
Findings of the Association for Computational Linguistics: ACL 2022, pages 239 - 245
May 22-27, 2022 c©2022 Association for Computational Linguistics

RuCCoN: Clinical Concept Normalization in Russian

Aleksandr Nesterov1, Galina Zubkova1, Zulfat Miftahutdinov2,
Vladimir Kokh1, Elena Tutubalina2,3,4, Artem Shelmanov5,7, Anton M. Alekseev6,

Manvel Avetisian1, Andrey Chertok4,5, Sergey Nikolenko6,7,8

1 Sber AI Lab, Moscow, Russia
2 Kazan Federal University, Kazan, Russia

3 HSE University, Moscow, Russia
4 Sber AI, Moscow, Russia

5 AIRI, Moscow, Russia
6 St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, Russia

7 ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia
8 Neuromation OU, Tallinn, Estonia

{AAlNesterov,GVZubkova}@sberbank.ru

Abstract
We present RuCCoN, a new dataset for clin-
ical concept normalization in Russian manu-
ally annotated by medical professionals. It
contains over 16,028 entity mentions manu-
ally linked to over 2,409 unique concepts from
the Russian language part of the UMLS on-
tology. We provide train/test splits for dif-
ferent settings (stratified, zero-shot, and CUI-
less) and present strong baselines obtained with
state-of-the-art models such as SapBERT. At
present, Russian medical NLP is lacking in
both datasets and trained models, and we view
this work as an important step towards filling
this gap. Our dataset and annotation guidelines
are available at https://github.com/
sberbank-ai-lab/RuCCoN.

1 Introduction

Electronic health records and other clinical texts
contain patient histories through the progression
of diseases and represent a treasure trove of in-
formation for medical specialists. This infor-
mation is often unstructured, concealed in free-
form text, which leads to the need for natural lan-
guage processing on medical texts. Mentions of
diseases, symptoms, drugs, and other concepts
are highly variable, and since the medical vo-
cabulary is very large, entity linking and con-
cept normalization become hard and important
problems. State-of-the-art models are increas-
ingly successful in high-resource languages such
as English or Spanish, where labeled datasets in-
clude ShARe/CLEF eHealth 2013 Task 1 (Suomi-
nen et al., 2013), SemEval-2014 Task 7 (Prad-

han et al., 2014), SemEval-2015 Task 14 (El-
hadad et al., 2015), MCN (Luo et al., 2019),
CANTEMIST (Miranda-Escalada et al., 2020a),
CodiEsp (Miranda-Escalada et al., 2020b), and oth-
ers. However, little has been done for medical
entity linking in many languages that are high-
resource in other regards. One example is Rus-
sian: it is among top 10 languages in the world
and has many NLP datasets and resources, but
the medical part of Russian NLP is underdevel-
oped. The Russian UMLS includes translations
of Medical Dictionary for Regulatory Activities
(MedDRA) (Brown et al., 1999), Logical Observa-
tion Identifiers Names and Codes (LOINC) (For-
rey et al., 1996), and Medical Subject Headings
(MeSH) (Coletti and Bleich, 2001), but it still only
amounts to 1.8% of the English UMLS in vocabu-
lary and 1.36% in source counts (NIH 2021, a).

In this work, we present RuCCoN (Russian
Clinical Concept Normalization), a new labeled
dataset for clinical concept normalization in Rus-
sian. We have employed medical professionals to
label the dataset based on concepts from the Rus-
sian UMLS (Section 2). Moreover, we present
several types of test sets for various settings, in-
cluding stratified, zero-shot, and CUI-less settings
(Section 2.4). We evaluate several state-of-the-art
models on RuCCoN, including various fine-tuning
variations, and check whether labeled data in Rus-
sian is necessary (spoiler alert: it is) by testing
cross-lingual concept normalization from English
(Section 3). Our results can serve as baselines for
RuCCoN and cross-lingual concept normalization.
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2 RuCCoN Dataset

2.1 Basic Dataset with NER Labeling

We supplement with entity linking labeling the only
large-scale available dataset of clinical free-text
notes in Russian with named entity recognition
(NER) labeling (Shelmanov et al., 2015), created
by researchers and practitioners from the Scientific
Center of Children Health (SCCH). The corpus is
based on medical histories of over 60 SCCH pa-
tients with allergic and pulmonary disorders and
diseases. It contains discharge summaries, radiol-
ogy, echocardiography, and ultrasound diagnostic
reports, recommendations, and other records from
a number of different physicians. Documents in
the corpus are deidentified: all names are removed,
dates are altered. The corpus, freely available
for research purposes1, contains 160 fully anno-
tated texts with nearly 250,000 tokens. It has over
18,200 annotated entities, over 7,400 attributes
and 3,500 relations with 7 types of entities: “Dis-
ease”, “Symptom”, “Drug”, “Treatment”, “Body
location”, “Severity”, “Course”. The nearest coun-
terparts for English are the corpus of the Shared
Annotated Resources (ShARe) initiative (Pradhan
et al., 2015) and the corpus of Strategic Health
IT Advanced Research Project: Area 4 (SHARPn)
(Rea et al., 2012).

2.2 Annotation Process and Principles

Annotators mapped each mention to a concept
unique identifier (CUI) from the Unified Medical
Language System (UMLS) ontology (Bodenreider,
2004). The goal of entity normalization is to assign
the same identifier to different synonyms of a given
medical concept; e.g., “anemic heart infarction”
and “myocardial infarction” refer to the same con-
cept with CUI C0027051. Annotation was carried
out in Brat (Stenetorp et al., 2012) with UMLS
2020 AB release. To speed up labeling, each text
fragment was linked to CUI from UMLS automati-
cally with the tf-idf baseline method. Annotators
were allowed to use web search and the UMLS
Metathesaurus Browser (NIH 2021, b) for meta-
information. Each entity was independently anno-
tated by three annotators. Following (Luo et al.,
2019), we calculate Inter-Annotator Agreement
(IAA) as the accuracy of the markups matched
by at least two annotators over all annotated men-
tions. At least two annotators linked an entity to the

1http://nlp.isa.ru/datasets/clinical

Semantic Type Train Test
# % # %

Disease or Syndrome 2032 18.11 848 17.62
Body Part, Organ, etc. 1670 14.88 699 14.52

Organic Chemical 1502 13.38 694 14.42
Finding 896 7.98 373 7.75

Sign or Symptom 677 6.03 254 5.27
Therapeutic or Preventive Proc. 542 4.83 202 4.19

Pathologic Function 449 4 188 3.9
Am. Acid, Peptide, or Protein 358 3.19 160 3.31

Organ or Tissue Function 339 3.02 136 2.81
Body System 150 1.33 73 1.5

Table 1: Top 10 semantic types counts in RuCCoN.

same concept from the ontology in 13,125 cases
and annotated 1032 entities as CUI-less; IAA was
78.37%. In 3900 cases when all annotators dis-
agreed, the expert annotator with Ph.D. in medicine
(the first author of the paper) was asked to decide
whether the CUI selected by one of the annota-
tors was in fact correct. After this procedure we
obtained a corpora with 16,028 entities linked to
2,409 concepts and 1,293 entities linked with no
concept (CUI-less). Table 1 shows the basic statis-
tics of the dataset; percentages are obtained by
greedily choosing the first relevant semantic type
for a given CUI. Semantic types best represented in
our annotation are Disease or Syndrome (≈ 22%),
Body Part, Organ, or Organ Component (17%),
Organic Chemical (14.5%), Finding (7%), Sign or
Symptom (6.5%), and Pathologic Function (4%).
Annotation guidelines were created by an expert
with Ph.D. in medicine. The dataset was labeled
by three annotators with higher education in dif-
ferent fields of medicine, two of them with Ph.D.
in medicine. Each annotator was paid an hourly
wage of $55 for about 80 hours of labeling, so each
annotator was paid $4400; the minimal monthly
wage in Russia for full-time employment is under
$200.

2.3 Annotation Design and Challenges

During the annotation process, we have encoun-
tered a number of challenges that are specific to
Russian and other low-resource languages.
Lack of Russian translation for UMLS concepts.
Many terms have not been translated from English
into Russian. This often holds for terms that char-
acterize the severity of symptoms, morphological
characteristics of anatomical formations, and body
locations; examples include “regular shape” (“фор-
ма правильная”) or “patent lumen”(“просвет сво-
боден”). In these cases, we obtain NER labeling
for general entity types such as “Disease” or “Body
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location”, but there are no CUIs that annotators
could link in Russian.

Combining many related concepts into one NER
fragment. Many phrases annotated in NER la-
beling as a single entity could be split into sev-
eral separate and/or nested entities. These cases
most often found in morphological descriptions
of anatomical formations (e.g., “average size (left
lobe = 44mm, 1-st segment 11, right lobe = 93mm),
smooth contour, homogeneous parenchymatous tis-
sue, average chogenicity”) and cases where adjec-
tives characterizing a concept are combined into
a single fragment; e.g., “mild repolarization disor-
ders” (“легкие нарушения процесса реполяриза-

ции”) could be labeled as a single entity but here
the adjective “mild” (“легкие”) might also be sep-
arated from the main concept “repolarization dis-
orders” (“нарушения процесса реполяризации”).
This happens since NER labeling is usually done
for “flat” NER rather than nested; nested NER
would allow for multiple embedded entities but
is much harder for manual labeling, and has not
been done in this case. In our dataset, annotators
were instructed to link several CUIs to a single text
fragment in these cases.

Redundancy of the UMLS vocabulary. Some
UMLS concepts in Russian have different CUIs
even though they are phrased in exactly the same
way, and the CUIs have different semantic types;
for example, “amyloidosis” (“амилоидоз”) ap-
pears for both C0002726 (type: Disease or Syn-
drome) and C0268381 (type: Neoplastic Process).
Also, some concepts have different CUIs while
they are synonymous in their meaning; for exam-
ple, “acholic stool” (“ахоличный стул”) has a code
C2675627 and “pale stool” (“светлый стул”) has
a code C0232720. In such cases, annotators were
advised to choose a more appropriate CUI based
on its meta-information provided in the UMLS.

Complex rephrasing. In entity linking, annotators
have to change the wording to establish correspon-
dences between mentions and concepts, relying on
their domain knowledge and comprehensive search
for synonyms. In Russian, this is complicated by
minor inconsistencies in the UMLS translation it-
self: several different CUIs may either have minor
semantic differences that cannot be distinguished
or overlap significantly in their meaning. E.g., “ade-
noid hypertrophy” (“гипертрофия аденоидов”)
may be annotated as “nasopharyngeal tonsil hy-
pertrophy (adenoids)” (“гипертрофия глоточных

Subset # entities # unique
entities

# concepts

Full train 12189 5435 2031
In-KB train 11220 4934 2030
Full test 5132 2689 1232
In-KB test 4808 2464 1231
Zero-shot test 434 417 379
Stratified test 1266 1199 576
RWN med. 2319 1666 635
XL-BEL 681 610 510
MCN 13609 5979 3792

Table 2: Dataset statistics.

миндалин (аденоиды)”) or “hypertrophy of ade-
noids exclusively” (“гипертрофия исключитель-
но аденоидов”), two different CUIs. This effect
often leads to inconsistencies between annotators.

2.4 Train/test Splits

We release the full annotated corpus along with
three test sets, setting aside 30% of the corpus and
then applying different filtering strategies. Table 2
shows the statistics for each split.
Stratified. In this case, we filter the test set so
that each UMLS concept appears in the test set
appears at least once in the training set, but not this
specific mention from the test set (Miftahutdinov
and Tutubalina, 2019). Thus, 100% of concepts in
this test set are covered in the training set, but no
mentions in the training set are literally the same
as mentions in the test set.
Zero-shot. In this case, we filter the test set to con-
tain only novel concepts that do not appear in the
training set at all. In other words, the Stratified split
is designed to ensure that the model encounters the
same concepts in the training, development, and
test sets, but with different surface forms, while the
Zero-Shot split instead exposes models to unseen
terms and concepts in the development and testing
sets, making it the harder setting of the two.
CUI-less. In this case, we supplement the random
train/test split with 30% of the cases where there
is no CUI associated with an entity. This set is
intended to test whether a linking system is able to
refrain from linking to a concept when there is no
suitable concept in the vocabulary (“CUI-less” cat-
egory in CLEF/SemEval challenges). We call the
“full test set” and “full train set” the subsets with
this addition of CUI-less cases, and use “in-KB”
for subsets without CUI-less mentions. Stratified
and zero-shot settings are commonly used in gen-
eral domain entity linking, but the CUI-less setting
is specific for medical data.
XL-BEL, RuWordNet medical, and MCN train-
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Model In-KB test Full test Stratified test Zero-shot test
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Tf-Idf 37.58% 46.98% - - 25.83% 34.20% 26.27% 41.01%
Multilingual BERT 29.01% 33.74% 29.15% 33.16% 12.32% 16.35% 15.90% 19.35%
RuBERT 25.17% 28.22% 24.05% 25.66% 11.53% 14.53% 13.82% 17.51%
SapBERT 45.84% 56.41% 37.18% 37.47% 30.02% 40.44% 29.49% 40.78%
SapBERT+MCN 46.51% 56.45% 43.67% 53.23% 30.41% 40.60% 27.88% 41.47%
SapBERT+RWN 45.47% 55.12% 43.30% 50.19% 29.94% 39.42% 29.03% 38.48%
SapBERT+XL-BEL 47.77% 58.74% 40.80% 42.30% 32.54% 42.97% 29.95% 45.16%
SapBERT+RuCCoN 59.26% 68.99% 53.39% 60.02% 47.31% 61.45% 32.95% 47.47%
SapBERT+RuCCoN+RWN 57.84% 68.55% 52.67% 58.79% 47.79% 63.67% 32.49% 46.31%
SapBERT+RuCCoN+XL-BEL 58.78% 68.05% 53.20% 59.80% 46.52% 59.08% 33.41% 48.85%
SapBERT+RuCCoN+RWN+XL-BEL 58.55% 67.82% 52.65% 59.20% 50.32% 62.48% 33.41% 45.85%

Table 3: Evaluation results with test set filtering.

ing sets. In our basic evaluation setting, we use
only our own labeled dataset for training and test-
ing. However, we could also supplement the train-
ing set with other resources. First, the XL-BEL
cross-lingual biomedical entity linking benchmark
maps entity mentions from Wikipedia to UMLS
in a number of languages, including Russian (Liu
et al., 2021b). Second, we have applied the fol-
lowing linking procedure to the medical part of
RuWordNet (RWN) (Loukachevitch et al., 2016):
found all lemmas of RWN synsets from the medical
domain, intersected these synsets with lemmatized
Russian UMLS terms, composed the vocabulary
of synsets that have at least one lemma in UMLS,
and filtered out exact matches with UMLS, result-
ing in a set of senses not contained in UMLS but
from synsets with another sense contained in both
UMLS and RuWordNet. We note that both RWN
and XL-BEL have small intersection of 13 and 9
CUIs with zero-shot RuCCoN test set, respectively.

Third, we also test cross-lingual entity linking
with models trained on the MCN (Medical Con-
cept Normalization) dataset (Luo et al., 2019),
a large-scale manually annotated corpus in En-
glish for clinical concept normalization produced
from a corpus released for the 4th i2b2/VA shared
task (Uzuner et al., 2011). Statistics for all supple-
mentary datasets are also shown in Table 2.

3 Evaluation

For entity linking, we use ranking based on embed-
dings of a mention and a possible concept. Each
entity mention and concept name are first passed
through a model that produces their embeddings
and then through a pooling layer that yields a fixed-
sized vector. The inference task is then reduced to
finding the closest concept name representation to
the entity mention representation in a common em-
bedding space, where the Euclidean distance can be

used as the metric. Nearest concept names are cho-
sen as top-k concepts for entities. For ranking, we
use the publicly available code2 from (Tutubalina
et al., 2020).

We compare ranking models based on several
different embeddings:

1. Tf-idf : standard sparse tf-idf representations
constructed on character-level unigrams and
bigrams;

2. BERT: multilingual BERT embeddings with
no fine-tuning (Devlin et al., 2019); this is
a cross-lingual baseline that has not been
trained on biomedical texts;

3. RuBERT: Russian BERT embeddings (Kura-
tov and Arkhipov, 2019) trained on the Rus-
sian part of Wikipedia and news data;

4. SapBERT: a BERT-based metric learning
framework that generates hard triplets based
on the UMLS for large-scale pre-training (Liu
et al., 2021a) and also allows for a cross-
lingual variant trained on XL-BEL (Liu et al.,
2021b).

Additionally, we compare several variations of
fine-tuning on datasets with training sets via syn-
onym marginalization as suggested by the authors
of BioSyn (Sung et al., 2020):

1. SapBERT+RuCCoN, with fine-tuning on our
target train set of EHRs;

2. SapBERT+MCN, with tuning on the MCN
set;

3. SapBERT+WRN, on the dataset extracted
from the medical part of the RuWordNet the-
saurus;

2https://github.com/insilicomedicine/
Fair-Evaluation-BERT
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4. SapBERT+XL-BEL, on the the Russian part
of XL-BEL;

5. SapBERT+RuCCoN+RWMXL-BEL, on the
combination of all three sets.

For training, we have used the publicly avail-
able code provided by the authors at https://
github.com/dmis-lab/BioSyn with the
following parameters: the number of top candi-
dates k is 20, the mini-batch size is 16, the learning
rate is 1e-5, the dense ratio for candidate retrieval is
0.5, the number of epochs is 5. To deal with nil pre-
diction, we apply the strategy from (Miftahutdinov
et al., 2021); a mention is out of KB if the near-
est candidate is further than a threshold in terms
of weighted average of two distances: minimum
distance of false positives and maximum distance
of true positives, as computed on the train set.

Following previous works on entity link-
ing (Suominen et al., 2013; Pradhan et al., 2014;
Wright et al., 2019; Phan et al., 2019; Sung et al.,
2020; Miftahutdinov et al., 2021; Tutubalina et al.,
2020), we use top-k accuracy as the evaluation met-
ric: Acc@k = 1 if the correct CUI is retrieved at
rank ≤ k, otherwise Acc@k = 0. Table 3 shows
the Acc@1 and Acc@5 metrics for our test sets.
We see that SapBERT significantly outperforms
other models, and steadily improves the results as
more datasets are added for fine-tuning. Note how
SapBERT trained on RuCCoN is much better on
the full test set that SapBERT trained on other data,
but the difference almost disappears on the zero-
shot test, suggesting that it was almost entirely due
to specific entities labeled in the training set. This
confirms the need to label additional data to further
improve the results of even the best state-of-the-art
entity linking models, which is what RuCCoN it-
self provides for the Russian language. Another
result is that fine-tuning on additional medical data
is generally beneficial; e.g., we have found that
SapBERT fine-tuned on English clinical notes out-
performs basic SapBERT consistently across all
datasets in our study.

4 Error Analysis

To better understand the quality of our best model,
we analyzed its erroneous predictions. For analysis,
we randomly selected 100 erroneous predictions,
which were then analyzed by an expert annotator
with Ph.D. in medicine. As can be seen from Ta-
ble 4, most of the errors are related to the lexical

Cause of error Number of mentions
No obvious reason 18
Lexical similarity 38

Nested entity 11
Semantic similarity 19
Complete synonymy 9

Annotation error 5

Table 4: Manual evaluation of incorrect predictions
of the SapBERT+RuCCoN model on 100 randomly
selected mentions from the in-KB test set.

similarity of incorrectly predicted entities (for ex-
ample, the text “concor” was incorrectly associated
with the entity C0009738 “Congo” due to the sim-
ilarity of spelling; for the same reason, the text
“decrease in EF” was incorrectly associated with
the entity C0520837 “decrease in FEV”). An inter-
esting fact is that in second place in the frequency
of errors are predictions close in meaning to the
source text. For example, the source text “bilateral
acute maxilloethmoidal sinusitis” was associated
with the entity C0155806 “acute ethmoiditis”. This
entity is not a complete synonym of the source
text, but it is very close to its meaning. It should
be noted that the errors described in the last two
rows of the table are not inherently errors. Some of
the errors are related to the complete synonymy of
ground truth and model prediction. For example,
the text “biliary tract dysfunction” was annotated
as C0005395 “pathology of the biliary tract”, while
the model predicted the entity C0005424 “biliary
tract disease”, which in its meaning is a complete
synonym, but does not coincide with the golden
truth according to CUI.

5 Conclusion

In this work, we have presented RuCCoN, a new
clinical concept normalization dataset in Russian,
labeled by medical professionals and accompanied
with several train/test splits for fair evaluation in
various settings. We make RuCCoN publicly avail-
able for research purposes, and we hope that future
works will make use of RuCCoN as a training and
evaluation resource.
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