
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5848 - 5865
December 7-11, 2022 ©2022 Association for Computational Linguistics

GraphQ IR: Unifying the Semantic Parsing of Graph Query Languages
with One Intermediate Representation

Lunyiu Nie1, Shulin Cao1, Jiaxin Shi2, Jiuding Sun1,
Qi Tian2, Lei Hou1, Juanzi Li1, Jidong Zhai1

1 Department of Computer Science and Technology, Tsinghua University
2 Huawei Cloud Computing Technologies Co., Ltd.

{nlx20, caosl19, sjd22}@mails.tsinghua.edu.cn, shijx12@gmail.com,
tian.qi1@huawei.com, {houlei,lijuanzi,zhaijidong}@tsinghua.edu.cn

Abstract

Subject to the huge semantic gap between nat-
ural and formal languages, neural semantic
parsing is typically bottlenecked by its com-
plexity of dealing with both input semantics
and output syntax. Recent works have pro-
posed several forms of supplementary super-
vision but none is generalized across multiple
formal languages. This paper proposes a uni-
fied intermediate representation (IR) for graph
query languages, named GraphQ IR. It has a
natural-language-like expression that bridges
the semantic gap and formally defined syntax
that maintains the graph structure. Therefore, a
neural semantic parser can more precisely con-
vert user queries into GraphQ IR, which can
be later losslessly compiled into various down-
stream graph query languages. Extensive exper-
iments on several benchmarks including KQA
PRO, OVERNIGHT, GRAILQA and METAQA-
Cypher under standard i.i.d., out-of-distribution
and low-resource settings validate GraphQ IR’s
superiority over the previous state-of-the-arts
with a maximum 11% accuracy improvement.

1 Introduction

By mapping natural language utterances to log-
ical forms, the task of semantic parsing has been
widely explored in various applications, including
database query (Yu et al., 2018; Talmor and Be-
rant, 2018) and general-purpose code generation
(Yin and Neubig, 2017; Campagna et al., 2019;
Nan et al., 2020). Although the methodology has
evolved from earlier statistical approaches (Zettle-
moyer and Collins, 2005; Kwiatkowski et al., 2010)
to present Seq2Seq paradigm (Zhong et al., 2017;
Damonte and Monti, 2021), the semantic gap be-
tween natural language and logical forms still lies
as the major challenge for semantic parsing.

As shown in Figure 1, in graph query languages
(e.g., SPARQL, Cypher, Lambda-DCS, and newly
emerged KoPL, etc.), graph nodes, edges and their
respective properties constitute the key semantics

of the logical forms (Pérez et al., 2009), which are
very different from the expression of natural lan-
guage utterances. Such discrepancy significantly
hinders the learning of neural semantic parsers and
therefore increases the demand for labeled data
(Yin et al., 2022). However, due to the laborious
efforts and language-specific expertise required in
annotation, such demand cannot always be satisfied
and thus becomes the bottleneck (Li et al., 2020b;
Herzig et al., 2021).

To overcome these challenges, many works
adopt complementary forms of supervision, such as
the schema of database (Hwang et al., 2019), results
of the execution (Clarke et al., 2010; Wang et al.,
2018, 2021), and grammar-constrained decoding
algorithms (Krishnamurthy et al., 2017; Shin et al.,
2021; Baranowski and Hochgeschwender, 2021).
Although effective, the additional resources that
these methods rely on are not necessarily available
in practice. By normalizing the expression (Be-
rant and Liang, 2014; Su and Yan, 2017) or enrich-
ing the structure (Reddy et al., 2016; Cheng et al.,
2017; Hu et al., 2018) of natural language utter-
ances, another category of works proposes various
intermediate representations like AMR (Kapani-
pathi et al., 2021) to ease the parsing of complex
queries. However, the transition from their IRs
to the downstream logical forms may incur extra
losses in precision (Bornea et al., 2021). Besides,
these representations are usually coupled to spe-
cific data or logical forms and thus cannot be easily
transferred to other tasks or languages (Kamath and
Das, 2019).

In industry, aside from SPARQL, many other
graph query languages such as Cypher (Francis
et al., 2018) and Gremlin (Rodriguez, 2015) are
equally or even more commonly used in graph
database interaction (Angles, 2012; Seifer et al.,
2019). However, most graph query semantic pars-
ing works only support SPARQL (Talmor and Be-
rant, 2018; Dubey et al., 2019; Keysers et al., 2020)

5848

SPARQL: SELECT (COUNT(DISTINCT ?e) AS ?count) WHERE {
?e instance_of ?c . ?c name “film" .
?e director ?e_1 .
?e_1 name “Stanley Kubrick“ }

Cypher: MATCH (n1)-[:DIRECTOR]->(n2) WHERE
n1:Film AND n2.name=‘Stanley Kubrick’
RETURN COUNT(DISTINCT n1)

KoPL: Find(Stanley Kubrick).
Relate(director,backward).
FilterConcept(film).Count()

Lambda-DCS: (call @listValue (call .size (
(call @filter (call @getProperty
(call @singleton en.film)
(string ! type)) (string director)
(string =) (en.stanley_kubrick)))

GraphQ IR: how many
<ES>
<C> film </C> that <R> director </R>
forward to <E> Stanley Kubrick </E>

</ES>

User Query: What’s the total number of films directed by Kubrick?

Stanley Kubrick
gender = male;
country of citizenship = US;
date of birth = 26 Jul 1928;
place of birth = New York City;

A Clockwork Orange
genre = drama film;
publication date = 19 Dec 1971;
duration = 136 minute;

The Shining
genre = horror film;
publication date = 23 May 1980;
duration = 144 minute;

2001: A Space Odyssey
genre = adventure film;
publication date = 2 Apr 1968;
duration = 143 minute;

Christiane Kubrick
gender = female;
country of citizenship = Germany;
date of birth = 10 May 1932;

spouse
start time =14 Apr 1958;
end time =7 Mar 1999;

director

director

director

Concept: filmGraph Database

Figure 1: A a property graph extracted from Wikidata
(Vrandecic and Krötzsch, 2014). We present a relevant
user query with its corresponding logical forms in dif-
ferent query languages and in GraphQ IR.

while very few works target other graph query lan-
guages. Meanwhile, no existing tools or IR can
support the data conversion among multiple graph
query languages (Moreira and Ramalho, 2020;
Agrawal et al., 2022). Such lack of interoperability
has not only hindered the semantic parsing of low-
resource languages but also limited the potential
of querying heterogeneous databases (Mami et al.,
2019; Angles et al., 2019).

In this paper, we propose a unified intermediate
representation for graph query languages, namely
GraphQ IR, to resolve these issues from a novel
perspective. The designs of GraphQ IR weigh up
the semantics of both natural and formal language
by (a) producing the IR sequences with composi-
tion rules consistent with modern English (Tomlin,
2014) to close the semantic gap; and (b) maintain-
ing the fundamental graph structures like nodes,
edges, and properties, such that the IR can be au-
tomatically compiled into any downstream graph
query languages without any loss.

Instead of directly mapping the user query to
the logical form, we first parse natural language

into GraphQ IR, then compile the IR into the tar-
get graph query languages (e.g., SPARQL, Cypher,
Lambda-DCS, KoPL, etc.). Therefore, language-
specific grammar features that initially posed a
huge obstacle to semantic parsing are now explic-
itly handled by the compiler. Additionally, with the
GraphQ IR as a bridge, our implemented source-
to-source compiler can support lossless translation
among multiple graph query languages and thus
unify the annotations of different languages for
eliminating the data bottleneck.

To validate the effectiveness of GraphQ IR,
we conducted extensive experiments on bench-
marks KQA PRO, OVERNIGHT, GRAILQA and
METAQA-Cypher. Results show that our approach
can consistently outperform the previous works by
a significant margin. Especially under the compo-
sitional and few-shot generalization settings, our
approach with GraphQ IR can demonstrate a maxi-
mum 11% increase in accuracy over the baselines.

The main contributions of our work include:

• We propose GraphQ IR for unifying the se-
mantic parsing of graph query languages and
present the IR design principles that are criti-
cal for bridging the semantic gap;

• Experimental results show that our approach
can consistently achieve state-of-the-art per-
formance across multiple benchmarks under
the standard i.i.d, out-of-distribution, and low-
resource settings.

• Our implemented source-to-source compiler
unlocks data interoperability by supporting
the bi-directional translation among different
graph query languages. The code and toolkit
are publicly available at https://github.
com/Flitternie/GraphQ_IR.

2 GraphQ IR

In this section, we formalize the grammar and
the expressiveness of our GraphQ IR based on
the definition of property graph and regular path
query. Then we summarize the design principles of
GraphQ IR for bridging the semantic gap between
natural and formal language as well as unifying
different graph query languages.

2.1 Definition

As the top of Figure 1 demonstrates, a graph
database can be expressed as a collection of prop-
erty graphs that include Entity (graph nodes, e.g.,

5849

https://github.com/Flitternie/GraphQ_IR
https://github.com/Flitternie/GraphQ_IR

Stanley Kubrick), Attribute (node properties, e.g.,
date of birth), Concept (node label, e.g., film), Re-
lationship (graph edges, e.g., spouse) and Quali-
fier (edge properties, e.g., start time).

Therefore, to evaluate the expressiveness of
GraphQ IR, we start by giving the definition of
property graph: a directed labeled multigraph
where each node or edge can contain a set of
property-value pairs (Angles, 2018).

Definition 1 (Property graph). A property graph
G is a tuple (N , E, ρ, λ, σ) where:
(1) N is a finite set of nodes.
(2) E is a finite set of edges such that N ∩E = ∅.
(3) ρ : E → (N ×N) is a total function. Specif-
ically, ρ(e) = (n1, n2) refers e is a directed edge
from node n1 to n2.
(4) λ : (N ∪E) → L is a partial function where L
is a set of labels. Specifically, if λ(n) = l then l is
the label of node n.
(5) σ : (N ∪ E) × P → V is a partial function
with P a set of properties and V a set of values V .
Specifically, if σ(n, p) = v then the property p of
node n has value v.

Subsequently, a graph path can be expressed
as π = (n1, e1, ..., ek−1, nk) where k ≥ 1 with
each ei being the edge between ni and ni+1. The
spelling of path, denoted as λ(π), is the concate-
nation of edge labels λ(e1)...λ(ek−1) (Mendelzon
and Wood, 1995; Baeza, 2013).

Definition 2 (Regular path query). A regular path
query has the general form Q = x

α−→ y where x
denotes the start point, α is a regular expression
defined over λ(π), and y denotes the endpoints of
the query.

By incorporating ρ, λ, σ and their inverse func-
tion ρ−1, λ−1, σ−1, such regular path query can be
extended to support navigational queries towards
any graph elements ψ ∈ (N ∪ E ∪ L ∪ P ∪ V)
(Wood, 2012; van Rest et al., 2016). We can now
evaluate the expressiveness of a language.

Definition 3 (Path query expressiveness). A path
query q is expressible in a language L, if there
exists an expression ε ∈ L such that, for any sub-
graph G′ ⊆ G, we have ε(G′) = q(G′) (Fletcher
et al., 2015).

We formalize GraphQ IR as a context-free gram-
mar (V,Σ,S,P) and present its non-terminals and
productions in Appendix Table 7. Its V and P are
respectively defined as the superset of the terminal
set (n, e, l, p, v) and production set (ρ, λ, σ, ρ−1,

λ−1, σ−1) of regular graph query. Therefore, all
path queries expressible in regular grammar are
also expressible in the context-free grammar of
GraphQ IR (Hopcroft et al., 2007). Furthermore,
GraphQ IR also supports extended operations like
Union, Difference and Filter to express complex
graph query patterns (Angles et al., 2017).

Empirically, GraphQ IR can express all graph
query patterns that appeared in benchmarks KQA

PRO, OVERNIGHT, GRAILQA and METAQA-
Cypher, with details elaborated in Section 4.1.

2.2 Principles

We summarize several principles in designing
GraphQ IR in this way: present in a syntax close
to natural language while preserving the structural
semantics equivalent to formal languages.

2.2.1 Diminishing syntactical discrepancy
To facilitate the training of the neural semantic

parser, the target IR sequence should share a similar
syntax in correspondence to the input utterance.

To achieve this, the IR structure should first
match how users typically raise queries. There-
fore, we simplify the triple-based structure in
graph query languages into a more natural subject-
verb-object syntactic construction (Tomlin, 2014).
Take Figure 1’s task setting as an example, the
two triples (?e instance_of ?c) and (?c
name “film”) as the entity concept constraint
in SPARQL are simplified to the sentence subject
“<C> film </C>” in GraphQ IR. Multi-hop relation-
ship and attribute queries are formulated as relative
clauses similar to the English expression and thus
can be comfortably generated by a language-model-
based neural semantic parser.

Secondly, IR should also leave out the variables
(e.g., ?e, ?c in SPARQL) and operators (e.g.,
SELECT, WHERE, RETURN, etc.) in logical forms
that cannot be easily aligned to natural language
utterances. Alternatively, human-readable opera-
tors are adopted in GraphQ IR, as illustrated in
Appendix Table 7.

2.2.2 Eliminating semantic ambiguity
In formal languages, multiple parallel implemen-

tations can achieve the same functionalities. How-
ever, such redundancy and ambiguity in semantics
may pose challenges to the neural semantic parser.

For example, in Lambda-DCS, there co-exist
three implementations for constraining one’s con-
cept (e.g., Kobe is a player), respectively through:

5850

GraphQ IR

Natural
Language
Utterance

Semantic Parser

Bidirectional Encoder

Autoregressive Decoder

BART

“Tell me the
longest film
that involves
Conrad Buff as
a film editor.”

which one has the largest <A> duration
 among <ES> <C> film </C> that

<R> film editor </R> forward to
<E> Conrad Buff IV </E> </ES>

SELECT ?e WHERE { ...
?e duration ?pv . ?pv value ?v . }
ORDER BY DESC(?v) LIMIT 1

Find(Conrad Buff IV).
Relate(film editor,backward) ...
Select(duration,largest,1,0).What()

Match (n1:Film)-[:FILM_EDITOR]->(n2)
WHERE ... RETURN n1.name
ORDER BY n1.duration DESC LIMIT 1

Graph Query LanguagesCompiler

LARGEST

filterByRank entitySet

duration film

predicate direction entity

Conrad Buff IV film editor FORWARD

filterByPredicateconcept entitySetattributeSOP

Query
AST

Code Generation

Lexer & Parser SPARQL

Cypher

KoPL

Lambda-DCS, Gremlin, etc.

Figure 2: Overall implementation of our proposed framework. The user queries are first converted to GraphQ IR
sequences by a semantic parser and subsequently transpiled into the target graph query languages by a compiler.

• EventNP:(call @getProperty
(en.player.kobe_bryant) (call
@reverse (string player)));

• TypeNP:(call @getProperty (call
@singleton (en.player))
(string !type)); and

• DomainNP:(call @getProperty
(en.player.kobe_bryant
... (call @domain (string
player))) (string player)).

When designing an IR, such redundant and am-
biguous semantics should be clarified into more
definitive and orthogonal representations (Cam-
pagna et al., 2019). Thus in GraphQ IR, we unify
all such unnecessary distinctions and prune redun-
dant structures in logical forms to distill the core
semantics. In the previous example, GraphQ IR
only requires a simple noun modifier “<C> player
</C>” as the concept constraint. This not only
makes the language clearer for users and semantic
parsers to comprehend, but also facilitates the next-
step compilation from the IR to the downstream
formal language.

2.2.3 Maintaining graph structural semantics
In addition to the aforementioned designs to im-

prove alignment with natural language, the syntax
of IR also needs to maintain the key structures of
graph queries for subsequent lossless compilation.

Specifically, IR should keep track of the data
types of graph structural elements. We design
GraphQ IR to be strong-typing by explicitly stat-
ing the type of terminal nodes with respective
special tokens, e.g., <E> for Entity, <R> for
Relation, <A> for Attribute, etc. Values of

different types are also differentiated in GraphQ IR
with our pre-defined or user custom indicators, e.g.,
string, number, date, time, etc.

Furthermore, IR should also preserve the hierar-
chical dependencies that are critical for multi-hop
queries. We introduce <ES> as a scoping token
in GraphQ IR to explicitly indicate the underly-
ing dependencies among the clauses produced by
an EntitySet, as shown in Appendix Table 7.
Such scoping tokens in GraphQ IR can facilitate
the compiler to recover the hierarchical structure
and finally convert the IR sequences into one of the
graph query languages deterministically.

3 Implementation

We depict the full picture of our proposed frame-
work in Figure 2. The neural semantic parser
first maps the input natural language utterance into
GraphQ IR. Thereafter, the GraphQ IR sequence
is fed into the compiler and parsed into an abstract
syntax tree for downstream graph query language
code generation.

3.1 Neural Semantic Parser

To verify the above principles in practice, we
formulate the conversion from natural language to
our GraphQ IR as a Seq2Seq task and adopt an
encoder-decoder framework for implementing the
neural semantic parser.

As shown in the left part of Figure 2, the encoder
module of the semantic parser first maps the input
natural language utteranceX to a high dimensional
feature space with non-linear transformations for
capturing the semantics of the input tokens. The de-
coder module subsequently then interprets the hid-
den representations and generates the IR sequence

5851

by factorizing the probability distribution:

p(IR) =
n∏

i=1

P (yi|X, y1, ..., yi−1), (1)

where yi is the i-th token of IR sequence with in
total n tokens. Specifically, we implement this
encoder-decoder network with BART (Lewis et al.,
2020), a pretrained language model that is profi-
cient in comprehending the diverse user utterances
and generating the GraphQ IR sequences that are
structured in natural-language-like expressions.

Please note that the implementation in this part is
orthogonal to our GraphQ IR and can be substituted
by other semantic parsing models.

3.2 Compiler

The implementation of GraphQ IR’s compiler
comprises a front-end module that generates an
abstract syntax tree from the IR sequence and a
back-end module that transforms the tree structure
into the target graph query language.

The compiler front-end is responsible for per-
forming the lexical and syntax analysis on the IR
sequence. The lexer first splits the sequence into
lexical tokens, which are subsequently structured
into a parse tree with LL(*) parsing strategy (Parr,
2013) according to the pre-defined grammar in Sec-
tion 2.1. As such, GraphQ IR sequence can be
automatically constructed into an abstract syntax
tree (AST) that contains syntactic dependencies
and hierarchical structures.

The compiler back-end will then traverse the ab-
stract syntax tree and restructure the nodes and de-
pendencies into one of the downstream graph query
languages. We formalize the code generation as
a tree mapping process, where the subtrees carry-
ing equivalent information are aligned according to
pre-defined transformation rules. To illustrate, we
present 2 examples of generating SPARQL and
Lambda-DCS queries respectively in Appendix
Figure 5 and Figure 4.

Similarly, we also implement the compiler that
supports conversion from graph query languages to
GraphQ IR. Thus, with the IR as a middleware, our
toolkit can also achieve the transpilation between
any two graph query languages supported.

4 Experiments

In this section, we evaluate GraphQ IR on several
benchmarks under different task settings.

4.1 Datasets

For evaluation, we test on benchmarks KQA

PRO, OVERNIGHT, GRAILQA and METAQA-
Cypher that altogether cover graph query languages
SPARQL, KoPL, Lambda-DCS, and Cypher.

In all experiments, the GraphQ IR sequences
are automatically converted from the original log-
ical forms of the respective datasets by the bi-
directional compiler without extra re-annotation.

KQA Pro KQA PRO (Cao et al., 2022a) is a large-
scale dataset for complex question answering over
Wikidata knowledge base (Vrandecic and Krötzsch,
2014). It is the largest KBQA corpus that contains
117,790 natural language questions along with the
corresponding SPARQL and KoPL logical forms,
covering complex graph queries involving multi-
hop inference, logical union and intersection, etc.
In our experiment, it is divided into 94,376 train,
11,797 validation, and 11,797 test cases.

Overnight OVERNIGHT (Wang et al., 2015) is
a semantic parsing dataset with 13,682 examples
across 8 sub-domains extracted from Freebase (Bol-
lacker et al., 2008). Each domain has natural lan-
guage questions and pairwise Lambda-DCS queries
executable on SEMPRE (Berant et al., 2013). It ex-
hibits diverse linguistic phenomena and semantic
structures across domains, e.g., temporal knowl-
edge in CALENDAR domain and spatial knowledge
in BLOCKS domain. We use the same train/val/test
splits as in the previous work (Wang et al., 2015).

GrailQA GRAILQA (Gu et al., 2021) is a knowl-
edge base question answering dataset with 64k
questions grounded on Freebase (Bollacker et al.,
2008) that evaluate generalizability at three levels,
i.e., i.i.d, compositional generalization and zero-
shot. To focus on the sole task of semantic pars-
ing, we replace the entity IDs (e.g., m.06mn7)
with their respective names (e.g., Stanley
Kubrick) in GRAILQA’s logical forms, thus
eliminating the need for an explicit entity linking
module as in previous works (Chen et al., 2021; Ye
et al., 2022). Since GRAILQA’s test set is not pub-
licly available for such transformation, we report
the validation set results for our evaluation, which
have been studied to show consistent trends with
the test set (Gu and Su, 2022).

MetaQA-Cypher METAQA (Zhang et al., 2018)
contains more than 400k multi-hop QA pairs
over WikiMovies knowledge base (Miller et al.,

5852

Multi-hop Qualifier Comparison Logical Count Verify Zero-shot Overall

Baselines
RGCN (Schlichtkrull et al., 2018) 34.00 27.61 30.03 35.85 41.91 65.88 - 35.07
BART+SPARQL (Cao et al., 2022a) 88.49 83.09 96.12 88.67 85.78 92.33 87.88 89.68
BART+KoPL (Cao et al., 2022a) 89.46 84.76 95.51 89.30 86.68 93.30 89.59 90.55
CFQ IR (Herzig et al., 2021) 87.51 81.32 95.70 90.33 86.23 92.20 87.12 88.96
Our Approach
GraphQ IR 90.38 84.90 97.15 92.64 89.39 94.20 94.20 91.70

Table 1: Test accuracies on KQA PRO dataset. Data are categorized into MULTI-HOP queries with multi-hop
inference, QUALIFIER knowledge queries, COMPARISON between several entities, LOGICAL union or intersection,
COUNT queries for the quantity of entities, VERIFY queries with a boolean answer, and ZERO-SHOT queries whose
answer is not seen in the training set.

Bas. Blo. Cal. Hou. Pub. Rec. Res. Soc. Overall

Baselines
SPO (Wang et al., 2015) 46.3 41.9 74.4 54.0 59.0 70.8 75.9 48.2 58.8
CrossDomain* (Su and Yan, 2017) 88.2 62.2 82.1 78.8 80.1 86.1 83.7 83.1 80.6
Seq2Action (Chen et al., 2018a) 88.2 61.4 81.5 74.1 80.7 82.9 80.7 82.1 79.0
DUAL (Cao et al., 2019) 84.9 61.2 78.6 67.2 78.3 80.6 78.9 81.3 76.4
2-stage DUAL* (Cao et al., 2020) 87.2 65.7 80.4 75.7 80.1 86.1 82.8 82.7 80.1
Our Approach
GraphQ IR 88.2 64.7 78.6 72.0 77.6 83.3 84.9 81.6 79.5
GraphQ IR* 88.2 65.4 81.6 81.5 82.6 92.9 89.8 84.1 82.1

Table 2: Test accuracies on OVERNIGHT dataset. Methods with asterisk (*) involve cross-domain training.

2016). Many studies have previously worked on
its SPARQL annotation (Huang et al., 2021). In-
stead, we reconstruct METAQA into Cypher as a
few-shot learning benchmark to evaluate the inter-
operability achieved by GraphQ IR. To the best of
our knowledge, this is also the first Cypher dataset
in the community of semantic parsing.

4.2 Metric

We adopt execution accuracy as our metric based
on whether the generated logical form queries can
return correct answers. For queries with multiple
legal answers, we require the execution results to
exactly match all ground-truth answers.

4.3 Results

I.I.D. Generalization As Table 1 illustrates, on
KQA PRO, our proposed approach with GraphQ IR
consistently outperforms the previous approaches
on all query categories. In particular, GraphQ IR
exhibits good generalization under the complex
MULTI-HOP, QUALIFIER and ZERO-SHOT settings
with even larger margins over the baselines. We
attribute this to its natural-language-like represen-
tations that effectively close the semantic gap and
its formally-defined syntax that can be losslessly
converted into downstream languages.

As for OVERNIGHT, our methods also signifi-
cantly surpass the baselines as shown in Table 2.

I.I.D. CG Zero-shot Overall

Models with entity linking
Gu et al. (2021) 58.6 40.9 51.8 51.0
Ye et al. (2022) 86.7 61.7 68.8 71.4

Models without entity linking
BART 81.1 31.6 3.6 28.1
CFQ IR 86.8 46.6 5.3 34.0
GraphQ IR 87.4 49.5 9.6 36.9

Table 3: Validation results on GRAILQA’s i.i.d, com-
positional generalization and zero-shot data splits. The
results of two groups of methods (i.e., with/without en-
tity linking) are not fully comparable.

Previous works usually train separate parsers for
each of the eight domains due to their distinct vo-
cabularies and grammars (Wang et al., 2015; Chen
et al., 2018a). With an extra layer of GraphQ IR
for unification, domain-specific data are now con-
solidated into one universal representation, and the
training of one domain can thereby benefit from
the others. Consequently, GraphQ IR* that gets
trained on the aggregate data of all eight domains
demonstrates the best results.

OOD Generalization Current neural seman-
tic parsers often fail in generalizing to out-of-
distribution (OOD) data (Pasupat and Liang, 2015;
Keysers et al., 2020; Furrer et al., 2020). There-
fore, we experiment on GRAILQA, a dataset that

5853

75 50 25 0 25 50 75 100

80

60

40

20

0

20

40

60

NL
GraphQ IR
SPARQL
KoPL

(a) Embedding visualization on KQA PRO.

80 60 40 20 0 20 40 60

80

60

40

20

0

20

40

60

NL
GraphQ IR
-DCS

(b) Embedding visualization on OVERNIGHT.

Figure 3: t-SNE visualization of the sequence embeddings of the natural language utterance, GraphQ IR and
downstream graph query languages that are randomly sampled from the validation set of KQA PRO and OVERNIGHT.

1-shot 3-shot 5-shot

BART 73.93 91.99 94.37
GraphQ IR 72.05 93.73 95.16
GraphQ IR* 84.91 95.31 96.13

Table 4: Few-shot learning results on METAQA-Cypher
dataset. GraphQ IR* model has formerly trained on
KQA PRO dataset prior to the few-shot fine-tuning.

specifically stresses non-i.i.d. generalization.
We present the results in Table 3. Among the

models without explicit entity linking modules,
compared with the BART baseline that directly
maps to the logical forms and the CFQ IR (Herzig
et al., 2021) that particularly aims at SPARQL com-
positional generalization, GraphQ IR achieves the
best overall performance and performs remarkably
well also in compositional generalization and zero-
shot data splits. This can be credited to our IR de-
signs that clarify the redundant semantics and main-
tain the key hierarchical structure where its com-
ponents can be flexibly combined or decomposed
according to the pre-defined production rules.

Low-resource Generalization To verify whether
GraphQ IR can aid the semantic parsing of low-
resource languages, we reconstruct the METAQA
dataset into Cypher, a graph query language com-
monly used in the industry but rarely studied in pre-
vious semantic parsing works (Seifer et al., 2019).
To simulate the low-resource scenario, we adjust
the data split to ensure that only 1, 3, and 5 sam-
ples of each question type appear in the training set
under the 1-, 3-, and 5-shot settings.

The results in Table 4 indicate that our meth-
ods can remain robust under a low-resource setting

NL ⇔ IR

KQA PRO
NL ⇔ SPARQL -25.28%
NL ⇔ KoPL -16.57%

OVERNIGHT NL ⇔ Lambda-DCS -15.80%

Table 5: Semantic distance between natural language
utterances and GraphQ IR (i.e., NL ⇔ IR) relatively
compared to the distance between natural language ut-
terances and specified logical forms.

with strong few-shot generalization. Specifically,
the GraphQ IR* model that has in advance trained
on KQA PRO (a dataset annotated in SPARQL and
KoPL) demonstrates the most outstanding perfor-
mance on METAQA-Cypher, especially under the
most challenging 1-shot setting. Previous works in
semantic parsing usually target a specified type of
logical form and neglect the data interoperability
across languages. With the GraphQ IR as a bridge,
low-resource query languages can now leverage
data from other languages. A universal semantic
parser that can end-to-end support different lan-
guages also becomes possible.

5 Discussion

To further explore the reasons behind the supe-
rior performance of our methods, we compute and
visualize the semantic distance between the natural
language utterances and their corresponding logical
forms or GraphQ IR.

Specifically, to simulate how a neural semantic
parser processes the sequences in the above ex-
periments, we use a pretrained BART-base model
without fine-tuning to obtain the contextualized em-
beddings (Li et al., 2020a). For each sequence, we

5854

Error Type # # OSC Example

Inaccurate data
annotation

28 -

User utterance: Out of newscasts that last 110 minutes, which is the shortest?
Gold SPARQL: SELECT ?e WHERE { ?e instance_of ?c . ?c name "newscast" . ?e duration ?pv_1 .
?pv_1 unit "minute" . ?pv_1 value ?v_1 . FILTER (?v_1 != "110"^^xsd:double) . ?e
duration ?pv . ?pv value ?v } ORDER BY ?v LIMIT 1
Generated IR: which one has the smallest <A> duration among <ES> <C> newscast </C> whose <A>
duration is number <V> 110 minute </V> </ES>
Compiled SPARQL: SELECT ?e WHERE { ?e instance_of ?c . ?c name "newscast" . ?e duration ?pv_1
. ?pv_1 unit "minute" . ?pv_1 value "110"^^xsd:double . ?e duration ?pv . ?pv value ?v }
ORDER BY ?v LIMIT 1

Ambiguous
query
expression

27 27

User utterance: How is the kid’s movie The Spiderwick Chronicles related to John Sayles?
Gold SPARQL: SELECT DISTINCT ?p WHERE { ?e_1 name "The Spiderwick Chronicles" . ?e_1 genre
?e_3 . ?e_3 name "children’s film" . ?e_2 name "John Sayles" . ?e_1 ?p ?e_2 }
Generated IR: what is the relation from <ES> <E> The Spiderwick Chronicles </E> (<ES> ones that
<R> genre </R> backward to <E> kid film </E> </ES>) </ES> to <E> John Sayles </E>
Compiled SPARQL: SELECT DISTINCT ?p WHERE { ?e_1 name "The Spiderwick Chronicles" . ?e_1 genre
?e_3 . ?e_3 name "kid film" . ?e_2 name "John Sayles" . ?e_1 ?p ?e_2 }

Unspecified
graph structure

13 9

User utterance: When did Tashkent become the capital of Uzbekistan?
Gold SPARQL: SELECT DISTINCT ?qpv WHERE { ?e_1 name "Tashkent" . ?e_2 name "Uzbekistan" .
?e_1 capital_of ?e_2 . [fact_h ?e_1 ; fact_r capital_of ; fact_t> ?e_2] start_time ?qpv }
Generated IR: what is the qualifier <Q> start time </Q> of <E> Uzbekistan </E> that <R> capital
</R> to <E> Tashkent </E>
Compiled SPARQL: SELECT DISTINCT ?qpv WHERE { ?e_1 name "Uzbekistan" . ?e_2 name "Tashkent" .
?e_1 capital ?e_2 . [fact_h ?e_1 ; fact_r capital ; fact_t ?e_2] start_time ?qpv }

Nonequivalent
semantics

32 25

User utterance: When did Joseph L. Mankiewicz graduate from Columbia University?
Gold SPARQL: SELECT DISTINCT ?qpv WHERE { ?e_1 name "Joseph L. Mankiewicz" . ?e_2 name
"Columbia University" . ?e_1 educated_at ?e_2 . [fact_h ?e_1 ; fact_r educated_at ; fact_t
?e_2] end_time ?qpv }
Generated IR: what is the qualifier <Q> start time </Q> of <E> Joseph L. Mankiewicz </E> that <R>
educated at </R> to <E> Columbia University </E>
Compiled SPARQL: SELECT DISTINCT ?qpv WHERE { ?e_1 name "Joseph L. Mankiewicz" . ?e_2 name
"Columbia University" . ?e_1 educated_at ?e_2 . [fact_h ?e_1 ; fact_r educated_at ; fact_t
?e_2] start_time ?qpv }

Table 6: The analysis of 4 error types based on the failure cases as occurred in benchmark KQA PRO’s test data. “#
OSC” refers to the number of errors that can be fixed with one step correction on the IR’s structure.

take the average of the encoder outputs across all
word tokens to obtain a 768-dimensional vector as
its sentence embedding (Ni et al., 2022). Thereafter,
we measure the semantic distance between two se-
quences by computing the Euclidean distance (L2-
norm) of their embeddings (Chandrasekaran and
Mago, 2021).

We randomly sampled 1000 queries respectively
from KQA PRO and OVERNIGHT’s validation set.
We compare the semantic distance between natural
language utterances and the GraphQ IRs (i.e., NL
⇔ IR), as well as the distance between natural
language utterances and their corresponding logical
forms (e.g., NL ⇔ SPARQL).

The results are listed in Table 5. The seman-
tic distance from natural language utterances to
GraphQ IR is significantly closer than that to differ-
ent logical forms by at most 25.28%. We also use
t-SNE (Van der Maaten and Hinton, 2008) to re-
duce the dimension and visualize the embeddings.
Figure 3 (a) and (b) respectively shows the visual-
ized feature space on KQA PRO and OVERNIGHT

datasets. The computation and visualization results
affirm our hypothesis that GraphQ IR can effec-
tively close the semantic gap and ease the learning
of neural semantic parser.

5.1 Error Analysis

To investigate GraphQ IR’s potentials and bot-
tlenecks, we look into the failures of our approach
when incorrect logical forms are generated. Out
of the total 979 errors in KQA PRO’s test set, we
randomly sampled 100 cases and categorized them
into 4 types as shown in Table 6.

Inaccurate data annotation (28%). The ref-
erence logical form (e.g., v_1 != "110") may
contain inconsistent or misinterpreted information
that contradicts to the corresponding natural lan-
guage utterance (e.g., last 110 minutes). We at-
tribute this type of error to the dataset rather than
the failure of our approach.

Ambiguous query expression (27%). The se-
mantics of the user utterance may be present in
more than one way (e.g., kid film or children’s film)
due to the ambiguity in natural language, whereas
the schema of the knowledge base is pre-defined
(e.g., only children’s film is considered a
valid entity). This category of error can be fixed
by incorporating explicit schema linking modules,
which are orthogonal to the implementation of our
GraphQ IR and semantic parser.

Unspecified graph structure (13%). Logical
forms of different structures (e.g., (Uzbekistan

5855

capital Tashkent) and (Tashkent
capital_of Uzbekistan)) can convey the
same semantics in a directed cycle graph, but some
of them contain structures that are absent in a
knowledge base. This type of error is due to the
incompleteness of the knowledge base.

Nonequivalent semantics (32%). The output
includes incorrect query element (e.g., string and
numerical values) or structure (e.g., edges and prop-
erties) that conveys nonequivalent semantics, such
as misinterpreting graduate to start_time.

Overall, 89% of the sampled errors can be sim-
ply fixed by the revision of annotation or one-step
correction on the IR element, demonstrating that
our proposed method with GraphQ IR can generate
high-quality logical forms that are easy to debug.

6 Related Work

6.1 Semantic Parsing

Semantic parsing aims to translate natural lan-
guage utterances into executable logical forms,
such as CCG (Zettlemoyer and Collins, 2005),
Lambda-DCS (Liang, 2013; Pasupat and Liang,
2015), SQL (Zhong et al., 2017; Yu et al., 2021),
AMR (Banarescu et al., 2013), SPARQL (Sun et al.,
2020) and KoPL (Cao et al., 2022a,b).

Most recent works take semantic parsing as a
Seq2Seq translation task via an encoder-decoder
framework, which is challenging due to the seman-
tic and structural gaps between natural utterances
and logical forms. To overcome such issues, cur-
rent semantic parsers usually (1) rely on a large
amount of labeled data (Cao et al., 2022a); or (2)
leverage external resources for mini the structural
mismatch, e.g., injecting grammar rules during de-
coding (Wu et al., 2021; Shin et al., 2021); or (3)
employ synthetic data to diminish the semantic
mismatch (Xu et al., 2020; Wu et al., 2021).

Compared with previous works, our proposed
GraphQ IR allows the semantic parser to adapt
to different downstream formal query languages
without extra efforts and demonstrates promising
performance under the compositional generaliza-
tion and few-shot settings.

6.2 Intermediate Representation

Intermediate representations (IR) are usually
generated for the internal use of compilers and rep-
resent the code structure of input programs (Aho
et al., 1986). Good IR designs with informative

and distinctive mid-level features can provide huge
benefits for optimization, translation, and down-
stream code generation (Lattner and Adve, 2004),
especially in areas like deep learning (Chen et al.,
2018b; Cyphers et al., 2018) and heterogeneous
computing (Lattner et al., 2020).

Recently, IR has also become common in many
semantic parsing works that include an auxiliary
representation between natural language and logi-
cal form. Most of them take a top-down approach
and adopt IR similar to natural language (Su and
Yan, 2017; Herzig and Berant, 2019; Shin et al.,
2021). In contrast, another category of works con-
structs IR based on the key structure of target log-
ical forms in a bottom-up manner (Wolfson et al.,
2020; Marion et al., 2021). For example, Herzig
et al. designed CFQ IR that rewrites SPARQL by
grouping the triples of identical elements (2021).

Although these works partially mitigate the mis-
match between natural and formal language, they
either failed in removing the formal representa-
tions that are unnatural to the language models or
neglected the structural information requisite for
downstream compilation. In this work, we omit
those IRs that cannot be losslessly converted into
downstream logical forms.

7 Conclusion and Future Work

This paper proposes a novel intermediate rep-
resentation, namely GraphQ IR, for bridging the
semantic gap between natural language and graph
query languages. Evaluation results show that our
approach with GraphQ IR consistently surpasses
the baselines on several benchmarks covering
multiple formal languages, i.e., SPARQL, KoPL,
Lambda-DCS, and Cypher. Moreover, GraphQ IR
also demonstrates superior generalization ability
and robustness under the out-of-distribution and
low-resource settings.

As an early step towards the unification of se-
mantic parsing, our work opens up several future
directions. For example, many code optimization
techniques (e.g., common subexpression elimina-
tion) can be incorporated into IR to improve per-
formance further. By bringing in multiple levels
of IR, our framework may also be extended to sup-
port relational database query languages like SQL.
Moreover, since the current designs of GraphQ
IR still require non-trivial manual efforts, the au-
tomation of such procedure, e.g., in prompt-like
manners, is worth future exploration.

5856

Limitations

The major limitations of this work include: (a)
the composition rules of GraphQ IR are closely
aligned with interrogative sentences. Therefore,
our current formalism may not be applicable to
general-domain semantic parsing; (b) for the se-
mantic parsing of an input language whose syntax
significantly differs from English (e.g., Arabic, Chi-
nese, Hindi, etc.), the benefits of GraphQ IR may
be limited; (c) our experiments fine-tuned a neural
semantic parser on top of a pretrained model with
∼139 million parameters, thus cannot be easily
reproduced without adequate GPU resources.

Acknowledgements

We would like to thank the anonymous review-
ers for their valuable comments. This work is par-
tially supported by the National Key R&D Program
of China (2021ZD0110104), the National Natural
Science Foundation of China (U20A20226), the
NSFC Youth Project (62006136), and a grant from
the Institute for Guo Qiang, Tsinghua University
(2019GQB0003). Jidong Zhai is the corresponding
author of this paper.

References
Lakshya A. Agrawal, Nikunj Singhal, and Raghava

Mutharaju. 2022. A SPARQL to cypher transpiler:
Proposal and initial results. In CODS-COMAD 2022:
5th Joint International Conference on Data Science
& Management of Data (9th ACM IKDD CODS and
27th COMAD), Bangalore, India, January 8 - 10,
2022, pages 312–313. ACM.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World
student series edition. Addison-Wesley.

Renzo Angles. 2012. A comparison of current graph
database models. In Workshops Proceedings of the
IEEE 28th International Conference on Data Engi-
neering, ICDE 2012, Arlington, VA, USA, April 1-5,
2012, pages 171–177. IEEE Computer Society.

Renzo Angles. 2018. The property graph database
model. In Proceedings of the 12th Alberto Mendel-
zon International Workshop on Foundations of Data
Management, Cali, Colombia, May 21-25, 2018, vol-
ume 2100 of CEUR Workshop Proceedings. CEUR-
WS.org.

Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan
Hogan, Juan L. Reutter, and Domagoj Vrgoc. 2017.
Foundations of modern query languages for graph
databases. ACM Comput. Surv., 50(5):68:1–68:40.

Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk.
2019. RDF and property graphs interoperability: Sta-
tus and issues. In Proceedings of the 13th Alberto
Mendelzon International Workshop on Foundations
of Data Management, Asunción, Paraguay, June 3-7,
2019, volume 2369 of CEUR Workshop Proceedings.
CEUR-WS.org.

Pablo Barceló Baeza. 2013. Querying graph databases.
In Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Sys-
tems, PODS 2013, New York, NY, USA - June 22 - 27,
2013, pages 175–188. ACM.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, LAW-ID@ACL 2013, August 8-9, 2013,
Sofia, Bulgaria, pages 178–186. The Association for
Computer Linguistics.

Artur Baranowski and Nico Hochgeschwender. 2021.
Grammar-constrained neural semantic parsing with
LR parsers. In Findings of the Association for Com-
putational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, volume ACL/IJCNLP 2021
of Findings of ACL, pages 1275–1279. Association
for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1533–1544. ACL.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 1: Long Papers, pages 1415–1425.
The Association for Computer Linguistics.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250. ACM.

Mihaela Bornea, Ramón Fernandez Astudillo, Tahira
Naseem, Nandana Mihindukulasooriya, Ibrahim Ab-
delaziz, Pavan Kapanipathi, Radu Florian, and Salim
Roukos. 2021. Learning to transpile AMR into
SPARQL. CoRR, abs/2112.07877.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S. Lam. 2019. Genie:
a generator of natural language semantic parsers for

5857

https://doi.org/10.1145/3493700.3493757
https://doi.org/10.1145/3493700.3493757
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1109/ICDEW.2012.31
http://ceur-ws.org/Vol-2100/paper26.pdf
http://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
http://ceur-ws.org/Vol-2369/paper01.pdf
http://ceur-ws.org/Vol-2369/paper01.pdf
https://doi.org/10.1145/2463664.2465216
https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
https://doi.org/10.18653/v1/2021.findings-acl.108
https://doi.org/10.18653/v1/2021.findings-acl.108
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://doi.org/10.3115/v1/p14-1133
https://doi.org/10.3115/v1/p14-1133
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://arxiv.org/abs/2112.07877
http://arxiv.org/abs/2112.07877
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594

virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, pages 394–410.
ACM.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai Yu.
2019. Semantic parsing with dual learning. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 51–64. Association for Computational
Linguistics.

Ruisheng Cao, Su Zhu, Chenyu Yang, Chen Liu, Rao
Ma, Yanbin Zhao, Lu Chen, and Kai Yu. 2020. Un-
supervised dual paraphrasing for two-stage semantic
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 6806–6817.
Association for Computational Linguistics.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022a. KQA pro: A dataset with ex-
plicit compositional programs for complex question
answering over knowledge base. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 6101–
6119. Association for Computational Linguistics.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao.
2022b. Program transfer for answering complex
questions over knowledge bases. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
8128–8140. Association for Computational Linguis-
tics.

Dhivya Chandrasekaran and Vijay Mago. 2021. Evolu-
tion of semantic similarity - A survey. ACM Comput.
Surv., 54(2):41:1–41:37.

Bo Chen, Le Sun, and Xianpei Han. 2018a. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 766–777.
Association for Computational Linguistics.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021. Retrack:
A flexible and efficient framework for knowledge
base question answering. In Proceedings of the Joint
Conference of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL 2021 - System Demonstrations, On-
line, August 1-6, 2021, pages 325–336. Association
for Computational Linguistics.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018b. {TVM}: An au-
tomated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018, pages 578–
594. USENIX Association.

Jianpeng Cheng, Siva Reddy, Vijay A. Saraswat, and
Mirella Lapata. 2017. Learning structured natural
language representations for semantic parsing. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 44–55. Association for Computa-
tional Linguistics.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from
the world’s response. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, CoNLL 2010, Uppsala, Sweden,
July 15-16, 2010, pages 18–27. ACL.

Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandi-
walla, Jayaram Bobba, Matthew Brookhart, Avijit
Chakraborty, William Constable, Christian Convey,
Leona Cook, Omar Kanawi, Robert Kimball, Jason
Knight, Nikolay Korovaiko, Varun Kumar Vijay, Yix-
ing Lao, Christopher R. Lishka, Jaikrishnan Menon,
Jennifer Myers, Sandeep Aswath Narayana, Adam
Procter, and Tristan J. Webb. 2018. Intel ngraph: An
intermediate representation, compiler, and executor
for deep learning. CoRR, abs/1801.08058.

Marco Damonte and Emilio Monti. 2021. One seman-
tic parser to parse them all: Sequence to sequence
multi-task learning on semantic parsing datasets. In
Proceedings of *SEM 2021: The Tenth Joint Confer-
ence on Lexical and Computational Semantics, *SEM
2021, Online, August 5-6, 2021, pages 173–184. As-
sociation for Computational Linguistics.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. Lc-quad 2.0: A
large dataset for complex question answering over
wikidata and dbpedia. In The Semantic Web - ISWC
2019 - 18th International Semantic Web Conference,
Auckland, New Zealand, October 26-30, 2019, Pro-
ceedings, Part II, volume 11779 of Lecture Notes in
Computer Science, pages 69–78. Springer.

George H. L. Fletcher, Marc Gyssens, Dirk Leinders,
Dimitri Surinx, Jan Van den Bussche, Dirk Van
Gucht, Stijn Vansummeren, and Yuqing Wu. 2015.
Relative expressive power of navigational querying
on graphs. Inf. Sci., 298:390–406.

Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query
language for property graphs. In Proceedings of the

5858

https://doi.org/10.1145/3314221.3314594
https://doi.org/10.18653/v1/p19-1007
https://doi.org/10.18653/v1/2020.acl-main.608
https://doi.org/10.18653/v1/2020.acl-main.608
https://doi.org/10.18653/v1/2020.acl-main.608
https://aclanthology.org/2022.acl-long.422
https://aclanthology.org/2022.acl-long.422
https://aclanthology.org/2022.acl-long.422
https://aclanthology.org/2022.acl-long.559
https://aclanthology.org/2022.acl-long.559
https://doi.org/10.1145/3440755
https://doi.org/10.1145/3440755
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://aclanthology.org/2021.acl-demo.39
https://aclanthology.org/2021.acl-demo.39
https://aclanthology.org/2021.acl-demo.39
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.18653/v1/P17-1005
https://doi.org/10.18653/v1/P17-1005
https://aclanthology.org/W10-2903/
https://aclanthology.org/W10-2903/
http://arxiv.org/abs/1801.08058
http://arxiv.org/abs/1801.08058
http://arxiv.org/abs/1801.08058
https://doi.org/10.18653/v1/2021.starsem-1.16
https://doi.org/10.18653/v1/2021.starsem-1.16
https://doi.org/10.18653/v1/2021.starsem-1.16
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1016/j.ins.2014.11.031
https://doi.org/10.1016/j.ins.2014.11.031
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657

2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 1433–1445. ACM.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. CoRR, abs/2007.08970.

Yu Gu, Sue Kase, Michelle Vanni, Brian M. Sadler,
Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond
I.I.D.: three levels of generalization for question an-
swering on knowledge bases. In WWW ’21: The Web
Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 3477–3488. ACM / IW3C2.

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic program
induction and contextualized encoding for knowledge
base question answering. CoRR, abs/2204.08109.

Jonathan Herzig and Jonathan Berant. 2019. Don’t para-
phrase, detect! rapid and effective data collection for
semantic parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages
3808–3818. Association for Computational Linguis-
tics.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. CoRR,
abs/2104.07478.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2007. Introduction to automata theory, lan-
guages, and computation, 3rd Edition. Pearson inter-
national edition. Addison-Wesley.

Sen Hu, Lei Zou, and Xinbo Zhang. 2018. A state-
transition framework to answer complex questions
over knowledge base. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 2098–2108. Association
for Computational Linguistics.

Xin Huang, Jung-Jae Kim, and Bowei Zou. 2021. Un-
seen entity handling in complex question answering
over knowledge base via language generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
547–557. Association for Computational Linguistics.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
CoRR, abs/1902.01069.

Aishwarya Kamath and Rajarshi Das. 2019. A survey
on semantic parsing. In 1st Conference on Automated
Knowledge Base Construction, AKBC 2019, Amherst,
MA, USA, May 20-22, 2019.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Rav-
ishankar, Salim Roukos, Alexander G. Gray,
Ramón Fernandez Astudillo, Maria Chang, Cristina
Cornelio, Saswati Dana, Achille Fokoue, Dinesh
Garg, Alfio Gliozzo, Sairam Gurajada, Hima
Karanam, Naweed Khan, Dinesh Khandelwal,
Young-Suk Lee, Yunyao Li, Francois P. S. Luus,
Ndivhuwo Makondo, Nandana Mihindukulasooriya,
Tahira Naseem, Sumit Neelam, Lucian Popa, Re-
vanth Gangi Reddy, Ryan Riegel, Gaetano Rossiello,
Udit Sharma, G. P. Shrivatsa Bhargav, and Mo Yu.
2021. Leveraging abstract meaning representation
for knowledge base question answering. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August 1-6,
2021, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 3884–3894. Association for Computational
Linguistics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copen-
hagen, Denmark, September 9-11, 2017, pages 1516–
1526. Association for Computational Linguistics.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilistic
CCG grammars from logical form with higher-order
unification. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2010, 9-11 October 2010, MIT Stata
Center, Massachusetts, USA, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1223–1233.
ACL.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A
compilation framework for lifelong program analysis
& transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization
(CGO 2004), 20-24 March 2004, San Jose, CA, USA,
pages 75–88. IEEE Computer Society.

Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday
Bondhugula, River Riddle, Albert Cohen, Tatiana
Shpeisman, Andy Davis, Nicolas Vasilache, and
Oleksandr Zinenko. 2020. MLIR: A compiler in-
frastructure for the end of moore’s law. CoRR,
abs/2002.11054.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training

5859

http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.48550/arXiv.2204.08109
https://doi.org/10.48550/arXiv.2204.08109
https://doi.org/10.48550/arXiv.2204.08109
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394
http://arxiv.org/abs/2104.07478
http://arxiv.org/abs/2104.07478
http://arxiv.org/abs/2104.07478
https://doi.org/10.18653/v1/d18-1234
https://doi.org/10.18653/v1/d18-1234
https://doi.org/10.18653/v1/d18-1234
https://doi.org/10.18653/v1/2021.findings-emnlp.50
https://doi.org/10.18653/v1/2021.findings-emnlp.50
https://doi.org/10.18653/v1/2021.findings-emnlp.50
http://arxiv.org/abs/1902.01069
http://arxiv.org/abs/1902.01069
https://doi.org/10.24432/C5WC7D
https://doi.org/10.24432/C5WC7D
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/d17-1160
https://doi.org/10.18653/v1/d17-1160
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://arxiv.org/abs/2002.11054
http://arxiv.org/abs/2002.11054
https://doi.org/10.18653/v1/2020.acl-main.703

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020a. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 9119–
9130. Association for Computational Linguistics.

Zhuang Li, Lizhen Qu, and Gholamreza Haffari. 2020b.
Context dependent semantic parsing: A survey.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 2509–2521. International Committee on Com-
putational Linguistics.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. CoRR, abs/1309.4408.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar,
Simon Scerri, Sören Auer, and Jens Lehmann. 2019.
The query translation landscape: a survey. CoRR,
abs/1910.03118.

Pierre Marion, Pawel Krzysztof Nowak, and Francesco
Piccinno. 2021. Structured context and high-
coverage grammar for conversational question an-
swering over knowledge graphs. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 8813–8829. Association for
Computational Linguistics.

Alberto O. Mendelzon and Peter T. Wood. 1995. Find-
ing regular simple paths in graph databases. SIAM J.
Comput., 24(6):1235–1258.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 1400–1409. The Association for
Computational Linguistics.

Ezequiel José Veloso Ferreira Moreira and José Carlos
Ramalho. 2020. SPARQLing Neo4J. In 9th Sympo-
sium on Languages, Applications and Technologies
(SLATE 2020), volume 83 of OpenAccess Series in
Informatics (OASIcs), pages 17:1–17:10, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik.

Zifan Nan, Hui Guan, and Xipeng Shen. 2020. Hisyn:
human learning-inspired natural language program-
ming. In ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Vir-
tual Event, USA, November 8-13, 2020, pages 75–86.
ACM.

Jianmo Ni, Gustavo Hernandez Ábrego, Noah Constant,
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
2022. Sentence-t5: Scalable sentence encoders from
pre-trained text-to-text models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 1864–1874.
Association for Computational Linguistics.

Terence Parr. 2013. The definitive ANTLR 4 reference.
Pragmatic Bookshelf.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1470–
1480. The Association for Computer Linguistics.

Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez.
2009. Semantics and complexity of SPARQL. ACM
Trans. Database Syst., 34(3):16:1–16:45.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Trans. Assoc. Comput. Linguistics, 4:127–140.

Marko A. Rodriguez. 2015. The gremlin graph traver-
sal machine and language (invited talk). In Proceed-
ings of the 15th Symposium on Database Program-
ming Languages, Pittsburgh, PA, USA, October 25-
30, 2015, pages 1–10. ACM.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, volume
10843 of Lecture Notes in Computer Science, pages
593–607. Springer.

Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf
Lämmel, and Steffen Staab. 2019. Empirical study
on the usage of graph query languages in open source
java projects. In Proceedings of the 12th ACM SIG-
PLAN International Conference on Software Lan-
guage Engineering, SLE 2019, Athens, Greece, Octo-
ber 20-22, 2019, pages 152–166. ACM.

Richard Shin, Christopher H. Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and

5860

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.coling-main.226
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1910.03118
https://doi.org/10.18653/v1/2021.emnlp-main.695
https://doi.org/10.18653/v1/2021.emnlp-main.695
https://doi.org/10.18653/v1/2021.emnlp-main.695
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.18653/v1/d16-1147
https://doi.org/10.18653/v1/d16-1147
https://doi.org/10.4230/OASIcs.SLATE.2020.17
https://doi.org/10.1145/3368089.3409673
https://doi.org/10.1145/3368089.3409673
https://doi.org/10.1145/3368089.3409673
https://aclanthology.org/2022.findings-acl.146
https://aclanthology.org/2022.findings-acl.146
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1162/tacl_a_00088
https://doi.org/10.1162/tacl_a_00088
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1145/3357766.3359541
https://doi.org/10.1145/3357766.3359541
https://doi.org/10.1145/3357766.3359541

Benjamin Van Durme. 2021. Constrained language
models yield few-shot semantic parsers. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 7699–7715. Association for
Computational Linguistics.

Yu Su and Xifeng Yan. 2017. Cross-domain seman-
tic parsing via paraphrasing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, pages 1235–1246.
Association for Computational Linguistics.

Yawei Sun, Lingling Zhang, Gong Cheng, and Yuzhong
Qu. 2020. SPARQA: skeleton-based semantic pars-
ing for complex questions over knowledge bases. In
The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
8952–8959. AAAI Press.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), pages 641–
651. Association for Computational Linguistics.

Russell S Tomlin. 2014. Basic Word Order (RLE Lin-
guistics B: Grammar): Functional Principles. Rout-
ledge.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming
Meng, and Hassan Chafi. 2016. PGQL: a property
graph query language. In Proceedings of the Fourth
International Workshop on Graph Data Management
Experiences and Systems, Redwood Shores, CA, USA,
June 24 - 24, 2016, page 7. ACM.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Learning from executions for semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
2747–2759. Association for Computational Linguis-
tics.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust

text-to-sql generation with execution-guided
decoding. arXiv preprint arXiv:1807.03100.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing, China,
Volume 1: Long Papers, pages 1332–1342. The As-
sociation for Computer Linguistics.

Tomer Wolfson, Mor Geva, Ankit Gupta, Yoav Gold-
berg, Matt Gardner, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Trans. Assoc. Comput. Linguistics,
8:183–198.

Peter T. Wood. 2012. Query languages for graph
databases. SIGMOD Rec., 41(1):50–60.

Shan Wu, Bo Chen, Chunlei Xin, Xianpei Han, Le Sun,
Weipeng Zhang, Jiansong Chen, Fan Yang, and Xun-
liang Cai. 2021. From paraphrasing to semantic pars-
ing: Unsupervised semantic parsing via synchronous
semantic decoding. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 5110–5121. Association for
Computational Linguistics.

Silei Xu, Sina J. Semnani, Giovanni Campagna, and
Monica S. Lam. 2020. Autoqa: From databases to
QA semantic parsers with only synthetic training data.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 422–434.
Association for Computational Linguistics.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 6032–6043. Associ-
ation for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 440–450. Association for Com-
putational Linguistics.

Pengcheng Yin, John Wieting, Avirup Sil, and Graham
Neubig. 2022. On the ingredients of an effective
zero-shot semantic parser. pages 1455–1474.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev,

5861

https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/d17-1127
https://doi.org/10.18653/v1/d17-1127
https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://doi.org/10.18653/v1/n18-1059
https://doi.org/10.18653/v1/n18-1059
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2021.naacl-main.219
https://doi.org/10.3115/v1/p15-1129
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://aclanthology.org/2022.acl-long.417
https://aclanthology.org/2022.acl-long.417
https://aclanthology.org/2022.acl-long.417
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://aclanthology.org/2022.acl-long.103
https://aclanthology.org/2022.acl-long.103

Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 3911–3921.
Association for Computational Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
UAI ’05, Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence, Edinburgh, Scot-
land, July 26-29, 2005, pages 658–666. AUAI Press.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J. Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
6069–6076. AAAI Press.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A GraphQ IR Grammar

We present GraphQ IR’s non-terminals and pro-
duction rules in Table 7.

B Implementation Details

B.1 Model Hyperparameters

For the neural semantic parser, we used the
BART-base model (Lewis et al., 2020) released
by Facebook on HuggingFace1. 12 special tokens
(e.g., <E>) were added to the tokenizer vocabu-
lary as the structure indicators for GraphQ IR. We
used the AdamW optimizer (Loshchilov and Hutter,
2017) with the learning rate set to 3e−5 and weight
decay set to 1e−5 following the default settings.

B.2 Environmental Configurations

In our implementation of the compiler, we used
ANTLR (Parr, 2013) version 4.9.2 for analyzing
our specified grammar rules and building up the
corresponding lexer and parser toolkit. For evalua-
tion, we used Virtuoso 7.202, SEMPRE 2.43, Neo4j
4.44 and KoPL 0.35 as the back-ends respectively
for executing the SPARQL, Lambda-DCS, Cypher,
and KoPL queries.

Our whole experiments were performed on a
single machine with 8 NVIDIA Tesla V100 (32GB
memory) GPUs on CUDA 11.

C Supplementary Study

C.1 KQA PRO Compositional Generalization

Compositional generalization refers to a model’s
capability of generalizing from the known com-
ponents to produce novel combinations (Pasupat
and Liang, 2015; Keysers et al., 2020; Furrer et al.,
2020). To measure our IR’s compositional gener-
alization ability, we also create a new KQA PRO

data split based on the logical form length and test
the parsers to generate long queries (KoPL queries
with > 7 functions) based on the short query com-
ponents seen in the training data (KoPL queries
with ≤ 7 functions).

The results are listed in Table 8. Compared with
the plain-BART baseline and the CFQ IR (Herzig
et al., 2021) that is specially designed for improv-
ing the compositional generalization on SPARQL,

1https://huggingface.co/facebook/bart-base
2https://github.com/openlink/virtuoso-opensource
3https://github.com/percyliang/sempre
4https://github.com/neo4j/neo4j
5https://pypi.org/project/KoPL/

5862

https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

Non-terminal Productions

S → EntityQuery | AttributeQuery | RelationQuery | QualifierQuery | CountQuery |
VerifyQuery | ValueQuery

EntityQuery → what is EntitySet
AttributeQuery → what is the attribute Attribute of EntitySet
RelationQuery → what is the relation from EntitySet to EntitySet
QualifierQuery → what is the qualifier Qualifier of EntitySet Constraint
CountQuery → how many EntitySet
VerifyQuery → whether EntitySet Constraint
ValueQuery → what is Value
EntitySet → <ES> EntitySet LOP EntitySet </ES> | <ES> EntitySet Constraint </ES> | <ES>

Concept EntitySet </ES> | Concept | Entity | ones
Constraint → AttributeConstraint QualifierConstraint? | RelationConstraint

QualifierConstraint?
AttributeConstraint → whose Attribute COP Value | that have SOP Attribute
RelationConstraint → that Relation DIR to (COP Value?) EntitySet | that Relation DIR to SOP EntitySet
QualifierConstraint → Qualifier COP Value
Entity → <E> entity </E>
Concept → <C> concept </C>
Attribute → <A> attribute
Relation → <R> relation </R>
Qualifier → <Q> qualifier </Q>
Value → VTYPE <V> Value LOP Value | VOP of Value | Attribute of Entity | VTYPE <V> value </V>
LOP → and | or | not
VOP → sum | average | maximum | minimum
COP → is | is not | larger than | smaller than | at least | at most
SOP → largest | smallest
DIR → forward | backward
VTYPE → string | numeric | year | month | date | time

Table 7: GraphQ IR grammar rules that cover the common graph query patterns. “|” separates multiple productions
at the same level, and “?” denotes that the preceding expression is optional. Italic words refer to the terminal
symbols. Here we omit the corner case production rules for simplicity.

Overall Qualifier Comparison Logical

BART 50.58 21.55 87.66 50.60
CFQ IR 50.70 25.33 93.77 50.73
GraphQ IR 54.91 40.46 95.19 54.90

Table 8: Experimental results on KQA PRO composi-
tional generalization data split.

GraphQ IR achieves the best performance in over-
all data as well as in complex task settings, which
can be again credited to our IR designs that sim-
plify the redundant semantics and preserve the key
structural features.

5863

GraphQ IR Sequence:
what is <ES> <ES> <C> person </C> </ES> that <R> friend </R> backward to
<ES> <C> employee </C> <ES> ones
whose <A> employment start date at most year <V> 2004 </V> </ES> </ES> </ES>

Natural Language Utterance:

friends of people who joined their jobs before 2005

GraphQ IR Abstract Syntax Tree:

Lambda-DCS Abstract Syntax Tree:

Lambda-DCS Sequence:
(call @listValue (call @filter (call @getProperty (call @singleton en.person)
(string ! type)) (call @reverse (string friend)) (string =)
(call @getProperty ((lambda s (call @filter (var s) (call @ensureNumericProperty
(string employment_start_date)) (string <=) (call @ensureNumericEntity (date 2004
-1 -1)))) (call @domain (string employee))) (string employee))))

filterFromEntitySet filterFromEntitySet

valueTypestring

entitySet

valueSet

concept

direction

filterByRelation

filterFromEntitySet

string

ones

person

string

year

value

entitySet

filterByAttribute

employment start date

2004

friend

entitySet

entitySet

relation

string

symbolOP

conceptbackward entitySet

string

entityQuery

at most

employee

filterFromEntitySet

attribute

NP

string

reverseRelation

string

call·@reverse

lambda

date·2004·-1·-1s

employee

string

listValueFunc

en.person

ensureNumericPropertyFunc

date

CP

typeNP

friend

string <=

string

employment_start_date

NP

relNP

relNP

root

relNP

string

CP

NP

string

getPropertyFunc

employee

s

getPropertyFunc

CP

reverseFunc

relNP

var

filterFunc

call·@filter

call·@ensureNumericProperty

string

string

op

string

string

op

filterFunc

call·@getProperty

call·@ensureNumericEntity

ensureNumericEntityFunc

value

stringcall·@getProperty

call·@listValue

call·@singleton

filterCP

call·@domain

domainFunc relNP

constraintNP

value

filterCP

singletonFunc

string =

call·@filter

string !·type

constraintNP

Figure 4: A user query in OVERNIGHT. The neural semantic parser first converts the input utterance into GraphQ IR.
The compiler then parses the GraphQ IR sequence into an abstract syntax tree, which is subsequently transformed
into the corresponding Lambda-DCS sequence along with a tree mapping process. To exemplify, the subtrees circled
by red dash lines are carrying equivalent information that can be transformed with pre-defined rules. The red words
are terminal nodes that correspond to the graph structure.

5864

entitySet

direction

entitySet

elevation above sea level

filterFromEntitySet

filterByRank

To Rome with Love

entitySet

filterByRelation

entitySet

string

filming location

stringOP

backward

filterFromEntitySet

filterByRelation

direction

string

string

entitySet

entitySet

relation

string

string

smallest
entitySet

entitySet

Lisbon

backward

entitySet

Rome

or

entity

Santo Domingo

string

entity

selectQuery

ones entity

entitySet

twinned administrative body

entity

ones relation

attribute

string

entitySet

setOP

GraphQ IR Sequence:
which one has the smallest <A> elevation above sea level among <ES> <ES> <E> Rome
</E> (<ES> ones that <R> filming location </R> backward to <E> To Rome with Love </E>
</ES>) </ES> or <ES> <E> Lisbon </E> (<ES> ones that <R> twinned administrative body </R>
backward to <E> Santo Domingo </E> </ES>) </ES> </ES>

Natural Language Utterance:

Which has less elevation above sea level, Rome that is the filming location of To Rome with Love or Lisbon
which is the twinned administrative body of Santo Domingo?

var_

triplesBlock

<twinned_administrative_body>

?v

var_

triplesSameSubject

triplesSameSubject

graphNode

iriRef

graphNode

var_

?pv

var_

triplesSameSubject

verb

string

graphNode

"To Rome with Love"

<pred:value>

varOrTerm

?e

1

ORDER BY

graphNode

rdfLiteral

"Santo Domingo"

graphPatternNotTriples

verb

triplesSameSubject

groupGraphPattern

selectQuery

verb

WHERE

SELECT

triplesSameSubject

verb

?e_1

?e

<elevation_above_sea_level>

?pv

iriRef

var_

var_

orderCondition

?e_1

var_

verb
triplesSameSubject

LIMIT

iriRef

var_

triplesBlock

var_

graphNodeverb

<pred:name>

string

iriRef

orderClause

string

?e

?e

varOrTerm

groupOrUnionGraphPattern

"Lisbon"

rdfLiteral

iriRef

<pred:name>

varOrTerm

?v

groupGraphPattern

triplesSameSubject

rdfLiteral

graphNode

var_

groupGraphPattern

limitOffsetClauses

varOrTerm

iriRef

triplesSameSubject

UNION

var_

?e_1

<pred:name>

varOrTerm

whereClause

var_

triplesBlock

<filming_location>

verb

solutionModifier

var_

var_

?e

?e_1

?e

iriRef

varOrTerm

string

limitClause

<pred:name>

varOrTerm

varOrTerm

verb
"Rome"

graphNode

iriRef

graphNode

rdfLiteral

GraphQ IR Abstract Syntax Tree:

SPARQL Abstract Syntax Tree:

SPARQL Sequence:
SELECT ?e WHERE { { ?e <pred:name> “Rome” . ?e_1 <filming_location> ?e . ?e_1 <pred:name>
“To Rome with Love” . } UNION { ?e <pred:name> “Lisbon” .
?e_1 <twinned_administrative_body> ?e . ?e_1 <pred:name> "Santo Domingo" . }
?e <elevation_above_sea_level> ?pv . ?pv <pred:value> ?v . } ORDER BY ?v LIMIT 1

Figure 5: A user query in KQA PRO. Similarly, the compiler parses the generated GraphQ IR sequence into an
abstract syntax tree, then transform its tree structure into the corresponding SPARQL sequence.

5865

