% 0.58% 0.46% 12.25%
sw 20.56% 10.90% 7.36% 9.27% 8.05% 5.08% 4.18% 6.73% 5.41% 2.97% 1.80% 0.85% 0.77% 0.32% 15.75%
ta 5.08% 12.79% 10.01% 8.95% 14.10% 2.99% 2.56% 9.90% 6.71% 4.42% 1.18% 0.87% 1.22% 0.12% 19.10%
tr 13.94% 12.43% 11.16% 7.81% 8.79% 7.94% 5.93% 6.03% 6.90% 2.29% 1.87% 1.22% 0.60% 0.37% 12.73%
vi 16.97% 11.43% 10.15% 8.52% 9.01% 7.46% 5.05% 6.21% 6.38% 2.84% 1.69% 1.34% 0.61% 0.55% 11.79%

AVG 18.63% 12.04% 9.43% 8.04% 7.80% 6.97% 5.96% 5.88% 5.47% 2.33% 2.22% 1.39% 0.62% 0.55% 12.68%

Table 9: Text classification by FastText model which is trained by the THUCNews dataset. Percentages are
calculated by text classification based on aligned Chinese sentences. The distribution of Tamil is different from other
languages, which is consistent with the result (Figure 2 right par) of the topic distribution obtained by K-means
clustering.

B.2 The hyper-parameters of experiments for CLL tasks

Model Size Small Base

Multilingual NMT model
architecture transformer transformer
vocabulary M2M-100 vocab M2M-100 vocab
vocabulary size 128k 128k
train epoches 3 3
replay epoches 3 3
metric tool SacreBLEU SacreBLEU
encoder layers 3 6
decoder layers 3 6
dimension 128 512
decoder ffn dim 512 2048
heads 8 16
optimizer Adam Adam
high-frequency tokens 5000 5000
retain loss weight (γ) 5.0 5.0
use fp16 True True
learning rate 0.0005 0.0005
max source positions 256 256
share all embeddings True True
criterion label-smoothed-cross-entropy
label smoothing 0.1 0.1
dropout 0.1 0.1
accumulation steps 8 16
batch size 128 64
replay samples 0/1000/2000 0/1000/2000

Meta model (only for COMETA)
dimension 128 512
meta learning rate 0.001 0.001
parameters number 296705 1182209
criterion MSE MSE
dropout 0.5 0.5
kernal sizes (2,3,4) (2,3,4)
kernal number 256 256
pool operator avg-pool-1d avg-pool-1d
activation function Softplus Softplus

Table 10: The hyper-parameters of experiments
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C EN-25 corpus

We construct the EN-25 corpus with the same process as CN-25. Due to the large amount of English-centric
corpus, we only sample part of the corpus for domain alignment.

ISO Language Family Script Bitext Number (k)
Train Valid Test Aligned Sampled Refined Original

nl Dutch Germanic Latin 1780.2 5.0 10.0 1795.2 2000.0 4.28E+04 5.00E+04
de German Germanic Latin 1759.1 5.0 10.0 1774.1 2000.0 4.72E+04 5.00E+04
sv Swedish Germanic Latin 1744.1 5.0 10.0 1759.1 2000.0 3.56E+04 5.00E+04

fr French Romance Latin 1720.4 5.0 10.0 1735.4 2000.0 4.90E+04 5.00E+04
pt Portuguese Romance Latin 1700.9 5.0 10.0 1715.9 2000.0 4.80E+04 5.00E+04
es Spanish Romance Latin 1671.0 5.0 10.0 1686.0 2000.0 4.94E+04 5.00E+04

ja Japanese Japonic Kanji;Kana 1582.0 5.0 10.0 1597.0 2000.0 1.80E+04 4.09E+04
ko Korean Koreanic Hangul 1558.6 5.0 10.0 1573.6 2000.0 8.94E+03 1.94E+04
vi Vietnamese Vietic Latin 1625.2 5.0 10.0 1640.2 2000.0 2.42E+04 3.43E+04

ar Arabic Arabic Arabic 1597.4 5.0 10.0 1612.4 2000.0 3.66E+04 4.97E+04
fa Farsi Iranian Arabic 1720.0 5.0 10.0 1735.0 2000.0 1.44E+04 2.46E+04
he Hebrew Semitic Hebrew 1639.7 5.0 10.0 1654.7 2000.0 1.48E+04 2.52E+04

fi Finnish Uralic Latin 1731.5 5.0 10.0 1746.5 2000.0 2.26E+04 3.60E+04
hu Hungarian Uralic Latin 1713.0 5.0 10.0 1728.0 2000.0 2.33E+04 3.64E+04
lt Lithuanian Baltic Latin 1585.3 5.0 10.0 1600.3 2000.0 1.41E+04 2.33E+04

pl Polish Slavic Latin 1726.0 5.0 10.0 1741.0 2000.0 3.66E+04 5.00E+04
ru Russian Slavic Cyrillic 1672.5 5.0 10.0 1687.5 2000.0 4.37E+04 5.00E+04
cs Czech Slavic Latin 1723.9 5.0 10.0 1738.9 2000.0 3.51E+04 5.00E+04

hi Hindi Indo-Atyan Devanagari 1637.7 5.0 10.0 1652.7 2000.0 7.66E+03 1.51E+04
bn Bengali Indo-Atyan Eastern-Nagari 1511.9 5.0 10.0 1526.9 2000.0 3.83E+03 1.01E+04
ta Tamil Dravidian Tamil 576.6 5.0 10.0 591.6 722.9 7.23E+02 7.29E+03

id Indonesian Malayo-Polyn Latin 1528.5 5.0 10.0 1543.5 2000.0 4.02E+04 5.00E+04

sw Swahili Niger-Congo Latin 1320.2 5.0 10.0 1335.2 1896.7 1.90E+03 5.76E+03

tr Turkish Turkic Latin 1683.2 5.0 10.0 1698.2 2000.0 2.74E+04 4.71E+04

el Greek Hellenic Greek 1665.2 5.0 10.0 1680.2 2000.0 3.22E+04 4.93E+04

Table 11: The statistics of 25 languages aligned with English (EN-25). The domain alignment is processed on the
sampled corpus. "Sampled": the number of sampled stentences from the refined corpus.
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1.00 0.88 0.86 0.86 0.85 0.79 0.73 0.85 0.76 0.67 0.65 0.36 0.08 0.12 0.55 -0.28 0.43 -0.43 0.59 0.47 0.61 0.52 0.68 0.61 -0.19

0.88 1.00 0.82 0.93 0.89 0.89 0.56 0.64 0.78 0.46 0.41 0.10 0.05 0.13 0.70 -0.09 0.52 -0.21 0.54 0.62 0.58 0.73 0.58 0.69 -0.26

0.86 0.82 1.00 0.70 0.72 0.63 0.63 0.73 0.67 0.72 0.56 0.38 -0.09 0.20 0.73 -0.23 0.69 -0.35 0.58 0.57 0.78 0.68 0.54 0.78 -0.32

0.86 0.93 0.70 1.00 0.95 0.96 0.63 0.68 0.81 0.46 0.48 0.13 0.03 0.02 0.56 -0.16 0.36 -0.23 0.54 0.57 0.46 0.62 0.68 0.54 -0.15

0.85 0.89 0.72 0.95 1.00 0.96 0.66 0.71 0.80 0.52 0.51 0.12 0.04 0.03 0.52 -0.19 0.38 -0.24 0.52 0.61 0.50 0.58 0.70 0.55 -0.11

0.79 0.89 0.63 0.96 0.96 1.00 0.56 0.61 0.75 0.40 0.41 0.02 0.06 0.02 0.53 -0.17 0.33 -0.16 0.45 0.59 0.40 0.62 0.62 0.50 -0.07

0.73 0.56 0.63 0.63 0.66 0.56 1.00 0.95 0.73 0.86 0.92 0.77 -0.04 -0.24 0.17 -0.48 0.09 -0.51 0.67 0.20 0.37 0.18 0.92 0.21 -0.15

0.85 0.64 0.73 0.68 0.71 0.61 0.95 1.00 0.75 0.86 0.90 0.71 -0.03 -0.12 0.24 -0.49 0.18 -0.53 0.69 0.20 0.45 0.22 0.86 0.29 -0.14

0.76 0.78 0.67 0.81 0.80 0.75 0.73 0.75 1.00 0.49 0.48 0.31 -0.04 -0.23 0.40 -0.21 0.26 -0.48 0.88 0.35 0.58 0.38 0.87 0.39 -0.28
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0.65 0.41 0.56 0.48 0.51 0.41 0.92 0.90 0.48 0.92 1.00 0.85 -0.02 -0.10 0.10 -0.52 0.06 -0.44 0.45 0.11 0.24 0.10 0.75 0.14 -0.08

0.36 0.10 0.38 0.13 0.12 0.02 0.77 0.71 0.31 0.79 0.85 1.00 -0.21 -0.28 -0.09 -0.48 -0.03 -0.55 0.45 -0.17 0.20 -0.12 0.59 -0.06 -0.18

0.08 0.05 -0.09 0.03 0.04 0.06 -0.04 -0.03 -0.04 -0.12 -0.02 -0.21 1.00 0.58 0.06 0.11 -0.11 0.16 -0.09 0.03 -0.06 -0.07 -0.03 0.09 0.30

0.12 0.13 0.20 0.02 0.03 0.02 -0.24 -0.12 -0.23 -0.02 -0.10 -0.28 0.58 1.00 0.43 0.32 0.37 0.41 -0.29 0.33 0.24 0.30 -0.34 0.47 0.18

0.55 0.70 0.73 0.56 0.52 0.53 0.17 0.24 0.40 0.32 0.10 -0.09 0.06 0.43 1.00 0.21 0.84 0.06 0.27 0.78 0.73 0.93 0.12 0.92 -0.17
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0.59 0.54 0.58 0.54 0.52 0.45 0.67 0.69 0.88 0.47 0.45 0.45 -0.09 -0.29 0.27 -0.22 0.23 -0.57 1.00 0.15 0.61 0.19 0.82 0.26 -0.24

0.47 0.62 0.57 0.57 0.61 0.59 0.20 0.20 0.35 0.28 0.11 -0.17 0.03 0.33 0.78 0.25 0.75 0.16 0.15 1.00 0.61 0.83 0.17 0.83 -0.19

0.61 0.58 0.78 0.46 0.50 0.40 0.37 0.45 0.58 0.44 0.24 0.20 -0.06 0.24 0.73 0.09 0.79 -0.30 0.61 0.61 1.00 0.60 0.37 0.79 -0.24

0.52 0.73 0.68 0.62 0.58 0.62 0.18 0.22 0.38 0.29 0.10 -0.12 -0.07 0.30 0.93 0.16 0.78 0.11 0.19 0.83 0.60 1.00 0.13 0.87 -0.21

0.68 0.58 0.54 0.68 0.70 0.62 0.92 0.86 0.87 0.66 0.75 0.59 -0.03 -0.34 0.12 -0.39 0.04 -0.55 0.82 0.17 0.37 0.13 1.00 0.14 -0.19

0.61 0.69 0.78 0.54 0.55 0.50 0.21 0.29 0.39 0.36 0.14 -0.06 0.09 0.47 0.92 0.20 0.86 0.00 0.26 0.83 0.79 0.87 0.14 1.00 -0.28
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1.00 0.96 0.97 0.95 0.94 0.92 0.97 0.98 0.94 0.95 0.97 0.88 0.79 0.78 0.85 0.61 0.84 -0.22 0.87 0.85 0.91 0.82 0.96 0.89 0.40

0.96 1.00 0.95 0.98 0.96 0.96 0.93 0.93 0.94 0.92 0.92 0.81 0.76 0.77 0.87 0.65 0.84 -0.07 0.84 0.85 0.91 0.86 0.91 0.89 0.40

0.97 0.95 1.00 0.92 0.92 0.90 0.94 0.94 0.94 0.95 0.94 0.84 0.73 0.81 0.88 0.62 0.87 -0.16 0.88 0.86 0.93 0.86 0.92 0.92 0.33

0.95 0.98 0.92 1.00 0.99 0.99 0.93 0.93 0.93 0.90 0.91 0.78 0.77 0.74 0.83 0.60 0.80 -0.08 0.80 0.84 0.86 0.83 0.92 0.85 0.39

0.94 0.96 0.92 0.99 1.00 0.99 0.94 0.93 0.94 0.90 0.91 0.78 0.77 0.74 0.83 0.61 0.80 -0.09 0.81 0.84 0.87 0.82 0.93 0.85 0.40

0.92 0.96 0.90 0.99 0.99 1.00 0.91 0.90 0.91 0.88 0.89 0.74 0.76 0.72 0.82 0.60 0.78 -0.05 0.77 0.83 0.85 0.82 0.90 0.83 0.38

0.97 0.93 0.94 0.93 0.94 0.91 1.00 0.98 0.93 0.95 0.98 0.89 0.83 0.74 0.80 0.59 0.79 -0.23 0.84 0.82 0.88 0.76 0.98 0.84 0.44

0.98 0.93 0.94 0.93 0.93 0.90 0.98 1.00 0.94 0.94 0.97 0.91 0.78 0.72 0.80 0.56 0.80 -0.30 0.87 0.81 0.88 0.77 0.98 0.84 0.41

0.94 0.94 0.94 0.93 0.94 0.91 0.93 0.94 1.00 0.90 0.91 0.84 0.73 0.68 0.83 0.60 0.80 -0.27 0.92 0.81 0.93 0.80 0.94 0.87 0.33

0.95 0.92 0.95 0.90 0.90 0.88 0.95 0.94 0.90 1.00 0.96 0.87 0.74 0.83 0.83 0.58 0.84 -0.11 0.81 0.84 0.88 0.80 0.92 0.87 0.41

0.97 0.92 0.94 0.91 0.91 0.89 0.98 0.97 0.91 0.96 1.00 0.90 0.83 0.76 0.79 0.57 0.79 -0.23 0.82 0.81 0.87 0.75 0.96 0.84 0.44
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Figure 7: Correlation matrix of K-means topic distribution on EN-25. Left: original correlation matrix. Right:
adjusted correlation matrix.
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