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Abstract

The field of natural language processing (NLP)
has grown over the last few years: conferences
have become larger, we have published an in-
credible amount of papers, and state-of-the-art
research has been implemented in a large va-
riety of customer-facing products. However,
this paper argues that we have been less suc-
cessful than we should have been and reflects
on where and how the field fails to tap its full
potential. Specifically, we demonstrate that, in
recent years, subpar time allocation has been
a major obstacle for NLP research. We out-
line multiple concrete problems together with
their negative consequences and, importantly,
suggest remedies to improve the status quo. We
hope that this paper will be a starting point for
discussions around which common practices are
– or are not – beneficial for NLP research.

1 Introduction

Why did I get nothing done today? is a question many
people ask themselves frequently throughout their
professional careers. Psychologists agree on good
time management skills being of utmost importance
for a healthy and productive lifestyle (Lakei, 1973;
Claessens et al., 2007; Major et al., 2002, inter alia).
However, many academics and industry researchers
lack time management skills, working long days and
getting not enough done – not even the interesting
experiment they had wanted to start over a year ago.

In this position paper, we argue that natural lan-
guage processing (NLP) as a field has a similar
problem: we do not allocate our time well. Instead,
we spend it on things that seem more urgent than
they are, are easy but unimportant, or result in the
largest short-term gains. This paper identifies the
largest traps the authors believe the NLP community
falls into. We then provide, for each of the four iden-
tified problems (P1–P4), suggested remedies. While
we know that – just as for individuals – change takes
time, we hope that this paper, in combination with
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Figure 1: Avg. # of authors per paper; 2000–2021.

the EMNLP 2022 special theme Open questions,
major obstacles, and unresolved issues in NLP, will
ignite critical discussions.

Related Work Over the last couple of years, mul-
tiple papers have provided critical reflections on
the state of affairs in NLP research: Bender and
Koller (2020) criticizes the hype around language
models and argues, similarly to Bisk et al. (2020),
that true understanding is impossible when language
is detached from the physical world. In contrast,
Bowman (2022) talks about the risks associated with
underclaiming. Turning to evaluation, Bowman and
Dahl (2021) provides a critical view on benchmark-
ing, and Rodriguez et al. (2021) proposes ways to
improve leaderboards in order to truly track progress.
Other position papers discuss the importance of data
curation (Rogers, 2021) and the need for focusing
on the user for natural language generation (Dudy
et al., 2021; Flek, 2020). Bianchi and Hovy (2021)
identifies general concerning trends in NLP research.
Parcalabescu et al. (2021) discusses our use of the
term multimodality and proposes to use task-specific
definitions of multimodality in the machine learning
era. Church (2020) discusses downward trends in re-
viewing quality and whether these can be mitigated.
We add to those meta-level papers by discussing
subpar use of time as a major problem.

8959



2 What Is Going Wrong?

2.1 P1: Too Many Papers per Author

The Situation Publications in NLP are cheap
compared to many other fields: there is no need
to set up complicated real-world experiments (as,
e.g., in physics), existing data can be used for many
studies, and lately even much of the code we use is
readily available. Thus, the time from idea to final
paper can be extremely short. Some researchers
also split one substantial paper’s work into 2–5 less
dense and structurally similar papers.

Consequently, NLP researchers publish a lot: Rei1

finds that the 14 most productive first authors in NLP
published 9 (1 researcher), 6 (2 researchers), and 5
(11 researchers) papers in 2021. And this number
only counts the most prestigious conferences in NLP:
Google Scholar shows that, across all venues, the
first 3 authors published 16, 7, and 7 papers.

While some enjoy writing, many – especially
junior – NLP researchers feel external pressure to
publish in large volumes; quantity often overshad-
ows quality of publications for hiring decisions, and
PhD applicants struggle to find advisors if they do
not have multiple relevant publications.

Negative Consequences A straightforward conse-
quence of the pressure to publish is that much of an
NLP researcher’s time goes into writing: conserva-
tively assuming one week of full-time writing per
paper, the authors with the most papers respectively
spend 16, 7, and 7 weeks per year just writing; this
is nearly 1

3 of the most productive author’s year.
The second negative consequence is the time

needed to review this many papers: reviewing one
substantial paper would be quicker than reviewing 5
separate ones, especially if reviewers are not shared.
This lowers review quality, frustrates authors, and
causes errors to be missed. The latter then misin-
forms other researchers, also wasting their time.

Third, the ongoing race for publications makes
it difficult for researchers to stop and reflect on if
what they are currently working on is worthwhile. It
also leads to mixed feelings regarding the start of
ambitious, high-risk/high-reward research: many
researchers are scared away by the prospect of po-
tentially not obtaining their expected outcomes and
being unable to publish. Thus, the need to constantly
produce large quantities of output not only reduces
the quality of individual papers, but also hinders

1https://www.marekrei.com/blog/
ml-and-nlp-publications-in-2021/

meaningful progress of the field by encouraging the
pursuit of superficial research questions.

Finally, thorough scholarship is extremely diffi-
cult in this environment. This leads to all sorts of
shortcomings in NLP publications – missing refer-
ences, mathematical errors, and even nonsensical
experimental designs – which are then overlooked
by overworked reviewers (Church, 2020).

Suggested Remedies To change the state of the
field, we can either change our expectations or the
available opportunities. For the former, it is cru-
cial that quality is valued more than quantity for
hiring. To start, we recommend having reviews be
publicly available (as done, e.g., by the Conference
on Neural Information Processing Systems2), to help
people from adjacent fields understand the value
of a candidate’s publication. Another option is to
standardize requesting reviews from experts (in ad-
dition to letters of recommendation). To reduce the
opportunities for submitting large amounts of less
impactful papers, we could set an upper limit for the
number of (first-author) papers one can submit. This
could be a hard limit or a soft limit with a penalty for
too many low-quality submissions, such as blocking
papers with low average scores from resubmission
for a fixed period of time.3

2.2 P2: Too Many Authors per Paper

The Situation The second problem we highlight
is the inverse of the first: too many authors per
paper,4 given the strategies we employ to manage
collaborations. As shown in Figure 1, author lists
are, on average, becoming longer and longer: in
2000, the average number of authors on ACL and
EMNLP papers was 2.25 and, respectively, 1.97, but
that number had increased to 4.65 and, respectively,
4.49 in 2021. Large collaborations can greatly ad-
vance science and, if done well, are beneficial to all
participating researchers. However, they also pose
an unintended challenge: many times, each author’s
expected, as well as actual, contribution becomes
unclear. The former is often a consequence of a lack
of communication or team management skills. The
latter is the result of NLP not having a standardized
way to communicate each researcher’s contribution
to collaborative projects.

In a traditional two-author setting with a student

2https://neurips.cc
3This is current practice in TACL but not at conferences.
4Examples with >20 authors are Nan et al. (2021), Srivastava

et al. (2022), and Gehrmann et al. (2021, 2022).
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and their advisor, it is generally understood that
the student does most of the hands-on work and
their advisor guides the research and writing process.
However, with more authors, the situation becomes
less clear to both authors and readers.

Negative Consequences When expected contribu-
tions are unclear to the authors themselves, it is easy
to have too many cooks spoil the broth: e.g., one
author could write one section while one of their col-
leagues rewrites another section in a way that makes
combining them non-trivial and time-consuming.
Additionally, being vague about each author’s con-
tributions can lead to friction around authorship,
which take time as well as mental energy and a toll
on the relationship between two people; also, author-
ship discussions tend to disadvantage members of
underrepresented groups (Ni et al., 2021).

Worse, however, is a situation in which it is the
reader to whom it is not obvious what each authors’
contribution has been. Some researchers giving au-
thorship to people whose contribution was minimal
devalues the time and work of middle authors who
actually do contribute a lot.

Another problem with too many authors is that
miscommunication easily wastes time and resources.
For instance, it is easy to be inconsistent if experi-
ments are run by multiple researchers, who might
not use the same codebase.

Suggested Remedies In order to avoid situations
where the contributions of individual authors are un-
clear to the reader – and, thus, accurate assignment
of credit is impossible – we propose a straightfor-
ward solution that can completely eliminate this
negative consequence of large collaborations: pub-
lishing a contribution statement (Brand et al., 2015)
for each paper. This is common in other fields but
very rare in NLP (a notable exception is, e.g., Srivas-
tava et al. (2022)). Making a contribution statement
mandatory for NLP publications would be easy but
extremely effective.

For group management, setting expectations to-
gether and communicating the expected roles of all
involved parties, including the possible authorship
order can save time and energy toll.5 We suggest
that doing this right at the beginning of each col-
laborative project should become common practice
in NLP ("#EMNLP2022Rule"). However, it has
been shown that many principal investigators (PIs)

5Moster et al. (2021) offers insights on managing collabora-
tions adjusted to remote work conditions.

lack training in lab and personnel management skills
(Van Noorden, 2018). Thus, PIs and their research
groups would likely benefit from explicit training.
One possible way to achieve this could be to extend
existing mentoring initiatives at NLP conferences
to focus more on leadership skills. Another sug-
gestion mentioned by Van Noorden (2018) – which
we recommend for NLP – is that PIs should ask for
feedback from their groups more regularly.

2.3 P3: Gatekeeping

The Situation We do like unconventional top-
ics (e.g., the connection between synesthesia and
character-level NLP models (Kann and Monsalve-
Mercado, 2021)), and statements like "This work
is too interdisciplinary to get accepted" or "This
work would be better for a workshop on a specific
topic" are hardly ever true. However, reviewers in
NLP like papers that resemble those they themselves
have previously published. They only accept non-
mainstream submissions if they are written in a very
specific style: authors need to know how to pitch a
topic to the NLP community.

For readers new to publishing in NLP, here are
the basic guidelines we have found for getting a
paper accepted – many of which are nonsensical:
1) Your submitted paper should always have the exact
maximum number of pages – not a line more or less.
2) The first section should be called Introduction.
3) The last section should be called Conclusion – not
Discussion or similar. 4) You should have a figure
that is (somewhat) related to your paper’s content
on the top right corner of the first page. 5) You
should have equations in your paper – complicated
equations will increase your chances of acceptance
(Lipton and Steinhardt, 2019). 6) Do not explicitly
write out popular model equations, e.g., for the
LSTM (Hochreiter and Schmidhuber, 1997). 7) The
Related Work section should come immediately
before the Conclusion, to make your novelty seem
larger. 8) Do not present only a dataset—provide
empirical results, even if they are unimportant.

Negative Consequences This gatekeeping espe-
cially affects people whose research mentors are not
able to teach them the style of the NLP community:
1) people from universities with little experience
in NLP research, 2) researchers from countries not
traditionally part of the international NLP commu-
nity, and 3) people from adjacent fields, such as
psychology, social science, or even linguistics.

Thus, gatekeeping reinforces existing social in-
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equalities and harms our research progress, as we
get exposed to groundbreaking ideas later than nec-
essary – or never. It is also a huge waste of our
time: for instance, there is no reason why content
presented in 7.56 pages should be less impactful
than content presented in 8 pages. However, we, as a
community, make it an issue and cause researchers
to waste hours trimming or extending papers. Simi-
larly, we force people to waste their time thinking
about which equations they can put into a paper that
does not, in fact, benefit from them.

Suggested Remedies We argue that resolving
the problem of gatekeeping is crucial in order to
allow our field to grow in a healthy way. We make
two suggestions: 1) We need to explicitly educate
reviewers to not take superficial properties of papers
into account. This could be implemented, e.g., in
the form of mandatory training videos for all ACL
reviewers. However, this is a type of implicit bias
(Greenwald and Banaji, 1995) and we encourage
more discussion on possible solutions. 2) While
we are waiting for this to be effective, we need to
level the playing field by making unofficial rules
and tricks widely known. The easiest way would
be to publish explanations for first-time submitters
together with calls for papers. Mentoring programs
are great alternatives: while they are timewise costly
for individuals, they will, in the long run, save time
for the field as a whole.

2.4 P4: Missing the Point

The Situation NLP aims to build technology that
improves the lives of its end users. However, NLP re-
search is often purely technically driven, and actual
human needs are investigated little or not at all (Flek,
2020; Dudy et al., 2021); this is especially preva-
lent when building tools for communities speaking
low-resource languages (Caselli et al., 2021). This
can – and does – result in researchers focusing on
irrelevant problems. A similar problem is what we
call legacy research questions: research questions
that are motivated by problems or tools that are no
longer relevant. Examples pointed out by Bowman
(2022) are papers motivated by the brittleness of
question answering (QA) systems whose perfor-
mance has long been surpassed by the state of the art
or an analysis and drawing of conclusions based on
outdated systems like BERT (Devlin et al., 2019).6

6It is, of course, possible to perform interesting studies
involving older models. However, this requires well motivated
research questions.

To quantify this problem, we performed a case
study by randomly sampling and examining 30 pa-
pers from human-oriented tracks at EMNLP 2021.7

Only 3 papers engaged with users through evaluation
and only 2 papers grounded their research questions
in user needs; details can be found in Appendix A.

Last, looking at recent top-tier conferences in
the field of NLP, a substantial amount of papers
focus on what we call quick research questions, i.e.,
projects which maximize short-term gains for the
researcher(s): Baden et al. (2022) identify that the
majority of NLP research for text analysis is devoted
to “easy problems”, instead of aiming to “measure
much more demanding constructs.”

Negative Consequences Work that is missing the
point does not move the field in a meaningful direc-
tion. It wastes the researcher’s time by detracting
from topics that truly benefit the community, the pub-
lic, or the researcher themselves. Next, they waste
the reviewers’ time as well as the general reader’s
time by failing to provide insights. They also need-
lessly use computing resources, thus contributing to
the climate crisis (Strubell et al., 2019). Ignoring
user needs further dangerously bears the risk of
causing real harm to stakeholders (Raji et al., 2022).
Designing technology without the participation of
potential users has in the past led to spectacular
product failures (Johnson, 2021; Simon, 2020).

Finally, work on superficial research questions
can be fast and result in a large amount of research
output. In our current system that values quantity
over quality for hiring, researchers working on super-
ficial questions tend to have more successful careers.
This, in turn, encourages new researchers to also
waste their time by doing something similar.

Suggested Remedies It is important for NLP re-
searchers to engage more with the intended users
of the technology we build. This could be encour-
aged during the review process, e.g., with targeted
questions. Legacy research questions will need to be
detected during reviewing as well – raising aware-
ness of this phenomenon will likely reduce impacted
submissions and acceptance of papers focused on
legacy research questions alike. Regarding quick
research questions, one of the remedies suggested
for P1 could be a possible solution here as well:
moving towards valuing quality over quantity.

7The tracks we consider are: Machine translation and
Multilinguality, Dialogue and Interactive Systems, Question
Answering, and Summarization.
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3 Conclusion

In this paper, we outlined how several problem-
atic practices in NLP research lead to a waste of
the most important resource we have – our time –
and, thus, constitute major obstacles for NLP re-
search. We suggested multiple possible solutions to
existing problems. We hope to foster much-needed
discussion around how we, as a community, envision
moving forward in the face of these concerns.

Limitations

As we focus on time allocation, this is not an ex-
haustive list of problems we see in our research
community. However, other concerns are beyond the
scope of this work. Similarly, not all mentioned prob-
lems apply to all groups – it is, for instance, totally
possible that individual groups excel at managing
large collaborations.

We further do not claim that our suggested reme-
dies are perfect solutions. They come with their own
sets of challenges and should be implemented with
care: for instance, contribution statements could
unintentionally minimize contributions that do not
make it into the final paper. Additionally, we do
not claim to have listed all possible remedies for
the identified problems. By contrast, we explicitly
encourage other researchers to start discussing ways
to improve the status quo.
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela Gerz,
Paweł Budzianowski, Iñigo Casanueva, Nikola Mrkšić,
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A Appendix

In Table 1 we provide the analysis conducted on
selected EMNLP 2021 papers. Engaging with Users
indicates that researchers engage with humans, ei-
ther during the design phase or for evaluation. In
our analysis none of the papers engage with users
throughout the process, leaving humans only to the
evaluation part (3 papers). User-driven indicates that
the motivation is grounded in user needs (2 papers).
The following tracks are considered: session 1: track
A: Machine translation and multi-linguality 1, ses-
sion 3: track B: Dialogue and interactive systems 1,
session 4: track B: Dialogue and interactive systems
2, session 5: track A: question answering 1, session
6: track B: summarization, session 7: track A: ma-
chine translation and multi-linguality 2, session 7:
track B: question answering 2.
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Paper Engaging with Users User-driven

1 AligNART (Song et al., 2021) no no
2 Zero-Shot Cross-Lingual Transfer (Chen et al., 2021) no no
3 ERNIE-M (Ouyang et al., 2021) no no
4 Cross attention augmented transducer (Liu et al., 2021) no no
5 Translating Headers of Tabular Data (Zhu et al., 2021) no no
6 Towards Making the Most (Liang et al., 2021) no no
7 MindCraft (Bara et al., 2021) yes no
8 Detecting Speaker Personas (Gu et al., 2021) no no
9 Cross-lingual Intermediate Fine-tuning (Moghe et al., 2021) no no
10 ConvFiT (Vulić et al., 2021) no no
11 We’ve had this conversation before (Lavi et al., 2021) no no
12 Towards Incremental Transformers (Kahardipraja et al., 2021) no no
13 Feedback Attribution (Falke and Lehnen, 2021) no yes
14 CR-Walker (Ma et al., 2021) no no
15 Iconary (Clark et al., 2021) yes no
16 Improving Unsupervised Commonsense (Huang et al., 2021) no no
17 Cryptonite (Efrat et al., 2021) no no
18 Efficient Dialogue Complementary Policy Learning (Zhao et al., 2021b) yes no
19 End-to-End Learning of Flowchart (Raghu et al., 2021) no yes
20 Aspect-Controllable Opinion Summarization (Amplayo et al., 2021) no no
21 Finding a Balanced Degree of Automation (Zhang and Bansal, 2021) no no
22 BERT, mBERT, or BiBERT (Xu et al., 2021) no no
23 It Is Not As Good As You Think (Zhao et al., 2021a) no no
24 Robust Open-Vocabulary Translation (Salesky et al., 2021) no no
25 Universal Simultaneous Machine Translation (Zhang and Feng, 2021) no no
26 How much coffee was consumed (Kalyan et al., 2021) no no
27 Will this Question be Answered (Garg and Moschitti, 2021) no no
28 Continual Learning (Madotto et al., 2021) no no
29 Multilingual and Cross-Lingual Intent (Gerz et al., 2021) no no
30 Investigating Robustness of Dialog Models (Jhamtani et al., 2021) no no

Table 1: Our analysis of 30 randomly chosen papers from EMNLP 2021.
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