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Abstract

Dense retrieval (DR) methods conduct text re-
trieval by first encoding texts in the embedding
space and thenmatching them by nearest neigh-
bor search. This requires strong locality proper-
ties from the representation space, e.g., close al-
locations of each small group of relevant texts,
which are hard to generalize to domains with-
out sufficient training data. In this paper, we
aim to improve the generalization ability of DR
models from source training domains with rich
supervision signals to target domains without
any relevance label, in the zero-shot setting.
To achieve that, we propose Momentum adver-
sarial Domain Invariant Representation learn-
ing (MoDIR), which introduces a momentum
method to train a domain classifier that dis-
tinguishes source versus target domains, and
then adversarially updates the DR encoder to
learn domain invariant representations. Our
experiments show that MoDIR robustly outper-
forms its baselines on 10+ ranking datasets col-
lected in the BEIR benchmark in the zero-shot
setup, with more than 10% relative gains on
datasets with enough sensitivity for DR mod-
els’ evaluation. Source code is available at
https://github.com/ji-xin/modir.

1 Introduction

Rather than matching texts in the bag-of-words
space, Dense Retrieval (DR) methods first encode
texts into a dense embedding space (Lee et al., 2019;
Karpukhin et al., 2020; Xiong et al., 2021) and then
conduct text retrieval using efficient nearest neigh-
bor search (Chen et al., 2018; Guo et al., 2020;
Johnson et al., 2021). With pre-trained language
models and dedicated fine-tuning techniques, the
learned representation space has significantly ad-
vanced the first stage retrieval accuracy of many lan-
guage systems, including web search (Xiong et al.,
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Figure 1: T-SNE plots of embedding space of a BERT
reranker for q–d pairs (left) and ANCE dense retriever
for queries/documents (right). Both models are trained
on web search and transferred to medical search.

2021), grounded generation (Lewis et al., 2020),
open domain question answering (Karpukhin et al.,
2020; Izacard and Grave, 2020), etc.
Purely using the learned embedding space for

retrieval has raised concerns on the generalization
ability, especially in scenarios without dedicated su-
pervision signals. Many have observed diminishing
advantages of DR models in various datasets if they
are not fine-tuned with task-specific labels, i.e., in
the zero-shot setup (Thakur et al., 2021). However,
in many scenarios outside commercial web search,
zero-shot is the norm. Obtaining training labels
is difficult, expensive, and sometimes infeasible,
especially in special domains (e.g., medical) where
annotation requires strong expertise or is even pro-
hibited because of privacy constraints. The lack
of zero-shot ability hinders the democratization
of advancements in dense retrieval from data-rich
domains to everywhere else. Many equally, if not
more important, real-world search scenarios still
rely on unsupervised exact match methods that have
been around for decades, e.g., BM25 (Robertson
and Jones, 1976).
Within the search pipeline, the generalization

of first stage DR models is notably worse than
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subsequent reranking models (Thakur et al., 2021).
Reranking models, similar to many classification
models, only require a decision boundary between
relevant and irrelevant query–document pairs (q–d
pairs) in the representation space. In comparison,
DR needs good local alignments across the entire
space to support nearest neighbor matching, which
is much harder to learn.
In Figure 1, we use t-SNE (van der Maaten and

Hinton, 2008) to illustrate this difference. We
show learned representations of a BERT-based
reranker (Nogueira and Cho, 2019) and a BERT-
based dense retriever (Xiong et al., 2021), in zero-
shot transfer fromweb (Bajaj et al., 2016) tomedical
domain (Voorhees et al., 2021). The representation
space learned for reranking yields two manifolds
with a clear decision boundary; data points in the
target domain naturally cluster with their corre-
sponding classes (relevant or irrelevant) from the
source domain, leading to good generalization. In
comparison, the representation space learned for
DR is more scattered. Target domain data points
are grouped separately from those of the source
domain; it is much harder for the learned nearest
neighbor locality to generalize from source to the
isolated target domain region.
In this paper, we present Momentum Adver-

sarial Domain Invariant Representations learning
(MoDIR), to improve the accuracy of zero-shot
dense retrieval (ZeroDR). We first introduce an aux-
iliary domain classifier that is trained to discrimi-
nate source embeddings from target ones. Then the
DR encoder is not only updated to encode queries
and relevant documents together in the source do-
main, but also trained adversarially to confuse the
domain classifier and to push for a more domain
invariant embedding space. To ensure stable and
efficient adversarial learning, we propose a mo-
mentum method that trains the domain classifier
with a momentum queue of embeddings saved from
previous iterations.

Our experiments evaluate the generalization abil-
ity of dense retrieval with MoDIR using 15 retrieval
tasks from the BEIR benchmark (Thakur et al.,
2021). On these retrieval tasks from various do-
mains including biomedical, finance, scientific, etc.,
MoDIR improves the zero-shot accuracy of two
standard models, DPR (Karpukhin et al., 2020) and
ANCE (Xiong et al., 2021). On tasks where evalua-
tion labels have sufficient coverage for DR (Thakur
et al., 2021), MoDIR’s improvements are robust

and significant, despite not using any target domain
training labels. We also verify the necessity of
the proposed momentum approach, without which
the domain classifier fails to capture the domain
gaps, and the adversarial training does not learn
domain invariant representations, resulting in little
improvement in ZeroDR.

We conduct further analyses to reveal interesting
properties of MoDIR and its learned embedding
space. During the adversarial training process, the
target domain embeddings are gradually pushed
towards the source domain and eventually absorbed
as a subgroup of the source. In the learned represen-
tation space, our manual examinations find various
cases where a target domain query is located close
to source queries with similar information needs.
This indicates that ZeroDR’s generalization ability
comes from the combination of information over-
laps of source/target domains, and MoDIR’s ability
to identify the right correspondence between them.

2 Related Work

In this section, we recap related work in dense
retrieval and adversarial domain adaptation.
Dense Retrieval Different from sparse first stage
retrieval models, dense retrieval with Transformer-
based models (Vaswani et al., 2017) such as
BERT (Devlin et al., 2019) conducts retrieval in the
dense embedding space (Lee et al., 2019; Chang
et al., 2020; Guu et al., 2020; Karpukhin et al., 2020;
Luan et al., 2021). Compared with its sparse coun-
terparts, DR improves retrieval efficiency and also
provides comparable or even superior effectiveness
for in-domain datasets.
One important research question for DR is how

to obtain meaningful negative training instances.
DPR (Karpukhin et al., 2020) uses BM25 to find
stronger negatives in addition to in-batch random
negatives. RocketQA (Qu et al., 2021) uses cross-
batch negatives and also filters them with a strong
reranking model. ANCE (Xiong et al., 2021) uses
an asynchronously updated negative index built
from the being-trained DR model to retrieve global
hard negatives.
Recently, challenges of ZeroDR have attracted

much attention (Thakur et al., 2021; Zhang et al.,
2021; Li and Lin, 2021). One way to improve
ZeroDR is query generation (Liang et al., 2020; Ma
et al., 2021), which first trains a doc2query model in
the source domain and then applies the NLG model
on target domain documents to generate queries.
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The target domain documents and generated queries
form weak supervision labels for DR models. Our
method differs from them and focuses on directly
improving the generalization ability of the learned
representation space.
AdversarialDomainAdaptation Unsupervised
domain adaptation (UDA) has been studied exten-
sively for computer vision applications. For exam-
ple, maximummean discrepancy (Long et al., 2013;
Tzeng et al., 2014; Sun and Saenko, 2016) measures
domain difference with a pre-defined metric and
explicitly minimizes the difference. Following the
advent of GAN (Goodfellow et al., 2014), adver-
sarial training for UDA is proposed: an auxiliary
domain classifier learns to discriminate source and
target domains, while the main classifier model is
adversarially trained to confuse the domain classi-
fier (Ganin and Lempitsky, 2015; Bousmalis et al.,
2016; Tzeng et al., 2017; Luo et al., 2017; Vu
et al., 2020; Vernikos et al., 2020; Tang and Jia,
2020). The adversarial method does not require
pre-defining the domain difference metric, allowing
more flexible domain adaptation. MoDIR builds
upon the success of UDA methods and introduces
a new momentum learning technique that is neces-
sary to learn domain invariant representations in
the ZeroDR setting.

3 Training Domain Invariant
Representations for Dense Retrieval

In this work, we aim to improve generalization in
ZeroDR under the unsupervised domain adapta-
tion setting (UDA) (Long et al., 2016). Given a
source domain with sufficient training signals, the
goal is to transfer the DR model to a target do-
main, with access to its queries and documents, but
without any relevance label. This is the common
case when applying DR in real-world scenarios: in
target domains (e.g., medical), example queries and
documents are available but annotating relevance is
expensive and may require domain expertise; on the
other hand, in the source domain (e.g., web search),
training signals are available at large scale (Ma
et al., 2020; Thakur et al., 2021).
Our method, MoDIR, improves ZeroDR in the

UDA setup by encouraging the DR models to learn
a domain invariant representation space that facil-
itates the generalization from source to target. In
this section, we describe (1) how to train a vanilla
dense retrieval model, (2) how to train a momentum
domain classifier to distinguish the two domains,

and (3) how to adversarially train the DR model
for domain invariant representations.

3.1 Training the Dense Retrieval Model
The standard design of DR is to use a dual-encoder
model (Lee et al., 2019; Karpukhin et al., 2020),
where an encoder g takes as input a query/document
and encodes it into a dense vector. The relevance
score of a q–d pair x = (q, d) is computed using a
simple similarity function:

r(x) = sim(g(q; θg), g(d; θg)), (1)

where θg is the collection of parameters of g and
sim is a vector similarity function.

The training of DR uses labeled q-d pairs in the
source domain xs = (qs, ds). With relevant q–d
pair as xs+ and irrelevant pair as xs−, the encoder
g is trained to minimize the ranking loss LR:

min
θg

∑
xs+,xs−

LR(r(xs+), r(xs−)), (2)

where LR is a ranking loss function. Our model
follows its baselineDPR/ANCE to sample irrelevant
documents using BM25 or global hard negatives.
Without loss of generality, other modeling designs
are kept the same with ANCE: g is fine-tuned
from RoBERTaBASE (Liu et al., 2019); the output
query/document embeddings are the hidden states
of the last layer’s [CLS] token; LR is the Negative
Log Likelihood (NLL) loss; sim is the dot product.

3.2 Estimating the Domain Boundary with
Momentum Domain Classifier

To capture domain differences and enable adversar-
ial learning for domain invariance, MoDIR intro-
duces a domain classifier f to predict the probability
of a query/document embedding e being source or
target, and we use a linear classifier as f :

f(e) = softmax(Wfe). (3)

The linear classifier has sufficient capacity to dis-
tinguish the two domains in the high-dimensional
representation space—the main challenge is on
training. As illustrated in Figure 1, DR’s represen-
tation space focuses more on locality than forming
manifolds, and therefore it is more difficult to learn
the domain boundary in this case. If we simply
update f using the same amount of data points as
g, f fails to accurately estimate the domain bound-
ary; on the other hand, if we naïvely feed in more
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Figure 2: Momentum adversarial training provides a more accurate and robust estimation of the domain boundary
in dense retrieval’s embedding space.

data points for f , all these data points need to be
encoded by the expensive encoder g, which makes
the training process infeasibly slow.
To achieve the balance between accuracy and

efficiency, we introduce the momentum method
for the domain classifier, as shown in Figure 2.
We maintain a momentum queue Q that records
embeddings from multiple previous batches as the
additional training data for f . Specifically, at each
step, in addition to source domain training data xs,
we sample q–d pairs xt from the target domain, and
add embeddings of xs and xt toQ. The momentum
queueQ at step k includes embeddings eq/ed from
source and target queries/documents for all recent
n batches:

Qk = {eq, ed|(q, d) ∈ Bk−n+1:k}, (4)

where Bk−n+1:k is the collection of all data points
from the past n batches, including both source
and target ones, and n is the momentum step. For
simplicity of sampling, we use the 1:1 ratio be-
tween source/target data and also between posi-
tive/negative source data.
To ensure efficiency of the momentum method,

all embeddings e from Q are detached from the
encoder g. Take the query qs as an example,

eqs = Φ(g(qs; θg)), (5)

whereΦ is the stop-gradient operator, i.e., gradients
of eqs are not back propagated to θg. Since the
linear classifier f is significantly smaller and faster
than the transformer-based encoder g, this enables
efficient training for f .
At each iteration, f is updated by repetitively

minimizing the following discrimination loss LD,

computed with all embeddings from Q:

min
Wf

LD(e; f), e ∈ Q, (6)

LD(e; f) =

{
− log f(e), e from source,
− log(1− f(e)), e from target,

(7)

where LD is a standard classification loss. In this
way, at each iteration, the domain classifier f is
trained with more signals than the encoder g (the
entire Q versus only one batch), ensuring accurate
estimation of the domain boundary. The detached
embeddings fromQ also ensures training efficiency.

3.3 Adversarial Learning for Domain
Invariant Representations

MoDIR adversarially trains the encoder g to gener-
ate domain invariant representations that are hard
for f to distinguish. This is done by minimizing the
adversarial loss LM . Here we choose the widely
used Confusion loss (Tzeng et al., 2017):

LM (x; g, f) = −1

2

(
log f(g(q)) + log f(g(d))

+ log(1− f(g(q))) + log(1− f(g(d)))
)
, (8)

where x ∈ {xs, xt} is a q-d pair from either source
or target domain. It reaches the minimum when the
embeddings are domain invariant so that the domain
classifier predict 50%-50% probability for all data.
In order for the encoder to learn domain invariance,
we freeze the domain classifier and update only the
encoder when minimizing LM :

min
θg

λ
∑

x∈{xs,xt}

LM (x; g, f). (9)

The hyperparameter λ balances the learning of DR
ranking in the source domain (Equation (2)) and
the learning of domain invariance (Equation (9)).
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Hole@10 nDCG@10
BM25 DPR ANCE BM25 DPR DPR+MoDIR ANCE ANCE+MoDIR

TREC-COVID 10.6% 33.0% 22.4% 0.616 0.561 0.591(+5.3%) 0.654 0.676 (+3.4%)
Touché 29.8% 63.3% 56.9% 0.605 0.243 0.258(+6.2%) 0.284 0.315 (+10.9%)
DBPedia 41.3% 73.2% 65.8% 0.288 0.236 0.240(+1.7%) 0.281 0.284 (+1.1%)
NFCorpus 74.1% 85.2% 83.1% 0.297 0.208 0.212(+1.9%) 0.237 0.244 (+3.0%)
Quora 88.7% 87.3% 87.1% 0.742 0.842 0.848(+0.7%) 0.852 0.856 (+0.5%)
BioASQ 80.7% 92.0% 89.5% 0.514 0.232 0.247(+6.5%) 0.306 0.320 (+4.6%)
HotpotQA 87.7% 92.3% 90.9% 0.601 0.371 0.387(+4.3%) 0.456 0.462 (+1.3%)
FEVER 92.6% 92.1% 91.2% 0.648 0.589 0.607(+3.1%) 0.669 0.680 (+1.6%)
FiQA 93.4% 91.9% 91.5% 0.239 0.275 0.276(+0.4%) 0.295 0.296 (+0.3%)
ArguAna 92.7% 92.6% 92.6% 0.441 0.414 0.413(−0.2%) 0.415 0.418 (+0.7%)
NQ 94.9% 93.2% 92.6% 0.310 0.398 0.402(+1.0%) 0.446 0.442 (−0.9%)
SciFact 91.5% 93.2% 92.8% 0.620 0.478 0.476(−0.4%) 0.507 0.502 (−1.0%)
SCIDOCS 92.2% 94.4% 93.8% 0.156 0.108 0.108(+0.0%) 0.122 0.124 (+1.6%)
Climate-FEVER 95.7% 94.7% 94.1% 0.179 0.176 0.175(−0.6%) 0.198 0.206 (+4.0%)
CQADupStack 94.8% 95.2% 94.9% 0.316 0.281 0.280(−0.4%) 0.296 0.297 (+0.3%)

Table 1: Overall performance and label coverage (Hole rate) on tasks from BEIR. Relative improvements of MoDIR
over its base DR model DPR/ANCE are shown in percentages. Datasets are ordered by ANCE’s Hole rates, and
datasets with lower Hole rates provide more accurate evaluation.

To summarize, for each training batch in the
source domain, the domain classifier f and the
encoder g are optimized by:

min
Wf

LD(e; f), e ∈ Q, (10)

min
θg

∑
xs+,xs−

LR(r(xs+), r(xs−))

+ λ
∑

x∈{xs,xt}

LM (x; g, f),
(11)

where f is trained to estimate the boundary between
source/target and g is trained to provide domain in-
variant representations that also captures relevance
matching in the source domain.

4 Experiments

This section describes experimental setups and eval-
uates the effectiveness of MoDIR. Furthermore, we
dive deep into the importance of momentum train-
ing and properties of domain invariant embedding
space, which provides new insights for ZeroDR.

4.1 Datasets
We choose the MS MARCO passage dataset (Bajaj
et al., 2016) as the source domain dataset and choose
the 15 publicly available datasets from the BEIR
benchmark (Thakur et al., 2021) as target domain
datasets (details in Appendix A). These datasets
cover a large number of various domains, including
biomedical, finance, scientific, etc. We treat each
target domain dataset separately and produce an
individual model for each of them, following the
ZeroDR setting described in Section 3.

4.2 Effectiveness of MoDIR
We build MoDIR on top of DPR and ANCE, but it
can also be applied to other DR frameworks simi-
larly. Table 1 shows theHole rates and nDCG scores
on the BEIR benchmark; we omit the Hole rates of
MoDIR since they are very similar to its baseline
DPR/ANCE’s. We first discuss Hole rates and
baseline selection, and then discuss effectiveness
of each model.

Hole Rates and DR Evaluation A hole is an
unlabeled q–d pair retrieved by a model, and the
percentage of holes among all retrieved q–d pairs
is the Hole rate. Datasets with high Hole rates for
dense models are less sensitive to dense models’
effectiveness (Xiong et al., 2021), and we there-
fore consider datasets with low Hole rates more
important, since they provide more accurate mea-
surements for ZeroDR. On the other hand, many of
BEIR’s datasets are annotated with candidates gen-
erated by some sparse retrieval models at the time
of dataset construction, therefore the evaluation
of these datasets is biased towards sparse models.
Take TREC-COVID as an example, ANCE under-
performs BM25 under the original annotation, but
it achieves the state of the art (SOTA) after adding
extra labels based on ANCE’s prediction (Thakur
et al., 2021).

Baselines Our baselines include BM25 (Robert-
son and Jones, 1976), DPR (Karpukhin et al., 2020),
and ANCE (Xiong et al., 2021). The original DPR
is trained on NQ (Kwiatkowski et al., 2019), but we
instead train DPR onMARCO, which not only elim-
inates training dataset differences but also provides
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Method LM n
TREC-
COVID Touche

Single Confusion 1 0.650 0.294
Repeat 1k 0.664 0.309

Momentum
Confusion 100 0.649 0.294

1k 0.676 0.315
Minimax 1k 0.666 0.322
GAN 1k 0.641 0.325

Vanilla ANCE 0.654 0.284

Table 2: Ablation studies show that momentum is
critical for learning domain invariant representation.
Default settings are underlined and best scores are bold.

better overall results. BEIR also reports results of
other methods, such as docT5query (Nogueira et al.,
2020), TAS-B (Hofstätter et al., 2021), GenQ (Ma
et al., 2021), ColBERT (Khattab and Zaharia, 2020),
etc. However, they are not directly comparable with
MoDIR since they involve stronger supervision
signals from rerankers (TAS-B), data augmenta-
tion from expensive sequence-to-sequence models
(docT5query and GenQ), and high-latency late
interaction (ColBERT). MoDIR instead directly
improves the generalization ability of the represen-
tation space, and are orthogonal to these methods
and can be combined for better performance.

Effectiveness Comparison From Table 1 we can
see that MoDIR improves DPR and ANCE’s overall
effectiveness in the ZeroDR setting. On datasets
with low Hole rates, where evaluation is more sta-
ble, the gains are significant; on datasets with high
Hole rates, the gains are smaller but still stable.
Moreover, to present a fair comparison in the realis-
tic ZeroDR setting, results of MoDIR are obtained
without hyperparameter tuning or checkpoint selec-
tion: in the ZeroDR setting, there is no access to
relevance labels in the target domain during train-
ing/validation. For all target domain datasets, we
keep most of the experimental settings the same
with ANCE and evaluate checkpoints after the same
number of training steps (details in Appendix B).
This evaluation setup is the closest to ZeroDR in the
real world, but it may not show the full potential and
the best empirical results for MoDIR. We further
study this in Section 4.5.

4.3 Effectiveness of Momentum Training and
Ablation Studies

Our ablation studies evaluate the importance of
the momentum method and the effects of other
experimental setups. We compare different training
setups against vanilla ANCE, using TREC-COVID
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Figure 3: Global and Local Domain-Acc at different
training steps with/without momentum (top/bottom).

and Touché which have the best label coverage
(lowest Hole rates), and show the results in Table 2.

Firstly, we evaluate the effectiveness of not using
the momentum queue: each iteration, the domain
classifier is trained either with a single batch n = 1,
or repeat1 the current batch for n = 1k times. We
can see that using a single batch fails to improve
over ANCE, indicating the necessity of using more
data to train the domain classifier; repeating the
current batch also provides smaller improvements
than using different batches from the queue. Sec-
ondly, we use a smaller momentum step n = 100
for momentum training, which also yields little im-
provement. This shows that n has to be sufficiently
large for the momentum method to work, proving
the necessity of our efficiency method to detach
embeddings before storing them into the queue.
Thirdly, we train MoDIR with two other choices of
LM from Equation (9): Minimax and GAN. GAN
loss is less stable as described by Tzeng et al. (2017),
while Minimax performs comparatively to Confu-
sion. This shows that MoDIR can also be applied
with other domain adaptation training methods.

4.4 Convergence of Adversarial Training
with Momentum

In this experiment, we study how our momentum
method helps adversarial training converge to a

1Concretely, for repeat, we update the domain classifier
with the current batch’s detached embeddings repetitively for
n times (i.e., all using the same input embeddings).
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KNN-Source% nDCG@10

Checkpoint (→) 0 10k 30k 50k 0 10k 30k 50k
w/ Momentum 5.2% 6.2% 14.0% 17.2% 0.654 0.676 0.689 0.724
w/o Momentum 5.2% 5.4% 5.6% 5.6% 0.654 0.650 0.673 0.668

Table 3: K-Nearest Neighbor Source Percentage (KNN-Source%) and nDCG@10 scores after different number of
training steps of ANCE with/without momentum, on TREC-COVID.

domain invariant embedding space. To quantify
domain invariance, we use Domain Classification
Accuracy (Domain-Acc), which includes two mea-
surements based on the choice of domain classi-
fier: (1) Directly take the domain classifier used
in MoDIR’s training (f in Section 3.2) and record
its accuracy when applied to a new batch, which
leads to Local Domain-Acc. (2) Randomly initial-
ize a new domain classifier and train it globally
on source and target embeddings, which leads to
Global Domain-Acc. Global Domain-Acc mea-
sures the real degree of domain invariance: it is
lower when embeddings of the two domains are not
easily separable. Local Domain-Acc is an efficient
approximation provided by the domain classifier f .
In Figure 3, we compare Global and Local

Domain-Acc on the TREC-COVID dataset when
training ANCE with/without momentum (without
momentum is the single setting described in Sec-
tion 4.3). With momentum, Local Domain-Acc
quickly increases to be comparable with Global
Domain-Acc. The domain classifier f (used in
MoDIR’s training) converges quickly and Global
Domain-Acc starts to decrease, showing that embed-
dings from the two domains become less separable.
Note that Local Domain-Acc does not decrease
because f has seen and memorized almost all data,
while Global Domain-Acc’s domain classifier is
always tested on unseen data for accurate results.
This shows that momentum helps with the balance
of adversarial training, ensuring its convergence
towards a domain invariant representation space.

On the other hand, when momentum is not used,
there exists a long-lasting gap between Local and
Global Domain-Acc, showing that f does not cap-
ture the domain boundary well. As a result, the two
domains remain (almost) linearly separable in the
embedding space, as shown by the fact that Global
Domain-Acc does not decrease, and the model fails
to produce domain invariant representations.

4.5 Impact of Domain Invariance

In this subsection, we study the behavior and bene-
fits of ANCE+MoDIR in learning domain invari-

ance. We focus on TREC-COVID as it provides
the most robust evaluation for ZeroDR.

Learning Domain Invariance with Momentum
We show how the momentum method gradually
pushes for a domain invariant representation space.
To measure how much the two domains are mixed
together, we use K-Nearest Neighbor Source Per-
centage (KNN-Source%): We index source and
target documents together; given a target domain
query in the embedding space, we retrieve its top-
100 nearest documents from the index, and calculate
the percentage of source documents from the nearest
neighbors; the average percentage for all target do-
main queries is reported. A higher KNN-Source%
means that the target domain embeddings are sur-
rounded by more source domain ones, indicating a
more domain invariant representation space.
The results are in Table 3. With momentum,

both KNN-Source% and nDCG gradually increase
as training proceeds. This shows that when target
domain embeddings are pushed towards the source
domain, the ranking performance of the target do-
main also improves. On TREC-COVID, MoDIR
eventually reaches 0.724, which is the SOTA for
first stage retrievers. On the other hand, without
momentum (the single setting in Section 4.3), KNN-
Source% and nDCG scores hardly increase.
We also use t-SNE (van der Maaten and Hin-

ton, 2008) to visualize the learned representation
space at different training steps in Figure 4. Before
training with MoDIR, the two domains are well
separated in the representation space learned by
ANCE. With more MoDIR training steps, the target
domains are pushed towards the source domain and
gradually becomes a subset of it. Without momen-
tum, the two domains remain separated, which is
consistent with observations from Table 3.

ZeroDR Effectiveness VS Domain Invariance
We study the correlation between ZeroDR rank-
ing effectiveness and domain invariance. We use
Global Domain-Acc as the indicator of domain in-
variance and plot it with the corresponding ZeroDR
nDCG scores during training in Figure 5.
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(a) MoDIR (0) (b) MoDIR (10k) (c) MoDIR (30k) (d) MoDIR (50k)

(e) w/o Mom. (0) (f) w/o Mom. (10k) (g) w/o Mom. (30k) (h) w/o Mom. (50k)

Figure 4: T-SNE of the representation space after different training steps (in the parentheses), with/without
momentum. Blue: source (MARCO); orange: target (TREC-COVID).
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Figure 5: Global Domain-Acc and target domain ZeroDR nDCG scores at different training steps: TREC-COVID
(left two) and Touché (right two).

Global Domain-Acc starts at near 100% and de-
creases as training proceeds, showing that source
and target embeddings are almost linearly sepa-
rable at the beginning but are gradually pushed
together. ZeroDR accuracy improves as Global
Domain-Acc decreases, showing that domain in-
variance is the source of ZeroDR’s improvements.
We also record that the DR accuracy on the source
domain (MARCO) decreases by nomore than 0.5%.
This indicates that the high dimensional embedding
space has sufficient capacity to learn domain in-
variant representations while maintaining relevance
matching in the source domain.

4.6 Case Study
We show two cases of queries from TREC-COVID
and their nearest MARCO queries before and af-
ter MoDIR training in Table 4. In the first case,

MoDIR pays more attention to “transmission”, and
potentially retrieves more documents about the
transmission of diseases, thereby improving the
nDCG score; documents about “coronavirus” are
also likely to be retrieved by MoDIR since it is a
very noticeable word. In the second case, it focuses
on “mRNA” more than “vaccine”. However, since
the mRNA vaccine is relatively new2 with few ap-
pearances in the MARCO dataset, the shift in focus
fails to improve MoDIR for this query.

These examples help reveal the source of general-
ization ability on ZeroDR. For the DR models to be
able to generalize, the source domain itself needs to
include relevance information that resembles the tar-
get domain’s needs; if there is no such information,

2The first mRNA vaccine was approved in 2020, according
to https://en.wikipedia.org/wiki/MRNA_vaccine.
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Target what are the transmission routes of coronavirus? nDCG@10 gain: 0.23
Source
Before

• what is the coronavirus • incubation period for coronavirus
• what are symptoms of coronavirus

Source
After

• countries where guinea worm is transmitted • what is the most common method of hiv transmission
• through which body system are cancer cells able to travel to different locations in the body?

Target what is known about an mRNA vaccine for the SARS-CoV-2 virus? nDCG@10 gain: −0.12
Source
Before

• is there a vaccine for hepatitis • is there a vaccine for tuberculosis
• shingles vaccination needed for those without chickenpox

Source
After

• what makes rna • what is used to make mrna
• what is the mmr vaccine called

Table 4: Case study: nearest source queries of a target query before and after MoDIR training.

as in the second example, generalization becomes a
hard challenge. When the source domain has such
coverage, MoDIR is able to align target queries to
source ones with similar information needs in its
domain invariant representation space, and such
alignments enable DR models to generalize.

5 Conclusion and Future Work

In this paper, we present MoDIR, a new representa-
tion learning method that improves the zero-shot
generalization ability of dense retrieval models. We
first show that dense retrieval models differ from
classification models in that they emphasize local-
ity properties in the representation space. Then
we present a momentum-based adversarial training
method that robustly pushes text encoders to provide
a more domain invariant representation space for
dense retrieval. Our experiments demonstrate that,
compared with ANCE, a recent SOTA DR model,
MoDIR’s improvements are robust overall and sig-
nificant on datasets where ZeroDR’s evaluation is
more accurate.
We conduct a series of studies to show the ef-

fects of our momentum method in learning domain
invariant representations. Without momentum, the
adversarial learning is unstable. The inherent vari-
ance of the DR embedding space hinders the con-
vergence of the domain classifier. With momentum
training, the model fuses the target domain data
into the source domain representation space and dis-
covers related information from the source domain,
thus improving generalization of ZeroDR.
We view MoDIR as an initial step of zero-shot

dense retrieval, an area that democratizes the rapid
advancements in search technologies to many real-
world scenarios. Our approach inherits the success
of domain adaptation techniques and upgrades them
by addressing the unique challenges of ZeroDR. Un-
derstanding the dynamics of dense retrieval is an im-

portant future direction for not only representation
learning research but also real-world applications.
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A Datasets Details

Target domain datasets used in our experiments are
collected in the BEIR benchmark (Thakur et al.,
2021) and include the following domains:

• General-domain (Wikipedia): DBPedia (Ha-
sibi et al., 2017), HotpotQA (Yang et al.,
2018), FEVER (Thorne et al., 2018), and
NQ (Kwiatkowski et al., 2019).

• Bio-medical: TREC-COVID (Voorhees et al.,
2021), NFCorpus (Boteva et al., 2016), and
BioASQ (Tsatsaronis et al., 2015).

• Finance: FiQA (Maia et al., 2018).

• Controversial arguments: Touché (Bondarenko
et al., 2020) and ArguAna (Wachsmuth et al.,
2018).

• Duplicate questions: Quora (Thakur et al., 2021)
and CQADupStack (Hoogeveen et al., 2015).

• Scientific: SciFact (Wadden et al., 2020), SCI-
DOCS (Cohan et al., 2020), and Climate-
FEVER (Diggelmann et al., 2020)

B Detailed Experimental Settings

We follow the design of ANCE for the DR encoder’s
modeling and training. We initialize the encoder
with the publicly released checkpoints: “ANCE-
warmup” for DPR+MoDIR and “ANCE-passage”
for ANCE+MoDIR.3 We randomly initialize the
domain classifier. Detailed hyperparameter choices
are shown in Table 5. We also use an exponential
decay routine for the hyperparameter λ to improve
training stability, where the value is reduced con-
tinuously and shrunk to half every 10k steps.

3https://github.com/microsoft/ANCE.

Hyperparameter Value
Same as ANCE

Learning rate for θg 1e-6
Effective batch size 16
Maximum Query Length 64
Maximum Document Length 512

New for MoDIR
Learning rate forWf 5e-6
Early stopping steps 10k
Momentum step n 1k
Initial λ 1.0

Table 5: Detailed hyperparameter choices of MoDIR.
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