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Abstract

We study the problem of few shot learning
for named entity recognition. Specifically, we
leverage the semantic information in the names
of the labels as a way of giving the model addi-
tional signal and enriched priors. We propose
a neural architecture that consists of two BERT
encoders, one to encode the document and its
tokens and another one to encode each of the
labels in natural language format. Our model
learns to match the representations of named
entities computed by the first encoder with la-
bel representations computed by the second
encoder. The label semantics signal is shown
to support improved state-of-the-art results in
multiple few shot NER benchmarks and on-
par performance in standard benchmarks. Our
model is especially effective in low resource
settings.

1 Introduction

Named entity recognition (NER) seeks to locate
named entity spans in unstructured text and clas-
sify them into pre-defined categories such as PER-
SON, LOCATION and ORGANIZATION (Tjong
Kim Sang and De Meulder, 2003a). As a funda-
mental natural language understanding task, NER
often serves as an upstream component for more
complex tasks such as question answering (Mollá
et al., 2006), relation extraction (Chan and Roth,
2011) and coreference resolution (Clark and Man-
ning, 2015). However, building an accurate NER
system has traditionally required large amounts of
high quality annotated in-domain data (Lison et al.,
2020; Chen et al., 2020). This usually involves
well defined annotation guidelines and training of
annotators, which requires rich domain knowledge
and can be prohibitively expensive (Huang et al.,
2020).

∗Work done while at AWS AI Labs.

Few shot learning (FSL) (Vinyals et al., 2017;
Finn et al., 2017; Snell et al., 2017) aims at per-
forming a task using only very few annotated ex-
amples (i.e. support set).

Similarity-based methods, such as prototypical
networks, are extensively studied and show great
success for FSL (Vinyals et al., 2017; Snell et al.,
2017; Yu et al., 2018a; Hou et al., 2020). The
core idea is to classify input examples from a new
domain based on their similarities with representa-
tions of each class in the support set. These meth-
ods do not utilize the semantics of label names and
usually represent labels by directly averaging the
embedding of support set examples, oversimpli-
fying the learning of label representations. The
main premise of our work is that label names carry
meaning that our models can induce from data;
the labels are themselves words that appear in text
in various contexts and are thus semantically re-
lated to other words that appear in text, and this
relatedness can be leveraged. For example, the
representation of “Lionel Messi” is more similar
to that of PERSON than to the representations of
LOCATION or DATE when similar priors are used
for labels and words or phrases.

In this work, we propose a neural architecture
that uses two separate BERT-based encoders (De-
vlin et al., 2019) to leverage semantics of label
names for NER.1 One encoder (a) is used to en-
code the document and its words while the other
encoder (b) is used to encode label names (e.g.
PERSON, LOCATION etc.). The model is trained
to match word representations from encoder (a)
with label representations from encoder (b), and
assign a label for each word by maximizing the

1Our model is similar to the two-tower model widely
adopted in question answering (Karpukhin et al., 2020), rec-
ommender systems (Wang et al., 2021) and entity linking
(Logeswaran et al., 2019; Vyas and Ballesteros, 2020).
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similarity. We also experiment by replacing the
BERT label encoder with GloVe embeddings (Pen-
nington et al., 2014) as a simplified architecture.

We report experimental results in multiple NER
datasets from different domains. We summarize
our contribution as follows:

• We propose a simple and effective model ar-
chitecture that leverages label semantics for
NER.

• We show that the proposed model is partic-
ularly effective in low resource settings and
gives on-par results with the state-of-the-art
models in high resource settings.

• We achieve a new state-of-the-art in multiple
few shot NER benchmarks. Specifically, our
model outperforms prior work by 1.2 to 6.6 F1
points on CoNLL’03, WNUT’17, JNLPBA,
NCBI-disease and I2B2’14 datasets on vari-
ous few shot shots settings (§3.6).

• We show that the proposed model is robust to
variations of label names and that it is able to
differentiate semantically similar labels.

2 Model

We present our NER model. As shown in Figure
1, it consists of two BERT-based encoders where
one encoder is used to encode the document and
its tokens and the other to encode labels. We for-
malize the differences between datasets used in
our experimentation (§2.1), then present how two
BERT-based encoders (and the modification with
GloVe-based encoder for labels) are used to lever-
age semantics in labels for NER (§2.2). Finally
we discuss the training procedure (§2.3) and how
labels are represented (§2.4).

2.1 Source and Target Datasets

For few shot NER, we use a setup similar to meta-
learning. We first train our models on source
datasets {DS

1 ,DS
2 , ...}, then evaluate the model

on unseen few shot target datasets {DT
1 ,DT

2 , ...}
with or without finetuning. Each target dataset only
contains a few examples and a different taxonomy
of labels compared to the source datasets.

2.2 Architecture

We use two BERT-based encoders as shown in Fig-
ure 1: a BERT document encoder and a BERT
label encoder (we also experiment with GloVe em-
beddings as label encoder, described in §3.5). Like
the traditional NER models (Carreras et al., 2003;
Collobert et al., 2011; Lample et al., 2016, inter
alia), we predict the label of each token with BIO
scheme.2 For each token we get an embedding e
from the first BERT document encoder. For the
unique set of labels LD associated with dataset
D, we apply three steps to get the representations:
First, we manually convert the label names to their
natural language forms, e.g. “PER” to “person”,
“ORG” to “organization” etc. Second, we convert
each of the label names to BIO scheme, in the form
of natural language, e.g. “person” to “begin per-
son” or “inside person”. Finally, we use the second
BERT label encoder to embed each of the labels
in natural language BIO scheme. We compute
the BERT [CLS] token embedding as the repre-
sentation for the corresponding label. We form a
label vector b of all label embeddings bi for all i
in {1, 2, ..., 2×NL − 1} 3. The label encoder acts
like a lookup table for label embeddings. Finally,
to find the most appropriate label for this token, we
use:

y = argmax
i

softmax(e · b)

2.3 Training

Comparing with prior work on neural architec-
tures for NER, our model does not require a new
randomly initialized top layer classifier for a new
dataset with new unseen label names. Instead, we
generate label representations from the BERT la-
bel encoder. We hypothesize that this is beneficial
because it prevents the model from forgetting pri-
ors since no parameters are dropped or randomly
initialized for different datasets.

We propose a simple two stage training proce-
dure. In the first stage, we pre-finetune our model
on the mix of all source datasets (which usually
have different label set taxonomies), then we fine-

2Each token is predicted as B-entity_type, I-entity_type or
O, indicating the token is at the beginning, inside or outside
of the entity_type.

3Each of the NL labels are converted to BIO scheme ex-
cept “O”/“other”, thus it is 2×NL − 1 embeddings in total.
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[SEP] 
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Figure 1: The architecture of our NER model. The diagram shows how representation of labels and tokens are
produced, and how we use them to calculate final model prediction. The top part of the figure shows how labels are
encoded; the bottom part of the figure shows how sentence are encoded.

tune the trained model on the target dataset. This
process is also known as pre-finetuning (Agha-
janyan et al., 2021) and finetuning. For scenarios
where no source datasets are available, we simply
skip the first stage. During model training time,
both encoders are updated for every iteration at
both stages, which helps to align the token embed-
ding space and the label embedding space.

During inference time, the learned label encoder
is only required to produce label representations
once. This is because the label representations
may be cached and the label encoder is no longer
needed to recompute representations. Our model is
therefore not introducing additional memory over-
head (since label encoder is removed) or latency
overhead (since label representation is cached).

2.4 Label Representation

Given that our label encoder is based on BERT
and contains the priors from pretraining, our ar-
chitecture allows any textual form as input for the
generation of label representations. In order to
make our results comparable with previous stud-
ies, we use only the natural language form of label
names for our primary results. We discuss more
label representations in Appendix E.

3 Experiments

We evaluate our model and we compare it against
existing few shot methods in two scenarios: high

resource and low resource (few shot). In both cases,
we assume there is a source dataset (which may be
a set) with abundant data, and our goal is to maxi-
mize model performance on unseen target datasets
which follow different taxonomies from the source
dataset.

3.1 Datasets

We perform experiments on 6 NER datasets from
5 different domains: OntoNotes 5.0 (Weischedel
et al., 2013) (Mixed), CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003a) (News),
WNUT-2017 (Derczynski et al., 2017) (Social),
JNLPBA (Collier and Kim, 2004) (Biology),
NCBI-disease (Dogan et al., 2014) (Biology) and
I2B2-2014 (Stubbs and Uzuner, 2015) (Medical).
In all our experiments and following the definition
in 2.1, we treat OntoNotes as the source dataset
and all other as target datasets.4

3.2 Settings and Evaluation

In this Section, we present the different experi-
ments, and how do we carry out the evaluation.

High Resource: Given a target dataset, we sim-
ply take all available data and evaluate on the stan-
dard held-out test set.

4We use train/dev/test split released from CoNLL-2012
shared task: https://cemantix.org/conll/2012/
data.html.
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1 Shot 5 Shot 20 Shot 50 Shot Full Dataset
TransferBERT 44.8 ±15.0 66.9 ±6.7 77.5 ±1.2 82.0 ±1.1 91.3 ±0.2
Prototypical Network 7.5 ±2.6 11.5 ±5.6 18.6 ±7.5 16.3 ±2.7 N/A
WPN-CRF 56.26 ±9.1 67.7 ±4.4 67.4 ±2.0 69.0 ±1.7 N/A
Struct NN shot 63.7 ±3.7 70.0 ±3.0 73.1 ±1.9 75.7 ±1.8 N/A
TANL 54.7 ±9.4 65.6 ±3.8 71.0 ±2.4 74.4 ±1.9 91.7 ±0.4

Our model - GloVe 63.1 ±6.9 73.5 ±2.4 78.3 ±1.1 82.0 ±1.5 91.6 ±0.2
Our model - BERT 68.4 ±6.7 76.6 ±2.1 79.7 ±1.1 83.1 ±1.2 91.5 ±0.2

W
N

U
T-

20
17

TransferBERT 27.6 ±6.8 35.2 ±3.4 40.9 ±1.6 42.5 ±1.2 44.0 ±0.2
Prototypical Network 1.7 ±1.2 2.1 ±1.0 2.7 ±1.6 3.5 ±1.7 N/A
WPN-CRF 23.1 ±2.8 29.9 ±3.2 32.9 ±1.2 33.2 ±1.1 N/A
Struct NN shot 31.1 ±6.4 33.2 ±2.0 30.8 ±2.2 31.8 ±1.8 N/A
TANL 25.6 ±6.3 33.3 ±4.4 34.1 ±2.1 34.4 ±2.4 45.2 ±0.6

Our model - GloVe 36.6 ±2.4 39.6 ±1.9 42.5 ±1.3 43.0 ±1.1 45.7 ±0.6
Our model - BERT 38.3 ±1.7 40.8 ±2.1 42.7 ±1.1 43.3 ±0.8 45.0 ±0.6

JN
L

PB
A

TransferBERT 26.6 ±7.8 40.3 ±2.8 53.2 ±2.9 59.7 ±1.3 71.0 ±0.5
Prototypical Network 2.1 ±1.5 4.0 ±3.2 6.8 ±3.6 5.7 ±3.0 N/A
WPN-CRF 6.5 ±5.0 10.3 ±5.7 10.3 ±4.9 9.4 ±2.7 N/A
Struct NN shot 15.9 ±5.3 19.2 ±2.9 23.1 ±2.1 26.8 ±0.7 N/A
TANL 32.4 ±4.0 41.1 ±5.0 51.7 ±2.6 58.8 ±0.6 74.3 ±0.2

Our model - GloVe 25.4 ±6.1 39.7 ±2.3 52.3 ±3.1 59.3 ±1.4 71.8 ±0.3
Our model -BERT 32.7 ±3.0 43.15 ±2.4 53.8 ±2.7 59.8 ±1.3 71.0 ±0.5

N
C

B
I-

di
se

as
e

TransferBERT 16.8 ±9.5 24.1 ±6.3 43.0 ±5.0 56.7 ±3.0 84.5 ±0.9
Prototypical Network 12.2 ±8.7 12.5 ±9.6 14.0 ±11.6 10.8 ±7.3 N/A
WPN-CRF 5.5 ±4.8 6.8 ±9.1 3.5 ±5.4 5.7 ±5.3 N/A
Struct NN shot 18.5 ±5.6 20.6 ±5.2 27.6 ±2.4 36.7 ±5.0 N/A
TANL 15.8 ±4.0 21.0 ±6.2 26.0 ±3.9 40.9 ±4.2 85.8 ±0.9

Our model - GloVe 15.1 ±8.7 26.2 ±6.1 44.6 ±4.2 56.8 ±3.1 86.7 ±0.6
Our model - BERT 30.7 ±9.1 34.9 ±4.9 50.9 ±3.3 60.5 ±2.2 85.0 ±0.6

I2
B

2-
20

14

TransferBERT 58.4 ±5.7 75.2 ±1.9 86.2 ±0.9 90.3 ±0.4 93.0 ±0.1
Prototypical Network 2.1 ±0.7 2.2 ±0.4 2.6 ±0.4 2.7 ±0.1 N/A
WPN-CRF 10.0 ±2.5 13.1 ±3.3 13.9 ±2.1 13.3 ±2.1 N/A
Struct NN shot 46.7 ±6.4 59.1 ±1.9 67.4 ±1.3 72.4 ±0.6 N/A
TANL 47.1 ±5.2 65.1 ±2.9 80.7 ±1.2 87.0 ±0.3 92.0 ±0.1

Our model - GloVe 58.2 ±5.8 75.5 ±2.3 85.6 ±1.0 90.5 ±0.3 93.5 ±0.1
Our model - BERT 61.9 ±4.3 76.8 ±2.0 86.7 ±0.8 90.5 ±0.4 93.2 ±0.3

Table 1: Results on held out test sets of all datasets. "Our model - GloVe": this refers to our model with GloVe
label encoder. "Our model - BERT": this refers to our model with BERT label encoder. All numbers indicate micro
F1 scores unless noted otherwise. Results for low resource settings are average of 10 runs with different support set
sampling. Results for high resource setting are average of 5 runs with different random seeds. For some baselines
we cannot run the released implementation from originally papers due to GPU out of memory and they are marked
as N/A. We visualize the results with bar chart in Appendix D.

Low Resource: Given a target dataset, we down-
sample the data (at sentence level) in the train split
to construct a K-shot support set. This simulates
the low resource scenario where only a few training
examples are available in the target dataset. The
definition of a K-shot support set is that it contains
exact K examples for each of the labels. However,
unlike the text classification task where each sen-

tence is associated with one label, in the NER task
multiple named entities may co-occur in the same
sentence. We cannot guarantee that the support set
contains exact K named entities for each label after
downsampling. We therefore define the proxy for
K-shot support set similar as the one by Hou et al.
(2020), with the following two criteria: 1) Each
label in the target dataset (except “O”) has at least
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K corresponding named entities in the support set;
2) At least one of the labels in the target dataset
will have less than K named entities in the support
set if any sentence is removed.5 We apply the same
downsampling algorithm as in (Hou et al., 2020)
for the support set. More details can be found in
Appendix B.

To evaluate the model performance in the K-
shot support set, most prior work (Hou et al., 2020;
Athiwaratkun et al., 2020; Fritzler et al., 2019)
followed the few-shot classification setup, where
test sets are also downsampled to K-shot subsets
(query set) such that each entity labels are evenly
distributed. The model is trained and evaluated on
multiple support datasets and query set pairs, and
final model performance is reported with average
of scores on each query set. However, we argue
that in real world cases, entity labels have certain
distribution corresponding to the domain, down-
sampled K-shot query set does not reflect this real
distribution. Therefore instead of evaluating on the
downsampled query set, we directly evaluate the
model in the full test split from the target dataset.
This also improves comparability and replicabil-
ity of our results since the same test set is used
across and in prior work (even in papers that are
not focused on few-shot experiments).

Evaluation To thoroughly test our model, we
evaluate it with 1-shot, 5-shot, 20-shot, 50-shot
(low resource) and also the full dataset (high re-
source) settings. Following prior work (Tjong
Kim Sang and De Meulder, 2003b), we use mi-
cro F1 score as metric. For low resource settings,
we repeat the experiments 10 times with randomly
sampled support sets. For high resource setting,
we repeat the experiments 5 times with different
random seeds. In all cases, we report average mi-
cro F1 with standard deviation. Table 2 shows an
overview of dataset statistics.

3.3 Baselines

TransferBERT trains the same NER model in (De-
vlin et al., 2019) by pre-finetuning on a source
dataset then finetuning on a target dataset. Proto-

5We count at named entity level instead of token level. For
example, “Lionel Messi” is counted as one occurrence for
PERSON entity. However, Hou et al. (2020) counted it as one
occurrence for “B-PERSON” (for token “Lionel”) and one
occurrence for “I-PERSON” (for token “Messi”).

typical Network (Snell et al., 2017) approaches
NER as a token level classification task. It assigns
label for each token based on similarities between
candidate token and tokens in few shot support
set. WPN-CRF (Fritzler et al., 2019) pretrains a
prototypical network with source dataset and eval-
uate it on target dataset without finetuning. It uses
a conditional random field (CRF) (Huang et al.,
2015) to output the final labels of the sentence.
Struct NN shot (Yang and Katiyar, 2020) finds
nearest token in support set for a given candidate
token and assign it the same label as its nearest
neighbor. TANL (Paolini et al., 2021) forms NER
as sequence to sequence. The model is trained to
generate the original input text with entities being
decorated in a bracket.6

3.4 Hyperparameters
We use English cased BERT-base (Devlin et al.,
2019) as contextual embedder for all baseline mod-
els and our model, except for TANL where T5-base
is used.7 We use Adam optimizer (Kingma and Ba,
2014) to train our model with a learning rate of
1× 10−5 and batch size of 10. We pre-finetune
our model on the source dataset (Ontonotes) for 3
epochs and continue finetuning on target datasets
for 200 epochs for both high resource and low re-
source settings. We pick the last epoch as the final
model. For label names, we manually expand all
shortcut names into full natural language names
(e.g. “PER” to “person”, “LOC” to “location”)
and lower case all names. Textual forms for all
datasets can be found in Appendix A.2. We run all
experiments on NVIDIA V100 GPU.8

3.5 GloVe as Label Encoder
We experiment with GloVe embeddings (Penning-
ton et al., 2014) as the label encoder.9 In this case,

6We are not able to include (Hou et al., 2020) as a baseline
as we are not able to reproduce the model with their published
repository, even on a machine with 40GB of GPU memory.
We also cannot compare with the published results due to the
differences in the following settings: (1) we are evaluating our
model on full test splits while Hou et al. carry out an episodic
evaluation) and (2) We use more datasets (from different
domains).

7We use the checkpoint released for BERT-base:
https://github.com/google-research/bert,
and checkpoints released in Hugging Face for T5-base:
https://huggingface.co/t5-base

8More details about hardware in Appendix C.
9We use 300 dimensional GloVe that is pretrained on

Wikipedia and Gigaword 5 corpus released here: https:
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our model has no extra parameters compared to
other baselines. As in the case with BERT, the
vectors are updated throughout the training. Given
that there is no [CLS] token available, we apply
max pooling on all the GloVe embeddings corre-
sponding to each label token. If the label consists
only of one token, max pooling will return the ac-
tual GloVe embedding for the token as the label
representation.

Dataset Support Set Shot
1 5 20 50

CoNLL’03 3.6 12.3 38.5 102.5
WNUT’17 13.4 44.6 143.6 366.3
JNLPBA 6.8 27.5 99.2 241.2
NCBI 1.8 3.7 14.5 37.2
I2B2’14 155.4 613.4 2339.4 5888.1

Table 2: Number of sentences in support set with differ-
ent shots for all target datasets. Numbers are averaged
across 10 different random samplings. NCBI refers
to NCBI-disease dataset. More details are reported in
Appendix A.1.

3.6 Results

We summarize experiment results in Table 1. As
shown, our model outperforms all previous meth-
ods in low resource settings. In extreme low re-
source scenarios (1 and 5 shot), our model per-
forms significantly better than previous methods
by a margin of 6.6 F1 and 4.8 F1 on average in 1
shot and 5 shot, respectively. This indicates that
our model can leverage semantics in label names
effectively to improve accuracy when data is ex-
tremely scarce. However, we also notice that when
the target data size increases, the improvement of
our model becomes smaller. This suggests that
with more training examples, the model relies less
on semantics of labels.

In a high resource setting, we find that our model
achieves the same level of performance as other
baselines, except for JNLPBA dataset where our
model is 3.3 F1 behind TANL.10 This model is
based on T5-base which is pretrained on a much

//nlp.stanford.edu/projects/glove/
10We cannot run released implementation of three baselines

(marked as N/A in Table 1) due to GPU out of memory even
with 40GB of GPU memory.

larger unannotated dataset, and with different ob-
jectives, than our BERT-base encoders.

We also note that when label names in the tar-
get dataset are similar to the source ones, few shot
models have a much smaller gap with their high re-
source counterparts, compared to when source and
target label names are totally different. Specifically,
CoNLL-2003, WNUT-2017 and I2B2 have more
similar label names with Ontonotes (the source
data), and our model can achieve 84%, 91% and
83% of the score of the high resource model per-
formance with only 5 shot. While for JNLPBA
and NCBI-disease, where the label names are to-
tally different from source data, our model can
only achieve 61% and 41% of the score of the high
resource model performance with 5 shot.

4 Analysis

Here, we show how semantics in label names help
in low resource scenarios and how our model ben-
efits from pre-finetuning stage.

Entity
Types

Original Labels Renamed Labels
0 shot 1 shot 0 shot

PER 92.3 90.3 85.4
LOC 70.9 61.2 54.8
ORG 50.3 59.7 58.4
MISC 0.5 47.5 6.8

Table 3: F1 for 0 and 1 shot performance on CoNLL-
2003 development set.

4.1 Impact of the Label Encoder
We hypothesize that encoding label names with a
label encoder (either BERT or GloVe) leverages
prior knowledge from the pretraining phase and
uses it as inductive bias. In addition, by perform-
ing pre-finetuning on the source dataset, we are
not only aligning the embedding space between
labels and tokens in the vocabulary, but also up-
dating the label encoder to produce useful label
representations in the source dataset.

To further strengthen our hypothesis (besides
what is presented in Table 1), we show results in
zero shot settings. Specifically, we pre-finetune
a model on the source dataset (Ontonotes) and
directly test it on CoNLL-2003 without updating
its parameters. We also rename the labels to avoid
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overlapping of label names between source and
target datasets while still retaining the semantics.11

Particularly, during evaluation we rename “PER”
to “individual”, “LOC” to “geographical area” and
“ORG” to “corporation”. “MISC” stays the same
since it does not overlap with any of the Ontonotes
labels. The results are shown in Table 3.

With original label names, the zero shot per-
formance of our model is comparable to 1 shot
performance for all entity types with the exception
of “MISC”. Even with the renamed labels that do
not have any overlap with the source dataset, the
zero shot performance still remains comparable
with 1 shot. This seems to validate our hypothesis
that the model is able to leverage prior knowledge.

4.2 Semantics of Label Names

To demonstrate the impact of semantics of label
names, we carry out experiments with our model
on target datasets with the following variations of
label names: (1) original label names (which is sim-
ply our experimental setup as in the experiments
above, where we use the natural language form of
the label names), (2) meaningless label names and
(3) misleading label names.

We compare our model with the TransferBERT
baseline, since it is the counterpart of our model
without label semantics. We pre-finetune our
model on Ontonotes as previous experiments. Re-
sults on CoNLL2003 and JNLPBA are shown in
Figure 2.12

Meaningless labels We simply use “label 1”, “la-
bel 2” etc., as input representation for label names,
which simulates the case where there is no more
semantics information in the form than the fact that
they are different labels and they have some sort of
ordering. This evaluates the few shot model perfor-
mance when meaningless (or shallow in semantics,
just a differentiation of label indices) inputs are
given. Comparing to the original label names, the
results drop in 1 and 5 shot settings, then gradu-
ally converged to the original label performance as
the training data size increases. This shows that

11Ontonotes has both “LOC” and “GPE” labels, however,
the definition of label “GPE” in Ontonotes is much closer to
“LOC” in CoNLL2003. Therefore, we use "GPE" instead of
“LOC” for zero shot experiments.

12We present experiments with contextualized label repre-
sentations in appendix E.

label semantics is critical for extreme low resource
scenarios (1 and 5 shot).
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Figure 2: Model performance on meaningless and mis-
leading laberls. Micro F1 is reported on the develop-
ment data.

Misleading labels We randomly swap the nat-
ural language form between labels. For example,
in CoNLL2003 dataset, we assign “location” for
“PER”, “person” for “ORG”, “organization” for
“MISC” and “miscellaneous” for “PER”.13 The per-
formance drops are larger for CoNLL2003 than
the ones in JNLPBA. We hypothesize that since
CoNLL2003 label set is closer to Ontonotes, there
is stronger prior knowledge incorporated in the la-
bel encoder from the pre-finetuning phase. Also,
we find that more supervised examples are required
to correct such wrong strong prior information.
JNLPBA needs 5 shot data to achieve the same
performance with original labels and misleading la-
bels, but CoNLL2003 needs 50 shot data to match
the performance. This indicates that our model is
misled by the labels when the number of training
examples is small, which indicates that the label
semantics signal is critical in few shot settings.

13For each run we randomly assign different misleading
label names, and we report results averaging 10 different runs.
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4.3 Impact of Pre-finetuning

Our model does not require a new randomly ini-
tialized top layer classifier for a new dataset, we
hypothesize that it can prevent the model from
forgetting learned prior knowledge from the pre-
finetuning stage thus benefits the low resource sce-
narios, where prior knowledge is critical. To vali-
date it, we compare 1-shot results on target datasets
with and without pre-finetuning stage, as shown
in Table 4. First, when pre-finetuning stage is
eliminated, performance of both our model and
TransferBERT drop significantly, indicating that
prior knowledge from pre-finetuning stage is crit-
ical in low resource settings. Second, our model
outperforms TransferBERT significantly when pre-
finetuning stage is included, however, the perfor-
mance is similar between our model and Transfer-
BERT when it is excluded. This suggests that our
model is highly effective in leveraging knowledge
learned from the pre-finetuning stage.

Datasets
Pre-finetune on

Ontonotes
No

pre-finetune
Transfer-

BERT Ours Transfer-
BERT Ours

CoNLL’03 47.5 69.0 9.0 10.7
WNUT’17 35.6 48.2 4.0 5.7
JNLPBA 26.3 31.5 14.8 19.5
NCBI 15.1 31.3 12.5 13.9
I2B2’14 56.9 60.1 47.5 46.8

Table 4: 1-shot performance on development set of
corresponding datasets. Micro F1 is reported. NCBI
refers to NCBI-disease dataset.

5 Related Work

Few Shot Learning: Meta learning is widely
studied for the problem of few shot learning, aim-
ing to quickly adapt a model to new tasks based on
tasks learned in an earlier stage. Recent research
(Snell et al., 2017; Vinyals et al., 2017; Sung et al.,
2017) mostly focused on metric-based methods.
Snell et al. (2017) learns a prototype represen-
tation for each class and classify test data based
on their similarities with prototypes. These meth-
ods have been successfully adapted to NLP tasks
such as classification (Yu et al., 2018b; Bao et al.,
2019), relation classification (Han et al., 2018) and
NER (Fritzler et al., 2019; Yang and Katiyar, 2020).

However, all these methods do not directly lever-
age the semantics of label names.

Label Semantics: Earlier work has shown the
ability to perform zero- and few-shot learning by
exploiting the semantic of labels in text classifica-
tion tasks (Chang et al., 2008; Luo et al., 2021).
Zhou et al. (2018) study zero-shot fine-type NER
with label semantics by automatically reading from
Wikipedia via a linking approach, but assumes that
the mentions of the entities are given. Paolini et al.
(2021) and Athiwaratkun et al. (2020) approach
NER as a generation task and predict named enti-
ties in augmented (or decorated) languages. Cui
et al. (2021) reformulate NER as a cloze task and
use sequence to sequence models to fill named en-
tities in pre-defined templates. Both of these two
methods suffer from long inference time due to an
autoregressive decoder. Hou et al. (2020) leverage
label semantics in Task-Adaptive Projection Net-
work (TapNet), where the core idea is to learn a
projection function that separates words that have
different labels in the projected space. In contrast,
our model learns to align token representations
with label representations. Hou et al. (2020) only
uses label representations as a reference to guide
the learning of the projection function, and in their
case label representations are computed once. Our
label representations are updated with every update
while training.

6 Conclusion

We propose a neural architecture that leverages
semantics of label names for Named Entity Recog-
nition. Our model significantly outperforms the
state-of-the-art few shot NER baselines on low re-
source settings, and performs on-par in the high re-
source setting. We perform extensive experiments
to show that the label encoder incorporates strong
prior knowledge from BERT and a dataset (source
dataset) used in a pre-finetuning stage. We demon-
strate that the semantics of label names in target
datasets are critical to retrieve the prior knowledge.
We also show that our model is robust to variation
of label names and that it is able to differentiate
between semantically closed labels.
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Dataset Domain # Sent # Labels

Ontonotes Mix 76,714 18
CoNLL’03 News 20,744 4
WNUT’07 Social 5,690 6
JNLPBA Bio 22,402 5
NCBI-disease Bio 7,287 1
I2B2’14 Medical 75,330 23

Table 5: Original dataset statistics.

A.2 Label Names

Table 6 shows the original label names in each
dataset and corresponding natural language forms
we use in our experiments.

Dataset Original
Labels

Natural
Language

CoNLL’03

PER person
LOC location
ORG organization
MISC miscellaneous

Ontonotes

CARDINAL cardinal
DATE date

EVENT event
FAC facility

GPE geographical social
political entity

LANGUAGE language
LAW law
LOC location

MONEY money

NORP nationality religion
political

ORDINAL ordinal
ORG organization

PERCENT percent
PERSON person

PRODUCT product
QUANTITY quantity

TIME time
WORK_OF_ART work of art

WNUT’17

corporation corporation
creative-work creative work

group group
location location
person person
product product

JNLPBA

DNA DNA
RNA RNA

cell_line cell line
cell_type cell type
protein protein

NCBI-
disease Disease disease

I2B2’14

AGE age
BIOID biometric ID
CITY city

COUNTRY country
DATE date

DEVICE device
DOCTOR doctor
EMAIL email

FAX fax
HEALTHPLAN health plan number

HOSPITAL hospital
IDNUM ID number

LOCATION_OTHER location
MEDICALRECORD medical record

ORGANIZATION organization
PATIENT patient
PHONE phone number

PROFESSION profession
STATE state

STREET street
URL url

USERNAME username
ZIP zip code

Table 6: Original label names and their corresponding
natural language formats.
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B Support Set Sampling Algorithm

Algorithm 1 Support set sampling
Require: # shot K, dataset D, labels LD
1: Initialize support set S={}, Count`i=0 (∀`i ∈ LD)
2: for ` in LD do
3: while Count` < K do
4: Randomly pick (t,y) from D \ S that y include

`
5: S ← S ∪ (t,y)
6: Update all Count`i (∀`i ∈ LD)
7: end while
8: end for
9: for (t,y) in S do

10: S = S \ (t,y)
11: Update all Count`i (∀`i ∈ LD)
12: if Any Count`i < K then
13: S = S ∪ (t,y)
14: Update all Count`i (∀`i ∈ LD)
15: end if
16: end for

C Hardware for Experiments

We provide details about hardware we use to pro-
duce numbers for each baseline models. We run
experiments for Struct NN shot model on NVIDIA
V100 GPU with 32GB of memory, while for all
other models (including baselines and our mod-
els) we use NVIDIA V100 GPU with 16GB of
memory.

D Visualization of Results

We visualize the results in Table 1 with bar chart,
as shown in Figure 3.

E Contextualized Label Representations

In this experiment, we compute contextualized la-
bel representations by randomly selecting a sen-
tence from the support set that contains an entity of
the type, and replace that entity with the label name
in the sentence. We encode this sentence with the
label encoder and compute the average pooling as
the label representation. The label names used are
in their natural language form with BIO schemes
per 2.2. We depict this process in Figure 4. At in-
ference time, to avoid biasing toward any particular
sentence, we randomly choose 10 sentences from
the support set for each label and average their
representations as the final label representations.14

14When there are less than 10 sentences for a given label
in the support set, we use all the available sentences. Sen-

(begin) person

 [CLS]

Label Names

: Average pooling 
 

(a) begin person

Contextual Label Names

(b)

1. Randomly select a sentence from support set:
"Messi is a soccer player"

2. Compute label representation

[CLS]                            is a soccer player

: All tokens encoded by label encoder 

Figure 4: Differences between contextualized label rep-
resentations and label representations in isolation.

We perform experiments on FEW-NERD dataset
(Ding et al., 2021).15 This dataset consists of 8
coarse-grained and 66 fine-grained entity types in
hierarchy. The fine-grained entity types under the
same coarse-grained type are semantically close.

Results are shown in Table 7 and Appendix
E. In the following, we show 1-shot results un-
der “Person” coarse-grained type for FEW-NERD
dataset.16 By using contextual label names, we
observe a decrease in model performance by 3.5
F1 points on FEW-NERD, compared to when only
label names are used. This suggests that the trained
label encoder is capable of capturing critical seman-
tics with only label names, even without contexts
to help distinguish semantically close labels.

Datasets Model
Ours Ours + context

CoNLL’03 69.0±6.9 70.8±4.1
WNUT17 48.2±1.7 51.8±1.8
JNLPBA 31.5±2.9 30.1±3.2
FEW-NERD-Person 32.5±8.1 29.0±7.1

Table 7: 1-shot micro F1 on development set across
various datasets and models. Ours: Our model with
label names. Ours+context: Our model with contextual
label names. Numbers are averaged across 10 different
random samplings.

tences are selected once then fixed. We also experimented by
randomly choosing one fixed sentence for both training and
inference from the support set, but preliminary results show it
is worse than our current method.

15As in the other experiments, we pre-finetune all models
on Ontonotes then continue finetuning on target datasets.

16Fine-grained entity types under “Person” are: Actor,
Artist/author, Athlete, Director, Politician, Scholar and Sol-
dier.
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Figure 3: Visualization of the results in Table 1. Results on test set of all datasets. All numbers indicate micro F1
scores except noted otherwise. Results for low resource settings are average of 10 runs with different support set
sampling. Results for high resource setting are average of 5 runs with different random seeds. For some baselines
we cannot run the released implementation from originally papers due to GPU out of memory and they are marked
as 0.
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E.1 Additional Experiment 1

We present additional experiments on contextual
label representations. We will first introduce more
details on the FEW-NERD dataset, then describe
methods we explore to contextualize labels, fi-
nally we will show experiment results. To validate
whether contextual label representation can im-
prove model performance in scenarios where labels
are semantically close, we perform experiments on
one additional dataset: FEW-NERD (Ding et al.,
2021). FEW-NERD is a human annotated NER
dataset that consists of 188,238 sentences. It has a
hierarchy of 8 coarse-grained and 66 fine-grained
entity types. The fine-grained entity types under
each coarse-grained type are usually semantically
close. All sentences are sourced from Wikipedia.
We use train/dev/test split from the original dataset
distribution.

We select “Person” and “Art” coarse-grained en-
tity types for the experiments, because we think
fine-grained entity types under them have closest
semantic similarities. Specifically, we take one
coarse-grained entity type at a time, and remove all
entity annotations that do not belong to it, on train,
dev and test split. After removal, comparing with
the original dataset, the resulting dataset has much
more sentences with no annotation than sentences
that have at least one annotations. To mitigate
this entity distribution shifting, we randomly re-
move sentences that do not contain any annotations,
such that the resulting dataset has the same percent-
age of sentences with annotations as the original
dataset. We perform this process on “Person” and
“Art” types and result in two datasets called “FEW-
NERD-Person” and “FEW-NERD-Art”. The statis-
tics for these two datasets are shown in Table 8.
The original entity types and their corresponding
natural language format are shown in Table 9

Dataset Original
Labels

Natural
Language

FEW-NERD-
Person

person-actor actor
person-artist/author artist author

person-athlete athlete
person-director director

person-politician politician
person-scholar scholar
person-soldier soldier

FEW-NERD-
Art

art-broadcastprogram broadcast-
program

art-film film
art-music music

art-painting painting
art-writtenart written art

Table 9: Original label names and their corresponding
natural language formats for FEW-NERD-Person and
FEW-NERD-Art datasets.

E.2 Additional Experiment 2

In this experiment, we replace the entity in the
selected sentence with different texts rather than
label names.

We experiment with various schemes for the
new span and use the following terminology to de-
scribe them. TOKEN refers to the original token
that is replaced. LABEL refers to the label name
that the token is annotated with. BIO-TAG refers
to the natural BIO tag that the token is annotated
with. For the example illustrated in Figure 4, TO-
KEN corresponds to "Messi", LABEL corresponds
to "person", BIO-TAG corresponds to "begin". We
hypothesize that the TOKEN gives natural context
to the labels since it is unmodified sentence, LA-
BEL captures the semantic information in label
names and BIO-TAG helps differentiate the B and I
chunks for the label. In addition, we experiment to
replace the entity with "[MASK]" token to make
the label reprensetation close to BERT pretraining
inputs. The various schemes are illustrated with
example in Figure 5.
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Dataset # Labels Support Set Shot Dev1 5 20 50
FEW-NERD-Person 7 19.0 66.7 212.7 508.9 4437.0
FEW-NERD-Art 5 41.5 123.5 412.2 2569.0 1364.0

Table 8: Number of sentences in support set and dev set for FEW-NERD-Person and FEW-NERD-Art datasets.
Numbers are averaged across 10 different random samplings.

[CLS]                            is a soccer player

[CLS]                            is a soccer player

[CLS]                            is a soccer player

(begin) [MASK]

: Average pooling  
 

Contextual Label Names Variation Examples 

1. Randomly selected sentence from support set:
"Messi is a soccer player"

: All tokens encoded by label encoder 

Messi

[CLS]                            is a soccer playerperson

[CLS]                            is a soccer player[MASK]

begin : [MASK]

[CLS]                            is a soccer playerbegin : person

[CLS]                            is a soccer player(begin) person

TOKEN

LABEL

[MASK]

BIO-TAG : [MASK] 

(BIO-TAG) [MASK] 

BIO-TAG : LABEL 

(BIO-TAG) LABEL 

2. Calculate contextual label representation:

Figure 5: Example for contextual label representation.

E.3 Results

The results from various schemes of the new span
is compared with TransferBERT and our model
which encodes label names only. This is summa-
rized in Table 10.

TOKEN scheme is the simplest way to get a
contextualized representation of a label where we
pool the representations of all the tokens anno-
tated with the label. Although performance of this
scheme is better than TransferBERT, comparing
with other schemes, we see that this model per-
forms poorly. Here no new information is added
to the model and the text that the label encoder
and document encoder encodes is similar. In order
to provide our model prior knowledge about the
label name from BERT encoder, we use LABEL
scheme. We see that this scheme performs better
than TOKEN across datasets suggesting that the
prior knowledge about label semantics helps to
improve performance.

One limitation with LABEL scheme is that the

replaced token is same for both B and I chunks in
BIO scheme. For example, to get contextualized
representation for B-PER in the document "Lionel
Messi is a soccer player", the document will be
transformed to "person person is a soccer player",
where B and I chunks are confused. "BIO-TAG :
LABEL" scheme addresses this by prefixing the nat-
ural language BIO chunk name to the label name.
We see improvements in performance compared
with LABEL scheme.

When we incorporate the “[MASK]” token from
BERT pretraining, we find that this does not per-
form as well as other schemes that contains label
names. This further prove that semantics in label
names is critical.
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C
oN

L
L

03

1 Shot 5 Shot 20 Shot 50 Shot
TransferBERT 47.6 ±15.5 69.9 ±6.0 80.1 ±1.7 85.1 ±1.1
Ours, label name only 69.0 ±6.9 78.6 ±1.8 82.1 ±1.5 85.9 ±1.2

TOKEN 60.1 ±16.8 75.0 ±4.2 80.0 ±1.8 84.3 ±1.1
LABEL 61.4 ±12.7 74.2 ±2.9 80.4 ±1.9 84.6 ±1.2
[MASK] 61.2 ±6.1 72.9 ±5.8 81.5 ±2.2 85.3 ±0.9
BIO-TAG : [MASK] 60.8 ±15.4 74.5 ±5.6 81.3 ±1.5 85.2 ±0.8
(BIO-TAG) [MASK] 66.8 ±6.7 74.6 ±7.0 81.6 ±1.8 85.3 ±1.0
BIO-TAG : LABEL 69.2 ±6.4 76.1 ±2.1 80.8 ±1.9 84.9 ±1.1
(BIO-TAG) LABEL 70.8 ±4.2 76.5 ±1.6 81.2 ±2.0 84.7 ±1.1

W
N

U
T

17

TransferBERT 35.6 ±11.2 44.7 ±5.6 50.3 ±1.7 51.7 ±1.9
Ours, label name only 48.3 ±1.7 51.2 ±1.4 53.2 ±1.1 54.1 ±1.3

TOKEN 42.8 ±12.3 49.9 ±1.9 53.1 ±1.8 53.9 ±1.8
LABEL 48.9 ±3.0 51.4 ±2.1 53.0 ±1.6 53.9 ±1.5
[MASK] 45.0 ±3.5 47.1 ±2.2 50.2 ±2.3 51.9 ±1.6
BIO-TAG : [MASK] 46.8 ±2.8 49.6 ±1.7 51.3 ±2.8 52.7 ±1.0
(BIO-TAG) [MASK] 45.6 ±4.8 48.5 ±2.6 51.2 ±2.7 52.6 ±1.7
BIO-TAG : LABEL 51.2 ±2.2 52.6 ±1.8 53.6 ±1.4 54.8 ±0.6
(BIO-TAG) LABEL 51.9 ±1.8 52.3 ±1.2 53.7 ±1.5 54.0 ±1.3

N
C

B
I-

di
se

as

TransferBERT 15.1 ±9.4 19.5 ±6.0 37.0 ±4.1 51.2 ±4.1
Ours, label name only 31.4 ±9.2 30.2 ±4.3 45.8 ±3.4 57.3 ±2.6

TOKEN 18.7 ±10.3 22.5 ±6.4 40.9 ±5.6 53.8 ±4.1
LABEL 26.9 ±8.3 28.7 ±4.2 40.2 ±3.7 52.3 ±2.9
[MASK] 18.1 ±9.6 22.2 ±4.0 38.2 ±5.3 53.0 ±4.0
BIO-TAG : [MASK] 17.7 ±10.0 22.3 ±4.2 40.0 ±4.5 52.1 ±3.7
(BIO-TAG) [MASK] 17.5 ±11.5 23.6 ±4.1 38.8 ±4.7 51.9 ±4.0
BIO-TAG : LABEL 26.8 ±7.4 26.2 ±3.8 42.0 ±4.1 54.4 ±3.4
(BIO-TAG) LABEL 26.8 ±9.2 26.7 ±3.3 43.9 ±3.8 54.6 ±3.3

JN
L

PB
A

TransferBERT 26.3 ±8.0 41.8 ±3.0 55.9 ±3.5 64.3 ±1.3
Ours, label name only 31.5 ±3.0 43.3 ±2.8 55.8 ±3.4 63.6 ±1.0

TOKEN 29.0 ±6.5 43.2 ±2.4 55.9 ±3.6 63.8 ±1.2
LABEL 28.4 ±4.3 40.8 ±2.5 54.3 ±3.4 62.5 ±1.3
[MASK] 25.4 ±6.5 36.5 ±2.2 51.0 ±3.7 60.2 ±1.5
BIO-TAG : [MASK] 24.9 ±5.1 36.0 ±2.5 50.5 ±4.2 60.5 ±1.7
(BIO-TAG) [MASK] 24.8 ±6.5 37.1 ±2.9 50.4 ±4.1 60.3 ±1.7
BIO-TAG : LABEL 30.4 ±4.6 41.9 ±2.5 55.5 ±3.3 62.9 ±1.1
(BIO-TAG) LABEL 30.1 ±3.2 41.4 ±2.2 55.1 ±3.2 62.8 ±1.5

FN
-P

er
so

n TransferBERT 13.2 ±5.0 24.0 ±7.4 48.7 ±3.4 66.9 ±3.0
Ours, label name only 32.5 ±8.1 51.0 ±7.0 66.2 ±2.0 72.0 ±0.7

(BIO-TAG) LABEL 29.0 ±7.2 50.6 ±6.3 66.2 ±2.0 71.2 ±0.9

FN
-A

rt TransferBERT 19.4 ±10.9 43.1 ±9.8 69.5 ±1.7 98.9 ±0.3
Ours, label name only 44.5 ±8.8 56.3 ±4.6 70.5 ±1.8 99.1 ±0.1

(BIO-TAG) LABEL 41.3 ±10.8 56.0 ±3.8 69.4 ±2.0 98.9 ±0.2

Table 10: Results on development set across all datasets. FN-Person = FEW-NERD-Person. FN-Art = FEW-NERD-
Art. All numbers indicate micro F1 scores and are average of 10 runs with different support set sampling.
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