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Abstract

Humans are able to perceive, understand and
reason about causal events. Developing mod-
els with similar physical and causal under-
standing capabilities is a long-standing goal of
artificial intelligence. As a step towards this
direction, we introduce CRAFT1, a new video
question answering dataset that requires causal
reasoning about physical forces and object in-
teractions. It contains 58K video and ques-
tion pairs that are generated from 10K videos
from 20 different virtual environments, con-
taining various objects in motion that interact
with each other and the scene. Two question
categories in CRAFT include previously stud-
ied descriptive and counterfactual questions.
Additionally, inspired by the Force Dynamics
Theory in cognitive linguistics, we introduce
a new causal question category that involves
understanding the causal interactions between
objects through notions like cause, enable, and
prevent. Our results show that even though
the questions in CRAFT are easy for humans,
the tested baseline models, including existing
state-of-the-art methods, do not yet deal with
the challenges posed in our benchmark.

1 Introduction

Causal reasoning is a key cognitive capability that
involves making predictions about physical objects
and their interactions. Cognitive scientists have
mainly studied causal reasoning as simple causes
or chains of events (Michotte, 1963; Baillargeon,
1994; Saxe et al., 2005), rather than processing of
complex causal scenes, see (Göksun et al., 2013;
George et al., 2019). Referring to the interactions
of multiple forces, the Force Dynamics Theory em-
phasizes the processing and reasoning of complex
scenes, and how causal language defines the pat-
terns of forces in causal events (Wolff, 2007).

∗indicates equal contributions.
1Data and code available on our project website at

https://sites.google.com/view/craft-benchmark

In the past decade, though artificial learning sys-
tems have shown astonishing progress in natural
language and image understanding, there are some
tasks in which these systems are still significantly
below human performance. One such challenging
research area includes reasoning about physical ac-
tions of objects in complex causal scenes. In this
paper, we explore how language and vision inter-
act with each other in making plausible projections
about causal reasoning, and analyze how well the
existing neural models understand and reason about
physical and causal relationships between dynamic
objects in a scene through images and text.

We propose a new video question answering
dataset, named CRAFT (Causal Reasoning About
Forces and inTeractions), which is designed to be
complex for artificial models and simple for hu-
mans. Our dataset contains synthetically generated
videos of 2D scenes with accompanying questions.
Its most prominent features are that it contains
video clips with complex physical interactions be-
tween objects, and questions that test strong reason-
ing capabilities. Answering our causal questions
needs comprehending what is being asked, iden-
tifying objects in the scene, tracking their states
in relation to other objects, which in turn can be
attributed to different semantic categories of causes
(cause, enable or prevent) that highlight unique
patterns of causal forces in events – in line with
the Force Dynamics Theory. In CRAFT, there are
also some descriptive and counterfactual questions,
the latter requiring understanding what would have
happened after an intervention, i.e. a slight change
in the scene (Wolff, 2013). Figure 1 shows sample
questions from different question types, which are
explained in detail in the subsequent sections.

2 Related Work

Visual Question Answering. Existing visual ques-
tion answering (VQA) datasets can be categorized
along two dimensions. The first dimension is the
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Descriptive Questions

Counterfactual Questions

Cause

Enable

Prevent

Q:  “How many objects fall to the ground?” A: “2”
Q:  “After entering the basket, does the small yellow square collide with other objects?” A: “True”

Q:  “Will the small gray box enter the basket if any of the other objects are removed?” A: “True”
Q:  “How many objects fall to the ground if the small yellow box is removed?” A: “1”

Q:  “Does the small brown sphere cause the tiny yellow box to enter the basket?” A: “True”

Q:  “Does the small brown sphere enable the small yellow box to enter the basket?” A: “False”

Q:  “Does the small brown ball cause the big gray triangle to fall to the ground?” A: “False”

Q:  “How many objects does the small gray block enable to enter the basket?” A: “0”

Q:  “Does the small yellow square prevent the tiny brown circle from entering the basket?” A: “True”
Q:  “How many objects does the large cyan triangle prevent from entering the basket?” A: “1”

Ground Causal Questions

Figure 1: Example CRAFT questions generated for a sample scene. There are 48 different tasks divided into
three distinct categories for 20 different scenes. Besides having tasks questioning descriptive properties, possi-
bly needing temporal reasoning, CRAFT introduces challenges including more complex tasks requiring single or
multiple counterfactual analysis or understanding object intentions for deep causal reasoning.

type of visual data, which includes either real world
images (Malinowski and Fritz, 2014; Ren et al.,
2015; Antol et al., 2015; Zhu et al., 2016; Goyal
et al., 2017) or videos (Tapaswi et al., 2016; Lei
et al., 2018), or synthetically created content (John-
son et al., 2017; Zhang et al., 2016; Yi et al., 2020).
The second is at how the questions and answers
are collected, which are usually done via crowd-
sourcing (Malinowski and Fritz, 2014; Antol et al.,
2015) or by automatic means (Ren et al., 2015; Lin
et al., 2014; Johnson et al., 2017). A key challenge
for creating a good VQA dataset lies in minimizing
the dataset bias. A model may exploit such biases
and cheat the task by learning some shortcuts. In
our work, we generate questions about simulated
scenes using a pre-defined set of templates by con-
sidering some heuristics to eliminate strong biases.
Compared to the existing VQA datasets, CRAFT is
specifically designed to test models’ understanding
of dynamic state changes of the objects in a scene.
Although some prior work focuses on temporal rea-
soning (Lei et al., 2018; Yu et al., 2019; Lei et al.,
2020; Girdhar and Ramanan, 2020), they do not
require the models to have a deep understanding of
physics and/or imagine the consequence of certain
actions to answer the questions, the only exceptions
being TIWIQ (Wagner et al., 2018), CLEVRER (Yi
et al., 2020), CLEVR_HYP (Sampat et al., 2021)
and TVR (Hong et al., 2021) datasets. In these
datasets, there exist hypothetical questions that re-
quire mental simulations about the consequences
of performing certain actions or the lack of specific
actions or objects. These datasets have received

interest in developing neuro-symbolic reasoning
models with physical understanding capabilities
(Ding et al., 2020; Chen et al., 2021; Ding et al.,
2021). CRAFT shares a similar design goal with
the aforementioned datasets – but the scenes in our
benchmark are temporally more complex.

Causal Reasoning in Cognitive Science. Differ-
ent theories have been proposed by cognitive sci-
entists to model how humans learn, experience,
and reason about causal events, Mental Model The-
ory (Khemlani et al., 2014), Causal Model Theory
(Sloman et al., 2009), and Force Dynamics Theory
(Wolff and Barbey, 2015) to name a few. Among
these, building upon the work of Talmy (1988),
the Force Dynamics Theory represents a variety of
causal relationships such as cause, enable, and pre-
vent between two main entities, an affector and a
patient (i.e. the object the affector acts on). The the-
ory emphasizes that causative verbs map onto these
different spatial arrays of forces within complex
causal scenes. Studies with speakers of different
languages such as English, Russian, and German
suggest that adults distinctly represent these se-
mantic event categories (Wolff and Song, 2003;
Wolff et al., 2005). Similarly, 5- to 6-year-old chil-
dren perceive the interactions of forces underlying
the semantic categories of cause, enable, and pre-
vent (Göksun et al., 2013) and make inferences
about these events (George et al., 2019). To our
knowledge, our work is the first attempt at integrat-
ing these complex relationships in a VQA setup to
test causal reasoning capabilities of machines.
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Understanding Physics in Artificial Intelligence.
Lately, there has been a growing interest within the
community in developing datasets and models to
evaluate the ability of understanding and reasoning
about the physical world. A notable amount of
these efforts focuses on physical scene understand-
ing. For instance, some researchers have explored
the problem of predicting whether a set of objects
are in stable configuration or not (Mottaghi et al.,
2016) or if not where they fall (Lerer et al., 2016).
Others have tried to estimate a motion trajectory
of a query object under different forces (Mottaghi
et al., 2016) or developed methods to build a stack
configuration of the objects from scratch through
a planning algorithm (Janner et al., 2019). Li et al.
(2019) suggested to represent rigid bodies, fluids,
and deformable objects as a collection of parti-
cles and used this representation to learn how to
manipulate them. Recently, Bakhtin et al. (2019)
and Allen et al. (2020) created the PHYRE and
the Tools benchmarks, respectively, which both in-
clude different types of 2D environments. An agent
must reason about the scene and predict the out-
comes of possible actions in order to solve the task
associated with the environment. CoPhy (Baradel
et al., 2020) is another recent work, which deals
with physical reasoning prediction about counter-
factual interventions. Although these works in-
volve complicated physical reasoning tasks, the
language component is largely missing. As men-
tioned, Wagner et al. (2018), Yi et al. (2020) and
Sampat et al. (2021) created VQA datasets for intu-
itive physics, but they lack visual variations unlike
PHYRE and Tools. Though less studied, there are
also some efforts in the NLP community to evalu-
ate physical reasoning abilities of language models.
Bisk et al. (2020) proposed the PIQA dataset that
involves a binary choice task about daily activi-
ties regarding physical commonsense. Similarly,
Aroca-Ouellette et al. (2020) presented the PROST
benchmark which includes questions that are de-
signed to probe language models in a zero-shot
setting and focuses on concepts like gravitational
forces, physical attributes and object affordances.

Our CRAFT dataset aims to combine the best of
both worlds. In addition to the two types of ques-
tions investigated in CLEVRER (Yi et al., 2020),
namely descriptive and counterfactual, CRAFT
also includes questions that need reasoning about
causal interactions through the concepts like cause,
enable, and prevent. To succeed in these tasks,

models need to learn the semantics of each verb
category that specifies different kinds of object in-
teractions and their outcomes, i.e. to gain an under-
standing of a kind of commonsense knowledge.

3 The CRAFT Dataset

CRAFT is built to evaluate temporal and causal rea-
soning capabilities of existing algorithms on video
clips of 2D simulations and related questions. The
dataset has approximately 57K question and video
pairs, which are created from 10K videos. It is split
into train, validation, and test sets with a 60:20:20
ratio per video basis, meaning that video clips in
the training set are not seen in the validation or test
set. Moreover, we have two different settings, an
easy setting and a hard setting. They differ from
each other in the way how the test split is chosen.
In the hard setting, we deliberately use scene lay-
outs that are not seen during training in picking the
video and question pairs. The easy setting does
not have this constraint. In the easy setting, there
are 35K, 12K, and 11K question and video pairs
in the train, validation and test splits, whereas in
the hard setting these numbers are 35K, 11K and
12K, respectively. We provide an example set of
questions from CRAFT in Figure 1.

Video Generation. We use Box2D physics simula-
tor (Catto, 2010) to create our virtual scenes. There
are 20 distinct scene layouts from which 10 seconds
of video clips are collected with a spatial resolution
of 256 × 256 pixels. Besides generating original
simulation video, CRAFT scripts also generate vari-
ation videos by removing each object of the same
video from the scene. These variation videos help
question generation script to provide answer for
certain types of questions, as explained later.

Objects. Each scene is composed of both static
scene elements and dynamic objects, containing
variable number of and different type of these el-
ements and objects. There are 7 static scene el-
ements (ramp, platform, button, basket, left wall,
right wall, ground). These elements are all drawn
in black color in order to differentiate them from
the dynamic objects. Their attributes such as posi-
tion or orientation are decided at the beginning of a
simulation and then they are kept fixed throughout
the video sequence. The values of these attributes
are assigned randomly from sets of different inter-
vals which are predefined for each type of scene
as in Figure 2. The set of the dynamic objects
contains 3 shapes (cube, triangle, circle), 2 sizes
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Figure 2: Random configurations of static scene element properties for each scene. The opaque regions show
the mean value for that element, whereas the overlayed regions show the extreme values. Although these changes
may seem subtle, they provide a wide variety in terms of scene dynamics.

(small, large), and 8 colors (gray, red, blue, green,
brown, purple, cyan, yellow). Attributes of dy-
namic objects, in contrast, are in continuous change
throughout the sequence due to the gravity or the
interactions that they are subject to, until they rest.

Events. To formally represent the dynamical in-
teractions in the simulations, we extract different
types of events: Start, End, Collision, Touch Start,
Touch End, and Enter Basket. Start and End events
represent the start and the end of the simulations, re-
spectively. Although we mainly question Collision
events in our tasks, we want models to understand
the difference between a collision and rolling on a
ramp or a platform or two objects moving together.
Therefore, we also extract Touch Start, Touch End
events. Finally, Enter Basket event is triggered if
the object enters the basket in the scene. All events
happening a simulation are represented as a causal
graph, which is also key for the question generator
to extract causal relationships in an easy manner.
Causal graph is a directed graph where events are
represented as nodes. Each edge represents a cause
relation where the source event is considered as the
cause of target event because of the shared objects
between them. We demonstrate the causal graph of
a sample simulation in Figure 3.

Simulation Representation. A simulation in-
stance is represented by three different data struc-
tures, the initial state of the scene, the final state of
the scene, and the causal graph of extracted events.
The initial and final state of a scene refers to the
information regarding the objects’ static and dy-
namic attributes such as color, position, shape, and

B: Red square collides with cyan circle
C: Cyan circle starts touching blue circle
D: Red square enters basket

F: Red square collides with basket
G: Red square starts touching basket
H: End

Causal Graph

A: Start E: Cyan circle ends touching blue circle

A B C D

E F G H

A B C D E F G H

A

B

C

D

E

F G

H

Figure 3: A simple causal graph. The causal graph is
a graphical summary of the events that occur in a simu-
lation. For the sake of simplicity, here we only include
the interactions between the dynamic objects and the
basket, and moreover, the scene is uncomplicated that
there is no intermediate branching in the causal graph.

velocity at the start or at the end of the simulation,
respectively. The final state is important as it bears
causal relationships between the events of a sim-
ulation. Together these information sources have
sufficient information to find the correct answers
to CRAFT questions. Our simulation system also
allows us to generate scene graphs like the ones
used in CLEVR (Johnson et al., 2017), though we
have not investigated it yet.
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Question Generation. Each CRAFT question is
expressed with a functional program as in CLEVR.
We use a different set of functional modules for
our programs extending the CLEVR approach. For
example, our module set includes, but not limited
to, functions which can filter events such as Enter
Basket and Collision, and functions which can fil-
ter objects based on whether they are stationary at
the start or the end of the video. List of our func-
tional modules and some example programs are
provided in Appendices A.1 and A.2 in the supple-
mentary material, respectively. Moreover, we use
different sets of word synonyms and allow question
text to be paraphrased for language variety simi-
lar to CLEVR. Our preliminary analysis revealed
that human performances in some questions were
poor. When investigated, we figured out that these
questions seem to be counter-intuitive to humans.
Humans do not accurately reason about the objects
for some counterfactual cases as subtle changes in
the scenes result in very different outcomes. Hence,
in finalizing our dataset, we applied minor random
perturbations to each dynamic object in a video to
verify whether the same answer can be obtained for
all such cases, and excluded those questions that
did not pass this verification step.

Question Types. CRAFT has 48 different question
types under 3 different categories, namely Causal,
Descriptive, Counterfactual. Among these, De-
scriptive questions mainly require extracting the
attributes of objects, but some of them, especially
those involving counting, need temporal analysis
as well. Our dataset extends CLEVRER by Yi et al.
(2020) with different types of events and multiple
environments. Counterfactual questions require
understanding what would happen if one of the ob-
jects was removed from the scene. Exclusive to
CRAFT, some Counterfactual questions (“Will the
small gray circle enter the basket if any of the other
objects are removed?”) require multiple counter-
factual simulations to be explored. As an extension
to Counterfactual questions, Causal questions re-
quire grasping what is happening inside both the
original video and the counterfactual video. In
other words, models must infer whether an object
is causing or enabling an event or preventing it
by comparing the input video and the counterfac-
tual video that should be simulated somehow. In
the question text, the affector and the patient ob-
jects are explicitly specified. Some questions even
include multiple patients. In particular, distinct

Table 1: The list of causative verbs and their categories
which are considered in CRAFT.

Category Verbs

Prevent prevent, keep, hold, block, hinder
Enable enable, help, allow
Cause cause, stimulate, trigger

causative verbs are mapped onto these three classes
of causal events (Table 1).

In order to have a better understanding of the
differences between Enable, Cause, and Prevent
questions, one should understand the intention of
the objects. We identify the intention in a simula-
tion by examining the initial velocity of the corre-
sponding object. Inspired by the recent findings in
cognitive linguistics (Beller et al., 2020), we take
having a velocity as an indication of an intention.
In that regard, an affector can only enable a pa-
tient to complete the task if the patient is originally
intended to do it but fails without the affector. Sim-
ilarly, an affector can only cause a patient to do
the task if the patient is not intended to execute it.
Moreover, an affector can only prevent a patient
from completing the task if the patient is intended
to do it and succeeds without the affector.

Variations in Natural Language. In datasets that
involve a natural language component, it is crucial
to have language variety. To improve this property,
CRAFT data generation scripts for questions, first
allow multiple paraphrased versions of the same
text to be generated to represent the same task. For
a question sample, a paraphrased version of the
corresponding task is chosen randomly by filling
the object templates. Second, CRAFT enables syn-
onyms of certain words to be integrated. We choose
a base word and create its synonyms inside the
CRAFT context. Similar to question paraphrases,
the base word is replaced by a synonym randomly
at run-time. All synonyms including the base word
have equal chance to be included in the question
text. This is handled by word suffixes and verb
conjugations by preserving English grammar.

Bias Reduction. CRAFT contains simulations
from different scenes to increase the variety in the
visual domain. This makes reducing the dataset bi-
ases difficult because of the multiplicity in the num-
ber of the domains (textual and visual). Our data
generation process enforces different simulation
and task pairs to have uniform answer distributions
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Figure 4: Distribution of question types and answers
in CRAFT. Innermost layer represents the distribution
of the questions for different task categories. Middle
layer illustrates the distribution of the answer types for
each task category. Outermost layer represents the dis-
tribution of answers for each answer type.

while trying to keep overall answer distribution as
uniform as possible. Our aim is to make it harder
for the models to find simple shortcuts by predict-
ing the task identifier, the simulation identifier, or
both, instead of understanding the scene dynam-
ics and the question. Figure 4 shows the answer
distributions for the question categories in CRAFT.

4 Experimental Analysis

In this section, we evaluate the performances of a
wide range of baseline models on CRAFT. We also
analyze how these performances relate with that
of humans in understanding physical interactions
between the objects and the environment.

4.1 Baselines
In our experiments, we consider several weak and
strong baselines including some state-of-the-art vi-
sual reasoning approaches.
Heuristic models either perform random guesses
or follow simple rules. Random model uniformly
samples a random answer from the full answer
space, whereas Answer Type Based Random
model (AT-Random) makes random guesses based
on the answer type (e.g. color, shape, boolean).
Most Frequent Answer baseline (MFA) employs
a simple heuristics and answers all the questions
by using the most frequent answer in the training
split. Answer Type based Most Frequent An-
swer model (AT-MFA) performs the same heuris-

tics by taking the answer types into account similar
to AT-Random baseline.

Text-only models ignore simulations, and do not
use any visual information related to input sim-
ulations. LSTM model is another image-blind
baseline that processes the question with an LSTM
(Hochreiter and Schmidhuber, 1997), and then pre-
dicts an answer to a given question ignoring the
visual input. In addition to the LSTM baseline,
we experimented with BERT (Devlin et al., 2019)
by using the CLS token embedding as question
representation to predict answers.

LSTM-CNN baseline integrates both visual and
textual cues by extending the LSTM model to
additionally consider the features extracted from
the a pretrained ResNet-18 model. We evaluate
both (non-temporal) single frame and video ver-
sions. In the former, each video is encoded by
taking into account either the first frame or the last
frame, which are referred to as LSTM-CNN-F and
LSTM-CNN-L, respectively. The video version,
which we call LSTM-CNN-V, processes down-
sampled videos by using R3D (Tran et al., 2018)
as visual feature extractor. All these three base-
lines concatenate the extracted visual and textual
features to obtain a combined representation of the
video and the question pair, feeding it to a mul-
tilayer perceptron network (MLP), followed by a
linear layer generating scores for the answers.

Memory, Attention, and Composition (MAC)
model (Hudson and Manning, 2018) is a compo-
sitional visual reasoning model. It decomposes
the reasoning task into a series of attention-guided
processing steps by isolating memory and control
functions from each other. The attention mecha-
nism considers visual and textual features jointly,
which leads to robust encodings of the question and
the image. Similar to the LSTM-CNN baselines,
MAC-F looks at only the first frame, and MAC-L
only pays attention to the last frame. MAC-V base-
line extends the MAC model by considering the
video frames sampled from the given video as the
visual input. Like LSTM-CNN-V model, MAC-V
also processes videos using R3D. Unlike its non-
temporal variations, MAC-F and MAC-L, where
the read unit originally has spatial attention over the
image, this temporal variation has a read unit that
applies spatio-temporal attention over the features
extracted from the entire video.

TVQA is a multi-stream state-of-the-art video QA
neural model (Lei et al., 2018). To adapt this model
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to our dataset, we only use its video stream branch
and omit the answer input by generating scores
for the entire answer vocabulary. In parallel with
other baselines, TVQA model also extracts visual
features by using ResNet-18. Different from the
original implementation, our TVQA implementa-
tion uses LSTM networks with 256 units, uses a
MLP network with 2 layers. Unlike the original
model, we do not use GloVe word embeddings
(Pennington et al., 2014) to make a fair comparison
with the remaining baseline models.

TVQA+ is another multi-stream video question an-
swering model, which is built upon TVQA model.
In contrast to TVQA, TVQA+ uses convolutional
networks as sequence encoder instead of LSTM
networks, replaces GloVe word embeddings with
BERT embeddings (Devlin et al., 2019), and imple-
ments a span proposal / prediction mechanism. We
do not implement span proposal mechanism, and
omit using BERT embeddings to compare TVQA+
with others more fairly as we disable GloVe embed-
dings in TVQA. Our TVQA+ implementation uses
256 hidden units in all submodules throughout the
network, and it generates answer scores by feeding
weighted average of fused multi-modal simulation-
question representation into a linear layer.

G-SWM is a recenty proposed object-centric
model (Lin et al., 2020), which is originally de-
signed for simulating possible futures in a scene
consisting of multiple dynamic objects. It mod-
els each frame in a video by two different latent
variables encoding object and context features. We
modify G-SWM to solve the reasoning tasks in
CRAFT. In particular, our version of G-SWM takes
in video frames resized to 64 × 64 pixels and ex-
tracts an object-centric representation of the input
video thorough object and context features. These
latent codes are then combined and concatenated
with the LSTM-based question representation, sim-
ilar to LSTM-CNN model, just before the final
classifier layer.

LSTM-D and BERT-D are oracle text-only base-
lines, which take the natural language description
of the causal graph of the simulation (see Figure 3)
as input in addition to the question. We generate
these descriptions from simplified versions of the
causal graphs by only considering the Start, End,
Collision and Enter Basket events, and excluding
those involving certain static objects (walls, plat-
forms, ramps, and static balls) which are not men-
tioned in the questions. We first sort the events by

their timestamps and concatenate a template-based
description of each event to generate the summary.
LSTM-D uses two separate LSTM networks pro-
cess the question and the description, and then a
linear layer predicts the answer for the input ques-
tion/description pair. BERT-D extends the BERT
baseline by using the descriptions as prefixes for
the input questions.

4.2 Results

In Table 2, we present the performances of the
tested models for each question type, considering
both the easy and the hard settings explained in
Section 3. As expected, the text only models per-
form the worst as they completely ignore the visual
information present in the videos. Moreover, the
performances of the single frame methods are typi-
cally lower than those of the video models, showing
the importance of the temporal aspect of the ques-
tions that a single snapshot of the simulation does
not carry enough information.

As can be seen from Table 2, there exists a sub-
stantial gap between the model performances in the
easy and hard settings of CRAFT. Not surprisingly,
this is not the case for the text-based baselines, in
which it is not important whether a scene layout
has been seen before during training or not. Over-
all, these results suggest that our tested multimodal
methods are not able to generalize well to previ-
ously unseen scenes. They cannot fully detect the
physical interactions and localize the events taking
place in a video.

It is worth mentioning that the performances of
the models vary between different question types in
CRAFT. Out of the three question types, the mod-
els consistently perform poorly on the Descriptive
questions in that the accuracies are around 23.5%-
48.12% in the easy setting and 23.2%-42.9% in
the hard setting. The reason behind this could be
attributed to the variety of the answers in this task
as it includes questions covering both count, shape,
and color of the object(s) (see Figure 4). On the
other hand, the accuracies of the models on the
remaining questions types are between 32.7% and
61.4% in the easy setting, and 30.1% and 56.2% in
the hard setting.

LSTM-CNN-V baseline does reasonably well
on the easy setting, but its generalization capabil-
ity on the hard setting is not that good. TVQA
performs worse than the LSTM-CNN-V baseline,
which shows that it is more tailor-fit to video ques-
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Table 2: Performances of the tested models on the test set of the CRAFT dataset on easy and hard splits. C, CF,
and D columns stand for Causal, Counterfactual, and Descriptive tasks, respectively.

Model
Easy Setting Hard Setting

C CF D All C CF D All

Heuristic

Random 5.95 5.25 5.09 5.24 5.37 4.62 5.08 4.98
AT-Random 36.67 44.34 33.95 37.47 33.67 46.06 34.16 37.52
MFA 32.68 43.28 23.53 30.72 30.09 43.94 23.20 29.98
AT-MFA 49.62 47.21 37.57 42.03 49.28 47.17 36.55 41.12

Text-only
LSTM 53.04 53.14 38.29 44.69 52.51 56.24 37.25 44.52
BERT 48.43 50.59 37.55 42.90 49.28 52.12 36.52 42.52

LSTM-CNN-F 53.11 55.23 44.86 49.07 48.07 48.12 35.54 40.64
Single LSTM-CNN-L 54.86 55.63 43.12 48.42 49.86 54.44 38.88 44.66
Frame MAC-F 53.18 52.88 44.40 48.10 51.86 53.5 42.12 46.55

MAC-L 49.97 53.08 44.54 47.83 50.21 53.8 41.46 46.05

LSTM-CNN-V 54.65 61.42 48.12 53.01 51.86 54.89 41.36 46.50
MAC-V 53.95 57.72 44.51 49.74 51.22 54.71 42.94 47.31

Video TVQA 53.67 55.57 36.89 44.71 51.00 55.12 36.31 43.46
TVQA+ 54.86 60.02 40.22 48.11 51.00 55.12 39.09 45.12
G-SWM 53.54 55.29 37.05 44.69 51.00 48.68 37.77 42.47

Oracle
LSTM-D 51.71 55.89 63.22 59.53 51.93 56.00 59.57 57.64
BERT-D 68.44 80.05 93.41 86.20 66.33 79.34 91.30 84.90

C CF D All
Human 71.27 83.07 87.45 76.60

tion answering about TV clips, and its performance
degrades when it does not have access to subtitles
or the related concept detectors. Notably, MAC
variants perform the best in the hard setting. MAC
model, together with G-SWM, is a more expressive
model specifically designed for compositional vi-
sual reasoning. G-SWM, however, performs poorly
in our experiments, which might be because the
scenes in CRAFT usually consist of many objects,
thus making it harder to learn decomposing a video
into objects and background. This may be resolved
by switching to a two-stage framework, in which
G-SWM is pretrained first to improve its decompo-
sition ability. For now, we left this as future work.

To support our thesis that CRAFT is designed
to be easy for humans, but difficult for machines,
we also conducted a small human study. We asked
481 randomly selected CRAFT questions to 101
adults. We divided the questions into 5 parts with
counterbalancing and every participant took one of
the parts randomly. Among these 94 participants,
we only considered the ones who responded at least
75% of the questions, which corresponds to 56
people. As can be seen from Table 2, there is a
large gap (> 29%) between human subjects and

neural baselines in the hard setting.
Our oracle models, LSTM-D and BERT-D, per-

form better than all the tested neural models. Inter-
estingly, the performance of BERT-D is very close
to human performance, even slightly outperform-
ing humans for the descriptive questions. Clearly,
to excel in this task, a model must capture the in-
teractions between the dynamic objects with each
other and with the environment.

5 Conclusion

We have presented CRAFT, a new VQA dataset
to test causal reasoning capabilities of the current
models. Motivated by the Force Dynamics Theory,
which highlights distinct causative verbs, CRAFT
requires models to perform temporal and causal rea-
soning and even to imagine alternative versions of
the events occurring in videos. Our results demon-
strate that, while human adults can reason about the
physical interactions between objects, these ques-
tions cannot be solved reliably by current models.
At present, there is substantial room for improve-
ment compared to humans. In our experiments, we
did not report the results of recent neuro-symbolic
models, e.g. NS-DR (Yi et al., 2020). Such ap-
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proaches are very compelling and worth pursuing,
but they currently require extra object-level annota-
tions. Another exciting direction is to test object-
centric methods other than G-SWM. However, it
seems that they might require extra pretraining or
self-supervised objectives, as explored by Ding
et al. (2020). We believe that developing more ef-
fective models for CRAFT is an exciting research
direction for video QA systems to mimic humans
in causal reasoning about forces and interactions.
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A Appendix

A.1 Functional Modules
CRAFT questions are represented with functional programs. Input and output types for our functional
modules are listed in Table A.1. Lists of all functional modules are also provided in Tables A.2-A.6.

Table A.1: Input and output types of functional modules in CRAFT.

Type Description

Object A dictionary holding static and dynamic attributes of an object
ObjectSet A list of unique objects
ObjectSetList A list of ObjectSet
Event A dictionary holding information of a specific event
EventSet A list of unique events
EventSetList A list of EventSet
Size A tag indicating the size of an object
Color A tag indicating the color of an object
Shape A tag indicating the shape of an object
Integer Standard integer type
Bool Standard boolean type
BoolList A list of Bool

Table A.2: Input functional modules in CRAFT.

Module Description Input Types Output Type

SceneAtStart Returns the attributes of all objects
at the start of the simulation

None ObjectSet

SceneAtEnd Returns the atttributes of all objects
at the end of the simulation

None ObjectSet

StartSceneStep Returns 0 None Integer

EndSceneStep Returns -1 None Integer

Events Returns all of the events happening
between the start and the end of the
simulation

None EventSet
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Table A.3: Output functional modules in CRAFT.

Module Description Input Types Output Type

QueryColor Returns the color of the input object Object Color

QueryShape Returns the shape of the input object Object Shape

Count Returns the size of the input list ObjectSet Integer

Exist Returns true if the input list is not
empty

ObjectSet / EventSet Bool

AnyFalse Returns true if there is at least one
false in a boolean list

BoolList Bool

AnyTrue Returns true if there is at least one
true in a boolean list

BoolList Bool

IsBefore Returns whether the first event hap-
pened before the second event

(Event, Event) Bool

IsAfter Returns whether the first event hap-
pened after the second event

(Event, Event) Bool

Table A.4: Object filter functional modules in CRAFT.

Module Description Input Types Output Type

FilterColor Returns the list of objects which
have a color same with the input
color

(ObjectSet, Color) ObjectSet

FilterShape Returns the list ofobjects which have
a shape same with the input shape

(ObjectSet, Shape) ObjectSet

FilterSize Returns the list of objects which
have a size same with the input size

(ObjectSet, Size) ObjectSet

FilterDynamic Returns the list of dynamic objects
from an object set

ObjectSet ObjectSet

FilterMoving Returns the list of objects that are in
motion at the step specified

(ObjectSet, Integer) ObjectSet

FilterStationary Returns the list of objects that are
stationary at the step specified

(ObjectSet, Integer) ObjectSet
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Table A.5: Event filter functional modules in CRAFT.

Module Description Input Types Output Type

FilterEvents Returns the list of events about a spe-
cific object from an event set

(EventSet, Object) EventSet

FilterCollision Returns the list of collision events
from an event set

EventSet EventSet

FilterCollisionWithDynamics Returns the list of collision events
involving dynamic objects

EventSet EventSet

FilterCollideGround Returns the list of collision events
involving the ground

EventSet EventSet

FilterCollideGroundList Returns the list of collision event
sets involving the ground

EventSetList EventSetList

FilterCollideBasket Returns the list of collision events
involving the basket

EventSet EventSet

FilterCollideBasketList Returns the list of collision event
sets involving the basket

EventSetList EventSetList

FilterEnterBasket Returns the In Basket events EventSet EventSet

FilterEnterBasketList Returns the list of In Basket event
sets

EventSetList EventSetList

FilterBefore Returns the events from the input list
that happens before input event

(EventSet, Event) EventSet

FilterAfter Returns the events from the input list
that happened after input event

(EventSet, Event) EventSet

FilterFirst Returns the first event EventSet Event

FilterLast Returns the last event EventSet Event

EventPartner Returns the object interacting with
the input object through the specified
event

(Event, Object) Object

FilterObjectsFromEvents Returns the objects from the speci-
fied events

EventSet ObjectSet

FilterObjectsFromEventsList Returns the list of object sets from a
list of event sets

EventSetList ObjectSetList

GetCounterfactEvents Returns the event list if a specific
object is removed from the scene

Object EventSet

GetCounterfactEventsList Returns the counterfactual event list
for all objects in an object set

ObjectSet EventSetList
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Table A.6: Auxiliary functional modules in CRAFT.

Module Description Input Types Output Type

Unique Returns the single object from the
input list, if the list has multiple ele-
ments returns INVALID

ObjectSet Object

Intersect Applies the set intersection opera-
tion

(ObjectSet, ObjectSet) ObjectSet

IntersectList Intersects an object set with multiple
object sets

(ObjectSetList, ObjectSet) ObjectSetList

Difference Applies the set difference operation (ObjectSet, ObjectSet) ObjectSet

ExistList Applies the Exist operation to each
item in the input list returning a
boolean list

ObjectSetList / EventSetList BoolList

AsList Returns an object set containing a
single element specified by the input
object

Object ObjectSet

A.2 Example Programs
Here we provide example functional programs for some of the sample questions provided in Figure 1,
which are used to extract the correct answers using our simulation environment. Figures A.1 to A.5
provide functional program samples that are designed for CRAFT descriptive, counterfactual, cause,
enable, and prevent questions, respectively.

Question: "How many objects fall to the ground?"

Count (
FilterDynamic (

FilterObjectsFromEvents (
FilterCollideGround (

Events ()
)

)
)

)

Question: "After entering the basket, does the small yellow square collide with other objects?"

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Var SmallYellowCubeEvents = FilterEvents ( Events(), QueryObject )
Exist (

FilterAfter (
FilterCollisionWithDynamics ( SmallYellowCubeEvents ),

FilterFirst (
FilterEnterBasket ( SmallYellowCubeEvents )

)
)

)
)

Figure A.1: Example programs for descriptive questions.
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Question: "How many objects fall to the ground if the small yellow box is removed?"

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Count (

FilterObjectsFromEvents (
FilterCollideGround (

GetCounterfactEvents ( QueryObject )
)

)
)

Question: "Will the small gray box enter the basket if any of the other objects are removed?"

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Gray"), "Cube" )
Var OtherDynamicObjects = Difference ( FilterDynamic ( SceneAtStart() ), AsList ( QueryObject ) )
AnyTrue (

ExistList (
IntersectList (

FilterObjectsFromEventsList (
FilterEnterBasketList (

GetCounterfactEventsList ( OtherDynamicObjects )
)

),
AsList (

QueryObject
)

)
)

)

Figure A.2: Example programs for counterfactual questions.

Question: "Does the small brown sphere cause the tiny yellow box to enter the basket?"

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Brown"), “Circle” )
Var PatientObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Exist (

FilterStationary (
Intersect (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
)

),
AsList ( PatientObject )

),
StartSceneStep()

)
)

Figure A.3: Example program for cause questions.
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Question: "How many objects does the small gray block enable to enter the basket?"

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Gray"), "Cube" )
Count (

FilterMoving (
Difference (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
)

),
AsList ( AffectorObject )

),
StartSceneStep()

)
)

Figure A.4: Example program for enable questions.

Question: "Does the small yellow square prevent the tiny brown circle from entering the basket?"

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Var PatientObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Brown"), "Circle" )
Exist (

FilterMoving (
Intersect (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
)

),
AsList ( PatientObject )

),
StartSceneStep()

)
)

Figure A.5: Example program for prevent questions.
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A.3 Implementation Details
Unless otherwise specified, all learnable baselines are trained with Adam optimizer (Kingma and Ba,
2014) with default hyperparameters. LSTM and single-frame models are trained for 75 epochs with a
batch size of 64. All temporal baselines are trained for 30 epochs with a batch size of 32. G-SWM is
trained for 100 epochs using a batch size of 64 with Adam optimizer and a learning rate of 0.0001. Input
videos are downsampled at 5 frames per second (fps), and their frames are resized to 112× 112 pixels.
We used mixed precision strategy to train baselines more efficiently on Tesla V100 and Tesla P4 GPUs,
except TVQA+, which is trained using full precision. Training single-frame models takes 2 minutes and
training video models approximately 20-30 minutes per epoch. All word embeddings have a length of 256
and are randomly initialized. Pretrained convolutional video and image encoders are jointly trained with
the rest of the networks. We use negative log-likelihood loss function for all models where the models
predict a distribution over the set of possible answers. All models are tuned based on their performances
on the validation split.

A.4 Detailed Quantitative Results
In this subsection, we share the quantitative results in more detail for different scenes and question types.
Table A.7 describes the subcategories of the question types exist in CRAFT, together with a sample
question. Table A.8 and Table A.9 present the results per scene on the easy and hard splits, respectively,
and Table A.10 and A.11 respectively demonstrate the results per question type on the easy split and hard
splits.

Table A.7: The question subcategories in the CRAFT dataset.

Subcategory Description Sample Question

C/A Yes/no questions that require causal reasoning Does the Z C S cause the Z2 C2 S2 to enter the
basket?

C/N Causal reasoning questions with counting What is the number of objects that the Z C S
enables to enter the basket?

CF/N Counterfactual reasoning with counting How many objects enter the basket if the Z C
S is removed?

CF/O Counterfactual yes/no questions Will the Z2 C2 S2 enter the basket if the Z C S
is removed?

D/2Q Descriptive counting questions about the last
state

How many objects are moving when the video
ends?

D/C Descriptive questions about the object color What color is the object the Z C S last collides
with?

D/C-T Temporal yes/no questions with respect to a
certain event

Before falling to the ground, does the Z C S
collide with other objects?

D/N-T Counting with respect to some reference event Before falling to the ground, does the Z C S
collide with other objects?

D/N-V Descriptive counting questions about events How many objects fall to the ground?

D/S Descriptive questions about the object shape What is the shape of the object the Z C S first
collides with?

D/TO Temporal yes/no questions about events with
respect to an object

Does the Z C S enter the basket before the Z2
C2 S2 does?
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Table A.8: Performances of the tested models per scene on the test set of the easy split of CRAFT.

PPPPPPPPPModel
Scene

Text-only
LSTM 43.52 41.17 45.39 40.36 46.12 42.03 39.29 34.90 44.47 44.91 47.95 50.14 44.20 52.50 39.92 46.15 43.06 45.28 48.47 42.84

BERT 46.58 39.78 45.76 38.32 46.12 42.78 38.35 35.91 45.29 41.51 41.79 45.07 39.11 48.50 40.12 43.08 40.51 43.44 45.86 42.84

LSTM-CNN-F 51.34 48.69 51.22 40.14 52.71 47.59 47.37 37.25 46.72 46.29 57.69 48.22 44.20 53.62 43.99 52.75 50.00 50.21 53.22 52.69

Single LSTM-CNN-L 48.41 51.46 45.20 41.27 59.30 49.87 50.00 32.21 52.46 47.17 54.10 47.95 45.89 53.95 44.20 45.71 40.97 47.53 49.39 54.63

Frame MAC-F 47.43 48.39 50.28 41.72 50.78 50.89 47.93 44.63 48.57 45.28 51.28 47.67 40.94 53.95 45.62 50.77 45.83 47.95 50.92 50.90

MAC-L 44.99 45.31 50.85 42.63 56.59 51.39 51.13 43.96 46.72 41.38 52.05 45.21 42.11 53.73 47.45 47.69 48.61 48.52 51.69 51.34

LSTM-CNN-V 49.51 54.38 55.74 45.12 63.57 49.62 52.82 40.60 50.82 51.82 55.90 57.12 48.89 60.29 52.75 54.51 55.79 47.81 52.15 58.06

MAC-V 48.41 45.93 54.43 42.18 56.59 44.56 48.12 36.58 50.82 48.43 52.56 51.10 48.50 52.17 49.29 52.53 57.87 49.65 48.16 54.48

Video TVQA 44.38 47.16 42.00 38.10 46.12 41.77 43.98 30.20 45.08 44.03 44.10 48.36 42.89 56.84 41.34 44.62 40.05 43.86 46.17 45.22

TVQA+ 48.41 51.77 48.78 37.87 45.74 44.81 52.26 34.23 48.36 45.53 47.44 49.86 46.02 53.17 46.84 50.33 45.14 44.85 50.61 55.52

G-SWM 47.56 40.55 46.70 37.64 44.96 44.05 41.73 33.22 46.11 41.76 45.64 50.68 45.24 48.61 42.16 43.74 43.52 45.28 46.32 46.57

Oracle
LSTM-D 58.92 51.15 61.96 59.86 67.83 65.82 54.89 61.41 63.52 58.99 66.15 61.64 54.11 60.73 62.32 60.88 61.81 56.28 54.91 61.94

BERT-D 83.62 79.72 89.27 88.89 96.12 86.58 84.77 92.62 81.15 85.28 88.72 94.52 82.40 82.65 91.04 85.27 88.89 85.05 86.04 85.67

Human 76.71 30.77 95.00 80.43 96.30 85.71 86.36 77.59 75.34 62.50 61.54 61.11 88.14 67.05 85.71 72.46 56.25 77.88 76.92 91.11

Table A.9: Performances of the tested models per scene on the test set of the hard split of CRAFT.

PPPPPPPPPModel
Scene

Text-only
LSTM 45.09 43.34 45.47 44.96

BERT 43.82 41.84 42.28 42.76

LSTM-CNN-F 43.23 32.77 46.76 44.48

Single LSTM-CNN-L 45.48 43.15 45.38 45.53

Frame MAC-F 50.66 44.24 45.99 47.34

MAC-L 47.83 44.00 47.56 46.39

LSTM-CNN-V 44.11 47.41 49.25 44.67

MAC-V 45.92 45.40 52.6 46.55

Video TVQA 44.70 42.91 43.05 43.72

TVQA+ 39.37 43.01 50.42 47.44

G-SWM 40.99 43.1 41.8 43.14

Oracle
LSTM-D 67.32 54.82 56.91 55.62

BERT-D 87.59 83.40 85.73 84.47

Human 61.54 88.14 56.25 77.88
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Table A.10: Performances of the tested models per question type on the test set of the easy split of CRAFT.

Model C/A C/N CF/N CF/O D/2Qs D/C D/C-T D/N-T D/N-V D/S D/TO All

Text-only
LSTM 54.92 49.81 30.51 56.68 37.02 14.16 51.48 33.66 31.30 34.52 53.48 44.69

BERT 46.96 50.95 32.84 53.36 27.34 13.62 48.89 34.15 32.22 37.50 55.08 42.90

LSTM-CNN-F 54.14 51.34 36.02 58.24 30.80 31.98 54.53 35.12 31.30 46.68 52.58 49.07

Single LSTM-CNN-L 55.80 53.24 37.29 58.50 31.14 28.79 52.64 38.05 29.63 44.64 52.58 48.42

Frame MAC-F 54.03 51.72 36.23 55.49 35.99 32.76 52.84 35.12 31.11 44.98 53.83 48.10

MAC-L 50.61 48.85 37.08 55.59 32.53 35.10 53.05 38.54 30.74 43.28 53.65 47.83

LSTM-CNN-V 53.81 56.11 43.43 64.24 34.95 17.20 68.95 55.12 42.96 42.01 50.80 53.01

MAC-V 54.81 52.48 43.22 59.99 33.22 16.19 63.22 53.17 37.22 36.56 54.72 49.74

Video TVQA 54.81 51.72 33.26 59.07 29.07 11.75 50.54 37.56 30.19 33.76 52.23 44.71

TVQA+ 57.02 51.15 42.58 62.74 27.68 11.83 55.85 44.39 38.33 35.46 54.37 48.11

G-SWM 54.25 52.29 29.66 59.30 32.53 8.56 53.13 36.59 29.44 34.44 47.95 44.69

Oracle
LSTM-D 52.82 49.81 41.74 58.10 31.83 68.09 68.37 41.46 41.11 73.72 53.12 59.53

BERT-D 70.28 65.27 69.07 81.77 46.37 96.42 97.90 72.20 85.56 98.21 96.61 86.20

Human 78.22 57.78 78.57 77.65 60.00 87.04 83.93 91.67 93.75 96.30 100.00 76.60

Table A.11: Performances of the tested models per question type on the test set of the hard split of CRAFT.

Model C/A C/N CF/N CF/O D/2Qs D/C D/C-T D/N-T D/N-V D/S D/TO All

Text-only
LSTM 53.81 50.54 25.73 60.45 41.61 11.68 51.27 29.74 26.88 32.18 53.80 44.52

BERT 48.93 49.82 28.16 55.43 34.67 11.75 49.36 24.57 26.68 36.28 49.86 42.52

LSTM-CNN-F 48.93 46.76 27.67 50.94 39.78 15.74 45.87 30.60 29.25 30.68 50.14 40.64

First LSTM-CNN-L 50.60 48.74 25.24 58.47 31.39 19.44 50.87 30.17 23.52 37.07 53.12 44.66

Frame MAC-F 53.81 48.92 28.16 57.00 40.88 34.15 48.73 29.74 27.47 38.86 54.76 46.55

MAC-L 51.19 48.74 27.67 57.40 36.50 30.38 51.15 30.17 26.09 37.50 52.17 46.05

LSTM-CNN-V 52.86 50.36 32.77 57.94 42.70 14.56 61.29 28.88 29.45 33.55 48.91 46.50

MAC-V 51.43 50.90 35.19 57.40 47.81 16.33 62.24 37.07 31.62 33.26 52.04 47.31

Video TVQA 53.57 47.12 27.18 58.98 32.12 12.79 50.28 24.14 25.69 32.54 51.63 43.46

TVQA+ 53.10 47.84 29.61 58.64 25.91 13.90 58.23 27.16 24.90 31.82 52.17 45.12

G-SWM 50.60 51.62 31.07 51.11 37.59 12.86 50.72 25.86 26.48 36.78 52.72 42.47

Oracle
LSTM-D 51.31 52.88 37.62 58.54 44.16 63.49 64.27 31.90 34.58 67.82 52.31 57.64

BERT-D 68.93 62.41 52.18 83.09 49.27 98.37 96.10 53.88 67.00 97.77 93.75 84.90

Human 78.22 57.78 78.57 77.65 60.00 87.04 83.93 91.67 93.75 96.30 100.00 76.60
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A.5 Additional Examples
Figure A.6 provide some additional sample CRAFT questions together with the oracle descriptions and
the baseline model predictions.

Description: Start. Large green circle collides 
with small green circle. Large blue circle 
collides with small green circle. Large green 
circle enters basket. Large green circle collides 
with basket. End.

Question: Are there any collisions between 
objects before the big green circle goes into the 
basket?
Answer: Yes

Predictions:
LSTM: Yes / BERT: No
Single Frame Models: No
Video Models: Yes / TVQA+: No
LSTM-D: No / BERT-D: Yes

Description: Start. Large gray circle collides 
with large gray triangle. Large cyan circle 
collides with large gray circle. Large gray circle 
enters basket. Large gray circle collides with 
basket. End.

Question: What color is the object the large 
gray triangle last collides with?
Answer: Gray

Predictions:
LSTM: Green / BERT: Yellow
Single Frame Models: Gray
LSTM-CNN-V: Green / MAC-V: Yellow
TVQA: Yellow / TVQA+: Blue / G-SWM: Brown
Oracle Models: Gray

Description: Start. Small blue circle collides 
with small cyan circle. End.

Question: How many objects are in motion at 
the end of the video?
Answer: 1

Predictions:
LSTM: 2 / BERT: 1
LSTM-CNN-F: 2 / LSTM-CNN-L: 3
MAC-F: 1 / MAC-L: 0 / MAC-V: 1
LSTM-CNN-V: 0 / TVQA: 0 / TVQA+: 2 
G-SWM: 1 / LSTM-D: 0 / BERT-D: 2

Description: Start. Small red circle collides 
with large cyan triangle. Small red cube 
collides with large brown circle. Small red 
circle collides with ground. Large brown circle 
collides with basket. Large brown circle enters 
basket. Large brown circle collides with 
basket. End.

Question: How many objects hit the floor if 
the large brown circle is removed?
Answer: 1

Predictions:
LSTM: 0 / BERT: 1
Single Frame Models: 0
LSTM-CNN-V: 1 / MAC-V: 1 / TVQAs: 2
G-SWM: 1 / LSTM-D: 0 / BERT-D: 1

Description: Start. Small red circle collides 
with large yellow triangle. Small brown circle 
enters basket. Small brown circle collides 
with basket. End.

Question: There is a small brown circle, 
does it block the tiny red circle from getting 
into the bucket?
Answer: No

Predictions:
Text-only Models: Yes
LSTM-CNN-F: Yes / LSTM-CNN-L: Yes
MAC-F: No / MAC-L: No
Video Models: No / TVQA+: Yes
Oracle Models: No

Description: Start. Small yellow circle 
collides with large yellow circle. Small purple 
triangle collides with ground. End.

Question: There is a big yellow circle, does 
it hinder the tiny yellow circle from entering 
the container?
Answer: No

Predictions:
Text-only Models: Yes
LSTM-CNN-F: No / LSTM-CNN-L: Yes 
MAC-F: No / MAC-L: Yes / MAC-V: No
LSTM-CNN-V: No / TVQAs: Yes
G-SWM: No / LSTM-D: No / BERT-D: Yes

Description: Start. Large cyan triangle collides 
with small blue cube. Small blue cube collides 
with ground. Small yellow cube enters basket. 
Small red cube collides with ground. Small 
yellow cube collides with basket. Small red cube 
collides with ground. Small yellow cube collides 
with basket. End.

Question: Are there any collisions between 
objects after the small blue block hits the floor?
Answer: No

Predictions:
Text-only Models: No
Single Frame Models: Yes
LSTM-CNN-V: No / MAC-V: No / TVQAs: Yes
G-SWM: Yes / Oracle Models: No

Description: Start. Large purple circle collides 
with small brown circle. Small cyan circle collides 
with large purple circle. Small cyan circle collides 
with ground. End.

Question: Will the large purple circle fall to the 
floor if any of the other objects are removed?
Answer: Yes

Predictions:
LSTM: No / BERT: Yes
LSTM-CNN-F: No / LSTM-CNN-L: Yes
MAC-F: No / MAC-L: No / MAC-V: Yes
LSTM-CNN-V: Yes /  TVQAs: Yes
G-SWM: No / Oracle Models: No

Figure A.6: Example model predictions. The examples on the left belong to the descriptive category and the right
column contains examples from the other categories.

A.6 Human Evaluation
The data from human participants were collected online via Qualtrics. The approximate time to complete
the study was between 20 and 30 minutes. Participants did not take any bonus or wage. They attended the
study voluntarily. The personal identifying information was not obtained. There were not an expected
negative outcomes of the study on participants, but they could leave the study whenever they want. Koç
University’s Institutional Review Board approved the study (Protocol no: 2021.164.IRB3.073).

For the human evaluation, the participants saw the videos and multiple choice questions. The instruction
page that was given to participants is shown in Figure A.7.
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Powered by Qualtrics A

       Thank you for participating in this study about causal reasoning. Your contribution to
this study will help us investigate how people understand causal relations.

        In this study, you will be asked to answer questions related to the videos that include
interactions between some moving or stationary objects. For example, two objects might
collide with each other, one may enter the basket or hit to the ground. The questions will
be about:

- Counting the number of objects took place in a certain event (consider only dynamic
objects unless stated otherwise). Example: "How many objects enter the container?"
- Whether an object help/hinder a specific event.  Example: "There is a big green block,
does it allow the small blue circle to enter the basket?"
- Imagining what would happen if a certain event occurs. Example: "If any of the other
objects are removed, will the small yellow triangle go into the bucket?"
- Questioning the shape/color of an object. Example: "What color is the object the tiny
brown triangle last collides with?"

 

 
       We ask you to watch each video first and then answer the question related to the video
later. You can re-watch each video until you move to the question related to the video. For
the yes/no questions, you are only allowed to select "yes" or "no". Descriptive questions
relating to the number of objects should be answered with sliding the bar. 

       When you are ready, you can click "Next" to start answering the next question.

Survey Completion
0% 100%

→

Figure A.7: The information form of the human evaluation study.
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B Datasheet for CRAFT

This document is prepared in accordance with the
guideline suggested in Datasheets for Datasets
(Gebru et al., 2020), the most updated version can
be found here.

Motivation
For what purpose was the dataset created?
CRAFT was created in order to facilitate research
on understanding and closing the gap between the
capabilities of human intelligence and artificial
systems in grasping and reasoning about physical
relationships between different objects in an
environment through vision and language.

Who created this dataset (e.g., which team, re-
search group) and on behalf of which entity
(e.g., company, institution, organization)?
The dataset was created by Tayfun Ates, M.
Samil Atesoglu, Cagatay Yigit, Erkut Erdem from
Hacettepe University and Ilker Kesen, Mert Kobas,
Aykut Erdem, Tilbe Goksun and Deniz Yuret from
Koç University.

Who funded the creation of the dataset?
CRAFT was supported in part by GEBIP 2018
Award of the Turkish Academy of Sciences to E.
Erdem and T. Goksun, BAGEP 2021 Award of the
Science Academy to A. Erdem, and AI Fellowship
to Ilker Kesen provided by the KUIS AI Center.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people,
countries)?
The instances of CRAFT include a video, a
question about the video, its answer, the functional
program which is the ground-truth process that is
used to answer the question, the states of dynamic
objects and static scene elements at the start of the
simulation and at the end of the simulations, causal
graph of the events occurred in the video, variation
videos which are created removing each dynamic
object one by one, and lastly the states of objects
and causal graphs for variation videos.

How many instances are there in total (of each
type, if appropriate)?
CRAFT contains 58K video and question pairs that
are generated from 10K videos from 20 different

virtual environments.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of in-
stances from a larger set?
Please refer to Section 3 of the main paper for a
detailed description of the sampling procedure
used to generate questions.

What data does each instance consist of?
The video and question-answer pairs are used
as the basic components for this visual question
answering study. The question about the video is
asked to an artificial model or a human subject.
The test containing multimodal inputs question the
capabilities of the subject in understanding and
reasoning about physical relationships occurring
in an environment. We use other instances in the
dataset to find answers to questions automatically
and share them for further analysis if required.
Functional programs can run on object states
and causal graphs to find the answer. Moreover,
they can be integrated in training process for
different models as well. Similarly, if ground-truth
information regarding object states and causal
graphs can also be extracted. Furthermore, some
questions require counterfactual analysis that we
define using variation videos formally. In order
to evaluate effect of an object on the scene, we
remove it an re-simulate the environment. We
share instances regarding variations for further
analysis.

Is there a label or target associated with each
instance? If so, please provide a description.
Each instance consists of a ground-truth answer
associated with the question about a dynamic
scene.

Is any information missing from individual
instances? We do not provide object-level
segmentation maps.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)?
Instances are generated from 20 different scene
layouts with some randomization.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)?
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We share CRAFT with two different split alter-
natives that we call easy and hard settings. Both
of the alternatives contain non-overlapping train,
validation, and test set. There are 20 distinct
layouts from which we created our virtual scenes
for CRAFT. In easy setting, each split might
contain images from all of the scene layouts. On
the other hand, in hard setting, train, validation,
and test splits contain images from 12, 4, and 4
of the 20 layouts, respectively. That is, in the
hard setting, the corresponding test samples are
generated from unseen scene layouts.

Are there any errors, sources of noise, or redun-
dancies in the dataset?
The process that we followed to make sure that
the answers are not affected much with the slight
perturbations to the initial states is described in
Section 3 of the main paper.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)?
The dataset is self-contained.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected
by legal privilege or by doctor patient confiden-
tiality, data that includes the content of individ-
uals non-public communications)?
No.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?
No.

Does the dataset relate to people?
No.

Does the dataset identify any subpopulations
(e.g., by age, gender)?
No.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or in-
directly (i.e., in combination with other data)
from the dataset?
No.

Does the dataset contain data that might be

considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orien-
tations, religious beliefs, political opinions or
union memberships, or locations; financial or
health data; biometric or genetic data; forms
of government identification, such as social se-
curity numbers; criminal history)?
No.

Collection Process

How was the data associated with each instance
acquired?
All instances of CRAFT are generated automati-
cally using a physics engine.

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or
sensor, manual human curation, software pro-
gram, software API)?
We use Box2D physics simulator (Catto, 2010) to
create our visual scenes, extract object states and
causal graphs. Furthermore, we extend the work
CLEVR (Johnson et al., 2017) to create CRAFT
questions and answers.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabili-
ties)?
The dataset is generated from scratch and it does
not depend on an already existing dataset.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?
Authors prepared the scripts which create visual
and textual data automatically.

Over what time-frame was the data collected?
Data generation scripts ran about 51 hours to
create 9917 videos and 57524 questions.

Does the dataset contain all possible instances?
Although we provide all instances for this version
of CRAFT, it is possible for anyone to create new
samples by running the scripts provided in our
code repository.

If the dataset is a sample, then what is the pop-
ulation?
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Please refer to Section 3 of the main paper for a
detailed description of the sampling procedure
used to generate questions.

It is possible the enlarge CRAFT by running
existing scripts to obtain huge amount of data
because of the randomness existing in video
generation process as described in the paper. New
dynamic objects, static scene elements, events can
also be created to enrich CRAFT. Moreover, it is
also possible to add new types of scene layouts
and question categories or types. For example,
CRAFT focuses on mostly physical reasoning.
It is possible to add tasks questioning different
capabilities of Humans such as spatial reasoning,
planning, and so on. There is actually no limit for
creating datasets similar to CRAFT.

Were any ethical review processes conducted
(e.g., by an institutional review board)?
Koç University’s Institutional Review Board
approved the user study (Protocol No:
5152021.164.IRB3.073).

Did you collect the data from the individuals in
question directly, or obtain it via third parties
or other sources (e.g., websites)?
The data from human participants for the user
study were collected online via Qualtrics.

Were the individuals in question notified about
the data collection? Yes.

Did the individuals in question consent to the
collection and use of their data? The participants
of the user study are asked to sign a consent form.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis)been conducted?
Not applicable.

Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the
data done(e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)?
There were two preprocessing steps applied to
the dataset. Firstly, after creating a video and
question-answer pair, we applied simple pertur-

bations by changing certain values of dynamic
objects slightly at the start of the simulation
and re-simulated the video. If the answer to the
question is changed in any of the variations, then
we removed the video and the question pair from
the dataset. Secondly, in order to obtain a dataset
which is uniform as possible in all dimensions,
we removed video and question pairs whose an-
swers are dominant after the first perturbation filter.

By collecting this dataset, we had the chance
to observe that although the artificial systems
have demonstrated incredible progress in the
past decade, there are still areas that should be
investigated for them. Therefore, CRAFT can be
considered as a sample dataset which will facilitate
the research in closing the gap between humans
and artificial systems.

Preprocessing steps achieve two main aims of
ours. Firstly, we wanted to eliminate video and
question pairs whose answers are inconsistent
between different variations of the same video with
small perturbations. We observed that these were
the cases for which humans subjects had some
troubles. Secondly, we wanted to make CRAFT
difficult enough for machine reasoning models by
aiming at avoiding learning shortcuts by selecting
the most frequent answers in answering questions.
The second step of preprocessing procedure mostly
achieves this aim.

Was the “raw” data saved in addition to the pre-
processed/cleaned/labeled data (e.g., to support
unanticipated future uses)?
The raw data were saved, but were not made public.

Is the software used to preprocess/clean/label
the instances available?
We plan to publicly release the software used to
generate the scenes and the questions.

Distribution

Has the dataset been used for any tasks al-
ready?
We have used the dataset to train unimodal and
multimodal baselines described in the paper.

Is there a repository that links to any or all pa-
pers or systems that use the dataset?
Links to the related papers will be listed in the
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project website at https://sites.google.
com/view/craft-benchmark.

What (other) tasks could the dataset be used
for?
Since the sample videos in our dataset include
interactions between the objects themselves and
the environment, they can be used in problems such
as future state prediction and video generation.

Is there anything about the composition of the
dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact fu-
ture uses?
No.

Are there tasks for which the dataset should not
be used?
No.

Uses
Will the dataset be distributed to third parties
outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset
was created?
CRAFT is publicly available at http:
//github.com/hucvl/craft/.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub)?
The dataset is available through our project website
and GitHub. Large dataset files are stored on
Zenodo.

When will the dataset be distributed?
The dataset was first released in June 2021.
What license (if any) is it distributed under?
The dataset is released under MIT license.

Maintenance
Who is supporting/hosting/maintaining the
dataset?
CRAFT will be supported and maintained by the
prime authors.

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete in-
stances)?
Extending CRAFT in different directions is
planned. All versions of CRAFT will be available
at http://github.com/hucvl/craft/.
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