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Abstract
Non-autoregressive translation (NAT) predicts
all the target tokens in parallel and significantly
speeds up the inference process. The Condi-
tional Masked Language Model (CMLM) is
a strong baseline of NAT. It decodes with the
Mask-Predict algorithm which iteratively re-
fines the output. Most works about CMLM
focus on the model structure and the train-
ing objective. However, the decoding algo-
rithm is equally important. We propose a
simple, effective, and easy-to-implement de-
coding algorithm that we call MaskRepeat-
Predict (MR-P). The MR-P algorithm gives
higher priority to consecutive repeated tokens
when selecting tokens to mask for the next
iteration and stops the iteration after target
tokens converge. We conduct extensive ex-
periments on six translation directions with
varying data sizes. The results show that
MR-P significantly improves the performance
with the same model parameters. Specifi-
cally, we achieve a BLEU increase of 1.39
points in the WMT’14 En-De translation task.
Our code is available at https://github.
com/chynphh/MaskRepeat-Predict.

1 Introduction

The autoregressive neural machine translation
(AT) model based on encoder-decoder frame-
work (Sutskever et al., 2014) has achieved great
success (Bahdanau et al., 2015; Wu et al., 2016;
Vaswani et al., 2017). The decoder predicts tar-
get tokens step by step conditioned on source to-
kens and previously predicted tokens. Such depen-
dency between target tokens inevitably leads to the
decoding latency. Non-autoregressive neural ma-
chine translation (NAT) models (Gu et al., 2018;
Ghazvininejad et al., 2019) remove the dependency
between tokens in the target sentence and generate
all tokens in parallel, significantly improving the
inference speed.

The assumption of conditional independence in
target tokens makes it more difficult for NAT mod-

els to learn the target distribution. NAT models’
translation is often incomplete or repetitive, es-
pecially for long sentences. An approach for al-
leviating this problem is to iteratively refine the
model output and make a trade-off between infer-
ence speed and model performance (Lee et al.,
2018; Ghazvininejad et al., 2019; Kasai et al.,
2020). Many refinement-based models are based
on CMLM (Ghazvininejad et al., 2019) and use the
Mask-Predict (M-P) (Ghazvininejad et al., 2019)
algorithm for decoding. Most works attempt to
improve the model from the model structure and
the training method.

In this work, we propose a novel decoding
algorithm for refinement-based models that we
call MaskRepeat-Predict (MR-P). Our algorithm
prefers the consecutive repeated tokens when se-
lecting tokens to mask. And the iteration will stop
in advance when the target sentence converges,
which reduces the number of iterations and avoid
over-refinement.We verify the effectiveness of MR-
P in six translation directions of three standard
datasets with varying data sizes. Under the same
model parameters, the model’s performance is sig-
nificantly improved using the MR-P decoding algo-
rithm.

The main contributions of this work are as fol-
lows:

• We devise a new decoding algorithm that is
simple, effective, and easy-to-implement. The
algorithm can achieve a consistent improve-
ment and a lower perplexity on the six transla-
tion tasks.

• The algorithm can reduce the average iteration
numbers and accelerate the overall translation
speed when using a large maximum number
of iterations.

• The algorithm is model-agnostic and can be
used as long as the conditional masked lan-
guage model is used for training.
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Iteration 1 2 3 4 10

Short 2.23 0.72 0.35 0.23 0.06
Long 11.83 4.33 1.84 1.11 0.27
All 6.59 2.36 1.03 0.63 0.15

Table 1: The average number of consecutive repeated
tokens per sentence with different iterations on the
WMT14’ De-En test set. We divide all samples into
Short and Long according to whether the sentence
length is less than 25.

2 Methodology

The Mask-Predict algorithm selects tokens accord-
ing to the generation probabilities. There is a prob-
lem with this strategy. When the probabilities of
consecutive repeated tokens are high, they will not
be selected and remain in the results.

As can be seen from Table 1, there are many con-
secutive repeated tokens in the results of the Mask-
Predict algorithm, especially in long sentences. So
it is necessary to mask the consecutive repeated
tokens and re-predict them. Consecutive repeated
short phrases occur infrequently, so only consecu-
tive repeated tokens are considered.

2.1 MaskRepeat-Predict
We introduce the MaskRepeat-Predict algorithm,
a convenient and effective decoding algorithm
based on Mask-Predict. In each iteration, the al-
gorithm preferentially selects consecutive repeated
tokens, retains the token with the highest confi-
dence among them, and masks the other tokens.
Secondly, the lower confidence tokens are selected
to mask from other positions. It should be noted
that if the target sentence converges, the iteration
will be stopped early.

Formal Description The algorithm runs T itera-
tions at most. Let yt = {yt1, ..., ytMy

} represent the
tokens generated in the iteration t, My denote the
length of the target sentence, and the probability of
each token correspond to pt = {pt1, ..., ptMy

}. Let
yt
k = {ytki , i = 1, ...,Myk} and pt

k = {ptki , i =
1, ...,Myk} indicate the k-th group of consecutive
repeated tokens and corresponding probabilities
generated in the iteration t, which means that po-
sitions ki and ki+1 should be actually consecutive
and all the tokens in yt

k are the same. Myk means
the length of the k-th group of consecutive repeated
tokens. nt = My · T−(t−1)

T denotes the number of
masked tokens in the t-th iteration.

MaskRepeat For the first iteration, we mask all
the tokens. For later iterations, we mask consecu-
tive repeated tokens firstly. For each set of consec-
utive repeated tokens, we reserve the token yt−1

ki
with the highest probability. All the reserved tokens
constitute yt

topr :

yt
topr =

K⋃
k

{
yt−1
ki

| ki = argmax
i

{
pt−1
ki

}}
, (1)

where K denotes the number of consecutive re-
peated tokens groups. All other repeated tokens
yt
maskr

are masked:

yt
maskr =

K⋃
k

{
yt−1
k

}
\yt

topr
, (2)

Next, we mask the tokens with lower probabili-
ties in the whole sentence:

yt
maskp = {yt−1

i | pti ∈ topk(−pt, k = m), i},
(3)

where m = max{nt−|yt
maskr

|, 0}. Then we have

yt
mask = yt

maskp ∪ yt
maskr , (4)

yt
obs = yt−1\yt

mask. (5)

Predict The prediction process is the same as
Mask-Predict. The model predicts the masked to-
kens yt

mask conditioned on the source tokens x and
the observed tokens yt

obs. The token with the high-
est probability at each masked position is selected
to update prediction tokens, and the probabilities
are updated accordingly. For yt−1

i ∈ yt
mask,

yti = argmax
w

P
(
yi = w | x,yt

obs

)
,

pti = max
w

P
(
yi = w | x,yt

obs

)
.

Unmasked positions retain the same probability
value as the previous iteration. For yt−1

i ∈ yt
obs,

yti = yt−1
i ,

pti = pt−1
i .

Early Stop The iteration will be stopped early if
the target sentence converges:

yt = yt−1.

In particular, we set y0
obs = {Mask, ...,Mask}

to predict y0. We use the Mask-Predict algorithm
when t < ⌊T/2⌋. See Alg. 1 in Appendix A for a
full pseudo-code.
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Figure 1: An example from the WMT’14 De-En test set illustrates how MaskRepeat-Predict (MR-P) and Mask-
Predict (M-P) generate text with three iterations. The numbers below tokens represent their probabilities. The
highlighted tokens are masked for the next iteration and re-predicted.

Example Figure 1 shows an example from the
WMT’14 De-En test set when CMLM uses Mask-
Predict and MaskRepeat-Predict to decode with
three iterations. At the end of the second iteration
(iter = 1), Mask-Predict selects nine tokens with
lower confidence to mask. It can be seen that there
are four consecutive schools with higher prob-
abilities in the result, so they are not masked and
re-predicted. However, these words should be cho-
sen for re-prediction, regardless of their probability.
The MaskRepeat-Predict algorithm starts to mask
the consecutive repeated tokens in the middle of it-
erations. As we can see, in the second iteration, the
repeated tokens school and wall that have low
probabilities are masked instead of other unique
tokens with lower probabilities. The result at the
end of iterations also has higher quality.

For consecutive repeated tokens and correspond-
ing probabilities, we take the sentence of the second
iteration (iter = 1) in Figure 1 as an example:

y1
1 = {wall,wall},

p1
1 = {0.652, 0.817};

y1
2 = {school,school,school,school},

p1
2 = {0.815, 0.811, 0.645, 0.681}.

3 Experiments

3.1 Experimental Settings
We evaluate our algorithms on six directions from
three standard datasets with various training data
sizes: WMT’16 En-Ro (610K pairs), WMT’14

En-De (4.5M pairs), WMT’17 En-Zh (20M pairs).
For a fair comparison, we used the distillation data
provided by Kasai et al. (2020), and all data pro-
cessing methods and hyperparameters settings are
the same. Please see Appendix C for details. Our
code is based on CMLM1 and DisCo2.

3.2 Overall Results

Table 2 shows the results on WMT’14 En-De and
WMT’16 En-Ro test sets with CMLM and DisCo.
We use pre-trained DisCo models provided by origi-
nal authors (Kasai et al., 2020) for testing the decod-
ing algorithm. CMLM models are implemented by
ourselves. It can be seen that the results with MR-P
have a different range of improvements compared
to the ones with M-P for different iterations. The
fewer iterations, the more obvious the pronounced
performance improvement. Especially when only
iterating two steps, the result on the WMT’14 En-
De test set is improved by 1.39 BLEU points. Even
with the ten iterations, there is an improvement of
0.39 BLEU on the WMT’16 Ro-En test set. It is
worth noting that this is only a change in the decod-
ing algorithm, no changes have been made to the
model, and even the decoding algorithm parameters
are the same.

Table 3 shows the results with CMLM on the
WMT’17 En-Zh test set. Pre-trained models are
provided by original authors (Ghazvininejad et al.,
2019). There is a gain of 1.26 BLEU improvement

1https://github.com/facebookresearch/Mask-Predict
2https://github.com/facebookresearch/DisCo
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Models MaxIter. En-De De-En En-Ro Ro-En

2 23.97 28.62 32.15 32.11
CMLM 3 25.99 30.15 32.75 33.14
+M-P 4 26.58 30.62 32.99 33.42

10 27.26 31.07 33.44 33.79

2 25.10(+1.13) 29.41(+0.79) 32.45(+0.30) 32.88(+0.77)
CMLM 3 26.43(+0.44) 30.46(+0.31) 33.17(+0.42) 33.55(+0.41)
+MR-P 4 26.78(+0.20) 30.73(+0.11) 33.25(+0.26) 33.80(+0.38)

10 27.42(+0.16) 31.34(+0.27) 33.41(-0.03) 34.16(+0.37)

2 23.02 28.28 32.05 32.49
DisCo 3 25.31 29.72 32.41 32.80
+M-P 4 25.83 30.15 32.63 32.92

10 27.06 30.89 32.92 33.12

2 24.41(+1.39) 29.24(+0.96) 32.33(+0.28) 33.01(+0.52)
DisCo 3 25.48(+0.17) 29.99(+0.27) 32.56(+0.15) 32.98(+0.18)
+MR-P 4 25.96(+0.13) 30.47(+0.32) 32.81(+0.18) 33.20(+0.28)

10 27.11(+0.05) 30.91(+0.02) 33.15(+0.23) 33.33(+0.21)

Table 2: The performance (BLEU) of CMLM and DisCo with MaskRepeat-Predict (MR-P), compared to that with
Mask-Predict (M-P).

Alg. MaxIter. En-Zh Zh-En

2 30.50 18.79
M-P 3 32.03 21.46

4 32.63 21.90

2 31.41(+0.91) 19.96(+1.26)
MR-P 3 32.34(+0.31) 21.76(+0.30)

4 32.82(+0.19) 22.19(+0.29)

Table 3: The performance (BLEU) of CMLM with
MaskRepeat-Predict(MR-P) on WMT’17 En-Zh, com-
pared to that with Mask-Predict(M-P).

over M-P on Zh-En with two iterations.
Tables 9 in Appendix show more details for

CMLM, DisCo, and CCAN (Ding et al., 2020).

3.3 Analysis
Iteration Numbers The MR-P algorithm will
stop the iteration when the target sentence con-
verges, so sometimes it will not reach the maxi-
mum number of iterations. As shown in Table 4,
we can see that the average number of iterations is
significantly reduced when the maximum number
of iterations is relatively large.

Perplexity We make a more in-depth compari-
son from the Perplexity(PPL). We use pre-trained
GPT-2 (Radford et al., 2019) provided by Hugging-

MaxIter. En-De De-En En-Ro Ro-En

4 3.66 3.55 3.40 3.41
10 5.97 5.22 4.58 4.57

Table 4: The average iteration numbers of CMLM
decoding with MR-P.

Alg. De-En Ro-En Zh-En

Ground Truth 166.3 223.1 142.1
M-P 407.7 491.2 198.2

MR-P 322.2 459.8 187.7

Table 5: The perplexity of CMLM decoding with a
maximum of ten iterations.

Face (Wolf et al., 2020) as our language model. As
we can see in Table 5, the perplexity is significantly
reduced when using MR-P instead of M-P, which
means that sentences generated using MR-P are
more reasonable.

Remove Duplicates The problem of repeated
translation can also be alleviated simply by remov-
ing all consecutive duplicated tokens in translation
results. Table 6 shows the BLEU of CMLM on the
WMT’14 En-De test set. Remove Duplicates(RD)
can improve performance, but is not as good as
using MR-P. A possible reason is that MR-P can
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MaxIter. 2 3 4 10

M-P 23.97 25.99 26.58 27.26
+RD 24.53 26.29 26.77 27.30

MR-P 25.10 26.43 26.78 27.42
+RD 25.34 26.62 26.84 27.41

Table 6: The performance of whether uses RD or not.

MaxIter. 2 3 4 10

Short 0.35 0.19 0.11 0.03
Long 1.45 0.91 0.44 0.11
All 0.85 0.52 0.26 0.07

Table 7: The average number of consecutive repeated
tokens per sentence on WMT’14 De-En test of MR-P.

affect the generation process, while RD cannot. It
is worth noting that RD can also improve the per-
formance of MR-P when the maximum number of
iterations is relatively small.

Consecutive Repeated Translation We com-
pute the average number of consecutive repeated
tokens per sentence on the WMT14’ De-En test set.
The result is shown in Table 7 and Table 1. The
MR-P algorithm benefits from its inherent princi-
ple and can significantly reduce the repetition rate.
Especially when iterating only two steps, the repe-
tition rate is reduced from 2.36 to 0.85.

Different Source Lengths We split the source
sentences into different length buckets to analyze
the effect of source input length. Figure 2 shows
the BLEU of CMLM with two iterations at most on
the WMT’14 En-De test set. The longer the source
sentences are, the more considerable the margin
between MR-P and M-P is.

4 Conclusion

In this paper, we have proposed the MR-P decod-
ing algorithm. MR-P prefers to mask consecutive
repeated tokens and stops the iteration early when
target tokens converge. The experiments on differ-
ent models and datasets have shown that MR-P is
effective and model-agnostic. The algorithm can
achieve a consistent improvement and a lower per-
plexity on the six translation tasks.

Figure 2: The BLEU points on the test set of WMT’14
En-De over sentences in different length buckets.
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A Algorithm

Algorithm 1: MaskRepeat-Predict
Input: Source sentence: x
Predict target length: My;
Compute y0 use y0

obs;
for t ∈ 1, ..., T − 1 do

if t < ⌊T/2⌋ then
set yt

maskr
= ∅;

compute yt
maskp

by (3);
compute yt

mask by (4);
else

compute yt
topr by (1);

compute yt
maskr

by (2);
compute yt

maskp
by (3);

compute yt
mask by (4);

end
compute yt

obs by (5);
predict yt;
if yt = yt−1 then

return yt;
end

end
return yT−1

B Examples

Figure 3 shows an additional example from the
WMT’14 De-En test set of CMLM with different
decoding algorithm.
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Figure 3: An example from the WMT’14 De-En test set illustrates how MaskRepeat-Predict (MR-P) and Mask-
Predict (M-P) generate text with three iterations.
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C Experimental Settings

Datasets We evaluate our inference algorithms
on six directions from three standard datasets with
various training data sizes: WMT’16 En-Ro (610K
pairs), WMT’14 En-De (4.5M pairs), WMT’17
En-Zh (20M pairs). All datasets are tokenized
into subword units by BPE (Sennrich et al., 2016).
Specially, use joint BPE on WMT’16 En-Ro and
WMT’14 En-De. We use the same preprocessed
data as Kasai et al. (2020) for a fair comparions
with other models (WMT’16 En-Ro: Lee et al.
(2018); WMT’14 En-De: Vaswani et al. (2017)).
We evaluate performance with BLEU (Papineni
et al., 2002) for all language pairs except that using
SacreBLEU (Post, 2018)3 for pair from En to Zh.

Hyperparameters We follow the hyperparame-
ters for a transformer base (Vaswani et al., 2017;
Ghazvininejad et al., 2019; Kasai et al., 2020):
6 layers for the encoder and the decoder, 8 at-
tention heads, 512 model dimensions, and 2048
hidden dimensions per layer. We sample weights
from N (0, 0.02), initialize biases to zero and set
layer normalization parameters to β = 0, γ = 1,
following the weight initialization scheme from
BERT (Devlin et al., 2019). Set dropout rate to 0.3,
and apply weight decay with 0.01 and label smooth-
ing with ϵ = 0.1 for regularization. We train
batches of approximately 16K · 8 (8 GPUs with
16K per GPU) tokens using Adam (Diederik and
Jimmy, 2014) with β = (0.9, 0.999) and ϵ = 10−6.
The learning rate warms up to 5 · 10−4 for the first
10K steps, and the decays with the inverse square-
root schedule. We train models for 300K steps with
mixed precision floating point arithmetic (Micike-
vicius et al., 2018) on 8 TITAN RTX GPUs, and
average the 5 best checkpoints as the final model.
Following the previous works (Ghazvininejad et al.,
2019; Kasai et al., 2020), we apply length beam
with the size of 5.

D Experiments

Seen in Table 8 are the results of strong non-
autoregressive machine translation models sim-
ilar with CMLM on the WMT’14 En-De and
WMT’16 En-Ro test set. Basic models that use
the MaskRepeat-Predict decoding algorithm can
achieve comparable results with other advanced
models. It is worth noting that the models such

3SacreBLEU hash: BLEU+case.mixed+lang.en-
zh+numrefs.1+smooth.exp+test.wmt17+tok.zh+version.1.3.7.

Models En-De De-En En-Ro Ro-En

Imputer 28.20 31.80 34.40 34.10
LAT 27.35 32.04 32.87 33.26
SMART 27.65 31.27 - -
JM-NAT 27.69 32.24 33.52 33.72
ENGINE - - - 34.04
CMLM 27.03 30.53 33.08 33.31
DisCo 27.34 31.31 33.22 33.25
CCAN 27.50 - - 33.70

+MR-P
CMLM 27.42 31.34 33.41 34.14
CCAN 27.47 31.36 33.50 33.84

Table 8: The performance of non-autoregressive ma-
chine translation methods on the WMT’14 En-De and
WMT’16 En-Ro test set.

as Imputer, LAT, SMART, JM-NAT, and EN-
GINE all employ the Mask-Predict decoding al-
gorithm, which means that they can also use the
MaskRepeat-Predict decoding algorithm.

Table 9 shows the average iteration number
(AveIter.) and performance (BLEU) for Self-
CMLM, Pre-trained-CMLM, DisCo, and CCAN.
Our CMLM results are much better than the results
reported in the original paper. The difference in
the final BLEU points comes from batch size and
averaging checkpoints with 5 top BLEU points on
validation. These two techniques come from Kasai
et al. (2020). Comparing self-implemented models
and pre-trained models, we can conclude that the
MaskRepeat-Predict algorithm still works after the
model is enhanced.
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En-De De-En En-Ro Ro-En

Models AveIter. BLEU AveIter. BLEU AveIter. BLEU AveIter. BLEU

2 22.91 2 27.16 2 31.08 2 31.91
Pre-trained-CMLM 3 25.00 3 29.11 3 32.19 3 32.93

+MP 4 25.94 4 29.90 4 32.53 4 33.23
10 27.03 10 30.53 10 33.08 10 33.31

2 24.29 2 28.27 2 31.73 2 32.75
Pre-trained-CMLM 2.92/3 25.50 2.89/3 29.51 2.84/3 32.49 2.82/3 33.33

+MR-P 3.67/4 26.25 3.61/4 30.13 3.44/4 32.76 3.39/4 33.51
6.00/10 27.07 5.38/10 30.54 4.83/10 33.14 4.47/10 33.66

2 23.02 2 28.28 2 32.05 2 32.49
DisCo 3 25.31 3 29.72 3 32.41 3 32.80
+MP 4 25.83 4 30.15 4 32.63 4 32.92

10 27.06 10 30.89 10 32.92 10 33.12

2 24.41 2 29.24 2 32.33 2 33.01
DisCo 2.92/3 25.48 2.88/3 29.99 2.77/3 32.56 2.74/3 32.98
+MR-P 3.71/4 25.96 3.59/4 30.47 3.32/4 32.81 3.21/4 33.20

6.58/10 27.11 5.69/10 30.91 4.23/10 33.15 3.86/10 33.33

2 23.97 2 28.62 2 32.15 2 32.11
Self-CMLM 3 25.99 3 30.15 3 32.75 3 33.14

+M-P 4 26.58 4 30.62 4 32.99 4 33.42
10 27.26 10 31.07 10 33.44 10 33.79

2 25.10 2 29.41 2 32.45 2 32.88
Self-CMLM 2.91/3 26.43 2.87/3 30.46 2.83/3 33.17 2.83/3 33.55

+MR-P 3.66/4 26.78 3.55/4 30.73 3.40/4 33.25 3.41/4 33.80
5.97/10 27.42 5.22/10 31.34 4.58/10 33.41 4.57/10 34.16

2 23.80 2 28.54 2 31.36 2 32.59
CCAN 3 25.88 3 30.02 3 32.32 3 33.15
+M-P 4 26.50 4 30.56 4 32.77 4 33.18

10 27.30 10 31.25 10 33.13 10 33.64

2 24.86 2 29.05 2 31.97 2 33.05
CCAN 2.90/3 26.26 2.87/3 30.25 2.82/3 32.74 2.80/3 33.26
+MR-P 3.67/4 26.89 3.57/4 30.67 3.42/4 33.07 3.35/4 33.47

5.97/10 27.47 5.28/10 31.36 4.84/10 33.50 4.43/10 33.84

Table 9: The performance (BLEU) of CMLM, DisCo and CCAN, with MaskRepeat-Predict (MR-P), compared to
that with Mask-Predict (M-P). All Pre-trained-CMLM and DisCo models trained by the original authors (Ghazvinine-
jad et al., 2019; Kasai et al., 2020) are used to decode without any change. Self-CMLM and CCAN are implemented
by ourselves.
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E Ablation Study

Strategies We compare several design strategies
of MR-P. MR-P-W: MR-P without early stopping,
that is, all the sentence is continually refined until
the preset maximum number of iterations. MR-P-
A: MR-P is used all the time, including when t <
⌊T/2⌋. MR-P-F: MR-P is used when t < ⌊T/2⌋
and M-P is used when t ≥ ⌊T/2⌋. As shown in
Table 10, we can see that most of the time, the
results of the MR-P algorithm are optimal. There
is a slight decline in performance without early
stopping. We think this is because some sentences
are over-refinement, misleading to the scoring of
candidate sentences. Using M-P in the first half
of iterations will lay a good foundation for the
following iterations.

Expand to other algorithms The Easy-First (E-
F) is a decoding algorithm proposed by Kasai et al.
(2020) for the DisCo. The condition yobs of each
token is different. Each token can be refined condi-
tioned on all other tokens with a lower probability
than itself. The conditional dependence is deter-
mined by the probability generated in the first iter-
ation and fixed for the following iterations. We can
easily integrate the ideas of MaskRepeat into Easy-
First. For repeated tokens that appear continuously,
except for the token with the highest probability,
the confidence is set to the lowest no matter how
high their probability is. This means that consecu-
tive repeated tokens do not become the context of
any other token. Then one updates this consecutive
repeated tokens part’s order in the second iteration.
We call that MaskRepeat-Easy-First(MR-E-F). As
shown in Table 11, the performance is improved,
especially in WMT’14 En-De with 0.16 BLEU
points.

F Related Work

In order to speed up the translation process, Gu
et al. (2018) introduced non-autoregressive trans-
lation for the first time. A lot of works based on
iterative refinement are proposed to make a trade-
off between performance and decoding speed (Lee
et al., 2018; Ghazvininejad et al., 2019; Kasai
et al., 2020; Guo et al., 2020b; Lee et al., 2020;
Ghazvininejad et al., 2020b; Ding et al., 2020).
Other approaches include improving training objec-
tives (Libovický and Helcl, 2018; Shao et al., 2020;
Ghazvininejad et al., 2020a; Saharia et al., 2020),
enhancing the decoder input (Guo et al., 2019; Bao

En-De De-En En-Ro Ro-En

2 25.08 29.37 32.39 32.83
MR-P 3 26.30 30.40 33.01 33.37

-W 4 26.78 30.70 33.18 33.63
10 27.29 31.06 33.53 33.89

2 25.10 29.41 32.45 32.88
MR-P 3 26.42 30.65 33.08 33.57

-A 4 26.70 30.54 33.38 33.81
10 27.28 31.25 33.45 34.01

2 25.10 29.41 32.45 32.88
MR-P 3 26.24 30.61 32.96 33.42

-F 4 26.73 30.57 33.32 33.76
10 27.29 31.21 33.49 34.03

2 25.10 29.41 32.45 32.88
MR-P 3 26.43 30.46 33.17 33.55

4 26.78 30.73 33.25 33.80
10 27.42 31.34 33.41 34.16

Table 10: The performance of self-implemented
CMLM with different design strategies of MR-P.

Alg. En-De De-En Ro-En Zh-En

E-F 27.35 31.31 33.24 23.83
MR-E-F 27.51 31.36 33.25 23.97

Table 11: The performance of DisCo (Kasai et al., 2020)
decodes with Easy-First (E-F) and MaskRepeat-Easy-
First (MR-E-F).

et al., 2019; Ran et al., 2019), adding regulariza-
tion terms on the decoder (Wang et al., 2019; Li
et al., 2019), latent variable-based model (Ma et al.,
2019; Shu et al., 2020), adding a lite autoregres-
sive module (Sun et al., 2019; Kong et al., 2020),
learning or transforming from autoregressive model
(Guo et al., 2020a; Sun and Yang, 2020; Tu et al.,
2020; Liu et al., 2020), training with monolingual
data (Zhou and Keung, 2020), and incorporating
the pre-trained model (Guo et al., 2020c).
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