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Abstract

We study how to enhance text representation
via textual commonsense. We point out that
commonsense has the nature of domain dis-
crepancy. Namely, commonsense has different
data formats and is domain-independent from
the downstream task. This nature brings chal-
lenges to introducing commonsense in general
text understanding tasks. A typical method
of introducing textual knowledge is continu-
ing pre-training over the commonsense corpus.
However, it will cause catastrophic forgetting
to the downstream task due to the domain dis-
crepancy. In addition, previous methods of di-
rectly using textual descriptions as extra input
information cannot apply to large-scale com-
monsense.

In this paper, we propose to use large-scale
out-of-domain commonsense to enhance text
representation. In order to effectively incor-
porate the commonsense, we proposed OK-
Transformer (Out-of-domain Knowledge en-
hanced Transformer). OK-Transformer ef-
fectively integrates commonsense descriptions
and enhances them to the target text repre-
sentation. In addition, OK-Transformer can
adapt to the Transformer-based language mod-
els (e.g. BERT, RoBERTa) for free, without
pre-training on large-scale unsupervised cor-
pora. We have verified the effectiveness of
OK-Transformer in multiple applications such
as commonsense reasoning, general text clas-
sification, and low-resource commonsense set-
tings. 1

1 Introduction

Although unsupervised language models have
achieved big success on many tasks (Devlin et al.,
2019), they are incapable of learning low-frequency
knowledge. For example, in the masked language
model task in Fig. 1, even if we replace “Kevin
was” (left) with “Jim was” (right), BERT (Devlin

1The code is available in https://github.com/
chenxran/ok-transformer

et al., 2019) still predicts the masked word as sick,
crying, dying, etc. This is because similar texts
in its training corpus rarely describe the subject
of “comforted”. To improve the model’s ability to
generalize and understand low-frequency knowl-
edge, we propose to incorporate commonsense into
language models. In Fig. 1, to make correct predic-
tions, we need to enhance the language model with
the commonsense c1.

However, commonsense has the nature of do-
main discrepancy. The downstream task and the
commonsense knowledge have distribution discrep-
ancies. Taking the commonsense knowledge base
we use (i.e. ATOMIC2020 (Hwang et al., 2020)) as
an example, the distribution discrepancy is specif-
ically manifested in (1) their data formats. The
format of a commonsense description usually be-
longs to some specific patterns (e.g. “... As a result
...”, “... Because ...”), while the downstream tasks
can have arbitrary patterns. (2) The commonsense
belongs to the domain of event causality, while the
downstream tasks may belong to arbitrary domains.

Here we highlight the challenges caused by the
domain discrepancy. To introduce external tex-
tual knowledge to a pre-trained language model, a
common practice is to continue pre-training the lan-
guage model on the corpus of the external knowl-
edge (Gururangan et al., 2020; Sun et al., 2019).
However, the study (Gururangan et al., 2020) also
found that continuing pre-training requires external
knowledge and downstream tasks to have similar
domains. Due to its domain discrepancy, introduc-
ing commonsense through continuing pre-training
will cause catastrophic forgetting to downstream
tasks, thereby injuring the effectiveness. We have
verified this empirically in Sec 6.3. Therefore, the
domain discrepancy prevents us from introducing
commonsense by continuing pre-training.

To enhance the representation of the target text
with external commonsense, we propose to directly
use its candidate commonsense as an extra input.
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Figure 1: The prediction of [MASK] by BERT. BERT cannot distinguish between Jim and Kevin in Jim comforted
Kevin because.

Our setup is different from a typical natural lan-
guage understanding setup since the latter one only
takes the target text as the input (Devlin et al.,
2019). We argue that our setup – where the com-
monsense is introduced explicitly as input – is a
more practicable setup to introduce out-of-domain
commonsense that cannot be learned through pre-
training. As far as we know, ExpBERT (Murty
et al., 2020) is the closest setup to us. It also uses ex-
ternal knowledge (manually constructed templates)
as the input.

Another challenge is the scale of the common-
sense. Although ExpBERT also allows extra tex-
tual commonsense as input, it only captures small-
scale commonsense with a fixed size. In addi-
tion, when we introduce commonsense from a
large-scale knowledge base for general purpose
(i.e. ATOMIC2020), unrelated commonsense (e.g.
c2 and c3 in Fig. 1) will certainly occur. How-
ever, ExpBERT lacks the ability to distinguish re-
lated and unrelated commonsense. Therefore, the
power of large-scale commonsense knowledge was
restricted in ExpBERT. We will verify this empiri-
cally in Sec 6.3.

In order to incorporate the large-scale out-
of-domain commonsense, we propose the OK-
Transformer (Out-of-domain Knowledge enhanced
Transformer) on the basis of Transformer (Vaswani
et al., 2017). OK-Transformer has two modules.
The knowledge enhancement module is used to
encode the target text with commonsense, and the
knowledge integration module is used to encode
and integrate all candidate commonsense. OK-
Transformer has two advantages. First, it fully
represents the contextual information of the tex-
tual commonsense. Second, it can be adapted to
existing pre-trained language models (e.g. BERT
and RoBERTa) for free. That is, we are able to

adapt OK-Transformer to the pre-trained language
models, without pre-training OK-Transformer over
large-scale unsupervised corpora from scratch.

Some other methods are related to our work,
such as introducing structured knowledge (Peters
et al., 2019; Zhang et al., 2019; Guan et al., 2020;
Zhou et al., 2018) and plain text knowledge (Guu
et al., 2020) in language models. These methods
do not represent the specific inductive bias of com-
monsense knowledge and therefore are not suitable
to introduce commonsense. We will compare these
studies with more details in Sec 2.

2 Related work

In this section, we compare different ways to in-
troduce knowledge into language models. We di-
vide the knowledge introduction methods into (1)
continuing pre-training method (Gururangan et al.,
2020; Sun et al., 2019) and (2) explicit introduction
in the downstream task (Guu et al., 2020; Murty
et al., 2020).

Continuing pre-training the language model is
effective when the external knowledge is similar
to the downstream task (Gururangan et al., 2020;
Sun et al., 2019). However, commonsense and
downstream tasks have domain discrepancies, so
continuing pre-training is unsuitable for introduc-
ing commonsense. We have empirically verified
this in Sec 6.3.

Introducing explicit knowledge in down-
stream tasks We classify the knowledge into struc-
tured knowledge, plain text, and semi-structured
knowledge, depending on its form. The entries
of structured knowledge are represented as in-
dividual embeddings (Peters et al., 2019; Zhang
et al., 2019; Guan et al., 2020; Zhou et al., 2018),
while commonsense descriptions in this paper can
be represented more accurately by the contextual

1747



information of their word sequences.

3 Problem Setup: Commonsense as the
Extra Input

We consider a text classification task where the text
x and its label y are provided for training. Assum-
ing that the candidate commonsense descriptions
for enhancing x come from a large-scale common-
sense knowledge base (i.e. ATOMIC2020), we
retrieve candidate commonsense for x as the extra
input. We denote the commonsense descriptions
for x as cs(x) = {c1 · · · cn}, where each ci is a
commonsense description. The retrieval process
will be shown in Sec 6. The model takes both x and
cs(x) as the input. Since ATOMIC2020 contains
if-then knowledge for general purposes, the prob-
lem setup can be expanded to a broad range of text
understanding tasks. The goal of training is to find
parameter θ that minimizes the loss of training ex-
amples given the texts and candidate commonsense
descriptions:

argminθE(x,y)∈trainL(f(x, cs(x)|θ), y) (1)

where f(·|θ) is the model taking x and cs(x) as
inputs, L is the loss function.

4 OK-Transformer

In this section, we propose OK-Transformer based
on Transformer to introduce extra commonsense
descriptions. We first show OK-Transformer on an
abstract level in Sec 4.1. Then we elaborate two
modules within it, i.e. knowledge enhancement
and knowledge integration, in Sec 4.2 and Sec 4.3,
respectively.

4.1 Framework
In this subsection, we show how our OK-
Transformer works at an abstract level. For the
target sentence x, OK-Transformer takes both x
and cs(x) as inputs. To incorporate all the in-
formation of x and cs(x), the OK-Transformer
contains three vanilla Transformers, denoted by
Transformer(1)(2)(3). The knowledge enhance-
ment module uses Transformer(1) to encode the
target text. Compared with the vanilla Trans-
former, Transformer(1) leverages a new knowl-
edge token to represent the commonsense that in-
teracts with other words. The knowledge inte-
gration module encodes each individual common-
sense description by Transformer(2), and then in-
tegrates all candidate commonsense descriptions
by Transformer(3). This is shown in Fig. 2.

…
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Add & Norm

Multi-Head
Attention

Transformer(1)

Add & Norm

Add & Norm

Multi-Head
Attention

Feed
Forward

x: Jim  comforted Kevin[k]
emb1 embnemb0

Null

q K V

[ki-1,Hi-1]
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[ki’,Hi’]

[ki,Hi]

c1: PersonX comfort PersonY to       keep   PersonY calm

Transformer(2)

Vanilla Transformer
… Transformer(2)

Vanilla Transformer

cn

Add & Norm

Feed
Forward

csemb

…

…

Figure 2: OK-Transformer. Transformer(1) encodes
the target text x with enhanced commonsense ki.
Transformer(2) encodes each individual commonsense
description. Transformer(3) integrates all candidate
commonsense descriptions and transfers knowledge to
Transformer(1).

4.2 Knowledge Enhancement Module
The knowledge enhancement module allows com-
monsense knowledge to enhance the representation
of the target text.

Interaction between words and common-
sense. We use Transformer(1) to represent the
interaction between words of the target text x.
In addition, we introduce a special token [k] to
represent the commonsense knowledge. We de-
note it as the knowledge token. Transformer(1)

encodes all words and the knowledge token to-
gether via multi-head attention. Formally, given
word sequence x = w1, · · · ,wn, Transformer(1)

accepts a sequence of n + 1 word-piece tokens:
[k], w1, · · ·wn. We denote the knowledge em-
bedding and word embeddings produced by the
i-th layer of Transformer(1) as ki ∈ Rd and
Hi ∈ Rn×d, respectively. The Transformer(1)

block first uses a multi-head self-attention layer
followed by a residual connection and a layer nor-
malization to model their interactions:

k′i,H
′
i = LayerNorm([ki−1,Hi−1]+

MultiHeadAttn([ki−1,Hi−1], [ki−1,Hi−1], [ki−1,Hi−1]))
(2)
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where [ki−1,Hi−1] ∈ R(n+1)×d means appending
ki−1 at the front of Hi−1. [ki−1,Hi−1] is used as
the query, key, and value in the multi-head atten-
tion.

Knowledge update The vanilla Transformer
projects k′i, H

′
i in Eq. (2) to the output space with

a multi-layer perceptron neural network (MLP).
Compared to the vanilla Transformer, we use an ex-
tra update operation to update the knowledge token
by the integrated commonsense knowledge after
the MLP. As in the vanilla Transformer, the update
layer is followed by a residual connection and a
layer normalization. This can be formulated by:

ki = LayerNorm(k′i +MLP(k′i) + csemb)

Hi = LayerNorm(H′i +MLP(H′i))
(3)

where csemb is the embedding of the commonsense
computed by the knowledge integration module in
Sec 4.3.

4.3 Knowledge Integration Module
The knowledge integration module encodes all can-
didate commonsense descriptions and integrates
them. We first use Transformer(2) to represent
each candidate commonsense description. Then,
we use Transformer(3) to integrate all candidate
commonsense, and transfer the integrated knowl-
edge to the knowledge enhancement module.

Representing single commonsense We use a
vanilla Transformer as Transformer(2) to model
each candidate commonsense description. For all
the retrieved commonsense cs(x) = {c1, · · · , cn},
we compute the embedding embj of each common-
sense description cj by:

embj = Transformer(2)(cj) (4)

Knowledge integration We integrate all can-
didate commonsense by Transformer(3). Since
not all the candidate commonsense leads to high
confidence prediction as we have discussed in
Sec 1, we need to select relevant commonsense
and ignore irrelevant commonsense. Transformer
is adequate to conduct this selection. Specifi-
cally, in the query-key-value mechanism in Trans-
former, we use the embedding of the knowl-
edge token in Transformer(1) as the query of
Transformer(3). and the commonsense embed-
dings by Transformer(2) as keys and values of
Transformer(3). Then, we integrate representa-
tions of all different commonsense descriptions
based on their similarities with the knowledge to-
ken.

Transformer(3) also uses multi-head attention
to allow the knowledge token to interact with the
candidate commonsense in multiple ways. The
output of multi-head self-attention is followed by a
residual connection and a layer normalization.

csemb =LayerNorm(ki−1

+MultiHeadAttn(ki−1, emb, emb))
(5)

where emb = [emb1, · · · , embn] denotes the se-
quence of embeddings of all candidate common-
sense descriptions. We then apply a residual con-
nection and a layer normalization to it.

Null Commonsense Some target texts may not
have valid commonsense from ATOMIC2020 to
enhance their representations. Therefore, we refer
to the settings of REALM (Guu et al., 2020) to
add a null commonsense into the candidate com-
monsense of all target texts. We denote the null
commonsense as c0. Matching to the null common-
sense indicates that the commonsense knowledge
base cannot help enhance the target text.

5 Adaptation to Pre-trained Language
Models

In this section, we take BERT as an example to
illustrate how we adapt OK-Transfomer to ex-
isting pre-trained language models. We denote
the adapted model as OK-BERT. An important
manifestation of the effectiveness of the Trans-
former structure is its applications in large-scale
pre-trained models (e.g. BERT, RoBERTa). In or-
der to introduce external knowledge, many other
studies conduct training over large-scale unsuper-
vised corpus (Peters et al., 2019; Xiong et al.,
2019). However, OK-Transformer is able to di-
rectly adapt to the existing pre-trained language
models for free. In other words, when adapting
OK-Transformer to OK-BERT, we directly use the
parameters of each Transformer layer of BERT to
initialize the OK-Transformer layers of OK-BERT.
This property greatly improves the applicability of
OK-BERT. In the rest of this section, we will de-
scribe how Transformer(1), Transformer(2), and
Transformer(3) are adapted respectively in Sec 5.1,
and how to fine-tune OK-BERT in Sec 5.2.

5.1 Layer-by-Layer Adaptation

The OK-BERT we designed uses two origi-
nal BERTs to serve as Transformer(1) and
Transformer(2), respectively. We denote them
as BERT1 and BERT2. We connect the
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Transformer(1) and Transformer(2) in the corre-
sponding layer of each BERT by Transformer(3).
Therefore, OK-BERT makes full use of the multi-
layer structure of BERT, while allowing common-
sense in the knowledge token to fully interact with
the target text in each layer. The architecture is
shown in Fig. 3.

i-th
layer

(i-1)-th
layer

Transformer(1)

Transformer(1)

Transformer(1) *12

…

… …

…

BERT1 BERT2

(i-1)-th
layer

Transformer(2)

Transformer(2) *12…

…

Transformer(2)

i-th
layer

Transformer(3) *12

Transformer(3)

i-th
layer

(i-1)-th
layer

Transformer(3)

Figure 3: The architecture of OK-BERT. We only draw
edges that connect to the i-th layer.

Transformer(1) We adapt the Transformer
of BERT1 to Transformer(1) in the knowl-
edge enhancement module of OK-Transformer.
Note that the original BERT’s tokens are
[CLS] w1 · · ·wL [SEP] (for a single sentence) or
[CLS] w1 · · ·wm [SEP] wm+1 · · ·wL [SEP] (for
a sentence pair). We follow (Wang et al.,
2020) and use a special token [k] as the knowl-
edge token. When tokenizing sentences, we
insert the [k] token after the [CLS] token
for each given text. In this way, the in-
put tokens become [CLS] [k] w1 · · ·wL [SEP] or
[CLS] [k] w1 · · ·wm [SEP] wm+1 · · ·wL [SEP] ,
respectively. This simple modification allows us to
use [k] as the knowledge token in the knowledge
enhancement module.
Transformer(2) We adapt each Transformer

layer of BERT2 to the Transformer(2) layer. The
adaptation is straightforward since Transformer(2)

uses the vanilla Transformer structure. We use the
encoding of the [CLS] token in each corresponding
layer as the commonsense representation embj to
enhance the representation of the corresponding
layer in BERT1.
Transformer(3) For each pair of correspond-

ing Transformer(1) and Transformer(2) from the
same layer, we use one Transformer(3) to connect
them to transfer the information from BERT2 to
BERT1.

In summary, when adapting to BERT-base
with 12 Transformer layers, OK-BERT con-

tains 12 Transformer(1) layers for BERT1,
12 Transformer(2) layers for BERT2, and 12
Transformer(3) layers for layer-wise knowledge
integration.

5.2 Parameter Initialization and Model
Training

In our implementation, BERT1 and BERT2 have
independent parameters. We use the parameters of
BERT to initialize both BERT1 and BERT2. The
parameters of Transformer(3) layers are randomly
initialized. For downstream tasks, we then fine-
tune all the parameters in the fashion of end2end.

6 Experiments

We evaluate the effectiveness of our proposed mod-
els in three scenarios: cloze-style commonsense
reasoning, text classification, and low-resource
commonsense settings. All the experiments run
over a computer with 4 Nvidia Tesla V100 GPUs.

Models We consider adapting OK-Transformer
to BERT and RoBERTa, which are denoted as OK-
BERT and OK-RoBERTa, respectively. We use the
BERT-base and RoBERTa-large from the Hugging-
Face Transformer library (Wolf et al., 2020).

Implementation details for candidate knowl-
edge retrieval For a given text x, we retrieve can-
didate commonsense from ATOMIC2020. We
use the if-then descriptions in ATOMIC2020 (e.g.
Fig. 1). Since these descriptions cover 173k differ-
ent verb phrases – one of the fundamental elements
of language – the retrieval is applicable to a broad
range of downstream text understanding tasks.

We use a simple retrieval method. We simply
consider word segments with window size 5 of the
input text x. All the commonsense descriptions
matching one of these text segments will be re-
garded as the candidate commonsense descriptions
ci ∈ cs(x).

6.1 Commonsense Reasoning

6.1.1 Setup
Datasets We consider the following commonsense
reasoning benchmarks: WSC273 (Levesque et al.,
2012), PDP (Morgenstern et al., 2016), Winogen-
der (Rudinger et al., 2018), WinoGrande (Sak-
aguchi et al., 2019), CommonsenseQA (Talmor
et al., 2019) and PhysicalQA (Bisk et al., 2020).

Model details Due to the different implemen-
tations between (Kocijan et al., 2019b) and (Sak-
aguchi et al., 2019), in this paper, we also follow
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their settings to compare with them, respectively.
For (Kocijan et al., 2019b), we conduct disambigua-
tion tasks directly through masked language mod-
eling in OK-BERT. For the latter one, we convert
cloze-style problems to multiple-choice classifica-
tion problems in OK-RoBERTa. In particular, we
replace the target pronoun of one query sentence
with each candidate reference, then put the new
sentences into the language model. We use a single
linear layer and a softmax layer over the encod-
ing of its [CLS] token to compute the probability
of each new sentence, and select the one with the
highest probability as the pronoun disambiguation
result.

Hyperparameters of pre-training We fol-
low (Kocijan et al., 2019b; Sakaguchi et al., 2019)
to first pre-train models for 30 and 3 epochs over
WSCR (Kocijan et al., 2019b) or WinoGrande (Sak-
aguchi et al., 2019), respectively. Then we fine-
tune models over specific tasks. We use AdamW
as the optimizer with learning rate 5e-6, which is
selected from {2e− 5, 1e− 5, 5e− 6}. We set the
batch size to 8.

Model WSC PDP
KEE(Liu et al., 2016) 52.8 58.3
WKH (Emami et al., 2018) 57.1 -
MAS (Klein and Nabi, 2019) 60.3 68.3
DSSM (Wang et al., 2019) 63.0 75.0
LM(Trinh and Le, 2018) 63.8 70.0
CSS (Klein and Nabi, 2020) 69.6 90.0
GPT2 (Radford et al., 2019) 70.7 -
BERT-large+WSCR (Kocijan et al., 2019b) 71.4 79.2
HNN (He et al., 2019) 75.1 90.0
Human (Sakaguchi et al., 2019) 96.5 92.5
BERT+WSCR 66.3 85.0
OK-BERT+WSCR 67.4 86.7
RoB.+WinoGrande 90.1 87.5
OK-RoB.+WinoGrande 91.6 91.7

Table 1: Results on WSC and PDP. RoB. denotes
RoBERTa.

Model WinoGen. WinoGran.
WikiCREM (Kocijan et al., 2019a) 82.1 -
WinoGrande (Sakaguchi et al., 2019) 94.6 79.3
BERT+WSCR 68.2 51.4
OK-BERT+WSCR 72.4 53.4
RoB.+WinoGrande 94.6 79.3
OK-RoB.+WinoGrande 96.2 79.6

Table 2: Results on WinoGender and WinoGrande.

6.1.2 Results
We compare our models with state-of-the-art com-
monsense reasoning models in Table 1, 2, and 3.

Model CommonsenseQA PhysicalQA
BERT 55.86 68.71
OK-BERT 56.27 69.09
RoBERTa 73.55 79.76
OK-RoBERTa 75.92 80.09

Table 3: Results on CommonsenseQA and Physi-
calQA.

It can be seen that our models outperform other
models in most settings. This verifies the effec-
tiveness of our proposed models for commonsense
reasoning.

Ablations In Table 1, 2, and 3 we also com-
pare OK-BERT with BERT. We found that OK-
BERT with OK-Transformers effectively improved
the accuracy of BERT with Transformers. Sim-
ilar results can be found between OK-RoBERTa
and RoBERTa. This shows that the proposed OK-
Transformer improves pre-trained language models
by adapting to them for free, i.e. without retraining
on large-scale unsupervised corpora.

6.2 General Text Classification

We use MRPC, CoLA, RTE, STS-B, SST-2, and
QNLI in the GLUE dataset (Wang et al., 2018)
to verify the effectiveness of the proposed models
on general text classification tasks. We did not
evaluate over MNLI, because our model needs to
represent the corresponding n commonsense for
each sentence, which is too costly for MNLI. We
believe that this efficiency problem can be solved
by further applying model compression (Iandola
et al., 2020), but this is beyond the scope of this
paper. It can be seen from Table 4 that OK-BERT
and OK-RoBERTa outperform their baselines.

6.3 Commonsense Introduction Methods

Continue pre-train In the introduction section, we
mentioned that a typical method of introducing tex-
tual knowledge is continuing pre-training (Guru-
rangan et al., 2020; Sun et al., 2019). However,
due to the domain discrepancy of commonsense,
this method will cause catastrophic forgetting. To
verify this intuition, in this subsection we com-
pare with the continuing pre-trained model. We
first continue pre-training the language model over
ATOMIC2020, then fine-tune it over the target task.

ExpBERT (Murty et al., 2020) We also com-
pare our OK-Transformer with ExpBERT, another
model that is able to introduce textual knowledge.
In Sec 1, we mentioned that ExpBERT is not appli-
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GLUE Task MRPC CoLA RTE QNLI STS-B SST-2
BERT 86.27/90.21 59.50 71.43 91.20 89.35/88.93 91.97
OK-BERT 87.25/90.84 58.29 73.65 91.58 89.82/89.46 93.69
RoBERTa 90.44/93.15 66.57 84.11 94.00 91.83/91.95 95.70
OK-RoBERTa 91.91/94.24 66.89 86.28 94.41 92.41/92.20 96.10

Table 4: Results on text classification tasks. Models are evaluated by the dev split from GLUE.

cable to large-scale commonsense knowledge bases
for its disability to select related commonsense and
ignore unrelated commonsense. To verify this, we
use the retrieved candidate commonsense descrip-
tions from ATOMIC2020 as the additional expla-
nations for ExpBERT. ExpBERT concatenates all
the embedding of a fixed number of commonsense,
which is inflexible for ATOMIC2020. For this rea-
son, we fix the number of commonsense to 48. If
there are more than 48 candidate commonsense
descriptions for one sample, we will randomly se-
lect 48 of them. Otherwise, we will pad null com-
monsense to it. In our experiments, we also apply
ExpBERT to RoBERTa (Liu et al., 2019) (i.e. Ex-
pRoBERTa).

We show the results in Table 5. We do not report
the results of ExpBERT on WSC273, as ExpBERT
cannot solve the cloze-style problems. It can be
seen that the performance of language models was
suffered when we simply continue pre-training the
models on the commonsense knowledge base. This
verifies that the continuing pre-training on the out-
of-domain commonsense will cause catastrophic
forgetting and injure the effectiveness. On the other
hand, using OK-Transformer to introduce common-
sense as the extra input significantly improves the
accuracy. The results also suggest that ExpBERT is
not applicable to large-scale commonsense knowl-
edge bases.

6.4 Why is OK-Transformer effective?

We now analyze why OK-Transformer can effec-
tively introduce out-of-domain commonsense with-
out pre-training. We are inspired by an observation
of language model fine-tuning LMs (Radiya-Dixit
and Wang, 2020), i.e., the parameters after fine-
tuning are close to those before fine-tuning. There-
fore, we argue that the key to effective introduction
is whether the parameters of the meta LM is good
initialization for the commonsense-enhanced LM,
that the parameters do not change much before and
after fine-tuning.

To verify this, we compare the parameter

Figure 4: L1 distances in parameter space between pre-
trained and fine-tuned meta LMs. We show the metrics
of WI across the 12 Transformer layers.
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Figure 5: Losses of dif-
ferent knowledge integra-
tion methods in SST-2.
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resource commonsense
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changes of different knowledge integration meth-
ods. These methods include (1) OK-Transformer,
(2) KnowBERT (Peters et al., 2019), (3) using
the original [CLS] token instead of the proposed
knowledge token, and (4) abandoning the knowl-
edge token and instead calculating the csemb of
each verb phrase of the target sentence separately,
and adding them to these verb phrases’ hidden
states in Hi−1. We follow (Radiya-Dixit and Wang,
2020) to use the L1 as the distance metric. (Radiya-
Dixit and Wang, 2020) found that the main change
in parameters occurs on theWI matrix of the Trans-
former. Our experimental results also follow this
phenomenon. Therefore, for greater clarity, we
only show the distances of the WI matrices after
fine-tune. We show the distances of different meth-
ods in Fig. 4, and their training losses in Fig. 5.
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MRPC CoLA RTE QNLI STS-B SST-2 WSC273
BERT 86.27/90.21 59.50 71.43 91.20 89.35/88.93 91.97 66.30
BERT-continue 83.58/88.81 54.70 62.09 90.24 87.41/87.46 91.74 63.00
ExpBERT 85.78/89.79 58.29 62.82 87.06 84.78/84.67 91.51 –
OK-BERT 87.25/90.84 58.29 73.65 91.58 89.82/89.46 93.69 67.40
RoBERTa 90.44/93.15 66.57 84.11 94.00 91.83/91.95 95.70 90.10
RoBERTa-continue 87.01/90.38 61.74 74.01 93.61 89.57/89.66 95.99 87.91
ExpRoBERTa 89.46/92.22 66.90 83.39 93.78 89.81/89.94 95.99 –
OK-RoBERTa 91.91/94.24 66.89 86.28 94.41 92.41/92.20 96.10 91.58

Table 5: Comparison of different commonsense introduction approaches. Continuing pre-training even injures the
effectiveness. On the other hand, using OK-Transformers to introduce external knowledge achieves better results
than using Transformer.

It can be seen that the distances of OK-
Transformer are much smaller than other methods,
except the [CLS] token method, which does not
converge as shown in Fig. 5. This fits our intuition
of reducing the parameter variations to introduce
external knowledge more effectively.

6.5 Effect in Low-Resource Commonsense
Settings

Since there is a large number of commonsense de-
scriptions in ATOMIC2020, a large portion of de-
scriptions only occur a few times in the training
set. In this subsection, we want to verify for these
rare descriptions, can the model still benefit from
it? If so, we think it means that the model uses
the contextual information of the commonsense to
improve the understanding of the commonsense.

To do this, we proposed a low-resource common-
sense setting. We evaluate the effect of the model if
the training dataset only contains k = 8/16/32/64
samples. Therefore the frequency of the appeared
commonsense descriptions is low. In order to ex-
clude the influence of other samples, we only use
test samples whose candidate commonsense de-
scriptions have already occurred in the k training
samples. For example, when k = 8, we randomly
select 8 samples from the training set for training,
and use all samples in the test set which contains
the commonsense of the 8 training samples for eval-
uation. We show the results over the SST-2 dataset
in Fig. 6. It can be seen that our models still benefit
from low-frequency commonsense.

6.6 Does OK-Transformer Provide
Interpretability?

In this subsection, we try to answer if the inte-
gration of candidate commonsense descriptions by

OK-Transformer is interpretable. To answer this
question, we calculate the influence of different
commonsense descriptions on the model’s predic-
tions. We follow (Wu et al., 2020) to quantify
the influence of a commonsense description ci as:
If ci is removed from cs(x), how much will the
prediction change? This change is measured by
the Euclidean distance between the prediction by
cs(x) − ci and by cs(x). The greater the change
in the prediction, the greater the influence of this
commonsense.

John promised Bill to leave, so an hour later [John] left.

PersonX promises PersonY.
1. · · · As a result, PersonX wants to fulfill his promise.
2. · · · PersonX is seen as truthful
3. · · · PersonX is seen as trustworthy.
4. · · · Before, PersonX needed to talk to PersonY.
5. · · · Before, PersonX needed to go to PersonY’s house.

Table 6: A case study of top 5 commonsense descrip-
tions.

Through the case studies of the samples in
WSC273, we found that although commonsense
with higher influence is somewhat interpretable for
people, the interpretability is not significant. We
show some examples in Table 6. We believe that
this is because some commonsense for people has
been learned in pre-training. Therefore, the out-
of-domain commonsense that these pre-trained lan-
guage models need to incorporate for downstream
tasks is inconsistent with human understanding.

7 Conclusion

In this paper, we study how to use commonsense
to enhance the general text representation. We first
analyzed the challenges brought by the domain dis-
crepancy of commonsense. Then, we propose OK-
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Transformer to allow commonsense integration and
enhancement. In the experiments, we verified the
effectiveness of our proposed models in a variety
of scenarios, including commonsense reasoning,
general text classification, and low-resource com-
monsense. Our models consistently outperform the
baselines. We have also empirically analyzed other
properties (e.g. interpretability) of the model.

Acknowledgments and Disclosure of
Funding

We thank Wenting Ba for her valuable plotting as-
sistance. This paper was supported by National Nat-
ural Science Foundation of China (No. 61906116),
by Shanghai Sailing Program (No. 19YF1414700).

References
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin

Choi, et al. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7432–7439.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL, pages 4171–4186.

Ali Emami, Adam Trischler, Kaheer Suleman, and
Jackie Chi Kit Cheung. 2018. A generalized knowl-
edge hunting framework for the winograd schema
challenge. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Student Research Work-
shop, pages 25–31.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Suchin Gururangan, Ana Marasović, Swabha
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A Experimentation Details

When continuing pre-training BERT-
continue/RoBERTa-continue in Table 5, we
follow (Kocijan et al., 2019b) and set learning rate
to 1e− 5, batch size to 64, and train the model for
only one epoch.

When fine-tuning the models in Sec 6.2 and
Sec 6.3, we train the models for 10 epochs. We
use grid search to select their learning rates and
batch sizes from {1e − 5, 2e − 5, 5e − 5} and
{8, 16, 32, 64}, respectively.
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Dataset WSC PDP WinoGender WinoGrande
Dataset size 273 60 720 40938/1267
Matched ratio 67% 83% 65% 71%
Average |cs(x)| 129.71 189.68 80.63 140.56
Average length of c 17.88 17.91 16.83 17.91

Table 7: Statistical results on commonsense reasoning datasets.

Dataset MRPC CoLA RTE QNLI STS-B SST-2
Dataset size 3668/408 8551/1043 2490/277 104743/5463 5749/1500 67349/872
Matched ratio 59% 40% 72% 52% 56% 25%
Average |cs(x)| 80.71 84.85 122.60 81.35 117.00 83.07
Average length of c 17.47 17.60 17.71 17.59 17.34 17.59

Table 8: Statistical results on sentence classification datasets.

B Statistics of Commonsense
Descriptions

In Table 7 and Table 8, we report statistics about
down-stream tasks and their commonsense descrip-
tions. Our report includes the size of the train/test
splits for the downstream tasks, the proportion of
samples that matched to at least one commonsense
description (Matched proportion) in each task, the
average number of matched commonsense descrip-
tions per sample (Average |cs(x)|), and the average
length of each matched commonsense description
(Average length of c).

From the results, we found that more than half of
the samples matched to at least one commonsense
description in most of the datasets. This indicates
that the OOD commonsense used in this paper is
generalizable to different datasets. Also, the aver-
age length of the matched commonsense descrip-
tions is short (about 17), thus encoding them via
Transformer is efficient.
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