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Abstract

Grapheme-to-Phoneme (G2P) has many appli-
cations in NLP and speech fields. Most existing
work focuses heavily on languages with abun-
dant training datasets, which limits the scope
of target languages to less than 100 languages.
This work attempts to apply zero-shot learn-
ing to approximate G2P models for all low-
resource and endangered languages in Glot-
tolog (about 8k languages). For any unseen
target language, we first build the phylogenetic
tree (i.e. language family tree) to identify top-k
nearest languages for which we have training
sets. Then we run models of those languages to
obtain a hypothesis set, which we combine into
a confusion network to propose a most likely
hypothesis as an approximation to the target
language. We test our approach on over 600 un-
seen languages and demonstrate it significantly
outperforms baselines.1

1 Introduction

Grapheme-to-Phoneme (G2P) plays a crucial role
in many NLP tasks. In particular, it is used heav-
ily in many speech-related tasks such as speech
recognition and speech synthesis (Arık et al., 2017;
Miao et al., 2015). Even in the latest end-to-end
systems, it still has a strong impact on the speech
performance (Hayashi et al., 2021). Typically, the
G2P task is language-dependent—many language-
specific factors affect the G2P process such as
the general characteristics of scripts (Ager, 2008),
phonotactic constraints (Hayes and Wilson, 2008)
and other orthography factors (Frost and Katz,
1992). For example, in Table 1, Mandarin and
Japanese are not using the Latin script, therefore
they cannot share their G2P models with English.
As a consequence, to develop a G2P model, we
need either to create a training set for the target
language, like (CMU, 2000), or to ask linguists to

1Our code would be available at https://github.
com/xinjli/transphone

Language Grapheme Phoneme

English hello /h@l@U/
Mandarin 你好 /nixAU/
French bonjour /bOZuK/
German hallo /halo/
Japanese こんにちは /konnichiwa/
Spanish hola /ola/

Table 1: A small sample of G2P examples from high-
resource languages in our training set.

explicitly define a set of orthographic rules to map
from graphemes to phonemes (Mortensen et al.,
2018). Both approaches have achieved success
for high-resource languages; however, they can
only account for a small number of the world’s
languages. The majority still do not have access to
G2P due to limited training resources. A good G2P
model would be beneficial to many speech tasks
in low-resource languages (Li et al., 2020a,b; Yan
et al., 2021)

In this work, we attempt to tackle this chal-
lenging problem by using the language ensem-
ble approach. Our approach allows us to propose
an approximated G2P baseline to all languages
present in the GlottoLog database: around 8000
of them (Nordhoff and Hammarström, 2011). The
main insight of our approach is that we can ap-
proximate the G2P model of an unseen language
using those of related languages because languages
related to the target language should have similar
orthographic rules (of both the context-free and
context-dependent type). For example, a native
speaker of English (a Germanic language) is likely
to make accurate guesses about how a text in Ger-
man (another Germanic language) would be pro-
nounced. In Table 1, both German and English pro-
nounce the "h" grapheme explicitly, but Spanish (a
Romance language) does not share the same prop-
erty. We define the similarity between languages
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as the shortest distance between two languages in
the phylogenetic tree (i.e. language family tree).
We first build models for the subset of languages
(training languages) where we have a large enough
training set (e.g., Italian, Spanish, etc.). Then, for
each unseen language (e.g., Catalan), we first find
the top-k nearest training languages (like Italian,
Spanish, etc.) and use those languages’ G2P mod-
els to generate k hypotheses. Finally, we ensemble
the G2P outputs by building a confusion network
and discover the most-likely sequence as an approx-
imation to the target language.

In our experiments, we build a large dataset
from Wiktionary in which we use 260 languages
as the training languages and test our approach
on 600 unseen languages. We apply our ap-
proach to 3 different architectures: a joint-sequence
n-gram model (Novak et al., 2016), an LSTM
sequence-to-sequence model (Rao et al., 2015),
and a transformer-based sequence-to-sequence
model (Peters et al., 2017). Using any of the archi-
tectures, our approach outperforms all baselines by
more than 5% PER (phoneme error rate).

The main contributions of this work are as fol-
lows:

1. A novel approach to approximate target lan-
guage G2P models using the nearest lan-
guages in a phylogenetic tree

2. An approach to ensemble predictions from
multiple outputs using confusion networks.

3. A demonstration that our approach achieves
significantly better performance than base-
lines when testing on 600 unseen languages.

2 Related Work

Traditionally, a G2P component is built using rule-
based models. For example, the phonological con-
straints can be incorporated into context-sensitive
grammars and implemented using finite-state trans-
ducers (Kaplan and Kay, 1994). However, design-
ing the rules requires many hours from linguists
and can be prohibitive for low-resource languages
if they have deep orthographies2.

Statistical models overcome this problem by
learning the rules automatically. Typically, there
are two steps in building such a model: first, the

2Orthographies in which the relationship between
graphemes and phonemes has been obscured by history or
is otherwise complicated.

sequence of phonemes and graphemes are aligned
to each other, then another prediction model is built
on top of the alignment. The alignment model is
typically done using Expectation and Maximiza-
tion (Ristad and Yianilos, 1998; Jiampojamarn and
Kondrak, 2010). The prediction model can be
done using neural networks (Sejnowski and Rosen-
berg, 1987), decision trees (Black et al., 1998),
joint-sequence models (Bisani and Ney, 2008) and
WFST-based n-gram models (Novak et al., 2016).
More recently, deep neural networks have been ap-
plied to the G2P task. Various architectures have
been explored, for example, RNNs (Rao et al.,
2015; Yao and Zweig, 2015; Lee et al., 2020),
CNNs (Yolchuyeva et al., 2019) and Transform-
ers (Yolchuyeva et al., 2020).

Traditionally, each G2P model was typically
built for one high-resource language. Recently,
many researchers have started to focus on low-
resource G2P models. One related work adapts
high-resource language models to low-resource
language models by measuring similarity between
languages and phonemes (Deri and Knight, 2016).
This previous work creates a new training set for
every low-resource language by adapting the train-
ing set from the top-3 nearest languages. However,
there are several issues with this approach. First,
it has to prepare separate training sets and n-gram
models for every testing language, which is quite
computationally expensive. It also suffers from the
limited training set problem even after merging top-
3 languages because the vocabulary size of most
training languages are less than 100, which is in-
sufficient to train any stable neural models. In con-
trast, we only prepare one unified training set and
one unified model in our neural approach, which
circumvents these problems. Additionally, the test-
ing languages and training languages are mixed
in this work, therefore the performance on unseen
languages is not clear. Only a limited number of
papers so far focus on developing G2P models for
unseen languages. The most common strategy is to
drop the target language information and make pre-
dictions using a shared multilingual model (Peters
et al., 2017; Bleyan et al., 2019). This is one of our
baseline (the global language model) in this work.

3 Approach

In this section, we describe our zero-shot learning
approach. We first introduce three G2P models to
be used for supervised learning and covering high-
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resource languages. Next, we define the language
similarity and language families. Finally, we ex-
plain how to ensemble nearest languages models
to predict G2P for an unseen language.

3.1 Monolingual Model

In this section, we introduce our monolingual G2P
models: a joint n-gram model based on WFSTs,
two neural models based on sequence-to-sequence
LSTMs, and transformer models. We select those
models as they are the three baseline models used
in the SIGMORPHON Multilingual G2P task (Gor-
man et al., 2020). These models are trained for
every training language and then used as building
blocks to approximate G2P models for unseen test-
ing languages.

The joint n-gram model is a standard monolin-
gual G2P model (Novak et al., 2016). For each
training language, the dataset is first aligned using
Expectation Maximization, then an n-gram model
is built using a WFST3. The neural model is a
standard sequence-to-sequence model. We tried
two common architectures: bidirectional LSTM
and transformer. Unlike the n-gram model, the
neural model is trained by combining all train-
ing sets into one large dataset. To distinguish dif-
ferent languages, a ISO 639-3 language ID is at-
tached to the input sequence, for example, we at-
tach the "<eng>" to "hello", so the input sequence
is "<eng> h e l l o". This approach was explored in
previous work (Peters et al., 2017). It allows the
parameters to be shared across different languages.
Even language with a limited training set could
benefit from other high-resource languages.

3.2 Phylogenetic Tree and Nearest Languages

The model discussed in the previous subsection
could predict phonemes for any training language,
however, it cannot deal with any unseen languages.
Our main contribution in this work is to select the
highly related languages and then effectively com-
bine those models to approximate the target lan-
guage. In this subsection, we introduce the concept
of the nearest language in terms of the phylogenetic
tree (i.e. language family tree), then we explain
how we ensemble nearest languages.

There are many metrics to measure the dis-
tance between languages from different perspec-
tives (Dryer and Haspelmath, 2013; Littell et al.,

3https://github.com/AdolfVonKleist/
Phonetisaurus

2017). In this work, we only consider the phy-
logenetic tree (i.e., language family tree) to mea-
sure the distance between languages. This is be-
cause the phylogenetic information is available for
a larger portion of languages than any of the other
bases of linguistic distance or similarity. Glot-
tolog provides us with language family information
for around 8000 languages (Nordhoff and Ham-
marström, 2011).

In Figure 1, we write a subtree of the entire phy-
logenetic tree, in particular, it illustrates two major
branches of the linguistic Stammbaum: the Ger-
manic and Italic. Both of them are children of the
Proto-Indo-European (PIE) node. The tree also in-
dicates that English and Dutch are closely related
languages and that Norwegian and Icelandic are
closely related languages. To measure the distance
between any pair of languages, we can compute
the length of the shortest path between the two lan-
guages. In our example, the English/Dutch pair
has a distance 2, and the English/Norwegian pair
has a distance of 4. The shortest path can be com-
puted efficiently by using Lowest Common Ances-
tor (LCA).

d(l1, l2) = H(l1)+H(l2)−H(LCA(l1, l2)) (1)

where d(l1, l2) is the distance between language
l1 and l2, H compute the height of a node in the
tree. This time complexity is O(log(M)) where M
is the max height of the phylogenetic tree (Cormen
et al., 2009). Suppose the entire language set is
L and training languages are T ⊂ L, we could
compute the k nearest languages for every language
l ∈ L, those languages would allow us to ensemble
models.

Note that the original tree structure in Glottolog
groups languages into separate top-level families,
therefore languages belonging to different top-level
families do not have any direct path among them.
To connect all languages, we add a root node and
set all top-level languages as its direct children.
There are also several assumptions in our approach
that might not be correct: for example, we assume
languages belonging to the same family should
share similar orthography, however, this is not al-
ways the case. They are also influenced by non-
linguistic aspects such as political factors and cul-
tural factors. Additionally, we assume each lan-
guage is only using one script, but some languages
are actually written in multiple scripts. For exam-
ple, Uzbek is written with a Perso-Arabic, Cyrillic,
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Figure 1: Illustraction of a partial phylogenetic tree (i.e. language family tree). The subtree has Proto-Indo-European
as the root of the family (there also exists many other root language families). The Germanic branch and Italic
branch can be derived (not directly though) from the Proto-Indo-European, they are further divided into the modern
languages we are using today. This information can help us compute the similarity between languages.

and Latin script. Despite all those limitations, infor-
mation on language families provides a reasonable
starting point.

3.3 Model Ensemble

After obtaining the nearest languages and the mono-
lingual model for each of the training languages,
we can use those models to approximate the target
model. In particular, we are interested in com-
bining prediction outputs from different models to
create a single prediction output. If the models
are one of the local prediction models (i.e: for
each grapheme, we decide whether to generate
a phoneme and which phoneme to generate) (Se-
jnowski and Rosenberg, 1987; Black et al., 1998),
the ensemble task is simple. As we made one
phoneme prediction at every grapheme position,
we can use the voting to decide the most likely
phoneme.

[p̂] = argmax[p]
∑
i

1([p] = [p]i) (2)

However, for the more general sequence-to-
sequence neural model, it is more complicated.
Different models would predict outputs with vari-
able sequences, therefore voting at each position
would be meaningless. For example, suppose two
phoneme sequences "/helo/" and "/elo/" are gen-
erated from "hello" using two different languages.
It is difficult to average /h/ and /e/ as they are cor-
responding to different graphemes. To solve this

problem, we use a robust approach to ensemble
outputs with variable lengths. Our approach is sim-
ilar to the ROVER system (Fiscus, 1997), which
is a commonly used approach to combine multiple
speech outputs into one output. It has been applied
to combine phoneme sequence (Schlippe et al.,
2014), but only under the monolingual scenario
in which they combine different models to improve
the performance. This work focus on combining
multilingual outputs and modifying the standard
word-based network to consider the phonological
structure.

One actual example from our dataset is illus-
trated in Figure 2. First, we build one confusion
network (or lattice) per language in our nearest lan-
guage set. The raw confusion network represents
a single hypothesis using a directed graph whose
edge corresponds to a single phoneme from the hy-
pothesis4. When we compose multiple confusion
networks into one confusion network, there would
typically be more than one edge connecting two
nodes. The set of edges connecting two contigu-
ous nodes is typically referred to as the confusion
set (or correspondence set) (Fiscus, 1997; Mangu
et al., 2000). For example, the first confusion set
from the right network in Figure 2 is {/t/, /s/}.
The goal of our ensemble approach is to compose
all confusion networks into a single network, and

4We can also generate n-best hypotheses from each model
and build confusion networks, however, we only consider the
top-1 hypothesis in this work for simplicity. N-best hypotheses
might be a future work
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Figure 2: An illustration of an actual ensemble example from our dataset. The input is ’that’ from Old Dutch
(odt), its top-2 nearest language in our training set are Dutch (nld) and Middle Dutch (dum). The left-hand side
denotes two hypotheses generated from those two languages, from which we compose into a confusion network.
The composed confusion network has three confusion sets, which would vote ’/t a t/’ as a final prediction.

then pick up the best hypothesis from the composed
network.

Unlike the original work in which hypotheses
are composed without any specific order, we it-
eratively compose the network using the nearest
order: we first compose the nearest and second
nearest confusion network into a single network,
then further merge the third nearest network into
it. In each composition step, we align two net-
works by computing the similarity between pairs
of confusion sets. While the standard network com-
putes the similarity step using the exact matching
metric, we relax this exact matching scheme and
use a more coarse matching strategy by consider-
ing the phonological distance structure. In partic-
ular, we use the phonologically-equivalent class,
which collapses similar sounds into a small number
of classes (Mortensen et al., 2016). This means
we could easier match /a/, /o/ (vowel pairs) than
/a/, /s/ (vowel, consonant pairs). After compos-
ing all confusion networks into one network, the
most likely phoneme sequence can be generated
from the final network. To generate the sequence,
we pick up 1 phoneme per confusion set and con-
catenate them together. The phoneme in each
confusion set is selected using the voting scheme.
When there are multiple candidates with equal
votes, we break the tie by selecting the candidate
generated from the nearest language. Algorithm 1
summarizes the entire steps in our approach.

4 Experiments

In this section, we show the experiment results
on our G2P models. First, we introduce the main
datasets we used to build our model, next we de-
scribe our baseline models and G2P architectures
we use in our experiments. Finally, we demonstrate
that the proposed ensemble approach outperforms

Algorithm 1: G2P algorithm
Data: input, lang (Grapheme sequence

and its language)
Result: output (ensembled phoneme

sequence)
klangs← KNearestLanguage(lang)
hyps← []
for klang ∈ klangs do

hyp← G2P (input, klang) ;
/* Generate hypothesis
for every nearest
language */

hyps.append(hyp)
end
x← ConfusionNetwork()
for hyp ∈ hyps do

n← ConfusionNetwork(hyp)
a← align(x, n)
x← composite(x, n, a)

end
output← []
for cs ∈ x do

p← vote(cs) ; /* vote 1
phoneme per confusion set

*/
output.append(p)

end

those baseline models in different architectures.

4.1 Data

The main training/testing dataset we used is the
Wiktionary website. Wiktionary is a large multi-
lingual website containing lexicon information for
many languages, including many low-resource lan-
guages. One previous work has prepared a dataset
using Wiktionary (Deri and Knight, 2016), but the
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Figure 3: Log-scaled histograms of the count of lan-
guages grouped by the vocabulary size available in Wik-
tionary. The language with over 400k vocabulary is
English, however, most languages are low-resource lan-
guages for which we have less that 100 Wiktionary
entries.

testing languages and training languages are mixed
together in this dataset: many testing languages
are also available as training languages. To demon-
strate our approach on unseen languages, we create
a new dataset using the latest Wiktionary. First, we
download a dump file from the website and extract
all words with pronunciation information5. We
group all words by their languages, which gives
us 972 languages in total. However, not all lan-
guages yield a similar number of training data. Fig-
ure 3 shows the log-scaled histogram of language
counts for different vocabulary sizes. Only 1 lan-
guage: English, has more than 400k vocabulary
items. Most of the languages are concentrated in
the lowest histogram bar. In our dataset, we find
that the majority of the language have less than 100
vocabulary items. Therefore, the model needs to
be able to handle low-resource training scenarios.

Next, most languages from Wiktionary can be
assigned an ISO 639-3 ID, which can be identified
in our phylogenetic tree. As mentioned in the previ-
ous section, our phylogenetic tree is built using the
Glottolog database (Nordhoff and Hammarström,
2011), which contains phylogenetic information
about 7915 languages. We split all languages into
training languages or testing languages depending
on the vocabulary size: we consider the language
to be a training language if the vocabulary size is
above a predefined threshold, otherwise, it is clas-

5https://github.com/tatuylonen/
wiktextract

Dataset # Languages # Vocabulary

Training set 269 1,672,444
Testing set 605 4,796

All 874 1,677,240

Table 2: Statistics of the Wiktionary dataset we used in
the experiment. 269 languages are used for training and
605 languages are used for testing.

sified as a testing language. Typically, there is a
trade-off when selecting the threshold: making the
threshold lower would increase the number of train-
ing languages and make it easier to find the nearest
languages, however lower threshold make the train-
ing process more difficult due to the number of
limited vocabulary, additionally, it would reduce
the number of testing languages. In our experiment,
the threshold is set to 50 by following the previous
work (Deri and Knight, 2016), and the statistics of
both training datasets and test datasets are shown in
Table 2. We have 269 training languages and 605
testing languages. Most of the training languages
have a large vocabulary size but the testing lan-
guages have only 8 vocabulary items per language
on average. The number of distinct graphemes is
9082 and the number of phonemes is 416. The
grapheme number is much larger than the phoneme
one because many languages are using non-Latin
scripts, for example, there are around 4000 distinct
Chinese characters in our grapheme set. We train
both the n-gram model and neural models using
only the training languages, and then test them on
the testing languages, which are not seen during
the training process. The evaluation is done using
the average PER (phoneme error rate) across all
testing languages.

4.2 Baselines

In our experiments, we consider three different
baseline models: the fixed language model, which
is a model trained using the English dataset. The
global language model is a shared model mixing
all training sets, it ignores the target language id
during inference, this was explored in the previous
work (Peters et al., 2017). The nearest language
model can be seen as a special case of our proposed
model: we compute the most similar language to
the target language and run inference using that
language’s model instead. For each of the baseline
models, we investigate three different architectures:
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N-gram Model LSTM Model Transformer Model

PER Add Del Sub PER Add Del Sub PER Add Del Sub

Fixed Model 76.0 4.52 9.39 62.1 78.1 4.53 20.4 53.2 78.5 3.2 19.0 56.2
Global Model 70.4 6.89 9.86 53.6 72.8 3.4 29.0 43.4 74.2 2.9 20.6 50.8
Nearest Model 68.4 4.51 12.4 51.5 43.8 12.1 4.0 27.6 45.4 15.8 3.6 26.1

Ensemble Model 55.0 0.56 23.6 30.9 35.7 10.0 3.4 22.2 39.8 13.9 3.1 22.8

Table 3: Experiment Results of the our approach. It compares our ensemble model with three baselines: Fixed
Model, Global Model and Nearest Model. The comparison is performed under three different architectures: N-gram
model, LSTM model, Transformer Model. In all settings, the proposed model outperforms baselines.

N-gram, LSTM, and transformer architecture. We
use OpenNMT-py6 for our neural models. The
LSTM architecture is using the framework’s default
configuration: 2 standard LSTM layers for both en-
coder and an attention-based decoder, each layer
has 500 hidden size. This model is optimized with
1.0 learning rate using SGD optimizer. The trans-
former model uses the framework’s WMT sample
configuration7: we have 6 layers for both the en-
coder and decoder with 500 attention and feedfor-
ward size. The mode has a positional encoding
layer and is using 8 heads in self-attention. The
optimizer is Adam with learning rate 2.0 and 8000
steps for warmup. Both neural models are trained
with 20k steps. In our ensemble model, we use the
top-10 languages (k = 10) in our main experiment.

4.3 Results
Table 3 shows our experiment results. For each
of the G2P architecture (N-gram Model, LSTM
Model, Transformer Model), we demonstrate our
ensemble model’s results as well as 3 baselines.
The leftmost architecture shows the N-gram Model
result: the fixed language model performs 76%
PER, The global language model get 70%, which
is better than the fixed language model. the nearest
language model further improves it to 68%. While
all those models perform poorly, the reason for
their poor performance is different from each other:
the fixed language model is only trained with the
English dataset, therefore it cannot handle orthogra-
phy rules in other languages. The global language
model suffers from the inconsistency of the train-
ing set: the same grapheme might map to differ-
ent phonemes in different languages, therefore it
cannot learn consistent rules across all languages.

6https://github.com/OpenNMT/OpenNMT-py
7https://opennmt.net/OpenNMT-py/FAQ.

html#how-do-i-use-the-transformer-model

Recall the grapheme "h" have different pronuncia-
tions in English and Spanish. Finally, the nearest
language model has the problem that the nearest
language might be a low-resource language. As we
mention in the previous section, most languages
have few training vocabularies, even we restrict the
training languages to have more than 50 vocabu-
laries, the large proportion of languages still have
50 to 100 vocabularies, which might be insufficient
to train a good model. Additionally, depending
on a single language might have a large variance.
The proposed ensemble model solves those issues
to some extent: it relies on more than 1 language
when predicting for the target language: even 1 lan-
guage is a low-resource language, other languages
might be able to compensate for that low-resource
language. Additionally, introducing more language
also reduces the variance. The proposed model
significantly improves the PER to 55.0%.

Table 3 also demonstrates the performance of
two neural models: the LSTM model and the trans-
former model. Interestingly, the neural model’s
performance does not perform better than the n-
gram model when using a fixed language, even
slightly worse than it. It is because the neural
model further overfits the English dataset and could
not capture orthography rules in other languages.
The global model has the same trend, which again
fails to fit each language. However, the nearest
language model significantly reduces the error rate
by almost 30%. Unlike the N-gram architecture,
whose models of different languages are trained
using a separate dataset, the neural model uses
the shared architecture, and only distinguishes dif-
ferent languages by a language tag. This allows
efficient parameter sharing between low-resource
languages. Ensembling the model further reduces
the error rate by more than 5%. In our experi-
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Figure 4: The effect of using different number of nearest languages when ensembling models. It shows that we
reach the best performance when we use the top-10 languages to ensemble outputs.

ment, the LSTM model and the transformer model
have similar trends in their performance, but the
LSTM model has a better performance than the
transformer’s one. The reason might be that there
are far more hyperparameters to be tuned in the
transformer model and the default sample config-
uration provided by the framework might not be
optimal. As the main contribution of this work is to
propose a general approach to ensemble languages
rather than exploring different neural architectures,
we only focus on how to ensemble models of dif-
ferent languages in this work.

4.4 Ensemble Analysis

It would be interesting to compare the number of
languages when ensembling languages. Figure 4
demonstrates the influence of the number of lan-
guages from the LSTM model. PER drops quickly
when we start ensembling models, it reaches the
bottom when the number of nearest languages is 10,
then starts to increase very slowly. We observe that
there exists a bias-variance trade-off when chang-
ing the number of languages. When the number
is relatively small, the prediction relies heavily
on each language, therefore causing high variance
when predicting for the target language. Increas-
ing the number of languages could alleviate the
variance problem, but using a large number of lan-
guages would decrease the accuracy as the selected
languages are no longer close to the target language,
which introduces more bias to the model.

Errors Most Common Errors

Add /a/, /k/, /u/, /i/, /n/, /o/
Del /a/, /i/, /P/, /e/, /j/, /u/
Sub (/a/, /o/), (/o/, /u/), (/r/, /l/), (/t/, /d/)

Add /a/, /i/, /k/, /u/, /s/, /o/,
Del /a/,/P/, /i/, /e/, /u/ , /j/
Sub (/r/, /l/),(/a:/, /a/), (/i:/, /i/), (/E/, /e/)

Table 4: Most frequent errors in the LSTM model.
The top half shows the errors in the nearest model, the
bottom-half shows the errors when using 10 languages

To further understand the behavior of the model,
we also show curves of Addition, Deletion, and
Substitution in Figure 4. It indicates that after we
start ensembling the model (from 2), the addition is
increasing while the deletion is decreasing in gen-
eral, the substitution decreases first and remains
relatively flat later. The opposite trend of addition
and deletion can be explained by the ensembling ap-
proach: when we introduce a new hypothesis into
the model, it is probable some phonemes might not
be aligned to the existing confusion set in the con-
fusion network, to incorporate these new phonemes
into the network, we need to create new confusion
set, which would lead to more phoneme emissions.
More phonemes would also contribute to decreas-
ing the deletion rate as well. Therefore, that curve
of PER is very similar to the curve of the substi-
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tution error (as the addition and deletion almost
cancel each other). Not only does the ensemble
model improve the substitution error quantitatively,
it also improves the errors qualitatively: Table 4
shows the most frequent errors made by the nearest
language model and the top-10 ensemble model. It
indicates the most frequent substitution errors (/a/,
/o/) and (/o/, /u/) are replaced by (/a/, /a:/) and (/i/,
/i:/). We find latter errors are much closer to each
other (they have phonological distances of 1, while
the former errors have larger distances), therefore
they are much better errors than the first two pairs
qualitatively.

5 Limitations

While we get reasonable performance in our test-
ing languages, we acknowledge that there are sev-
eral limitations in our approach: first, both of our
training languages and testing languages are lim-
ited to languages available in Wiktionary. The
full Glottolog Phylogenetic Tree has 110 top-level
branches in total, however, our dataset only spans
40 branches. Therefore if we want to apply our
approach to unseen languages in the remaining
70 branches, we have to depend on unrelated lan-
guages to build our ensemble model, which might
lead to worse performance. Second, as our ap-
proach heavily depends on Glottolog and Wik-
tionary, if the language is not available in the Glot-
tolog database or the vocabulary quality in Wik-
tionary is not good enough, then our approach
cannot be applied to it. Finally, many of the 8k
languages do not have orthographies, therefore it
might be difficult or meaningless to evaluate the
G2P performance for them.

6 Conclusion

In this work, we propose a zero-shot learning
method to approximate G2P models for 8k lan-
guages in the world. We use the phylogenetic
tree to measure the distance between languages
and combine multilingual outputs. We test our ap-
proach on 600 unseen languages and demonstrate
it significantly outperforms baselines. We hope
the proposed model can be used in many speech
tasks such as phone recognition for low resource
languages (Li et al., 2021). We will release our
datasets and models for 8k languages to allow more
researchers to explore this direction.8

8Our code would be available at https://github.
com/xinjli/transphone
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