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Abstract

Prompt-based learning, which exploits knowl-
edge from pre-trained language models by pro-
viding textual prompts and designing appro-
priate answer-category mapping methods, has
achieved impressive successes on few-shot text
classification and natural language inference
(NLI). Because of the diverse linguistic expres-
sion, there exist many answer tokens for the
same category. However, both manual answer
design and automatic answer search constrain
answer space and therefore hardly achieve ideal
performance. To address this issue, we propose
an answer space clustered prompting model
(ASCM) together with a synonym initialization
method (SI) which automatically categorizes
all answer tokens in a semantic-clustered em-
bedding space. We also propose a stable semi-
supervised method named stair learning (SL)
that orderly distills knowledge from better mod-
els to weaker models. Extensive experiments
demonstrate that our ASCM+SL significantly
outperforms existing state-of-the-art techniques
in few-shot settings.1

1 Introduction

Pre-trained language models (PLMs, Vaswani et al.,
2017; Devlin et al., 2019; Qiu et al., 2020; Lewis
et al., 2020; Clark et al., 2020) have shown a great
impact on natural language processing (NLP) tasks.
By adding task-specific head and fine-tuning on
labeled corpora, PLMs surpass conventional fully
supervised learning paradigm and come into being
a “pre-train, fine-tune” paradigm (Sun et al., 2019).

However, Radford et al. (2019) demonstrate
PLMs can perform downstream tasks without any
additional data and modification, which reveals
PLMs have the potential for knowledge exploration.

∗ Corresponding author
1Our implementation is publicly available at https://

github.com/miaomiao1215/ASCM.
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Figure 1: Illustration of ASCM. Given textual input x,
ASCM adds task-specific prompt pattern to X and pre-
dicts masked token embedding by PLM encoder. Then
semantic cluster module (SCM) transforms token em-
bedding to a semantic-clustered embedding space. Fi-
nally, similarities between Emask and categorized clus-
ter centers decide the category of x.

And Petroni et al. (2019) find that BERT contains
relational knowledge, factual knowledge and can
be applied to QA tasks without fine-tuning.

Recently, prompting methods (Liu et al., 2021),
which reformulate downstream tasks with task-
specific textual prompts, is proved successful in
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many tasks such as few-shot text classification and
natural language inference. For example, to clas-
sify textual news such as “France won the 2018
World Cup”, prompting methods may add the tex-
tual prompt “__ news:” before the news, then
PLMs probably fill in the blank with token “soc-
cer”, “sports”, “football”, “match”, “FIFA”, etc.
Taking these tokens as the answer space of sports
news category, PLMs may correctly predict the
category of news even without fine-tuning. Nev-
ertheless, former prompting methods bring in ex-
tra prompt engineering and answer engineering,
which have significant influences on performance
and need to be designed carefully. There exist var-
ious prompt engineering methods (Davison et al.,
2019; Wallace et al., 2019; Haviv et al., 2021; Ben-
David et al., 2021; Li and Liang, 2021), but answer
engineering hasn’t been researched enough. For-
mer answer engineering can be categorized into
manual answer design and automatic answer search.
Both methods select limited answers space for each
category and force PLMs to predict in that answer
space. For example, former methods may force
PLMs to fill the blank of “__ news: It was the 12th
title for the lakers.” with “Sports” if the answer
space of sports category doesn’t include “NBA”.
Besides, manual answer design methods need addi-
tional expertise and automatic answer search meth-
ods may damage the performance (Schick et al.,
2020; Schick and Schütze, 2021; Gao et al., 2021).

We find that answer tokens belonging to the
same category get some kind of relationship. For
sentiment analysis tasks and natural language in-
ference tasks, same-category answer tokens usu-
ally get similar semantics (glad, happy). For topic
classification tasks, same-category answer tokens
may get relationships such as synonym (soccer,
football), hyponym(soccer, football), hypernym,
co-hyponym, etc. For convenience, we adopt “syn-
onym” and “semantic” to represent all the rela-
tionships above. But the distribution of token em-
bedding in PLMs isn’t specially designed for text
classification or NLI. It came to us that cluster cen-
ters of intra-class answer tokens can be used for
classification if all token embedding distributes ac-
cording to semantics. In that case, any tokens that
are relevant to certain categories will get close to
the corresponding cluster center and be automati-
cally included in the corresponding answer space,
which means no constraint on PLMs and no answer
engineering. Following this idea, we propose the

ASCM, as illustrated in Figure 1, which focuses on
text classification and natural language inference.
Our contributions can be summarized as follows:

• We propose ASCM that transforms token em-
beddings to a semantic-clustered embedding
space and categorizes all answer tokens em-
beddings in that space. ASCM puts no con-
straint on answer space and doesn’t need an-
swer engineering or expertise.

• We propose a synonym initialization method
for additional parameters introduced by
ASCM, which makes ASCM competitive in
few-shot settings.

• Besides, to exploit massive unlabeled data,
we propose a semi-supervised method called
stair learning (SL) which transfers knowledge
orderly and further increases the performance.

We conduct extensive experiments which demon-
strate the superiority of our method. Our
ASCM+SL outperforms the previous prompt-based
learning (manual answer design) by 10.3, 2.6, 2.3,
and 2.1 on MNLI, Yahoo, Yelp, and AG’s News
with 50 labeled examples.

2 Related Work

2.1 Prompt-based Learning
Schick and Schütze (2021) propose to reformu-
late input examples into cloze-style phrases and
show superiority in few-shot text classification
and natural language inference. Gao et al. (2021)
further propose to use T5 to automatically gener-
ate prompt patterns, which improve performance
and makes minimal assumptions on domain exper-
tise. Lester et al. (2021) propose prompt tuning to
learn soft prompts with PLMs parameter frozen,
which attain comparable performance with model
tuning. Prompt-based learning has also been ap-
plied to knowledge probing(Ettinger, 2020; Jiang
et al., 2020a,c), text generation (Brown et al., 2020;
Schick and Schütze, 2020; Dou et al., 2021), ma-
chine translation (Radford et al., 2019), question an-
swering (Khashabi et al., 2020; Jiang et al., 2020b)
and information extraction (Shin et al., 2021; Cui
et al., 2021; Chen et al., 2021).

2.2 Answer Engineering
Answer engineering aims to design appropriate an-
swer space and map function to transform predic-
tions of the masked token to task-specific results.
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Answer space is often unconstrained in text gener-
ation and machine translation, while constrained in
text classification and natural language inference
tasks which this work focuses on.

Yin et al. (2019) manually select words for each
label in topic classification, emotion classification,
and situation classification task. Similar manual an-
swer engineering also can be found in other works
such as Schick and Schütze (2021). Manual answer
engineering needs extra expert knowledge and is
hardly convinced to be optimal due to limited an-
swer space.

Jiang et al. (2020b) take back-translation (Sen-
nrich et al., 2016) as the paraphrasing method to
expand initial answer space and the prediction prob-
ability is the sum of category-specific probabilities
over expanded answer space. Schick et al. (2020)
propose a likelihood ratio verbalizer search which
selects several proper tokens for each category ac-
cording to their probability distributions. How-
ever, experiments show that handcrafted verbaliz-
ers still perform better than their automatic verbal-
izer search. Gao et al. (2021) automatically select
top 30 tokens per class by simplifying and adding
re-ranking to the method in Schick and Schütze
(2021), which reach comparable performance with
manual designed answer space. The aforemen-
tioned answer engineering methods can be cate-
gorized into the discrete answer search, where an-
swer space is a small subset of the token space of
PLMs. Hambardzumyan et al. (2021) explore to
use continuous embedding called soft labels, which
doesn’t need answer engineering. However, some
virtual answer embeddings lack of interpretability
and this method still constrains answer space. Be-
cause tokens embeddings belonging to the same
categories such as “sports”, “soccer” and “foot-
ball” are dispersive in PLMs, virtual answer em-
bedding belonging to sports category cannot fit all
token embeddings above.

2.3 Semi-supervised Learning

Chen et al. (2020) create augmented training ex-
amples by interpolating text in hidden space and
predict combined low-entropy labels. Xie et al.
(2020) propose to combine advanced data aug-
mentation methods such as RandAugment and
back-translation with a consistency training frame-
work. Schick and Schütze (2021) propose a semi-
supervised learning method called iPET to itera-
tively distill knowledge and exploit unlabeled data

with size gradually increasing. The iPET improves
model performance further but the learning pro-
cedure is random which means the teacher model
might be too weak for the student model.

3 Our Method

3.1 ASCM

Notice that the following discussions focus on text
classification and natural language inference. Let
M be a pre-trained language model, V its token
vocabulary, __ ∈ V the mask token, x ∈ X
the token sequences to be predicted, and y ∈ Y
the corresponding ground-truth label. Prompting
methods reformulate input text x to x̂ with task-
specific prompting functions fprompt (·), in which
mask token __ is inserted. With proper prompt-
ing function, M is likely to fill x̂ with a spe-
cific token at the masked position, which is help-
ful to downstream tasks. Former prompt-based
learning usually designs a small answer space
V̂ ∈ V categorized by Y . Taking task AG’s News
as an example, V̂ can be {[“World”], [“Sports”,
“Soccer”], [“Business”, “Commerce”], [“Tech”]}
for labels {“World”, “Sports”, “Business”, “Sci-
ence/Technology”}. Let EV̂ be token embeddings
corresponding to answer space V̂ and Emask be
token embedding at mask position predicted from
M . Then similarities between Emask and EV̂ de-
note the probability distribution over labels. Ham-
bardzumyan et al. (2021) propose to use soft con-
tinuous embedding EV _soft, which are regarded as
virtual answer space.

In this work, we propose ASCM that consists of
PLMs encoder, a semantic cluster module (SCM,
composed of a linear transformation layer, a BN
layer, and a tanh activation function), and a se-
mantic classifier (SC). The PLMs encoder pre-
dicts Emask as former prompt-based methods does
and then SCM and SC together classify on Emask.
SCM transforms Emask to a virtual token embed-
ding on another embedding space, where token em-
beddings are optimized to cluster according to se-
mantics. With intra-class tokens such as {“sports”,
“soccer”, “football” . . . } converging to a cluster
center and cluster centers of different categories
diverging, SC predicts on this virtual token em-
bedding according to the similarities with all cat-
egorized cluster centers. After SCM, because to-
kens that are relevant to certain categories will get
close to the corresponding cluster center and auto-
matically be included in the corresponding answer
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Figure 2: Illustration of synonym initialization.

space, ASCM can predict based on unconstrained
answer tokens space leading to better performance.

As discussed above, PLM predicts masked token
embeddings for SCM, and therefore keeping the
performance for cloze question is important. We
compute both cross-entropy loss LCE for classifica-
tion and auxiliary language modeling loss LMLM

(Chronopoulou et al., 2019). The final loss is as

L = α · LCE + (1− α) · LMLM (1)

3.2 Synonym Initialization

Previous prompt-based learning methods require
answer space engineering for EV̂ , which is one
kind of model initialization. ASCM needs no an-
swer space engineering but introduces additional
SCM and SC to be learned and therefore is espe-
cially hard to be fine-tuned in a few-shot task.

As discussed in Section 3.1, SCM and SC clas-
sify Emask according to semantics. Therefore, es-
tablishing a synonym embedding dataset and pre-
training SCM and SC on this dataset shall be a
reasonable solution. In this section, a synonym
initialization method for SCM and SC will be in-
troduced to address the issue above.

The synonym initialization method can be di-
vided into four steps(as shown in Figure 2).

1) We need a words classification method or
model, such as Glove (Pennington et al.,
2014) and word2vec (Mikolov et al., 2013a,b).
Word2vec can explore the semantics and po-
tential relationships of words and therefore
is adopted in this work. In the first step, a
word2vec model trained on a task-specific
dataset by self-supervised learning or a public
pre-trained word2vec model is adopted.

2) We use the similarity scores of word2vec word
embeddings to select the top-100 synonyms
for each category and filter those with scores
lower than 0.6. If a word belongs to multi-
ple categorized synonym sets, then it will be
classified to the category with the highest sim-
ilarity score.

3) All words in the synonym dataset are tok-
enized and the first token of multi-token words
is reserved. Then the token decoder (em-
bedding) layer of PLMs maps the synonym
dataset to the synonym embedding dataset.

4) Finally, SCM and SC are pre-trained on the
categorized synonym embedding dataset and
the parameters will be used to initialize the
ASCM.

It is notable that the synonym initialization
method needs no expertise.

3.3 Stair Learning
Given different prompt patterns, PLMs usually re-
sult in different performances on corpora. Knowl-
edge distilling (Hinton et al., 2015) is a common
solution for model compression, which can trans-
fer knowledge from a teacher model to another
smaller model. It gives us a hint that we can trans-
fer knowledge from better ASCMs to weaker AS-
CMs. Accordingly, we propose an orderly stair
learning method (SL) to transfer knowledge be-
tween ASCMs with different prompt patterns. In
each retraining round k, SL exploits the unlabeled
dataset and gradually multiplies the size of unla-
beled examples by a constant d0.

Let n be number of prompt patterns, T be la-
beled dataset, D be unlabeled dataset, M0 =
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{
M0

1 ,M
0
2 · · ·M0

n

}
be initial ASCMs trained on

T , M j =
{
M j

1 ,M
j
2 · · ·M

j
n

}
be ASCMs in the

retraining round j, M j
i be ASCM with prompt pat-

tern i in round j and dj be the number of unlabeled
examples in round j.

dj =


|T | ∗ d0, j = 1

dj−1 ∗ d0, j ̸= 1

(2)

All ASCMs are retrained with several rounds
in SL and each ASCM will be retrained the same
times per round. The procedure for each retrain-
ing rounds in SL can be divided into five steps as
follows.

1) We select the worst and no-retrained model of
M j−1 as student model M j

i′ .

2) Best Model of last rounds M j−1 ={
M j−1

1 ,M j−1
2 · · ·M j−1

n

}
together with

models that have been fine-tuned in this
round

{
M j

1′ · · ·
}

will be formed together as

teacher model set M j
t . The best model of

M j
t is selected as the teacher model Mt_i′ . If

prompt pattern of Mt_i′ is the same as M j
i′ ,

then the second best model of M j
t will be

selected as teacher model.

3) We evaluate Mt_i′ on D and categorize D
by the predicted labels. Then we randomly
sample dj examples from D with labels dis-
tributing uniformly. To reduce the mislabeled
examples, we sample examples according to
the confidence of predicted labels (Guo et al.,
2017; Schick and Schütze, 2021).

4) We retrain student model M j
i′ on L and unla-

beled dataset from (3) with cross-entropy loss.
After fine-tuning, M j

i′ is added to M j
t , which

makes it possible to transfer its knowledge to
other model in this round if M j

i′ outperform
Mt_i′ .

5) We repeat steps (1)-(4) until all ASCMs are
fine-tuned in this round and then restart the
next retraining round.

After retraining all ASCMs with the same
rounds, unlabeled dataset D will be annotated by
final-round ASCMs and the average probability
distribution forms the soft-labeled dataset. Finally,

using KL divergence loss with a temperature of
2, we fine-tune a PLM with a standard sequence
classification head on this soft-labeled dataset.

4 Experiments

Following prior work, we evaluate our work on four
tasks Yelp Reviews, AG’s News, Yahoo Questions
(Zhang et al., 2015), and MNLI (Williams et al.,
2018). For comparison, we adopt RoBERTa large
(Liu et al., 2019) as the pre-trained language model
in all experiments except for Table 2.

To evaluate the few-shot performances, we ran-
domly sample |T | (10, 50, 100, and 1000) examples
as the labeled dataset with labels distributing uni-
formly. And we randomly sample 10000 examples
for each label to form the unlabeled dataset D for
SL.

We choose the Adam optimizer with a slanted
triangular schedule, an initial learning rate of 1e-5,
and a maximum sequence length of 256. The batch
size is set to 16 for |T | equals to 50, 100, 1000
and 8 when |T | equals to 10. For each training
step, we randomly sample the same number of
examples from D to compute auxiliary language
modeling loss and the loss weight α is set to 0.5.
For supervised training and individual SL, training
steps are set to 300. For the final PLM classifier,
training steps are set to 5000. For SL, we set d = 5,
k = logd (1000/ |T |) and only train once for each
SL round to reduce computing time. Notably, iPET
trains three times for each model and the ensemble
of them will improve the performance.

Training details of synonym initialization can be
found in appendix A.

4.1 Prompt Pattern

In this work, we take the manual prompt engineer-
ing method to design prompt patterns for each task.
Two vertical bars (∥) are used to mark boundaries
between text segments.

Yelp The Yelp reviews full star task is to estimate
the restaurant rating (1 to 5 stars) of customers
based on their review’s text. We define 4 prompt
patterns for an input text x:
f1
p = It was __. x f2

p = Just __! ∥ x

f3
p = x. All in all, it was __.
f4
p = x ∥ In summary, the restaurant is __.

AG’s News The AG’s News task is to classify tex-
tual news into one of the four categories World,
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Examples Method Yelp AG’s Yahoo MNLI(m/mm)

|T | = 10

supervised 21.1 ±1.6 25.0 ±1.6 10.1 ±0.1 34.2 ±2.1 / 34.1 ±2.0

PET 52.9 ±0.1 87.5 ±0.0 63.8 ±0.2 41.8 ±0.1 / 41.5 ±0.2

iPET 57.6 ±0.0 89.3 ±0.1 70.7 ±0.1 43.2 ±0.0 / 45.7 ±0.1

ASCM+PET 56.7 ±2.6 83.9 ±3.4 64.7 ±1.1 51.3 ±5.2 / 54.9 ±8.0

ASCM+SL 62.9 ±0.7 90.3 ±0.3 70.4 ±3.3 64.6 ±6.2 / 65.0 ±11.9

|T | = 50

supervised 44.8 ±2.7 82.1 ±2.5 52.5 ±3.1 45.6 ±2.1 / 47.6 ±2.0

PET 60.0 ±0.1 86.3 ±0.0 66.2 ±0.1 63.9 ±0.0 / 64.2 ±0.0

iPET 60.7 ±0.1 88.4 ±0.1 69.7 ±0.1 67.4 ±0.3 / 68.3 ±0.3

ASCM+PET 62.7 ±1.2 89.0 ±0.3 69.9 ±0.6 72.9 ±2.3 / 74.5 ±0.7

ASCM+SL 63.0 ±1.0 90.5 ±0.3 72.3 ±0.4 77.6 ±0.8 / 78.6 ±0.5

|T | = 100

supervised 53.0 ±3.1 86.0 ±0.7 62.9 ±0.9 47.9 ±2.8 / 51.2 ±2.6

PET 61.9 ±0.0 88.3 ±0.1 69.2 ±0.0 74.7 ±0.3 / 75.9 ±0.4

iPET 62.9 ±0.0 89.6 ±0.1 71.2 ±0.1 78.4 ±0.7 / 78.6 ±0.5

ASCM+PET 64.2 ±0.5 89.5 ±0.6 69.2 ±1.2 75.2 ±5.4 / 76.1 ±5.0

ASCM+SL 63.8 ±0.1 90.7 ±0.4 72.0 ±0.5 80.7 ±0.8 / 81.5 ±0.9

|T | = 1000
supervised 63.0 ±0.5 86.9 ±0.4 70.5 ±0.3 73.1 ±0.2 / 74.8 ±0.3

PET 64.8 ±0.1 86.9 ±0.2 72.7 ±0.0 85.3 ±0.2 / 85.5 ±0.4

ASCM+PET 65.7 ±0.1 91.4 ±0.1 73.9 ±0.2 83.2 ±2.7 / 83.7 ±2.8

Table 1: Average accuracies and standard deviation of different methods on Yelp, AG’s News, Yahoo, and MNLI
(m: matched/mm: mismatched) for four training set sizes |T |.

Sports, Business and Science/Technology. Each
news contains a headline a and a text body b. We
define 6 prompt patterns for an input text x:
f1
p = __ : a b f2

p = a (__) b

f3
p = __ − a b f4

p = a b (__)
f5
p = __ News : a b

f6
p = [Category : __ ] a b

Yahoo The Yahoo Questions task is to classify text
to one of the ten categories Society, Science, Health,
Education, Computer, Sports, Business, Entertain-
ment, Relationship and Politics. Each news con-
tains a question a and an answer b. We use the
same prompt patterns as for AG’s News.

MNLI The MNLI task is a natural language in-
ference task that is to estimate the relationships of
text pairs (a, b). MNLI contains three categories
contradiction, entailment and Neutral. We define 2
prompt patterns:
f1
p = ”a”? ∥ __, ”b” f2

p = a? ∥ __, b

4.2 Results

Table 1 shows the results of our method on differ-
ent tasks. We also include the supervised method,
current state-of-the-art method PET, and iPET for
comparison. Mean accuracy and standard deviation
for three training runs are adopted as measurements.

Notably, results of the supervised, PET, and iPET
method in Table 1 come from Schick and Schütze
(2021).

ASCM significantly outperforms the supervised
method on all configurations, especially on smaller
|T |. The difference between ASCM+PET and PET
is the base model. ASCM+PET surpasses PET on
most tasks because ASCM gets better performance
than conventional prompt-based learning. What’s
more, on several tasks, ASCM+PET even performs
better than iPET, which additionally retrains mod-
els on unlabeled dataset iteratively. For example,
ASCM+PET outperforms iPET by 8.1 on MNLI
with |T | = 10, by 5.5 on MNLI with |T | = 50,
and by 2.0 on Yelp with |T | = 50.

By retraining ASCM with SL, especially on
smaller |T |, ASCM+SL gives further consistent im-
provements compared to ASCM+PET. ASCM+SL
attains the state-of-the-art on most tasks. On MNLI,
Yelp, AG’s, and Yahoo, the average increments
of accuracy come to 8.0, 2.4, 2.2, and 1.1. On
MNLI with |T | = 10, ASCM+SL even surpasses
iPET by 21.4. We also find that the standard devi-
ations of ASCM+PET and ASCM+SL are much
bigger than PET and iPET. It is because that Schick
and Schütze (2021) train each model three times
and train the final PLM classifier on 3n models (n
prompt patterns) for three rounds. This ensemble
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Ex. Method Yelp AG’s Yahoo MNLI

10

UDA 27.3 72.6 36.7 34.7
MixText 20.4 81.1 20.6 32.9
iPET 52.9 87.5 67.0 42.1
Ours 55.6 89.0 70.3 42.8

50

UDA 46.6 83.0 60.2 40.8
MixText 61.3 84.8 61.5 34.8
iPET 56.7 87.3 66.4 56.3
Ours 59.1 89.9 70.1 61.3

Table 2: Accuracy comparison of ASCM+SL with other
semi-supervised methods using RoBERTa (base).

learning eventually will improve stability and per-
formance. In this work, we create three different
datasets for each task (dataset and |T |) and retrain
ASCM once in each SL round. If we retrain ASCM
three times in each SL round, ASCM+SL shall get
better results.

We further compare our works with other semi-
supervised methods such as UDA and MixText.
We take RoBERTa(base) as PLM and keep other
hyper-parameters. Table 2 shows that ASCM+SL
outperforms other methods even with smaller PLM.

5 Analysis

5.1 ASCM
ASCM needs no answer engineering and shows bet-
ter performance than conventional prompt-based
learning methods based on manual answer design.

As Table 3 shows, we compare ASCM with con-
ventional prompt-based learning baseline which
needs expertise to carefully design answer space.
We train ASCM and baseline with the same hyper-
parameters and report the average accuracies on all
prompt patterns. With |T | = 10, ASCM signifi-
cantly outperforms baseline by 7.9, 4.6, and 3.0 on
Yahoo Yelp, and MNLI. With |T | = 1000, ASCM
still attains better results on most tasks, showing the
superiority of ASCM structure (semantic cluster
then classification).

We also conduct ablation experiments by train-
ing ASCM without SI or SCM. Without SI, al-
though we pre-train the SCM and SC with PLMs
encoder frozen, accuracies of ASCM-noSI is lower
than baseline by a large margin on Yahoo and
AG’s. Compared with ASCM-noSI, ASCM gets
significant improvement on all datasets, which
shows the necessity of synonym initialization in
ASCM. Meanwhile, with size |T | getting bigger,
ASCM-noSI attains a comparable performance
with ASCM which imply the ability of PLM to find
appropriate answer space. A much larger decline in

Ex. Method Yelp AG’s Yahoo MNLI

10

Baseline 48.4 82.2 54.1 45.5
w/o SI 47.1 74.6 53.6 44.8
w/o SCM 45.3 68.0 31.0 36.6
ASCM 53.0 82.5 62.0 48.5

50

Baseline 58.0 87.9 64.6 63.2
w/o SI 59.7 87.6 62.0 63.7
w/o SCM 60.2 84.9 68.0 63.8
ASCM 61.2 88.3 68.4 68.9

100

Baseline 60.5 88.7 66.4 69.7
w/o SI 62.4 89.2 67.1 71.9
w/o SCM 60.2 85.9 68.5 36.9
ASCM 62.7 89.2 68.6 74.1

1000

Baseline 64.2 90.8 71.6 82.0
w/o SI 64.2 90.7 71.9 75.7
w/o SCM 62.8 87.5 70.9 35.8
ASCM 64.8 91.1 73.3 80.5

Table 3: Comparison of ASCM with baseline. Average
accuracies on four tasks for four training set sizes |T | are
reported. Line w/o SI refers to ASCM trained without
SI and Line w/o SCM refers to ASCM without SCM.

performance, compared with ASCM-noSI, is also
found in ASCM-noSCM on most tasks, especially
on smaller |T | tasks and MNLI. We consider that
the original distribution of PLM token embedding
isn’t suitable for downstream token classification
and the SCM with SI eases the problem. Detailed
analysis can be found in 5.2.

5.2 SCM and SI

ASCM uses SCM to transform token embeddings
to a semantic-clustered embedding space and cate-
gorizes them on this space by SC. Besides, ASCM
takes the synonym initialization method to initial-
ize SCM and SC. In this section, we explore their
mechanism.

We list part of the synonym dataset generated
from word2vec according to similarities. As Ta-
ble 4 shows, synonyms generated from word2vec
mostly get similar semantics or certain relationship.
However, there is also wrong word “theworld” and
cognates such as “sport”, “businesses”, etc. These
synonyms, probably because of the characteristics
of word2vec, might damage the ASCM, but we still
keep them to avoid additional expertise.

We also test ASCM on evaluating corpora and
list the top-5 tokens predicted on masked position
according to frequency. Tokens belonging to the
same categories get similar semantics or certain
relationship and the results are much better than
that of word2vec. ASCM also finds potential re-
lationships such as “NFL” and shows a different
tendency of tokens such as “Science” even with
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Model Category Top-1 Top-2 Top-3 Top-4 Top-5

word2vec

World World globe theworld country continent
Sports Sports sport sporting athletics football
Business Business businesses business company entrepreneurial
Technology Technology technologies innovation technol innovation

ASCM

World World Foreign Military / /
Sports Sports Football NFL NBA /
Business Business Economic Energy Company /
Technology Tech Science Space / /

Table 4: Top-5 synonyms of query words for each category on AG’s according to word2vec embedding similarities
and top-5 most frequently predicted tokens of ASCM at the masked position on AG’s. Tokens with frequency less
than 100 are filtered (/).

World

Sports

Business

Science

Figure 3: Distributions of original token embeddings
(left) and token embeddings after SCM (Right) on AG-
News.

word2vec synonym initialization. As we consider,
PLM we use gets different linguistic knowledge
and factual knowledge with word2vec because of
different pre-training task, corpora, and network.
And much knowledge existing in PLM is kept suc-
cessfully thanks to the ASCM.

We further filter the misclassified tokens in syn-
onym token embedding datasets. Then, we use
PCA and tSNE (Van der Maaten and Hinton, 2008)
to visualize the distributions of token embeddings
before and after SCM. As Figure 3 shows, origi-
nal token embeddings distribute according to cat-
egories. However, intra-class distances are too
large and there exist several fault cluster, leading
to poor classification performance. And just as we
designed, token embeddings after SCM cluster to
several embedding centers and the inter-class dis-
tances are enlarged, which makes ASCM works
better especially in a few-shot setting.

Results on other tasks can be found in Table 10,
Table 11, and Figure 5.

5.3 Generative Approach of Synonyms
Datasets

As shown in Figure 2, both public pre-trained mod-
els and models trained on task-specific datasets can

Ex. Method Yelp AG’s Yahoo MNLI

10

w/o SI 48.4 82.2 54.1 45.5
Skip-gram 46.0 78.1 35.4 43.8
CBOW 50.2 82.7 60.4 51.0
ASCM 53.0 82.5 62.0 48.5
Union 51.8 82.5 62.2 44.6
Intersection 50.4 80.7 59.2 40.8

50

w/o SI 59.7 87.6 62.0 63.7
Skip-gram 59.7 87.6 62.0 63.8
CBOW 60.3 88.5 67.6 69.5
ASCM 61.2 88.3 68.4 68.9
Union 60.5 88.1 67.4 66.1
Intersection 59.8 88.7 68.2 42.2

Table 5: Comparison of ASCM with different genera-
tive approaches. Average accuracies on four tasks for
|T | = 10, 50 are reported. ASCM refers to adopting
public pre-trained word2vec model as the generative
approach.

be adopted to generate synonym datasets. In this
section, we evaluate several approaches on four
tasks with |T | = 10, 50.

As shown in Table 5, Skip-gram trained on
task-specific datasets performs worse than ASCM-
noSI, because of numerous misclassified words in
synonym datasets. Public pre-trained word2vec
(CBOW), which is better than CBOW trained on
task-specific datasets on Yahoo and Yelp tasks but
a bit worse on AG’s and MNLI, is adopted as the
basic approach (ASCM).

We also combine other methods such as public
pre-trained FastText (Joulin et al., 2017) and Glove
(Pennington et al., 2014) with word2vec. For simi-
lar reason to Skip-gram, the union set of the three
synonyms datasets perform worse on most task.
However, the intersection set with less misclassi-
fied words still gets worse, showing the necessity
for the size of synonym dataset.
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Ex. Method Yelp AG’s Yahoo MNLI

10 Baseline 63.0 88.3 71.1 63.3
SL 63.4 90.5 72.5 67.3

50 Baseline 63.7 89.8 71.6 78.1
SL 64.2 90.8 72.5 78.4

100 Baseline 64.2 90.0 71.3 79.7
SL 63.9 91.1 71.6 81.2

Table 6: Accuracy comparison of SL and Baseline
(iPET) method.

50

70

90

Yelp_ipet Yelp_SL

AG's_ipet AG's_SL

Yahoo_ipet Yahoo_SL

MNLI_ipet MNLI_SL

1 2 3 4 5

Retraining Round

A
cc

u
ra

cy

Figure 4: Average accuracy of ASCMs for each iPET
and SL round with |T | = 10. Round 1 refers to the
average accuracy of ASCMs trained on |T | and round 5
refers to the training result for the final PLM classifier.

5.4 Stair Learning
We retrain ASCMs with iPET and SL on four
datasets with |T | = 10, 50, 100. It’s notable that
we train ASCMs once for each iPET round. Base
ASCMs and hyper-parameters are kept the same
for comparison and results are reported in Ta-
ble 6. ASCM+SL gets significant improvements
than ASCM+iPET on most tasks especially when
the size of labeled datasets is small. With |T | = 10,
ASCM+SL outperforms ASCM+iPET by 4.0, 2.2,
1.4, and 0.4 on MNLI, AG’s, Yahoo, and Yelp.

Average accuracies of all rounds with |T | = 10
are shown in Figure 4. The performances of iPET
and SL keep improving in all rounds but the incre-
ments slow down with training rounds increasing.
And SL gets larger increments because iPET dis-
tills knowledge from the randomly chosen models
while SL distills knowledge from the best model of
the round.

6 Conclusion

In conclusion, we propose an answer space clus-
tered prompting model and a synonym initializa-

tion method that doesn’t need answer engineering
or expertise. Our method clusters token embed-
dings according to semantics and classifies them
on unconstrained answer space. Experiments show
that our method combined with a stable stair learn-
ing method outperforms the previous prompt-based
learning methods based on manual answer design.
Clustering multi-tokens words and phrases based
on semantics is desirable for future work. In ad-
dition, research on adapting the thought of token
embedding semantic-clustering to machine transla-
tion, text generation, information retrieval, and text
summarization might also prove valuable.
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Ex. Yelp AG’s Yahoo MNLI
10 91.2 88.1 92.8 50.0
50 91.7 87.6 92.5 51.3
100 92.1 90.6 92.9 49.7
1000 92.1 88.7 93.4 51.3

Table 7: Average word classification accuracy for all
ASCMs on categorized token embedding datasets.

Category Synonyms

Contradiction No, But, However, Instead, Yet,
Actually, Whereas, Nevertheless

Entailment Yes, Uh, yep, So, Therefore,
consequently

Neutral Maybe, probably, Further, Also,
Neutral, perhaps, possibly

Table 8: Manually designed synonym dataset for
MNLI.

A Synonym Initialization Details

For the synonyms generation models trained on
task-specific datasets, we adopt the Genism li-
brary and the default training setting. Part of the
synonym datasets generated by public pre-trained
word2vec is listed in Table 10.

For fine-tuning of SCM and SC, we choose the
Adam optimizer with a slanted triangular schedule
with an initial learning rate of 1e-5, and a weight
decay of 0.01. The batch size is set to 16 and the
training epochs are set to 40. And we choose the
model with the highest classification accuracy on
the training synonym dataset to initialize ASCM.

B SCM and SI

We list the top-5 predicted tokens on masked posi-
tion according to frequency by testing ASCM on
evaluation corpora (Table 11). Compared to Ta-
ble 10, there are big changes in both words (tokens)
and order of words (tokens), which is similar to the
analysis in section 5.2.

For the distribution visualization of token em-
beddings, misclassified words are removed from
the synonym token embedding dataset. Besides, if
a word gets multiple tokens by tokenization and the
first token occurs in other words, we also filter that
kind of words. For example, token “base” is the
first token of “base” and “baseball”, which means
ambiguity.

We further take categorized token embedding
datasets as testing datasets and show the token clas-
sification accuracy of SCM and SC (Table 7). In
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Method 10 50 100 1000
Auto 48.5 68.9 74.1 80.5
Manual 58.7 71.1 73.5 81.4

Table 9: ASCM accuracy on MNLI.

conformity to Figure 5, SCM and SC get high ac-
curacy on Yelp, AG’s, and Yahoo. For the MNLI
task, ASCM only gets about 50% accuracy, be-
cause of the size (50) and poor quality of the MNLI
synonym dataset.

Therefore, we manually designed a synonym
dataset for MNLI task as shown in Table 8 and
train ASCM based on it as shown in Table 9. Com-
pared to automatically designed synonym dataset,
there is a significantly increment with |T | = 10.
It’s encouraged to automatically generate a big syn-
onym dataset at first and then do manually data
cleaning.

C Training Details

All of our experiments are conducted using a sin-
gle GPU with 32GB/16GB RAM (NVIDIA Tesla
V100). Training a single PET with auxiliary lan-
guage modeling for 300 steps on one GPU took
approximately 20 minutes; retraining a single PET
with auxiliary language modeling in SL for 300
steps on one GPU took approximately 20 minutes;
Training a final PLM classifier for 5000 steps on
one GPU took approximately 90 minutes. Labeling
10000 examples (per label) from D took approxi-
mately 13 minutes.

2467



dataset Category Top-1 Top-2 Top-3 Top-4 Top-5

Yelp

✩ terrible horrible horrendous dreadful awful
✩✩ bad lousy crummy stupid nasty
✩✩✩ okay alright ok OK yeah
✩✩✩✩ good tough Good decent nice
✩✩✩✩✩ great unbelievable terrific really fantastic

Yahoo

Society Society societies societal polity culture
Science Science sciences biology scientific mathematics
Health Health Health healthcare wellness wellbeing
Education Education educational curriculum schooling literacy
Computer Computer computers laptop PC laptops
Sports Sports Sport sporting athletics football
Business Business businesses business businesss company
Entertainment Entertainment entertainment music amusements multimedia
Relationship Relationship relationships friendship ties partnership
Politics Politics discourse political politics partisanship

MNLI
Contradiction No whatsoever any there nothing
Entailment Yes Uh nope / /
Neutal Maybe yeah probably suppose hey

Table 10: Top-5 synonyms for each category in synonym dataset and query words is in "Top-1" column.

dataset Category Top-1 Top-2 Top-3 Top-4 Top-5

Yelp

✩ horrible disgusting terrible HELL disappointed
✩✩ disappointing blah OK bad disappointed
✩✩✩ OK okay ok / /
✩✩✩✩ good great amazing excellent /
✩✩✩✩✩ amazing great incredible wonderful fantastic

Yahoo

Society Religion Faith Christianity / /
Science Science Mathematics Biology Physics Chemistry
Health Health Sex Nutrition / /
Education Education History Language English
Computer Computer Internet Software IT Technology
Sports Sports Soccer Football Basketball Baseball
Business Business Finance Money Work Employment
Entertainment Music Entertainment Movies TV /
Relationship Relationship Dating Sex Family Marriage
Politics Politics Law Military History Crime

MNLI
Contradiction No But However Or Except
Entailment Yes Indeed / / /
Neutal Adding Further But Or /

Table 11: Top-5 most frequently predicted tokens of ASCM at masked position. Tokens with frequency less than
100 are filtered.
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Figure 5: Distributions of original token embeddings (left) and token embeddings after SCM (Right) on Yahoo,
Yelp, and MNLI.
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