
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3655 - 3670
December 7-11, 2022 ©2022 Association for Computational Linguistics

PoeLM: A Meter- and Rhyme-Controllable Language Model for
Unsupervised Poetry Generation

Aitor Ormazabal1 Mikel Artetxe2 Manex Agirrezabal3 Aitor Soroa1 Eneko Agirre1
1HiTZ Center, University of the Basque Country (UPV/EHU)

2Meta AI 3University of Copenhagen
{aitor.ormazabal,a.soroa,e.agirre}@ehu.eus

artetxe@meta.com manex.aguirrezabal@hum.ku.dk

Abstract

Formal verse poetry imposes strict constraints
on the meter and rhyme scheme of poems.
Most prior work on generating this type of po-
etry uses existing poems for supervision, which
are difficult to obtain for most languages and
poetic forms. In this work, we propose an unsu-
pervised approach to generate poems that fol-
low any given meter and rhyme scheme, with-
out requiring any poetic text for training. Our
method works by splitting a regular, non-poetic
corpus into phrases, prepending control codes
that describe the length and end rhyme of each
phrase, and training a transformer language
model in the augmented corpus. The trans-
former learns to link the structure descriptor
with the control codes to the number of lines,
their length and their end rhyme. During in-
ference, we build control codes for the desired
meter and rhyme scheme, and condition our lan-
guage model on them to generate formal verse
poetry. Experiments in Spanish and Basque
show that our approach is able to generate valid
poems, which are often comparable in quality
to those written by humans.

1 Introduction

Despite the impressive generative capabilities of
large Language Models (LMs) (Brown et al., 2020;
Chowdhery et al., 2022; Zhang et al., 2022) au-
tomatic poetry generation remains a challenging
problem. Formal verse poetry, in particular, im-
poses strict constraints on the meter and rhyme
scheme of poems (Figure 1), which cannot be di-
rectly controlled in conventional LMs.

Prior work on generating formal verse poetry has
primarily focused on supervised approaches, lever-
aging existing poems to train LMs. This is often
combined with additional techniques to impose the
meter and rhyme constraints at inference time, such
as using finite-state automata to discard invalid can-
didates (Ghazvininejad et al., 2016), or generating
text right-to-left to better control the rhyming word

Pen|san|do | que el | ca|mi|no i|ba | de|re|cho,
vi|ne a | pa|rar | en | tan|ta | des|ven|tu|ra,

que i|ma|gi|nar | no | pue|do, aún | con | lo|cu|ra,
al|go | de | que es|té un | ra|to | sa|tis|fe|cho.

<LEN:11><END:echo>
<LEN:11><END:ura>
<LEN:11><END:ura>
<LEN:11><END:echo>

Figure 1: A formal verse poem and its associated
structure descriptor. The poem is the first stanza of a
Spanish sonnet, which must have 4 lines of 11 syllables
and follow an ABBA rhyme scheme. We use control
codes to describe such constraints, and train a language
model that can generate text conditioned on them.

(Lau et al., 2018; Jhamtani et al., 2019; Xue et al.,
2021). However, these approaches require poetic
text for training, which is difficult to obtain for
most languages and poetic forms.

In this paper, we propose an unsupervised ap-
proach to generate formal verse poetry. Our Poetic
Language Model (PoeLM) can be conditioned to
follow any desired meter and rhyme scheme, with-
out requiring any poem for training. As illustrated
in Figure 2, the key idea behind our method is that
any text can be divided into phrases, which will
each have a certain number of syllables and end
in a certain sound that can make it rhyme with
other phrases. While this structure will not follow
a regular pattern for standard text, as it would for
poetry, we can still annotate it automatically, and
train a language model that can be conditioned on
such structure descriptors. At inference time, we
build a structure descriptor for the desired meter
and rhyme scheme, and condition our language
model on it to generate formal verse poetry. To
improve results, we generate multiple candidates,
which are automatically filtered and re-ranked.

Our experiments in Spanish and Basque show
that our method is able to generate high quality
poems meeting the desired meter and rhyme con-
straints, with human evaluators ranking our system
higher than other humans in more than one third of
the cases. Our code is available at GitHub.1

1https://github.com/aitorormazabal/
poetry_generation

3655

https://github.com/aitorormazabal/poetry_generation
https://github.com/aitorormazabal/poetry_generation

En estos años se verá,
debido al cambio
climático, una subida de
temperatura.

<PREF><LEN:8><END:a>
<LEN:10><END:atico>
<LEN:11><END:ura></PREF>
En estos años se verá, <BRK>
debido al cambio climático, <BRK>
una subida de temperatura. <BRK>

TRANSFORMER LANGUAGE MODEL

<PREF> <LEN:8> </PREF> En… …

<LEN:8> <END:era> En estos… …

(a) Training on regular, non-poetic text. Example in Spanish.

<PREF>
<LEN:11><END:ora>
<LEN:11><END:ones>
<LEN:11><END:ones>
<LEN:11><END:ora>
</PREF>

TRANSFORMER LANGUAGE MODEL

<PREF> <LEN:11> <END:ora> </PREF>… …

<LEN:11> <END:ora> </PREF> w1
… …

Muerte, deidad temida, triunfadora, <BRK>
patrona de las desapariciones, <BRK>
amamantadora de los ladrones, <BRK>
patrona de la ametralladora. <BRK>

(b) Generation of formal verse poetry. Example in Spanish.

Figure 2: Proposed method. (a) During training, we split non-poetic text into phrases according to punctuation
marks, prepend control codes describing the length and end rhyme of each phrase, and train a transformer language
model on it. (b) During inference, we build a structure descriptor with control codes for the desired meter and rhyme
scheme, and condition our language model on them to generate formal verse poetry.

2 Background: formal verse poetry

Poetic traditions differ across languages and cul-
tures. In this work, we focus on formal verse po-
etry in Spanish and Basque,2 which impose strict
meter and rhyme constraints as follows:

• The syllabic meter specifies the number of
lines in the poem, as well as the number of syl-
lables that each line must contain.3 Spanish
syllabic meter allows for synalephas, where
two syllables can be merged into one when
one word ends in a vowel and the next starts
with one. For simplicity, we do not consider
synalephas when counting syllables, although
our method could easily be extended to ac-
count for them.

• The rhyme scheme specifies the pattern ac-
cording to which lines must rhyme. For in-
stance, the ABAB scheme requires the 1st line
to rhyme with the 3rd one, and the 2nd line to
rhyme with the 4th one. Two lines are consid-
ered to rhyme if they repeat the same sound
at their last syllables.4 In addition, rhyming
lines cannot end in the same word.

2The selected languages where narrowed down according
to the availability of publicly available high-quality syllabiza-
tion and rhyme detection systems (which discarded English),
as well as the fluency of the authors.

3Some traditions impose a stress pattern in addition to the
number of syllables, which is known as accentual-syllabic
meter. We do not consider this type of meter in our work, as it
is not common in Spanish and Basque.

4In Spanish, two words rhyme if their sounds are identical
from the last stressed vowel onwards. In Basque, two words
rhyme if their sounds match from the first vowel of the second

There are different poetic forms depending on
the specific meter and rhyme scheme that they im-
pose. For instance, the first stanza of a Spanish
sonnet must consist of four verses with 11 syllables
each, following an ABBA rhyme scheme. As illus-
trated in Figure 1, we use control codes to define
such meter and rhyme constraints, which we refer
to as structure descriptors.

3 Proposed method

As described in §2, we want our system to be able
to generate text that adheres to a specific structure.
The key idea behind our approach is that, similar
to formal verse poetry, any text adheres to a certain
implicit structure. In the case of non-poetic text the
structure will not follow any regular pattern, but we
can still extract it and build a structure descriptor
for it. We can then augment the non-poetic corpus
with these descriptors, and train a regular LM on
it (Figure 2a). The model thus learns to respect
the structure provided in the descriptor, which al-
lows us to generate formal verse poetry at inference
time, by conditioning the model on the appropriate
structure descriptor (Figure 2b).

We next describe the two main components of
our method: structure-aware training (§3.1) and
inference with filtered re-ranking (§3.2).

to last syllable onwards, and the following consonant groups
are considered to sound the same for the purposes of rhyme:
{p,t,k}, {n,m}, {s,z,x}, and {b,d,g,r}.

3656

3.1 Structure-aware training

Let X be the space of possible text sequences, and
S be the space of possible structure descriptors.
We can define a function s : X → P(S) that maps
each sequence of text into its corresponding set
of descriptors.5 We want to build a model that
can sample from P (X|c ∈ s(X)), that is, that can
sample text conditioned on an structure descriptor
c. In theory, one could do this through rejection
sampling, by repeatedly drawing sentences from
x ∼ P (X) until one of them satisfies c ∈ s(x).
However, this is intractable in practice, since the
probability of a randomly sampled text following
the desired structure is practically zero.

Instead, we train a LM that can be conditioned
on any given structure (see Figure 2a). To that end,
we start by annotating the implicit structure of a
regular, non-poetic corpus. We first split the corpus
in phrases, where we define a phrase as a sequence
of text delimited by either a newline or a punctua-
tion character (e.g., commas, colons or quotes). We
do this so that the rhyme words at the end of these
units correspond to natural stopping points. We
then group the text in blocks of n phrases, where n
is randomly sampled. For each block x, we choose
a structure descriptor cx ∈ s(x) that defines the
length and end rhyme of each of the phrases it
contains. We then create an augmented corpus
(cx1 , x1, cx2 , x2, ...) by interleaving the previously
generated structure descriptor cxi before its corre-
sponding text block xi (see Appendix A for more
details). Finally, we train a transformer LM on
the augmented corpus. The control codes in the
structure descriptors are treated as regular tokens,
and the model is trained with the standard next
token prediction objective.

3.2 Generation with filtered re-ranking

At inference time, we use the LM from §3.1 to
generate formal verse poetry in 3 steps:

1. Candidate generation. We specify the desired
meter and rhyme scheme as a structure descriptor,6

and use our LM to generate text conditioned on it
(see Figure 2b). We repeat the process k = 3000
times to generate k different candidates. In our

5Each sequence is mapped to a subset of S, as the same
sequence could be described by multiple descriptors.

6A rhyme scheme specifies which lines must rhyme, but
not what the rhyme sound should be. We thus generate a con-
crete structure descriptor from the given scheme by sampling
each rhyme sound independently from the five most common
rhyme sounds in the training corpus.

experiments, we provide the first line of the poem
to generate in addition to its structure descriptor,
which is useful to define the subject and make dif-
ferent systems easier to compare.

2. Filtering. In practice, some of the generated
candidates do not meet the given constraints or are
otherwise pathological. For that reason, we filter
candidates according to the following conditions:

1. #Line. The candidate must have the number
of lines specified in the structure descriptor.

2. #Slb. Each line must have the number of syl-
lables specified in the structure descriptor.

3. Rhyme. Each line must end in the rhyme
sound specified in the structure descriptor.

4. Rep. word. No two rhyming lines can end in
the same word.

5. BLEU. In order to prevent the model from
generating repetitive text, the maximum and
average BLEU across any two lines must be
be less than or equal to 35 and 20.

3. Re-ranking. We score the remaining candi-
dates for fluency using our LM, and output the
one with the highest score. Different from the first
step, we do not condition on the structure descrip-
tor when doing so, which gives a measure of the
general fluency.

We test the efficacy of the second and third steps
in the experiments.

4 Experimental design

We run experiments on Spanish and Basque. We
next detail the training details (§4.1) and the auto-
matic and human evaluation setup (§4.2 and §4.3).

4.1 Training details
Hyperparameters. We train transformer LMs
using the same settings as Brown et al. (2020). For
Basque, we train a 350M model with a learning rate
of 3 × 10−4 and linear decay over 300B tokens.7

For Spanish, we train a 760M model over 100B
tokens using a constant8 learning rate of 2.5×10−4.

7In practice, we stop training after seeing around 85B
tokens, when performance plateaus in the validation set.

8We initially planned to manually decay the learning rate
according to validation perplexity. However, we did not ob-
serve performance plateauing (presumably due to the large
corpus and our constrained compute budget), so the full train-
ing was done with a constant learning rate.

3657

Corpora. We use EusCrawl (Artetxe et al., 2022)
as our training corpus for Basque, which takes
2.5GB in plain text format, and a subset of 700GB
from mC4 (Raffel et al., 2019) for Spanish. Given
the small size of the Basque corpus, we combine
10 versions of the corpus using different random
seeds to generate the structure descriptors.

Preprocessing. We use SentencePiece tokeniza-
tion (Kudo and Richardson, 2018) with a 50k vo-
cabulary for each language, and reserve 8.5k tokens
for the control codes in the structure descriptors.
For syllabification and rhyme sound extraction we
use the rules provided by Agirrezabal et al. (2012),9

which are encoded as finite-state transducers imple-
mented in Foma (Hulden, 2009).

Models. In addition to our proposed model
(PoeLM), we train a regular LM for each lan-
guage as a baseline, using the exact same hyper-
parameters, tokenization, and corpora (without the
interleaved structure descriptors).

4.2 Automatic evaluation

We use Spanish poems from the 20th century sub-
set of the DISCO dataset (Barbado et al., 2021),
and Basque poems from the BDB dataset10 to eval-
uate our approach. The DISCO and BDB datasets
consist of 20k and 44k tokens before our Sentence-
Piece tokenizer is applied, respectively. We use the
following automatic metrics:

Filtering rate. We take 10 poems11 from each
test set, extract the first line from them, generate
poems for each as described in §3.2 following the
meter and rhyme scheme of the original poem, with
k = 3000 candidates for each, and measure the
percentage of candidates that are filtered according
to the criteria in §3.2. We compare the resulting
filtering rate of our proposed PoeLM, which is con-
ditioned on the relevant structure descriptor, and a
regular LM, which is not conditioned on any struc-
ture but could still generate a valid poem given
enough trials.

9https://bitbucket.org/
manexagirrezabal/syllabification_gold_
standard

10https://bdb.bertsozale.eus/. We use the
2005 segment of the corpus.

11For Spanish, we use the first Stanza of full sonnets from
DISCO, which consist of either 11 or 14 syllable lines, follow-
ing a rhyme scheme of ABAB or ABBA. For Basque, we use
Zortziko Handia poems from BDB, which consist of 8 lines,
where the odd ones are 10 syllables long, the even ones are 8
syllables long, and only the even lines are required to rhyme.

Since, unlike PoeLM, the baseline LM does not
generate break tokens to separate lines, we split the
generated text into lines according to the relevant
number of syllables. When this cannot be done
while respecting word boundaries, we consider that
the candidate is rejected for breaking the #slb con-
dition. As a consequence, generations from the
baseline LM are never considered to be rejected
due to the #verse condition.

Perplexity. To understand how well the model
is able to leverage the information provided by a
known structure, we compare the per-token per-
plexity of (i) PoeLM conditioned on the relevant
structure descriptor, (ii) PoeLM without condition-
ing on any structure descriptor, (iii) the baseline
LM. We do this both in the validation set of the
non-poetic corpus used for training, as well as the
poem datasets used for evaluation.

Consistent with training, we insert break tokens
to separate lines for both PoeLM variants. How-
ever, these special tokens are excluded from the
perplexity computation to make them comparable
with the baseline LM.

4.3 Human evaluation

We run a qualitative evaluation in Spanish compar-
ing poems generated by our system and humans.
Given that writing poems is also challenging for
humans, we consider both poems written by actual
poets as well as layman volunteers. More con-
cretely, we take the first line of 50 poems from the
DISCO dataset, and compare 3 poems generated
by completing them as follows:

• Expert: The original poem from DISCO from
which the first line was extracted, authored by
a renowned poet.

• Layman: Poems written by non-expert volun-
teers within a time limit of about 5 minutes.

• PoeLM: Poems generated by our system us-
ing the full pipeline described in §3.2.

We then give these 3 poems12 to human evalua-
tors in a random order, and ask them to rank from
best to worst. We report results according to two
metrics: the overall rank (the percentage of times
that each system has been ranked in each position),
and the head-to-head comparison (the percentage

12A 4th candidate, which we ignore when calculating the
ratings, was also included for the analysis in §6.2.

3658

https://bitbucket.org/manexagirrezabal/syllabification_gold_standard
https://bitbucket.org/manexagirrezabal/syllabification_gold_standard
https://bitbucket.org/manexagirrezabal/syllabification_gold_standard
https://bdb.bertsozale.eus/

Spanish Basque

PoeLM LM PoeLM LM

Correct 30.9 0.0 23.4 0.0

Reject due to
#Verse 3.7 0.0 9.6 0.0

#Slb 17.0 96.6 34.0 90.3
Rhyme 13.1 3.4 11.1 9.7

Rep. word 31.1 - 19.7 -
BLEU 4.2 - 2.3 -

Table 1: Percentage of filtered candidates, with a break-
down for the reason of rejection. See §4.2 for details.

Spanish Basque

poetic prose poetic prose

Baseline LM 62.7 15.9 151.1 24.3

PoeLM w/ struc 49.5 11.7 42.5 10.1
no struc 129.5 18.0 634.2 81.4

Table 2: Perplexity of poetic and non-poetic (prose)
corpora. See §4.2 for details.

of times that each system has been ranked before
each other system).

All volunteers that wrote the poems, as well as
those that ranked the candidates, are native Span-
ish speakers with university studies. While there
was an overlap between both groups of volunteers,
we made sure that volunteers were never asked to
rank poems written by themselves. All volunteers
are familiar with the fundamentals of formal verse
poetry, but are not experts in the matter. Refer to
Appendix B for more details.

5 Results

We next discuss our main results for the automatic
(§5.1) and human evaluation (§5.2).

5.1 Automatic evaluation
We report filtering rate results in Table 1. We find
that 30.9% of Spanish poems and 23.4% of Basque
poems sampled from PoeLM meet the given con-
straints. While far from perfect, this means that
sampling a few candidates is enough to obtain a
valid poem with our approach. In contrast, none of
the poems generated by the baseline LM is valid,
showing that our proposed structure-aware training
is critical to generate formal verse poetry with LMs.
Regarding the reason for rejection, we find that the
majority of candidates from PoeLM are discarded
for repeating rhyming words, which the model was
not directly trained to prevent.

S1
S2 Expert Layman PoeLM

Expert - 54.0% 62.7%
Layman 46.0% - 60.7%
PoeLM 37.3% 39.3% -

Table 3: Percentage of times that system S1 is ranked
ahead of S2 in the human evaluation.

1st 2nd 3rd

Expert 44.0% 28.6% 27.3%
Layman 36.7% 33.3% 30.0%
PoeLM 19.3% 38.0% 42.7%

Table 4: Percentage of times that each system has been
ranked in each position in the human evaluation.

Table 2 reports the perplexity results. When
conditioned on structure descriptors, our model
always outperforms the baseline LM, meaning that
it is able to make better predictions accounting for
the meter and rhyme constraints. However, when
the structure descriptor is not provided, our model’s
perplexity is higher, presumably because the model
did not see text without structure descriptors during
training.

5.2 Human evaluation

We report head-to-head results in Table 3, and rank-
ing results in Table 4. Human evaluators prefer
poems generated by our system over those written
by renowned poets in 37.3% of the cases. Similarly,
our system does better than laymen in 39.3% of
the cases. This shows that our system is able to
generate high-quality poems, which humans often
prefer over poems written by other humans. This
can also be seen in the ranking evaluation, as our
system has been ranked in first position in 19.3% of
cases, and among the first two positions in 57.3%
of cases.

Finally, it is surprising that layman poems are
ranked above those from renowned poets nearly
half of the times. We attribute this to the human
evaluators themselves being laymen, leading them
to prefer poems that use more plain language. This
is also reflective of the subjective nature of the task,
as different readers might enjoy poetry differently.

6 Analysis

We further analyze our system by quantifying
at which portion of the poem its perplexity gain
is highest (§6.1), experimenting with manual re-

3659

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

Proximity

L
o
g
 p

ro
b
.
d
if
fe

re
n
c
e

Figure 3: Interpolated advantage in log probability of
our model compared to a regular LM over the Spanish
mC4 validation set, as a function of normalized prox-
imity to the next specified rhyme token. See §6.1 for
details.

S1
S2 Exp. Lay. PoeLM PoeLM

+rerank

PoeLM 37.3 39.3 - 26.0
PoeLM 41.3 42.7 38.0 -+rerank

Table 5: Percentage of times that system S1 is ranked
ahead of S2 in the human evaluation. Since the candi-
date chosen by a human annotator among the top 6 can-
didates will sometimes be the same as the top candidate,
there can be ties, and thus the head-to-head percentages
do not add up to 100.

ranking (§6.2), and looking at some sample poems
(§6.3).

6.1 Perplexity gain

We quantify the predictive advantage of our system
as a function of the distance to the next rhyme
word. To this end, we plot the difference in token-
wise log probabilities between our model and the
baseline LM as a function of proximity to the next
rhyme word, interpolated between 0 and 1. We
only consider lines with 15 to 25 tokens.

As shown in Figure 3, our model’s advantage is
greatest near the rhyme word. This is not surpris-
ing, as there is less uncertainty towards the end of
the line when the meter and rhyme are known. We
observe a downward spike towards the end, that
may initially seem counter-intuitive. We hypothe-
size that, since the rhyme word will often be split
into multiple tokens, by the time the first tokens
of the rhyme word are known the regular LM will
be quite sure of what the word is, meaning that the
advantage of knowing the rhyme is lower.

6.2 Manual re-ranking
A potential application of automatic poetry genera-
tion is helping (rather than replacing) humans when
writing poems. As a first approximation, we ask
our volunteers to manually choose a poem among
the top 6 candidates generated by our system.13

The resulting poem was considered as part of the
human evaluation described in §4.3, and compared
to the other 3 systems.

Table 5 reports the head-to-head performance
of our model with and without manual re-ranking.
As expected, the re-ranked model performs better,
beating the poems generated by laymen in 42.7%
of cases, as opposed to 39.3% for the base system.
However, the base system beats manual re-ranking
in 26% of cases, meaning that human evaluators of-
ten prefer the top candidate automatically selected
by the system over the one manually selected by
another human. This means that there is a con-
siderable disagreement across annotators, which is
reflective of the subjective nature of the task.

6.3 Sample poems
Tables 6 and 7 show some example poems gener-
ated by our system in Spanish and Basque. The
poems were generated by providing the first line
along with the structure descriptor to the system,
and manually selecting a candidate among the top
six. Five lines were selected at random from the
evaluation in Spanish, and two for Basque. The full
list with the six candidates is given in Appendix C.
No cherry-picking was done, except to choose one
poem among the six candidates per line.

We observe that the system is capable of gener-
ating coherent poems covering varied topics. For
example, regarding the Spanish poems, the first,
third and fourth Spanish poems cover themes of
inner conflict, the second one describes a person’s
beauty, and the last is about an abbey called Mon-
serrat. Note that the theme is implicit in the first
line, and mirrors the typical topics of Spanish son-
nets of the time. Regarding the Basque poems, the
themes are friendship and swings in a park, also
mirroring the themes used in contemporary sponta-
neous poetry contests in the dataset.

7 Related work

We next review relevant literature in poetry gen-
eration (§7.1), as well as controllable generation

13We take the top three candidates with and without BLEU
filtering to generate this list.

3660

Generated Poem English translation

Siento otro Yo que contra mí se empeña,
un Yo para el que no debo luchar,
un Yo al que no debo acompañar,
un Yo que a menudo me condena.

I feel another Self that is set against me,
a Self for which I must not fight,

a Self that I should not accompany,
a Self that often condemns me.

Casta su faz, bajo la blanca toca,
su faz es dulce,es bella sin cesar,

su faz es hermosa como un jaguar,
su faz es divina como la roca.

Chaste is her face, under her white cap,
her face is sweet, relentlessly gorgeous,

her face is beautiful like a jaguar,
her face is divine like rock.

Nada más. De aquel sueño, que pasó como un ala,
arranco todo lo que había en mi mente,
todo lo que me atormentaba y no cala,

lo que callo en el interior de mi presente.

Nothing more. Of that dream, that passed like a wing,
it tore everything from my mind,

all that tormented me and doesn’t seep through,
which I keep quiet inside my present.

Es inútil que luche por quitarme del pecho,
que niegue repetidamente mis opiniones,

que trague de nuevo mi entusiasmo deshecho,
que rechace de nuevo todas mis negaciones.

Fighting to get it off my chest is futile,
that I repeatedly deny my emotions,

that I once again swallow my undone enthusiasm,
that I once again reject all my negations.

Del Monserrat en la penumbra undosa,
Del Monserrat silente en el Solar,
Del Monserrat dolido en el remar,
Del Monserrat cautivo en la prosa.

Of the Monserrat in the gloomy twilight,
Of the Monserrat, silent in sunlight,

Of the Monserrat, pained in paddling,
Of the Monserrat, captive in prose.

Table 6: Spanish poems generated by our method, given five lines selected at random from the dataset. The five
poems have been manually selected from the top six candidates generated by the system for each line, with no other
form of cherry-picking. See Appendix C for the full list of six candidate poems.

(§7.2).

7.1 Poetry generation

Retrieval based approaches. Early work in poetry
generation focused on rule-base methods, which
generate text according to predefined rules that
ensure the desired structure is followed (Gervás,
2000; Gonçalo Oliveira et al., 2007). A pop-
ular approach is to fill templates with text ex-
tracted from existing poems (Colton et al., 2012;
Gonçalo Oliveira, 2012; Gonçalo Oliveira et al.,
2017). This makes it easy to control poetic struc-
ture, since the meter and rhyme schemes of the text
pieces can be annotated in advance and combined
accordingly when filling the templates. However,
the diversity and creativity of these approaches is
limited.

Neural poetry generation. More recently, there
has been work on applying neural text generation to
poetry. A popular approach is to train a finite-state
acceptor (FSA) that ensures all accepted sequences
obey the required structure, which is then used to
guide a recurrent neural network (RNN) through re-
jection sampling (Ghazvininejad et al., 2016, 2018;
Hopkins and Kiela, 2017). However, these meth-
ods require some form of lyrical or poetic text to
train the RNN or the FSA, and they must generate
text right-to-left in order to respect rhyme sounds,
as the model has no concept of planning. Addition-

ally, a new FSA has to be trained for each desired
poem structure. Lau et al. (2018) augment an RNN
with a pentameter model and learn the meter and
rhyme constraints of sonnets in a supervised way
from a sonnet corpus. They then generate poem
lines right-to-left, to alleviate the model’s lack of
planning. Van de Cruys (2020) trains an encoder-
decoder RNN on prosaic text to generate each line
right-to-left conditioned on the previous one, and
applies constraints when decoding to ensure the
generated text adheres to a rhyme scheme and con-
sistent topic. However, their system cannot enforce
a specific syllabic meter.

Multiple works focus on neural poetry genera-
tion for the Chinese language, applying techniques
such as reinforcement learning (Yi et al., 2018) or
planning (Wang et al., 2016). In Chinese, one char-
acter corresponds to a syllable, but meter is gov-
erned by tonal constraints. Most of the reviewed
works assume that, with a sufficiently large corpus,
the model should be able to learn the implicit tonal
structure of poetry (Wang et al., 2016; Zhang et al.,
2017; Liu et al., 2018). Yeh et al. (2019) concate-
nate tonal information to the character embeddings
of an LSTM to create a model that is more phono-
logically compliant.

Notably, current neural methods capable of con-
trolling both syllable count and rhyme scheme re-
quire some form of poetic corpus to train, and usu-

3661

Generated Poem English translation

Gu biok lagun handiak gara,
anaia,aita,semea,

eta bion ideologia,
gure identitatea,

konpartitzen dugu.Batzuetan,
zaila da bat esatea,

besteak ulertzea,benetan,
zein ahula den bestea.

The both of us are great friends,
brother,father,son,
and our ideology,

our identity,
is shared. Sometimes,
it is hard to say one,

to understand others, truly,
how weak others are.

Nahiz kulunpio pila bat egon,
eguzkiak sikiera,

aukera du ondo goxatzeko,
eta ez beti gainera,

baita asteko egun denetan,
baita hemendik aurrera,
ilargi erdiko orduetan,

eta hori da ederra.

Even though there are many swings,
at least the sun,

has a chance to enjoy,
not always,

also during every day of the week,
and, from now on,

during the moon hours,
and that is beautiful.

Table 7: Basque poems generated by our method, given two lines selected at random from the dataset. The poems
have been manually selected from the top six candidates generated by the system for each line, with no other from
of cherry-picking. See Appendix C for the full list of six candidate poems.

ally generate text right-to-left to alleviate a lack of
planning when generating rhymes.

7.2 Controllable generation
Similar to our approach, several works attempt to
control the generated output by augmenting the
training data with tags. Keskar et al. (2019) aug-
ment the training corpus of a LM with codes auto-
matically extracted from metadata. Some works in
machine translation explore augmenting the train-
ing data in order to control the politeness (Sen-
nrich et al., 2016), domain (Kobus et al., 2016),
or length (Lakew et al., 2019) of generated trans-
lations. Schioppa et al. (2021) experiment with
vector-valued additive tags in order to control mul-
tiple attributes of the generated text at once. How-
ever, all of these systems use tags that only broadly
specify the length, domain or style of the text to
generate. In contrast, our model is conditioned on
a very specific meter and rhyme scheme that the
text must follow.

8 Conclusions and future work

In this work, we present an unsupervised approach
to generate formal verse poetry. We identify and ex-
tract the latent structure in non-poetic corpora, and
feed this information along with the text to a trans-
former LM, allowing us to control the structure of
the text at generation time. Our system is capa-
ble of generating formal verse poetry with flexible
meter and rhyme schemes, without requiring any
sort of poetic text to train. The required structure
can be easily altered by changing the descriptor,

allowing us to generate different types of poetry
without needing to re-train the system. Automatic
and human evaluations show that our model learns
to leverage the provided structure information to
better predict the text, and is capable of generat-
ing short poems that are often preferred to those
created by a human.

In future work, we would like to extend our
framework to be able to control other aspects of the
generated text in addition to meter and rhyme.

Limitations

Given that our method requires tagging the implicit
meter and rhyme of the training corpus, we are
limited by the quality of available syllabization
and rhyme detection systems. While rule-based
systems with a low error rate are easy to create for
languages such as Spanish or Basque, this is not
the case for English, which is why we did not train
an English version of our system. However, our
approach is independent of the used syllabization
and rhyme detection process, and could be readily
applied on top of any system with a low error-rate.

Additionally, our Spanish syllabization system
has no concept of synalephas, where two syllables
can be merged into one when one word ends in
a vowel and the next starts with one. This means
that our system will never use this Spanish literary
device when generating poems.

3662

Acknowledgements

Aitor Ormazabal, Aitor Soroa and Eneko Agirre
were partially supported by the Basque Govern-
ment (IXA excellence research group IT1343-19).
Aitor was supported by a doctoral grant from the
Spanish MECD.

We would like to thank Ainara Estarrona, Be-
goña Altuna and Itziar Gonzalez-Dios for their as-
sistance in defining literary terminology, and Ed-
ward Yao for his help translating poems.

References

Manex Agirrezabal, Inaki Alegria, Bertol Arrieta, and
Mans Hulden. 2012. Finite-state technology in a
verse-making tool. In Proceedings of the 10th In-
ternational Workshop on Finite State Methods and
Natural Language Processing, pages 35–39.

Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri,
Olatz Perez de Viñaspre, and Aitor Soroa. 2022.
Does corpus quality really matter for low-resource
languages?

Alberto Barbado, Víctor Fresno, Ángeles Manjarrés
Riesco, and Salvador Ros. 2021. DISCO PAL: Di-
achronic spanish sonnet corpus with psychological
and affective labels. Language Resources and Evalu-
ation.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,

David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full-face poetry generation. In International Confer-
ence on Computational Creativity 2012, pages 95–
102. University College Dublin.

Pablo Gervás. 2000. Wasp: Evaluation of different
strategies for the automatic generation of spanish
verse. In Proceedings of the AISB-00 symposium on
creative & cultural aspects of AI, pages 93–100.

Marjan Ghazvininejad, Yejin Choi, and Kevin Knight.
2018. Neural poetry translation. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 67–71, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin
Knight. 2016. Generating topical poetry. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1183–1191,
Austin, Texas. Association for Computational Lin-
guistics.

Hugo Gonçalo Oliveira. 2012. Poetryme: a versatile
platform for poetry generation. Computational Cre-
ativity, Concept Invention, and General Intelligence,
1:21.

Hugo Gonçalo Oliveira, Amílcar Cardoso, and Fran-
cisco Pereira. 2007. Exploring different strategies for
the automatic generation of song lyrics with tra-la-
lyrics. In Proceedings of 13th Portuguese Conference
on Artificial Intelligence, EPIA, pages 57–68.

Hugo Gonçalo Oliveira, Raquel Hervás, Alberto Díaz,
and Pablo Gervás. 2017. Multilingual extension and
evaluation of a poetry generator. Natural Language
Engineering, 23(6):929–967.

Jack Hopkins and Douwe Kiela. 2017. Automatically
generating rhythmic verse with neural networks. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 168–178, Vancouver, Canada.
Association for Computational Linguistics.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the Demonstrations Ses-
sion at EACL 2009, pages 29–32.

Harsh Jhamtani, Sanket Vaibhav Mehta, Jaime Car-
bonell, and Taylor Berg-Kirkpatrick. 2019. Learning
rhyming constraints using structured adversaries. In
Proceedings of the 2019 Conference on Empirical

3663

http://arxiv.org/abs/2203.08111
http://arxiv.org/abs/2203.08111
https://doi.org/10.1007/s10579-021-09557-1
https://doi.org/10.1007/s10579-021-09557-1
https://doi.org/10.1007/s10579-021-09557-1
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.18653/v1/N18-2011
https://doi.org/10.18653/v1/D16-1126
https://doi.org/10.1017/S1351324917000171
https://doi.org/10.1017/S1351324917000171
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.18653/v1/P17-1016
https://doi.org/10.18653/v1/D19-1621
https://doi.org/10.18653/v1/D19-1621

Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6025–
6031, Hong Kong, China. Association for Computa-
tional Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL - A Conditional Transformer Language
Model for Controllable Generation. arXiv preprint
arXiv:1909.05858.

Catherine Kobus, Josep Maria Crego, and Jean Senellart.
2016. Domain control for neural machine translation.
CoRR, abs/1612.06140.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Surafel Melaku Lakew, Mattia Di Gangi, and Marcello
Federico. 2019. Controlling the output length of neu-
ral machine translation. In Proceedings of the 16th
International Conference on Spoken Language Trans-
lation, Hong Kong. Association for Computational
Linguistics.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. 2018. Deep-speare:
A joint neural model of poetic language, meter and
rhyme. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1948–1958, Melbourne,
Australia. Association for Computational Linguistics.

Dayiheng Liu, Quan Guo, Wubo Li, and Jiancheng
Lv. 2018. A multi-modal chinese poetry generation
model. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Andrea Schioppa, David Vilar, Artem Sokolov, and
Katja Filippova. 2021. Controlling machine transla-
tion for multiple attributes with additive interventions.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6676–6696, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine trans-
lation via side constraints. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 35–40, San Diego,
California. Association for Computational Linguis-
tics.

Tim Van de Cruys. 2020. Automatic poetry generation
from prosaic text. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2471–2480, Online. Association for
Computational Linguistics.

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei Li,
Haifeng Wang, and Enhong Chen. 2016. Chinese
poetry generation with planning based neural net-
work. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 1051–1060, Osaka,
Japan. The COLING 2016 Organizing Committee.

Lanqing Xue, Kaitao Song, Duocai Wu, Xu Tan,
Nevin L. Zhang, Tao Qin, Wei-Qiang Zhang, and Tie-
Yan Liu. 2021. DeepRapper: Neural rap generation
with rhyme and rhythm modeling. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 69–81, Online. As-
sociation for Computational Linguistics.

Wen-Chao Yeh, Yung-Chun Chang, Yu-Hsuan Li, and
Wei-Chieh Chang. 2019. Rhyming knowledge-aware
deep neural network for chinese poetry generation. In
2019 International Conference on Machine Learning
and Cybernetics (ICMLC), pages 1–6.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Wenhao
Li. 2018. Automatic poetry generation with mutual
reinforcement learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3143–3153, Brussels, Bel-
gium. Association for Computational Linguistics.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang. 2017.
Flexible and creative Chinese poetry generation using
neural memory. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1364–1373,
Vancouver, Canada. Association for Computational
Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. OPT: Open pre-
trained transformer language models.

A Structure descriptors

The process of extracting the meter descriptors
from a regular corpus and creating the augmented
corpus consists of four steps:

1. First, we split the text into phrases ac-
cording to the following set delimiters: _-
?"!,:’‘()[].{}‘;»«><’. We do this so that the
phrases, which will correspond to lines in

3664

http://arxiv.org/abs/1612.06140
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/2019.iwslt-1.31
https://aclanthology.org/2019.iwslt-1.31
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.18653/v1/P18-1181
https://doi.org/10.1109/IJCNN.2018.8489579
https://doi.org/10.1109/IJCNN.2018.8489579
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/2021.emnlp-main.535
https://doi.org/10.18653/v1/2021.emnlp-main.535
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/2020.acl-main.223
https://doi.org/10.18653/v1/2020.acl-main.223
https://aclanthology.org/C16-1100
https://aclanthology.org/C16-1100
https://aclanthology.org/C16-1100
https://doi.org/10.18653/v1/2021.acl-long.6
https://doi.org/10.18653/v1/2021.acl-long.6
https://doi.org/10.1109/ICMLC48188.2019.8949208
https://doi.org/10.1109/ICMLC48188.2019.8949208
https://doi.org/10.18653/v1/D18-1353
https://doi.org/10.18653/v1/D18-1353
https://doi.org/10.18653/v1/P17-1125
https://doi.org/10.18653/v1/P17-1125
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

our generated poems, end at natural stopping
points in speech. Additionally, we randomly
merge each phrase with the next or the next
two phrases, with probabilities 0.15 and 0.05,
respectively, so that the model can generate
verses that contain these special characters.

2. Second, we syllabize each phrase and extract
the rhyme class of its final word, using our
FOMA transducers.

3. Third, we split the text into blocks of n
phrases, where n is sampled uniformly be-
tween 3 and 10. For each block, we construct
a meter descriptor from the syllable count and
rhyme class of each phrase. The descriptor
begins with a <PREF> token and ends with a
</PREF> token, and a pair of tokens of the
form <LEN_X> <CLS_Y> for each phrase,
where X is the syllable count and Y is the
rhyme class. In 15% of cases, the rhyme class
is replaced with a special <CLS_UNK> class,
which allows us to leave the rhyme of certain
verses unspecified when generating. Addition-
ally, when there is a paragraph boundary (line
break) in the text, we insert a <SEP> token in
the corresponding position.

4. Fourth, we construct the corpus interleaving
the meter descriptors in between the corre-
sponding blocks of text. Additionally, we in-
sert a <BRK> token in between phrases in the
actual text. The <BRK> token lets us clearly
see where the model has intended to end a
phrase, allowing us to split the generated po-
ems into verses easily.

B Human evaluation

As described in §4.3, we extract the first line from
fifty real poems in the DISCO dataset, and compare
the poems obtained by completing them. Specifi-
cally, for each case, we present the four candidate
completions in a randomized order, and ask a hu-
man volunteer evaluator to rank them from best
to worst. Additionally, the rhyme scheme that the
poem should follow is provided, so that the evalua-
tor can take it into account when judging a poem
(our systems’ poems and the gold standard never
contain rhyme mistakes, but the poems generated
by human annotators might). Each ranking is done
by three different annotators.

All volunteers that participated in writing and
ranking poems are familiar with the fundamentals

of formal verse poetry, but are not experts in the
matter. To obtain the "Layman" poems, volunteers
were asked to complete a poem within a time limit
of 5 minutes. However, this time limit was not
enforced, and it was slightly exceeded in some
cases.

C Full list of poems

Tables 8 and 9 show the full list of the six candi-
date poems generated by our system for each of
the five lines in Spanish and two lines in Basque
chosen at random from their respective datasets.
No cherry-picking was done on these tables. From
these poems, we did select one for each line manu-
ally, as shown in Tables 7 and 6 in the main body
of the paper (see §6.3).

3665

Siento otro Yo que contra mí se empeña,
Siento otro Yo que no quiere cambiar,

Siento otro Yo que no sabe amar,
Siento otro Yo que no se condena.

Siento otro Yo que contra mí se empeña,
siento otro Yo que no quiero amar,
siento otro Yo que no puedo hablar,
siento otro Yo que no me enseña.

Siento otro Yo que contra mí se empeña,
y otro Yo que me quiere dominar,
y otro Yo que no me quiere amar,

que me condena y que me condena.

Siento otro Yo que contra mí se empeña,
un Yo para el que no debo luchar,
un Yo al que no debo acompañar,
un Yo que a menudo me condena.

Siento otro Yo que contra mí se empeña,
o una voz que me hace suspirar,
o una risa que me hace llorar,

o un grito que me quita la pena.

Siento otro Yo que contra mí se empeña,
un Yo que no me deja amamantar,
un Yo que me ensena a no llorar,

un Yo que me enseña lo que pena.

Casta su faz, bajo la blanca toca,
vestida de dos trpitos de azahar,
Casta su faz,bajo la blanca tocar,
vestida de dos trpitos de su boca.

Casta su faz, bajo la blanca toca,
carvaja y danseá del palomar,

Casta su faz,bajo la blanca tocar,
carvaja y danseá de la roca.

Casta su faz, bajo la blanca toca,
casta su faz sin tabiques que tapar,

casta su faz cuando quiere cabalgar,
casta su faz con guarnición de boca.

Casta su faz, bajo la blanca toca,
su faz es dulce,es bella sin cesar,

su faz es hermosa como un jaguar,
su faz es divina como la roca.

Casta su faz, bajo la blanca toca,
ennoblece este cantar popular,

casta su faz,bajo la blanca tocar,
ennoblece este cantar de boca.

Casta su faz, bajo la blanca toca,
no dejaba errar;casta su mirar,

no dejaba turbar;casta su hablar,
no dejaba hacer;casta su boca.

3666

Nada más. De aquel sueño, que pasó como un ala,
voló el agua como un ave frugalmente,

De aquel sueño,que pasó como una bala,
voló el viento como un átomo ardiente.

Nada más. De aquel sueño, que pasó como un ala,
no me devolviera la pálida piel caliente,
De aquel sueño,que pasó como una bala,
no me devolviera la herida en la frente.

Nada más. De aquel sueño, que pasó como un ala,
arranco todo lo que había en mi mente,
todo lo que me atormentaba y no cala,

lo que callo en el interior de mi presente.

Nada más. De aquel sueño, que pasó como un ala,
salió un pensamiento que viniera al frente,
un pensamiento que pasó como una bala,

salió un rayo que se encendió en mi mente.

Nada más. De aquel sueño, que pasó como un ala,
como un beso que se derrumbó de mi mente,

y que se fue al pasado como una bala,
y desapareció del mapa como un ente.

Nada más. De aquel sueño, que pasó como un ala,
un ave se paró sola en un parapente,

De aquel sueño,que pasó como una bala,
un viento se detuvo en el mar de enfrente.

Es inútil que luche por quitarme del pecho,
Es muy difícil que yo huya de mis traiciones,

Es demasiado tarde para lo que he hecho,
Es demasiado tarde para mis decisiones.

Es inútil que luche por quitarme del pecho,
que niegue repetidamente mis opiniones,

que trague de nuevo mi entusiasmo deshecho,
que rechace de nuevo todas mis negaciones.

Es inútil que luche por quitarme del pecho,
que no sea la tiranía de las pasiones,

que se ría de mí de lo que yo le he hecho,
Es inútil que se enoje por mis canciones.

Es inútil que luche por quitarme del pecho,
es inútil que llore por tus provocaciones,
es inútil que te diga qué es lo más hecho,

es inútil que afirme mis acusaciones.

Es inútil que luche por quitarme del pecho,
que luche por alcanzarme con sus oraciones,
que luche por bajarme del caballo derecho,

que me meta en mi cama con sus peticiones.

Es inútil que luche por quitarme del pecho,
que me refugie en mi casa de ilusiones,

que me grite a voces que quiero y no hecho,
que me arregle los días sin palpitaciones.

3667

Del Monserrat en la penumbra undosa,
Del Monserrat en la luz crepuscular,
Del Monserrat en la vida de Aznar,
Del Monserrat en la noche ansiosa.

Del Monserrat en la penumbra undosa,
Del Monserrat en la niebla uncular,

Del Monserrat en la luna anular,
Del Monserrat en la noche brumosa.

Del Monserrat en la penumbra undosa,
Del Monserrat en la noche un lugar,
Del Monserrat en la luz un despertar,

Del Monserrat en el sol una rosa.

Del Monserrat en la penumbra undosa,
Del Monserrat con los dedos sin borrar,
Del Monserrat con las ganas de cantar,

Del Monserrat de la roca filosa.

Del Monserrat en la penumbra undosa,
Del Monserrat silente en el Solar,
Del Monserrat dolido en el remar,
Del Monserrat cautivo en la prosa.

Del Monserrat en la penumbra undosa,
Del Monserrat cuando hay que claudicar,
Del Monserrat hasta que hay que llorar,

Del Monserrat con mantilla larosa.

Table 8: Full list of six candidate poems for Spanish generated by our system for the five lines chosen at random in
the Spanish dataset. No cherry-picking was done on this table. From these poems, we did select one for each line
manually, as shown in Table 6 in the main body of the paper.

3668

Gu biok lagun handiak gara,
anaia,aita,semea,

eta bion ideologia,
gure identitatea,

konpartitzen dugu.Batzuetan,
zaila da bat esatea,

besteak ulertzea,benetan,
zein ahula den bestea.

Gu biok lagun handiak gara,
bata zinemazalea,

bestea musikaria bera,
biek dugu lanbidea,

Denok egiten dugu aurrera,
dena da inportantea,

dena dago egiteko era,
izaten da idazlea.

Gu biok lagun handiak gara,
argazkilari zalea,

eta asko gustatzen zait bera,
nire bikotekidea,

argazki kamera eskuetan,
ezaguna izatea,

gogoratzen dudan argazkia,
lagunekin ikustea.

Gu biok lagun handiak gara,
Esne Beltzako kidea,

anai zaharra eta arreba,
Jon eta nire semea,

eta bi panpin gaude honetan,
Oihan Vega da bestea,

Hesian taldeko kantaria,
Sorotan Bele taldea.

Gu biok lagun handiak gara,
katuak ardi taldea,

tomateak eta haragia,
soja eta laborea,

oilaskoak fruitua lortzeko,
lekalearen jeztea,

baratzea animalietan,
pinpilinpauxa zaintzea.

Gu biok lagun handiak gara,
baina gure bikotea,

itxura guztien arabera,
ez da bideko jendea,

Bidaia ez da gauza berria,
ez da hala esatea,

Baina batzuetan,batzuetan,
izan daiteke jabea.

3669

Nahiz kulunpio pila bat egon,
galtza belauna behera,

gero eskailerak,hortz parea,
sokak,besoak atzera,

kautxuzko motxilak bizkotxetan,
eta astindu ederra,

bularra,pultsuko aurpegia,
izterra eta izterra.

Nahiz kulunpio pila bat egon,
ez da oso gauza bera,

autoa hartu eta kotxea,
leku batetik bestera,

beste leku batera sartzeko,
jendearekin batera,

egiten dugun bide horretan,
kotxeak izorratzera.

Nahiz kulunpio pila bat egon,
aspiranteen antzera,

gorputza sentsuala da ia,
betirako izaera,

eta erretzen duzu airea,
ez zara esterilera,

kaka egiten duzu oinetan,
likidoa da gainera.

Nahiz kulunpio pila bat egon,
eguzkiak sikiera,

aukera du ondo goxatzeko,
eta ez beti gainera,

baita asteko egun denetan,
baita hemendik aurrera,
ilargi erdiko orduetan,

eta hori da ederra.

Nahiz kulunpio pila bat egon,
komunera lasaitzera,

komunera salto egiteko,
irakurtzera,jotzera,

txorimaloetaz gozatzea,
konpainia egitera,

burrunba burrunbatsuaz janztea,
koadrilan afaltzera.

Nahiz kulunpio pila bat egon,
bada zerbaiten plazera,
dena zure eskura uztea,

dakizuna arabera,
izan zaitez supergizakia,

izan nahi izatera,
hau da,zuhaur,dena emateko,

munduarekin batera.

Table 9: Full list of six candidate poems for Basque generated by our system for the two lines chosen at random in
the Basque dataset. No cherry-picking was done on this table. From these poems, we did select one for each line
manually, as shown in Table 7 in the main body of the paper.

3670

