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Abstract

Recent work in task-independent graph seman-
tic parsing has shifted from grammar-based
symbolic approaches to neural models, show-
ing strong performance on different types of
meaning representations. However, it is still
unclear that what are the limitations of these
neural parsers, and whether these limitations
can be compensated by incorporating symbolic
knowledge into model inference. In this pa-
per, we address these questions by taking En-
glish Resource Grammar (ERG) parsing as a
case study. Specifically, we first develop a
state-of-the-art, T5-based neural ERG parser,
and conduct detail analyses of parser perfor-
mance within fine-grained linguistic categories.
The neural parser attains superior performance
on in-distribution test set, but degrades signif-
icantly on long-tail situations, while the sym-
bolic parser performs more robustly. To address
this, we further propose a simple yet principled
collaborative framework for neural-symbolic
semantic parsing, by designing a decision cri-
terion for beam search that incorporates the
prior knowledge from a symbolic parser and
accounts for model uncertainty. Experimen-
tal results show that the proposed framework
yields comprehensive improvement over neural
baseline across long-tail categories, yielding
the best known SMATCH score (97.01) on the
well-studied DeepBank benchmark.

1 Introduction

Semantic parsing is the task of mapping natural
language to machine interpretable meaning repre-
sentations, and graph-structured semantic represen-
tations, which encode rich semantic information in
the form of semantic graphs, have played an im-
portant role in natural language processing (Oepen
et al., 2019).

Parsing natural language sentences into the
semantic-graph representation (e.g., Figure 1) has

∗Part of the work was done while Zi was an AI resident
at Google.

been extensively studied in the recent decade.
Work in this area has shifted from the symbolic
(grammar-based) approach to the neural approach.
Thanks to the flourishing of deep learning technolo-
gies, sequence-to-sequence (seq2seq) models have
shown great performance on data sampled from
the training distribution. These neural semantic
parsers reduce the need for domain-specific gram-
mar and feature engineering, but comes at a cost of
lacking interpretability, as the model directly out-
puts a (linearized) graph without revealing the un-
derlying meaning-composition process. Moreover,
these neural models often generalize poorly to tail
and out-of-distribution (OOD) examples, and previ-
ous work has shown that combining high-precision
symbolic approaches with neural models can ad-
dress this issue for task-oriented semantic parsing
(Shaw et al., 2021; Kim, 2021; Cheng et al., 2019).
However, this type of approach requires complex
architecture engineering to incorporate the gram-
mar formalism. The grammar formalism being
utilized is usually primitive, and was not tested
beyond simple datasets such as SCAN (Lake and
Baroni, 2018) or GEOQUERY (Zelle and Mooney,
1996). Therefore they are likely not sufficient for
handling complex graph-based meaning represen-
tations derived from realistic corpora.

In this work, we aim to develop a simple yet
principled neural-symbolic approach for graph se-
mantic parsing to address long-tail generalization,
which leverages the information from an a pri-
ori grammar parser while maintaining the conve-
nience of neural seq2seq training built on top of
massively pre-trained embeddings (Raffel et al.,
2020). We take graph semantic parsing for En-
glish Resource Grammar (ERG) as our case study
(Adolphs et al., 2008). ERG is a compositional
semantic representation explicitly coupled with the
syntactic structure. Compared to other graph-based
meaning representations, ERG has high coverage
of English text and strong transferability across do-
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mains (Flickinger et al., 2010, 2012; Copestake and
Flickinger, 2000; Ivanova et al., 2013), rendering
itself has an attractive target formalism for auto-
mated semantic parsing. The classic ERG literature
has focused on developing grammar-based ERG
parser. However, they can suffer from issues such
as incomplete categorization of lexical items and
multi-word expression, and yields low coverage
for realistic corpus such as Wikipedia (Baldwin
et al., 2004). On the other hand, multiple neural
ERG parsers have also been proposed (Buys and
Blunsom, 2017; Chen et al., 2018, 2019; Cao et al.,
2021). However, they are commonly structured as
a pipelined system and often rely on external tools
(e.g, aligners, part-of-speech taggers, and named
entity recognizers), with the performance of the
upstream component significantly impacting the
final performance. This motivates us to build a
pure end-to-end neural parser for ERG parsing that
directly maps the input sentences to target graphs.

First, we present an end-to-end seq2seq model
based on T5 (Raffel et al., 2020) that achieves
the state-of-the-art results for ERG parsing. This
model goes beyond the conventional multi-step pre-
dictions for node and edge in previous work, and
does not require specialized architecture that ex-
plicitly incorporate the ERG rules or the synaptic
structure as part of inductive bias. Despite the com-
plicated syntax and semantic structures encoded
in semantic graphs, we have shown that by devis-
ing proper linearization and tokenization, we can
successfully transfer ERG parsing problem to trans-
lation problem (Section 3.1).

Second, we conduct a comprehensive study of
the generalization behavior of the neural parser,
interrogating its performance within fine-grained
linguistic categories. Comparing with a state-of-
the-art symbolic parser ACE, the neural parser ex-
hibits complementary strengths. Particularly, the
neural model yields much higher coverage than
the symbolic parser, generating valid parses for a
wider range of examples. However, the quality of
the top-1 parse degrades severely in the long-tail
situation. Perhaps remarkably, we also observed
that the neural model’s top-k parses in fact often
contain candidate that generalizes well on long-tail,
but the vanilla MLE-based inference fell short in
selecting them (Section 4 and 5).

The above observation motivates our third con-
tribution: to develop a practical framework for col-
laborative neural-symbolic parsing. The key lies in

designing a principled decision making strategy for
this neural-symbolic collaboration that performs
optimally during inference time. To this end, we
design a new decision criterion for neural model
inference (e.g., beam search) that incorporates both
model uncertainty and the prior knowledge from a
symbolic parser, leveraging the theoretical frame-
work of optimal decision-making under the incom-
plete knowledge of the world (Ulansky and Raza,
2021; Giang, 2015; Hurwicz, 1951). The basic
idea is to utilize uncertainty estimates of the neural
parser as a switch between the optimistic, MLE-
based inference and the conservative, prior-based
inference, such that the neural parser seeks the
guidance from a symbolic parser during its decod-
ing stage when encountering low-confident exam-
ples. This proposed approach achieves comprehen-
sive improvement compared to the original neural
parser, across almost all linguistic categories. Our
result suggests that sometimes the limitation of the
neural approach lies not necessarily in the model
architecture or the training method, but in a sub-
optimal inference procedure that naively maximize
the a posteriori likelihood (e.g., the beam search)
without questioning the reliability of the prediction
(Section 3.2).

In summary, our contribution are three-fold:

• We propose the first end-to-end model that
achieves the state-of-the-art results for ERG pars-
ing on the DeepBank WSJ benchmark. Specif-
ically, we get 30.1% error rate reduction in
SMATCH score over the existing state-of-the-art.

• We conduct a thorough analysis of the neu-
ral parser in terms of generalization. Specifi-
cally, we compared the predictive performance
of neural parser with the state-of-the-art symbolic
parser in various important linguistic categories,
showing that both parsers exhibit complemen-
tary strengths, validating the potential to build a
neural-symbolic parsing framework.

• We propose a simple, yet principled framework
for neural-symbolic parsing utilizing model un-
certainty. The resulting framework not only com-
prehensively improved the model performance in
tail linguistic categories, but further boosted the
performance of the neural model on the standard
in-domain test set (an extra 9.5% error rate reduc-
tion), establishing a new state-of-the-art SMATCH

97.01. 1

1The code is available at https://github.com/
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The<0> drug<1> was<2> introduced<3> in<4> West<5> Germany<6> this<7> year<8> .<9>

Figure 1: An example of semantic graph for English Resource Grammar (ERG). Some nodes are surface concepts,
meaning that they are related to a single lexical unit, e.g. _introduce_v_to (the number in the angle brackets
indicates their token alignments in the sentence), while others are abstract concepts representing grammatical
meanings, e.g. compound (multiword expression), parg_d (passive) and loc_nonsp (temporal). Color red
indicates the root of this semantic graph. It also supports light-weight named entity recognition (e.g., “West
Germany” is labeled as two named in the graph).

2 Background and Related Work

2.1 Graph-based Meaning Representation

Considerable NLP research has been devoted to
the transformation of natural language utterances
into a desired linguistically motivated semantic rep-
resentation. Such a representation can be under-
stood as a class of discrete structures that describe
lexical, syntactic, semantic, pragmatic, as well as
many other aspects of the phenomenon of human
language. In this domain, graph-based representa-
tions provide a light-weight yet effective way to en-
code rich semantic information of natural language
sentences and have been receiving heightened at-
tention in recent years. Popular frameworks un-
der this umbrella includes Bi-lexical Semantic De-
pendency Graphs (SDG; Bos et al., 2004; Ivanova
et al., 2012; Oepen et al., 2015), Abstract Mean-
ing Representation (AMR; Banarescu et al., 2013),
Graph-based Representations for English Resource
Grammar (ERG; Oepen and Lønning, 2006; Copes-
take, 2009), and Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport, 2013).

2.2 English Resource Grammar (ERG)

In this paper, we take the representations from En-
glish Resource Grammar (ERG; Flickinger et al.,
2014) as our target meaning representations. ERG
is an open-source, domain-independent, linguis-
tically precise, and broad-coverage grammar of
English, which is rooted in the general linguistic
theory of Head-driven Phrase Structure Grammar
(HPSG; Pollard and Sag, 1994). ERG can be pre-

google/uncertainty-baselines/tree/main/
baselines/t5

sented into different types of annotation formalism
(Copestake et al., 2005). In this work, we con-
sider the Elementary Dependency Structure (EDS;
Oepen and Lønning, 2006) which converts ERG
into variable-free dependency graphs, and is more
compact and interpretable when compared to other
types of annotation schemes, e.g., DMRS (Buys
and Blunsom, 2017; Chen et al., 2018).

Figure 1 shows an example graph. The semantic
structure is a directed graph G = ⟨N,E⟩, where
N denotes nodes labeled with semantic predi-
cates/relations (e.g., _drug_n_1, compound),
and E denotes edges labeled with semantic argu-
ment roles (e.g., ARG1, ARG2).

There are different parsing technologies for
graph-based meaning representations, which can
be roughly divided into grammar- and neural-based
approaches.

2.3 Parsing to Semantic Graphs

In this section, we present a summary of differ-
ent parsing technologies for graph-based meaning
representations, with a focus on English Resource
Grammar (ERG).

Grammar-based approach In this type of ap-
proach, a semantic graph is derived according to
a set of lexical and syntactico-semantic rules. For
ERG parsing, sentences are parsed to HPSG deriva-
tions consistent with ERG. The nodes in the deriva-
tion trees are feature structures, from which MRS
is extracted through unification. However, this ap-
proach fails to parse sentences for which no valid
derivation is found. It is implemented in the PET
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(Callmeier, 2000) and ACE2 parser. Chen et al.
(2018) also proposed a Synchronous Hyperedge
Replace Grammar (SHRG) based parser by relat-
ing synchronous production rules to the syntacto-
semantic composition process.

Factorization-based approach This type of ap-
proach is inspired by graph-based dependency tree
parsing (McDonald, 2006). A factorization-based
parser explicitly models the target semantic struc-
tures by defining a score function that can eval-
uate the probability of any candidate graph. For
ERG parsing, Cao et al. (2021) implemented a two-
step pipeline architecture that identifies the concept
nodes and dependencies by solving two optimiza-
tion problems, where prediction of the first step is
utilized as the input for the second step. Chen et al.
(2019) presented a four-stage pipeline to incremen-
tally construct an ERG graph, whose core idea is
similar to previous work.

Transition-based approach In these parsing sys-
tems, the meaning representations graph is gener-
ated via a series of actions, in a process that is
very similar to dependency tree parsing (Yamada
and Matsumoto, 2003; Nivre, 2008), with the dif-
ference being that the actions for graph parsing
need to allow reentrancies. For ERG parsing, Buys
and Blunsom (2017) proposed a neural encoder-
decoder transition-based parser, which uses stack-
based embedding features to predict graphs jointly
with unlexicalized predicates and their token align-
ments.

Composition-based approach Following a prin-
ciple of compositionality, a semantic graph can
be viewed as the result of a derivation process, in
which a set of lexical and syntactico-semantic rules
are iteratively applied and evaluated. For ERG pars-
ing, based on Chen et al. (2018), Chen et al. (2019)
proposed a composition-based parser whose core
engine is a graph rewriting system that explicitly
explores the syntactico-semantic recursive deriva-
tions that are governed by a synchronous SHRG.

Translation-based approach This type of ap-
proach is inspired by the success of seq2seq mod-
els which are the heart of modern Neural Machine
Translation. A translation-based parser encodes
and views a target semantic graph as a string from
another language. In a broader context of graph
semantic parsing, simply applying seq2seq models

2http://sweaglesw.org/linguistics/ace/

is not successful, in part because effective lineariza-
tion (encoding graphs as linear sequences) and data
sparsity were thought to pose significant challenges
(Konstas et al., 2017). Alternatively, some specifi-
cally designed preprocessing procedures for vocab-
ulary and entities can help to address these issues
(Konstas et al., 2017; Peng et al., 2017). These pre-
processing procedures are very specific to a certain
type of meaning representation and are difficult to
transfer to others. However, we show that by devis-
ing proper linearization and tokenization (Section
3.1), we can successfully transfer the ERG parsing
problem into a translation problem, which can be
solved by a state-of-the-art seq2seq model T5 (Raf-
fel et al., 2020). This linearization and tokenization
can be applied to any meaning representations.

2.4 Neural-Symbolic Semantic Parsing

While seq2seq models excel at handling natural lan-
guage variation, they have been shown to struggle
with out-of-distribution compositional generaliza-
tion (Lake and Baroni, 2018; Shaw et al., 2021).
This has motivated new specialized architectures
with stronger inductive biases for the compositional
generalization, especially for task-oriented seman-
tic parsing like SCAN (Lake and Baroni, 2018)
and GEOQUERY. Some examples include NQG-
T5 (Shaw et al., 2021), a hybrid model combining
a high-precision grammar-based approach with a
pretrained seq2seq model; seq2seq learning with
latent neural grammars (Kim, 2021); a neural se-
mantic parser combining a generic tree-generation
algorithm with domain-general grammar defined
by the logical language (Cheng et al., 2019).

However, there are not so much progress regard-
ing neural-symbolic parsing for graph meaning rep-
resentations. Previous work has shown that the
utility of context-free grammar for graph semantic
parsing was somewhat disappointing (Peng et al.,
2015; Peng and Gildea, 2016). This is mainly be-
cause the syntax-semantics interface encoded in
those graph meaning representations is much more
complicated than pure syntactic rules or logical
formalism, and is difficult to be exploited in data-
driven parsing architecture.

3 A Collaborative Neural-Symbolic
Parsing Framework

In this section, we design and implement a new
collaborative neural-symbolic parsing framework
for ERG parsing. The framework takes the neural
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parser’s uncertainty as a trigger to the collaborative
process with the symbolic parser. This requires
the neural parser to model uncertainty based on the
optimization problem given observed sentence s:

argmax
N,E

p(G = ⟨N,E⟩|s)

Previous data-driven work on ERG parsing ei-
ther requires pipeline settings (predict nodes N
and edges E separately) or external tools such as
aligners, part-of-speech taggers and named entity
recognizers. In contrast, we aim to build an end-
to-end seq2seq parser that directly maps the input
sentences to the target strings of (linearized) ERG
graphs. However, due to the complexity of the se-
mantic graph representation, care needs to be taken
to parametrize the output space of the graph strings,
so that the seq2seq model can learn efficiently in
finite data. Specifically, we show that by devising
proper linearization and tokenization (Section 3.1),
we can successfully transfer the ERG parsing prob-
lem into a translation problem that can be solved by
a state-of-the-art seq2seq model T5 (Raffel et al.,
2020). The proposed linearization and tokeniza-
tion are essential to model performance, and can
be applied to any meaning representations. The
experimental results show that our model improves
significantly in comparison with the previously re-
ported results (Table 1).

3.1 Linearization and Tokenization
Variable-free top-down linearization A popu-
lar linearization approach is to linearize a directed
graph as the pre-order traversal of its spanning
tree. Variants of this approach have been proposed
for neural constituency parsing (Vinyals et al.,
2015) and AMR parsing (Barzdins and Gosko,
2016; Peng et al., 2017). AMR (Banarescu et al.,
2013) uses the PENMAN notation (Kasper, 1989),
which is a serialization format for the directed,
rooted graphs used to encode semantic dependen-
cies. It uses parentheses to indicate nested struc-
tures. Since nodes in the graph get identifiers
(initialized randomly) in PENMAN notation that
can be referred to later to establish a reentrancy,
e.g., _drug_n_1 in Figure 1, and will confuse
the model to learn the real meaningful mappings,
we remove the identifiers and use star markers in-
stead to indicate reentrancies. For example, our
variable-free linearization for graphs in Figure 1
can be written as:
( _introduced_v_to

:ARG2 ( _drug_n_1 *
:BV-of ( _the_q ) )

:ARG1-of ( parg_d
:ARG2 ( _drug_n_1 * ) )

:ARG1-of ( loc_nonsp
:ARG2 ( _year_n_1

:BV-of ( _this_d_dem ) ) )
:ARG1-of ( _in_p

:ARG2 ( named
:BV-of ( proper_q )
:ARG1-of ( compound
:ARG2 ( named

:BV-of ( proper_q ) ) ) ) ) )

The rewriting process can be done by Algorithm
1. It is noted that there can be more than one reen-
trancy in the graph, and we use different numbers
of star marks to indicate this (line 10 in Algorithm
1). More details about the implementation of lin-
earization can be found in Appendix A.

Algorithm 1 Variable-free PENMAN rewriting
Input: G = ⟨N,E⟩ is the EDS graph
Output: Variable-free PENMAN notations of G

1: R← ∅ ▷ reenrancy set
2: nR ← 0 ▷ number of of reenrancies
3: for n ∈ N do
4: if child(n) ∩ child(parent(n)) ̸= ∅ then
5: R′ ← child(n) ∩ child(parent(n))
6: R← R ∪R′

7: end if
8: end for
9: for r ∈ R do

10: G← rewrite(G, r, r +′ ∗′ × (nR + 1))
11: nR ← nR + 1
12: end for
13: return PENMAN(G)

Compositionality-aware tokenization Tok-
enization has always been seen as a non-trivial
problem in Natural Language Processing (Liu
et al., 2019). In the case of graph semantic parsing,
it is still a controversial issue which unit is the most
basic one that triggers conceptual meaning and
semantic construction (Chen et al., 2019). While
previous work can customize some off-the-shelf
tokenizers to correspond closely to the ERG
tokenization, there are still some discrepancies
between the tokenization used by the system and
ERG (Buys and Blunsom, 2017). Moreover, using
customized tokenization means we need to pretrain
our model from scratch, and this will cost lots of
time and computation.

We address this issue by replacing the non-
compositional part of ERG graphs with some non-
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tokenizable units in the T5 vocabulary. This will
let the model learn the compositionality of ERG
units by giving the signal of which type of units
are tokenizable. More details can be found in Ap-
pendix B. This process is crucial since it not only
reflects the original design of ERG vocabulary, but
also dramatically reduces the sequence length of
the output (around 16%). Additionally, it can be
applied to any meaning representations by simply
identifying the set of non-compositional, atomic
units in the semantic graphs.

3.2 A Decision-theoretic Framework for
Collaborative Neural-Symbolic Parsing

It is known that the performance of a neural
model tends to suffer on examples that are under-
represented in the training data, e.g., tail categories
or OOD examples. Indeed, when analyzing our
neural parser, we find the naive T5 parser’s per-
formance degrades significantly in the tail linguis-
tic categories, while the symbolic parser performs
more robustly (Section 5). This motivates us to
explore principled strategies to exploit the com-
plementary strengths of both parsers. Specifically,
we cast neural model inference (e.g., beam search)
as a decision-making problem under partial uncer-
tainty of the world (Ulansky and Raza, 2021; Giang,
2015; Hurwicz, 1951), and design a new decision
criterion incorporates both the model uncertainty
about the testing data distribution and the prior
information from a symbolic parser, thereby con-
cretely improving the model performance beyond
the i.i.d. regime.

Formally, consider a sequence prediction prob-
lem where the input and target sequences (x,y) ∈
X × Y are generated from an underlying distribu-
tion D = p∗(y|x)p∗(x). We denote p(y|x) the
neural parser trained on the in-domain examples
x ∈ Xind, and p0(y|x) a symbolic prior that en-
codes a priori linguistic knowledge from a gram-
mar parser (e.g., ACE). Under a decision-theoretic
formulation, the model inference can be understood
as a decision-making game under uncertainty (Hur-
wicz, 1951). Specifically, given a world state (i.e.,
input utterance) x, the goal of the model is to se-
lect the optimal parse y among the beam candidates
{yb}Bb=1 according to the decision criteriaR(y|x).
Crucially, due to the imperfect distribution of the
training data Xind ⊂ X , the neural model does
not have full familiarity of all the possible utter-
ances x ∈ X , and the decision criteria based on

neural likelihood alone may be a poor guide for the
optimal decision y|x.

To this end, the goal of neural-symbolic infer-
ence is to identify a improved criteria R(y|x)
that leverages knowledge from a symbolic prior
p0 and accounts for model uncertainty. Specifi-
cally, we find a solution in the well-known Hur-
wicz pessimism-optimism criteria from game the-
ory (Hurwicz, 1951), which suggests an optimal
criteria of the form

R(y|x) = α ∗ Rp(y|x) + (1− α) ∗ R0(y|x),

where Rp(y|x) is an optimistic policy for the fa-
miliar states x ∈ Xind, R0(y|x) a conservative
policy in case of high uncertainty, and α ∈ [0, 1] a
trade-off parameter.

In the context of beam search, the optimistic
crieriaRp(y|x) = −log p(y|x) is the MLE-based
strategy induced by the neural likelihood, which is
known generalize well for the in-domain situations
x ∈ Xind. On the other hand, the pessimistic crite-
riaR0(y|x) = −log p0(y|x) is the log likelihood
of tge symbolic prior −log p0. In this work, we
define p0(y|x) ∝ exp(−d(y,y0)

λ ) to be the gener-
alized Boltzmann distribution centered around the
output of the symbolic parser y0. Here λ is the
temperature parameter, and d(y, y′) is a suitable
divergence metric for the space of ERG graphs,
which we choose to be the SMATCH metric (Cai
and Knight, 2013). This leads to the below criteria:

Rp(y|x) =α ∗ −log p(y|x)+ (1)

(1− α) ∗ SMATCH(y,y0)

λ
,

where we have omitted the normalizing constant of
p0 since it does not impact optimization.

A caveat of (1) is α is fixed regardless of whether
x is in-domain (Xind) or out-of-domain (X/Xind).
As a result, when x is in-domain, a fixed α can
be too conservative since minimizing the beam
score −log p(y|x) alone is known to generalize
well. When x is OOD, however, (1) can be overly
optimistic since the neural model p(y|x) may gen-
eralize poorly in the under-represented regions, and
a more prudent strategy is to revert to the prior by
focusing on minimizing p0(y|x). To handle this
challenge, we consider an improved criteria that
accounts for model uncertainty:

R(y|x) =α(x) ∗ −log p(y|x)+

(1− α(x)) ∗ SMATCH(y,y0)

λ
(2)

4165



where α(x) = sigmoid(− 1
T ∗ (H(x) − b)) is a

monotonic transformation of model uncertainty
H(x) which is known as the Platt calibration (Platt
et al., 1999), whose parameters (T, b) can be es-
timated using a small amount of validation data.
As shown, depending on the value of H(x), the
proposed criteria (2) approaches the original beam
score −log p(y|x) when the model is confident,
and reverts to the prior likelihood −log p0(y|x)
when the model is uncertain andH is high.

For the proposed criteria (2) to perform robustly
in practice, the uncertainty estimatorH(x) should
be well calibrated, i.e., the magnitude of H is in-
dicative of the model’s predictive error. In this
work, we choose H to be the margin probability,
i.e., the difference in probability of the top 1 pre-
diction minus the likelihood of the top 2 prediction
based on the beam score:

Hmargin(p(y|x,D)) = p(y(1)|x,D)− p(y(2)|x,D),

due to its strong calibration performance on the
graph semantic parsing tasks. Appendix D dis-
cusses alternative choices of H and investigates
their respective efficacy in improving the collabo-
rative parsing system’s predictive performance.

4 Experiments

Dataset We conduct model training on Deep-
Bank v1.1 that correspond to ERG version 1214,
and adopt the standard data split. The Pydelphin3

library is leveraged to extract EDS graphs and trans-
fer them into PENMAN format.

Implementation Details T5 (Raffel et al., 2020)
is a pre-trained sequence-to-sequence Transformer
model that has been widely used in many NLP ap-
plications. We use the open-sourced T5X 4, which
is a new and improved implementation of T5 code-
base in JAX and Flax. Specifically, we use the offi-
cial pretrained T5-Large (770 million parameters)
and finetuned it on DeepBank in-domain training
set. Despite the general fact that larger model size
will lead to better performance on finetuning for
some tasks, our empirical results show that adopt-
ing model sizes larger than T5-Large will not lead
to further gain for ERG parsing.

For the collaborative neural-symbolic parsing,
we set the beam size to 5, i.e., our combined pre-
dictions will be selected from the top 5 predictions

3https://github.com/delph-in/pydelphin
4https://github.com/google-research/

t5x

produced by the model. For the monotonic trans-
formation α(x) in (2), we set We set λ = 0.1 and
T = 0.1.

Evaluation Metrics For evaluation, following
previous work, we adopt the SMATCH metric (Cai
and Knight, 2013), which was originally proposed
for evaluating AMR graphs. It measures graph
overlap, but does not rely on sentence alignments
to determine the correspondences between graph
nodes. Specifically, SMATCH is computed by per-
forming inference over graph alignments to esti-
mate the maximum F1-score obtainable from a
one-to-one matching between the predicted and
gold graph nodes. This is also ideal for measuring
the divergence between predicted and prior graphs
in our collaborative framework.

Node Edge Graph

P R F P R F SMATCH

w/o preprocess 96.29 91.72 93.95 93.86 88.66 91.19 92.57
w/ preprocess 97.67 96.93 97.30 97.71 96.85 95.81 96.54

Table 1: Comparision of precision, recall, and F1-score
for node and edge prediction and SMATCH scores on the
test set under the settings of with/without tokenization
preprocessing.

Impact of Tokenization To validate the effec-
tiveness of our proposed tokenization process, we
report the performance of node and edge predic-
tion and the SMATCH scores with and without the
process on the test set in Table 1, which indicates
that after this process, the SMATCH score is im-
proved by 4.29% on the test set. We can find
that the recall score for node prediction has sig-
nificant improvement, and this is because that the
sequence without tokenization preprocessing will
lead to longer sequence length, and many output
graphs have reached the max decoding sequence
length and thus are incomplete.

Model Node Edge SMATCH

ACE5 93.18 88.76 90.94
Transition-based (Buys and Blunsom, 2017) 89.06 84.96 87.00
SHRG-based (Chen et al., 2018) 94.51 87.29 90.86
Composition-based (Chen et al., 2019) 95.63 91.43 93.56
Factorization-based (Chen et al., 2019) 97.28 94.03 95.67
Factorization-based (Cao et al., 2021) 96.42 93.73 95.05
ACE-T5 (following Shaw et al. (2021)) 93.46 89.19 91.30

Translation-based (Ours) 97.30 95.81 96.54
+ Uncertainty-based Collaboration 97.64 96.41 97.01

Table 2: F1 score for node and edge predictions and the
SMATCH scores on the test set.
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Comparison with Existing Parsers We com-
pared our parser with the grammar-based ACE
parser and other data-driven parsers in Table 2. The
baseline models also include a similar practice with
Shaw et al. (2021), which takes T5 as a backup for
grammar-based parser. Our model outperforms all
previous work, and achieves a SMATCH score of
96.54 (a 30.1% error reduction), which is a sig-
nificant improvement over existing parsers on this
well-studies benchmark. After applying the col-
laborative parsing framework, we further improve
the parser’s performance to 97.01 (a 39.6% error
reduction).

We notice that using the simple margin probabil-
ity as the uncertainty estimator performs better than
weighted entropy. We then conduct an investiga-
tion on the calibration quality of model uncertainty
using different estimators. Specifically, we find
predictive margin exhibits a surprisingly strong cor-
relation with the model’s test SMATCH score, while
some more well-known uncertainty metrics (e.g.,
predictive entropy) are poorly calibrated. More
details can be found in Appendix D.

5 Fine-grained Linguistic Evaluation

Though performs better than symbolic parser, we
find that actually neural and symbolic parsers yield
different distributions on the test set (see Appendix
C for details). This has motivated us to dive deeply
into more fine-grained evaluation for our models.

ERG provides different levels of linguistic infor-
mation that is beneficial to many NLP tasks, e.g.,
named entity recognition, semantic role labeling,
and coreference. This rich linguistic annotation can
help us quantify different types of errors the model
makes. We reported the detailed evaluation results
in Table 3. Specifically, we consider:

Lexical construction ERG uses the abstract
node compound to denote compound words. The
edge labeled with ARG1 refers to the root of the
compound word, and thus can help to further dis-
tinguish the type of the compound into (1) nominal
with normalization, e.g., “flag burning”; (2) nomi-
nal with noun, e.g., “pilot union”; (3) verbal, e.g.,

5The results for ACE are lower than those reported in previ-
ous work, which are originally from Buys and Blunsom (2017).
We use the same ACE parser and we have confirmed with other
authors that those higher results are not reproducible. As the
ACE parser fails to parse some of the sentences (more than
1%), we only evaluate sentences that are successfully parsed
by ACE.

“state-owned”; (4) named entities, e.g., “West Ger-
many”.

Argument structure In ERG, there are differ-
ent types of core predicates in argument struc-
tures, specifically, verbs, nouns and adjectives.
We also categorize verb in to basic verb (e.g.,
_look_v_1) and verb particle constructions (e.g.,
_look_v_up). The verb particle construction is
handled semantically by having the verb contribute
a relation particular to the combination.

Coreference ERG resolves sentence-level coref-
erence, i.e., if the sentence referring to the same
entity, the entity will be an argument for all the
nodes that it is an argument of, e.g., in the sentence,
“What we want to do is take a more aggressive
stance”, the predicates “want” (_want_v_1) and
“take” (_take_v_1) share the same agent “we”
(pron). As discussed before, this can be presented
as reentrancies in the ERG graph, we notice that
one important type of reentrancies is the passive
construction (e.g., parg_d in Figure 1), so we
also report evaluation on passive construction in
Table 3.

Type # ACE T5 Collab.

Compound 2,266 80.58 90.46 90.36
Nominal w/ nominalization 22 85.71 89.66 82.76
Nominal w/ noun 1,044 85.28 90.96 91.42
Verbal 23 75.00 77.27 81.82
Named entity 1,153 82.92 91.36 90.40

Argument structure 7,108 86.98 90.68 91.66
Total verb 4,176 85.34 89.75 90.50
Basic verb 2,356 85.79 89.97 90.90
ARG1 1,683 90.25 93.40 93.94
ARG2 1,995 90.48 92.95 93.79
ARG3 195 85.63 83.08 84.62

Verb-particle 1,761 84.69 89.47 90.00
ARG1 1,545 89.57 93.50 94.05
ARG2 923 86.27 91.10 91.26
ARG3 122 87.88 86.75 88.08

Total noun 394 92.41 91.84 92.63
Total adjective 2,538 89.05 92.09 93.25

Reentrancy 2,343 77.29 87.88 88.43
passive 522 84.89 91.54 92.72

Table 3: Comparing ACE, T5 parsers and collaborative
parsing (Collab.) on fine-grained linguistic categories.
All scores are reported in accuracy. The underlined
denotes the best in ACE and T5, and the bold denotes
the best in ACE, T5 and Collab.

As shown, the T5 parser performs much better
than ACE, especially for compound recognition.
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This indicates that local semantic information such
as compound constructions or named entities can
be easily captured by those pretrained embedding-
based models. For argument structure, though per-
forms better than ACE in most cases, the T5 parser
still has relatively low accuracy for ARG3 and noun
structure recognition. This is mainly due to their
relatively low frequency in the training set (1.94%
for ARG3 and 5.54% for noun argument structures).

Our analysis in this section is consistent with
previous work: the T5 parser, similar to many other
neural parsers, is fragile to tail instances that do not
have sufficient representation in the training data.
We also further report the evaluation results for
our collaborative neural-semantic parsing frame-
work (Collab.), where we can see that it brings
improvement for the issues above, which validates
the effectiveness of the collaborative framework.

6 Conclusions and Future Work

In this paper, we present a simple, uncertainty-
based approach to collaborative neural-symbolic
parsing for graph-based meaning representations.
In contrary to the prior neural-symbolic approaches,
we maintain the simplicity of the seq2seq training,
and design a decision-theoretic inference criteria
for beam candidate selection, incorporating model
uncertainty and prior knowledge from an existing
symbolic parser.

Remarkably, despite the simplicity of the
method, our approach strongly outperform all
the previously-known approach on the DeepBank
benchmark (Table 2), and attains strong perfor-
mance even in the tail linguistic categories (Table
3). Our study revealed that the commonly observed
weakness of the neural model may root from a
sub-optimal inference procedure. Therefore, devel-
oping a more calibrated neural semantic parser and
developing principled inference procedure may be
a fruitful avenue for addressing the generalization
issues of neural parsers.

In the future, we plan to apply this approach to
a broader range of graph meaning representations,
e.g., AMR (Banarescu et al., 2013) and UCCA
(Abend and Rappoport, 2013), and build a more
advanced uncertainty estimation approach to quan-
tify model uncertainty about sub-components of
the graph, thereby allowing more fine-grained in-
tegration between neural prediction and symbolic
derivations.
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Appendix

A Detailed Implementation of
Linearization

The original PENMAN styled linearization for
graph in Figure 1 can be written as:

(x0 / _introduced_v_to
:ARG2 (x1 / _drug_n_1
:BV-of (x2 / _the_q))

:ARG1-of (e0 / parg_d
:ARG2 x1)

:ARG1-of (e1 / loc_nonsp
:ARG2 (x3 / _year_n_1

:BV-of (x4 / _this_d_dem)))
:ARG1-of (x5 / _in_p
:ARG2 (e2 / named

:BV-of (e3 / proper_q)
:ARG1-of (e4 / compound

:ARG2 (e5 / named
:BV-of (e6 / proper_q))))))

The term -of is used for reversing the edge
direction for graph traversing. Nodes in the
graph get identifiers (e.g., x0, e0), which can
be referred to later to establish a reentrancy,
e.g., the node _drug_n_1 serves as ARG2 of
_introduced_v_to and ARG2 of parg_d at
the same time, so the identifier x_1 appears twice
in the notation. However, in our settings, these
identifiers can be randomly set to any unique sym-
bols, which will confuse the model to learn the
real meaningful mappings. To tackle this issue and
create a variable-free version of the PENMAN no-
tation, we replace these identifiers with star mark-
ers to indicate reentrancy, e.g., replacing x1 with
_drug_n_1 *.

To illustrate more about reentrancies, we con-
sider two different types of cases:

(1) For cases where the second reentrancy
still points back to the first _drug_n_1, e.g.,
in the sentence “the drug was introduced and
used this year”, the node will still be marked as
_drug_n_1 *.

(2) For cases where the second reentrancy refers
to another token span in the sentences, e.g., in
the sentence “The drug was introduced this year,
and another drug will be introduced next year”,
the second node reentrancy will be marked as
_drug_n_1 **.

In other words, the max number of star markers *
indicates the total number of different reentrancies
in the sentences. This will not confuse the model to
do the reentrancy prediction as it can always refer
to how many reentrancies have been predicted in
the previous sequences.

B Details about Tokenization

ERG makes an explicit distinction between nodes
with surface relations (prefixed by an underscore),
and with grammatical meanings. The former,
called the surface node, consists of a lemma fol-
lowed by a coarse part-of-speech tag and an op-
tional sense label. For example, for the node
_drug_n_1 in Figure 1, the surface lemma is
drug (_drug), the part-of-speech is noun (_n),
and _1 here specifies that it is the first sense un-
der the noun “drug”. The later, called the abstract
node, is used to represent the semantic contribu-
tion of grammatical constructions or more special-
ized lexical entries, e.g., parg_d (for passive),
proper_q (for quantification of proper words),
compound (for compound words), and named
(for named entities).

It is noted that the set of abstract concepts and
edges are fixed and relatively small (88 for abstract
nodes and 11 for edges in the training set), while
the surface nodes have high productivity, i.e., many
different lemmas can fit into some fixed patterns
such as _n_1 and _v_to. Therefore, we rewrite
those fixed abstract, concepts surface patterns and
edges into some non-tokenizable tokens in the T5
vocabulary to inform the model that these units are
non-compositional in ERG graphs.

C Distributions of the T5 and ACE
Parsers
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Figure 2: SMATCH scores of the T5 and ACE parsers
across test examples

D Uncertainty Estimates and Calibration
Performance

There has been some work exploring the model
uncertainty for seq2seq parser or some other non
seq2seq models (Dong et al., 2018; Kamath et al.,
2020). In this section, we are also interested in
investigating the calibration quality of model un-
certainty of a seq2seq neural parser. For the pro-
posed criteria (2) to perform robustly in practice,
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the uncertainty estimatorH(x) should be well cal-
ibrated, i.e., the magnitude of H is indicative of
the model’s predictive error. To this end, we notice
that a reliable uncertainty measure for sequence
prediction tasks is still an open research challenge
(Malinin and Gales, 2020). In this work, we experi-
ment with several well-known estimators of model
uncertainty:
Margin probability. The simplest estimator for
model uncertainty is the predictive margin, i.e., the
difference in probability of the top 1 prediction
minus the likelihood of the top 2 prediction based
on the beam score:

Hmargin(p(y|x,D)) = p(y(1)|x,D)− p(y(2)|x,D)

Weighted entropy. Considering that our model
uses beam-search for inference, and with regards to
the Monte-Carlo estimators, beam-search can be in-
terpreted as a form of importance-sampling which
yields hypotheses from high-probability regions
of the hypothesis space. We can estimate uncer-
tainty which is importance-weighted in proportion
to p(y(b)|x,D) such that

Hentropy(p(y|x,D)) = −
B∑
b=1

πb
L(b)

ln p(y(b)|x,D),

where πb =
p(y(b)|x,D)∑B
k p(y(k)|x,D)

is the estimated impor-
tance weight for each beam candidate (Malinin and
Gales, 2020).

In our experiment, we investigate the calibration
of the above uncertainty estimations (see below),
and experiment with their respective efficacy in
improving the collaborative parsing system’s pre-
dictive performance (Table 4).
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(a) Margin Probability

0.
12

0.
30

0.
41

0.
47

0.
53

0.
57

0.
61

0.
64

0.
67

0.
69

0.
72

0.
74

0.
75

0.
77

0.
79

0.
80

0.
81

0.
83

0.
84

0.
85

0.
86

0.
88

0.
89

0.
90

0.
92

0.
93

0.
95

0.
96

0.
97

Confidence

0.90

0.92

0.94

0.96

0.98

1.00

Sm
at

ch

(b) Weighted Entropy

Figure 3: Diagrams for the model’s confidence verses
SMATCH scores on the test set. Each bin contains 50
examples.

A common approach to evaluate a model’s un-
certainty quality is to measure its calibration per-
formance, i.e., whether the model’s predictive un-
certainty is indicative of the predictive error (Guo

et al., 2017). To understand how well the T5
parser’s neural uncertainty correlates with its pre-
diction reliability, we plot the diagrams for the
model’s confidence verses SMATCH scores on the
test set in Figure 3. As shown, comparing to the
weighted entropy, margin probability is qualita-
tively much better calibrated. 6 Correspondingly,
Table 4 shows that the collaborative result using
margin probability yields much strongly perfor-
mance, confirming the connection between a uncer-
tainty model’s calibration quality and its effective-
ness is collaborative prediction (Kivlichan et al.,
2021).

Model Node Edge SMATCH

ACE 93.18 88.76 90.94
Transition-based (Buys and Blunsom, 2017) 89.06 84.96 87.00
SHRG-based (Chen et al., 2018) 94.51 87.29 90.86
Composition-based (Chen et al., 2019) 95.63 91.43 93.56
Factorization-based (Chen et al., 2019) 97.28 94.03 95.67
Factorization-based (Cao et al., 2021) 96.42 93.73 95.05
ACE-T5 (following Shaw et al. (2021)) 93.46 89.19 91.30

T5 (Ours) 97.30 95.81 96.54
Collaborative w/ margin probability 97.64 96.41 97.01
Collaborative w/ weighted entropy 97.27 96.14 96.70

Table 4: F1 score for node and edge predictions and the
SMATCH scores on the test set.

6We hypothesize that the inferior performance of entropy
is due to the well-known "length bias" (Yang et al., 2018), i.e.,
shorter predictions tend to have higher beam score, which also
tend to have lower SMATCH score
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