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Abstract
Business-specific Frequently Asked Questions
(FAQ) retrieval in task-oriented dialog systems
poses unique challenges vis-à-vis community
based FAQs. Each FAQ question represents an
intent which is usually an umbrella term for
many related user queries. We evaluate per-
formance for such Business FAQs both with
standard FAQ retrieval techniques using query-
Question (q-Q) similarity and few-shot intent
detection techniques. Implementing a real-
world solution for FAQ retrieval in order to
support multiple tenants (FAQ sets) entails op-
timizing speed, accuracy and cost. We pro-
pose a novel approach to scale multi-tenant
FAQ applications in real-world context by con-
trastive fine-tuning of the last layer in sentence
Bi-Encoders along with tenant-specific weight
switching1.

1 Introduction

Business-specific Frequently Asked Questions
(FAQ) form an important part of many task-
oriented dialog systems today. Business FAQs
exhibit some common characteristics which dif-
ferentiate them from community-based FAQs. We
show few examples of such FAQs in Table 1. The
intent is often a user-defined umbrella term that
represents a group of questions in such FAQs. The
system needs to respond to user queries which in-
dicate the same intent as that of the FAQ question
(Example-1). In some cases, similar FAQ ques-
tions can lead to different answers (Example-2).
The answers may not always have overlap with the
question (Example-3). The response can also be
modeled as a system action rather than a text re-
sponse (Example-4). The system should also be
able to identify Out-Of-Scope (OOS) queries and
redirect to a human agent.

Since each question within an intent category
represents it loosely, having a single question for

*Work done while the authors were working at Verloop.io
1https://github.com/verloop/few-shot-faqir

an intent poses a challenge for intent detection.
Simple paraphrases do not suffice and therefore,
5-10 variations for each FAQ question representing
the intent is sourced from domain experts.

Common approaches in FAQ retrieval include
Query-Question similarity and Query-Answer en-
tailment (Sakata et al., 2019; Hammond et al., 1995;
Tomuro and Lytinen, 2004). Query-Question (q-
Q) methods focus on similarity between a user’s
query and a question to retrieve the relevant an-
swer. Query-Answer (q-A) methods predict the
relevance between the query and an FAQ answer
to re-rank the results obtained via q-Q. For FAQ
retrieval, we leverage q-Q similarity. The q-A en-
tailment method is infeasible in some FAQ sets due
to the generic nature of answers for several differ-
ent questions, owing to little match between the
q-A pair and responses being modeled as system
action instead of text.

We also prefer a single model based approach
over stacked models such as retriever-reranker mod-
els (Zhang et al., 2020; Gupta and Carvalho, 2019)
as inference latency gets compounded in such sys-
tems. We compare several q-Q retrieval approaches
using pre-trained models and fine-tuned embed-
dings. We also model the problem as a few-shot
intent detection and evaluate classifier based tech-
niques.

From an industry specific dialog solutions per-
spective, the approaches need to balance accuracy,
real time inference latency and costs while hav-
ing the ability to scale for multiple tenant (FAQ
sets) requirements. Our contribution is towards
implementing an FAQ retrieval system for Busi-
ness FAQs in real-world contexts. We describe a
low-cost approach to deploy multi-tenant FAQ ap-
plications at scale while optimizing for inference
latency and accuracy. We also evaluate different
methods and models against few-shot intent detec-
tion and conversational datasets.

https://github.com/verloop/few-shot-faqir
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No. Question Answer
1 How to check exchange rate? Please use the Rate Enquiry option on the Main Menu

Rate for Peso
2 Am I going to get a refund We issue refund for specific products

When am I going to get the refund Refund normally takes 7 days to process
3 My transaction failed Please contact on XXX or mail us at XXX

My checkout did not happen properly
4 Can I speak to an agent? System action: Transfer to agent

Table 1: Examples of actual business questions. All identifying information is masked.

1.1 Real world constraints
We process millions of chat messages every day,
of which a sizable percentage is related to FAQ
retrieval. The expected latency requirement is less
than 100 ms under production loads. Tenant spe-
cific FAQ sets vary in terms of the domain and
intent granularity. It is important to maximize the
retrieval accuracy for each tenant while not increas-
ing inference costs drastically.

As on-premise machines are expensive to set-up
and maintain, it is often cost-effective and con-
venient to leverage cloud providers. The applica-
tion efficiently needs to utilize machine resources
and scale for multiple tenants without significant
overhead. Since GPU costs are higher, it is cost-
effective to train using GPU machines and perform
inference with CPU machines.

Apart from this, many tenants require the sys-
tem to respond with certain standardized answers
based on company policy without too many modi-
fications. Therefore, retrieval based solutions are
more acceptable than generative solutions. The
problems of hallucinations which still exist in gen-
erative solutions (Roller et al., 2021; Shuster et al.,
2021) constraints the use of these approaches for
task-oriented FAQ responses in business contexts.

2 Related Work

The models based on transformer architectures
have enabled the usage of transfer learning for var-
ious tasks such as text similarity (Devlin et al.,
2019). Sakata et al. (2019) introduced an approach
to combine the query-question similarity from
TSUBAKI and query-answer relevance from BERT.
Arora et al. (2020) evaluated different providers
on three intent recognition datasets, created using
queries received by chatbots from real users.

In a few-shot setting, recent approaches lever-
age the transformer architecture. Casanueva et al.
(2020) demonstrated that using a dual sentence en-

coder as base model works better in low-resource
intent detection tasks as compared to BERT. Zhang
et al. (2021b) proposed the use of contrastive learn-
ing to improve the performance of BERT based
classifiers in few-shot intent detection tasks.

Pre-training methods for creating transferable
language representations is a common approach.
In-domain pre-training further increases the adapt-
ability of the model to domain related downstream
tasks. Specifically for few-shot setting, fine-tuning
pre-trained models with supervised learning is
found to be effective (Zhang et al., 2021a).

Cross-encoder approaches with BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) mod-
els have achieved SOTA scores using sentence
pair training. Training is done with question pairs.
During inference, question pairs are created using
query and train questions. These pairs are scored
by a classifier to predict the final label.

Bi-Encoder models have the advantage of be-
ing able to cache the representations and hence,
are highly efficient during inference (Reimers
and Gurevych, 2019). The research on STILTS
(Phang et al., 2018) found the advantages of in-
termediate training on data rich supervised tasks,
giving pronounced benefits in data constrained
regimes. Casanueva et al. (2020) discusses the
gains achieved via transfer learning using pre-
trained sentence encoders as a retriever model.
Cross-Encoder models entail a higher latency as
all the question pairs are required to be classified
during inference. Zhang et al. (2020) explores us-
age of the classifier model as a re-ranking model
following a Bi-Encoder based retriever to reduce
inference time.

We evaluate our FAQ retrieval use case
with simple baseline approaches, in-domain pre-
trained models, classifier based approaches, Cross-
Encoders and Bi-Encoders in a few-shot setting.
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3 Datasets

We choose datasets that are similar to our real-
world tenant FAQs and perform experiments on
publicly available intent detection datasets for task-
oriented dialogues. We use datasets from HINT3
(Curekart, Powerplay11 and SOFMattress) (Arora
et al., 2020) which reflects real-world FAQ intents
and user queries. We also use DialoGLUE datasets
(Mehri et al., 2020) - HWU64 (Liu et al., 2021),
CLINC150 (Larson et al., 2019) and BANKING77
(Casanueva et al., 2020).

DialoGLUE datasets further provide train sets
for data constrained regimes with 5 and 10 samples
per class. Similarly, HINT3 also contains subset
variants of datasets which are created by retaining
only samples whose entailment score using the
ELMo model was less than 0.6. We use the few-
shot subsets for DialoGLUE and the full as well as
subset variant of HINT3 datasets. These datasets
are suitable for few-shot analysis. All the datasets
have separate train and test sets and we report our
evaluations on the test sets. The CLINC150 and
HINT3 datasets have separate in-scope and out-of-
scope queries and we use them to evaluate OOS
performance. The dataset size, intent and domain
distribution is listed in Appendix A.

4 Methodology

In this section, we elaborate on our experiments
for model training and deployment. We compare
different approaches of few-shot FAQ retrieval and
describe our deployment strategy for the same.

4.1 FAQ Retrieval approaches
4.1.1 Baseline
We consider BM25 (Mass et al., 2020; Karan and
Šnajder, 2016) and vector space using TF-IDF
(Karan and Šnajder, 2016) as baseline approaches.

4.1.2 Pre-trained and fine-tuned features
The following models are considered for feature
extraction:

• Pre-trained BERT

• Pre-trained ConvBERT: ConvBERT model is
pre-trained on open-domain conversational
data (Mehri et al., 2020).

• Fine-tuned ConvBERT: We further fine-tune
ConvBERT model as an intent classifier and
use the fine-tuned encoder as a feature extrac-
tor.

• Pre-trained Bi-Encoders: We use pre-trained
Sentence BERT models (mini-LM-L6-v2, all-
mpnet-base-v2) which are trained on more
than 1 Billion sentence pairs consisting of a
diverse set of duplicate question pairs, NLI
sets, QA pairs.

• Fine-tuned Bi-Encoders: We fine-tune pre-
trained Bi-Encoders for a Semantic textual
similarity task with a contrastive loss (Zhang
et al., 2021b).

• Fine-tuned Task adapted pre-trained Bi-
Encoders: We perform pre-training for adapta-
tion of pre-trained Bi-Encoders with a triplet
loss using a cosine distance metric and further
fine-tune using a contrastive loss

After the features are extracted, inference is im-
plemented using a cosine similarity of query and
question embeddings.

4.1.3 Classifier
We fine tune BERT with a linear layer on top to
predict the intent class directly (Mehri et al., 2020).

4.1.4 Cross-Encoders
Inspired by the success of Cross-Encoders and the
STILTS approach, we fine-tune a pre-trained Cross-
Encoder model from SBERT (stsb-distilroberta-
base).

4.2 Question Pair/Triplet Based fine-tuning
We form Question pairs to fine-tune all Bi-Encoder
and Cross-Encoder models. We mark the question
pairs belonging to same class as positive samples
and ones belonging to different classes as negative
samples.

If c ∈ C Where C is the set of all classes, then
we denote qc,i to be the ith element of the cth class.
Then, qc,i ∈ Q where Q is the set of all Questions.
i ∈ {1, . . . n} where n ∈ {5, 10, N} when testing
for few-shot training with 5 samples, 10 samples or
the entire set respectively. The question pairs are
labelled as defined below.

L(ql,j , qm,k) =

{
1 if l = m

0 if l ̸= m
(1)

∀ l ̸= m and j ̸= k
This method increases the data size as it gener-

ates nC2 question pairs given n questions. Even in
a few-shot setting where there are only 180 samples
across 21 intents (SOFMattress), 16110 question



201

pairs were generated. The Q-Q data can grow ex-
ponentially, so the train data is capped to 200K
for fine-tuning. We also check fine-tuning on 50K
Balanced samples. Hard sampling is done using
a probabilistic method based on sample weights.
For Q-Q pair with label 0, the weight is equal to
the cosine similarity between the Q-Q pair. For
label 1, the weight is (1 - cosine similarity) of the
Q-Q pair. We use the same pre-trained bi-encoder
model for the embeddings which we intend to fine-
tune. Sampling with replacement is then done for
labels 0 and 1 to get the required sample sizes. For
the triplet based pre-training, the triplets are con-
structed such that the anchor and positive belong to
the same label and the negative belong to a differ-
ent label. Q-Q pairs are first constructed using the
hard sampling approach described above. For each
sample which is the triplet anchor, we get its pos-
itives and negatives from the Q-Q pairs.Sampling
is then done based on weightage to construct the
triplets.

4.3 Training and deployment

The common approach for fine-tuning models in-
volves modifying weights in all layers of the pre-
trained model. Instead, we propose an approach
where only the final layer of the model is fine-
tuned. The weights of all layers which are not
fine-tuned are shared across tenant models. Dur-
ing inference in the production environment, we
load the base model only once for shared param-
eters. We keep the tenant-specific weights for all
tenants loaded in memory and we switch the tenant
specific weights in the model for every inference
request. The shared base model weights reduce the
memory requirement by a significant margin when
we scale to a large number of tenants. Since we
retain the tenant weights in memory, replacing the
model weights does not result in any significant
latency overhead. This allows us to support mul-
tiple tenants using the same machine and in-turn
reduces the inference costs by an order based on
the model size. We select the best model based on
expected number of tenants, throughput and mem-
ory requirement. We evaluate the performance of
all fine-tuned approaches under the following con-
straints: Freezing all layers of the encoder except
the last layer, training for a fixed number of itera-
tions and using few-shot samples.

5 Experimentation Approaches

Fine-tuning for all Bi-Encoder and Cross-Encoder
models is done using question pairs as elaborated in
Section 4. Based on the training method outlined
by Mosbach et al. (2021), we train for a higher
number of iterations to offset any fine-tuning in-
stability. For the Bi-Encoders, we fine-tune only
the final layer of the model using a contrastive or
an online triplet loss. The pre-trained BERT and
ConvBERT classifier models were fine-tuned using
a softmax cross-entropy loss. The Cross-Encoder
was also fine-tuned with the same approach using
question pairs with a binary cross-entropy loss. For
predicting the query label, we create q-Q pairs lim-
ited to 5 questions per intent. The model predicts a
score for these combinations, where the label for
the question with the highest score is considered to
be the predicted label. We trained all models for 10
K iterations with a learning rate of 2e-5, batch size
of 16, AdamW optimizer with 10% linear warm up
and gradient normalization.

5.1 Pre-training

Commonly pre-training is done for in-domain adap-
tation using unlabelled datasets. But in our case,
tenant FAQs are spread across multiple niche do-
mains, making it difficult to get domain related
data. Moreover, pre-training for each domain sepa-
rately would result in multiple models per domain,
making the hosting costs higher. In case of pre-
trained dense retrievers, training on the base lan-
guage model in an MLM fashion requires a further
training of the bi-encoder model. In the GPL pa-
per, Wang et al. (2021) adopt a pre-training method
which is a triplet based training where the triplets
are constructed from the unlabelled data. Guru-
rangan et al. (2020) describe an approach of a sec-
ond level pre-training using unlabelled corpus and
pre-training using task related samples within a
domain.

We experiment with a similar approach as GPL
but we use the labelled data for the same task avail-
able across different domains. We construct triplets
using an offline approach instead of an online batch
mode, to ensure in-domain triplets. We create 100
K triplets from each dataset and get a total training
corpus of 600 K samples. We do a second level of
pre-training of the pre-trained bi-encoder models
for 140 K iterations, with the Triplet loss using Co-
sine distance metric and a margin of 0.15. We then
use this pre-trained model for further finetuning
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BANKING77 CLINC150 HWU64
Method 5 10 5 10 5 10
BM25 53.96 61.10 55.37 60.80 50.37 54.46
TF-IDF 49.51 58.14 60.91 58.14 60.91 54.36
BERT - MP 40.25 48.89 68.97 66.73 52.88 57.06
ConvBERT - MP 50.42 59.41 73.11 79.53 58.92 65.79
ConvBERT - FT(C) 56.98 66.91 76.44 82.91 64.86 71.46
SBERT (MiniLM-L6) 76.78 83.47 79.08 81.24 68.02 73.42
SBERT (MiniLM-L6) - FT(C) 80.74 86.00 84.55 87.13 76.20 79.73
SBERT (MiniLM-L6) - FT(C) 50K 76.42 83.18 83.97 86.86 73.97 77.60
SBERT (MiniLM-L6) - FT(T) 81.33 86.33 85.11 87.75 75.27 82.24
SBERT (MiniLM-L6) - PT-FT(C) 84.28 84.67 89.88 89.86 85.68 86.24
SBERT (MPNet) - FT(T) 83.21 88.18 88.68 91.00 78.06 83.05
SBERT (MPNet) - PT-FT(C) 86.98 87.27 92.51 92.68 86.24 85.5
BERT - FT(C) 22.13 23.64 17.35 15.12 39.98 41.13
SBERT Cross-Encoder - FT(C) 67.10 69.83 76.10 75.20 66.91 68.03

Table 2: Top-1 accuracy of models on the DialoGLUE test sets. MP stands for Mean-Pooling, FT for fine-tuning,
(C) for Contrastive loss, (T) for Triplet loss and PT for pre-training. Here, 5 and 10 refers to training subsets created
with 5 and 10 samples per intent, respectively.

with a contrastive loss.

6 Evaluation Metrics

For evaluation, we consider a combination of
FAQ Retrieval metrics along with Intent detection
metrics. Similar to the metrics used in Sakata
et al. (2019), we consider Top-k accuracy (same
as Success Rate referred in the paper), MRR@k
(Mean Reciprocal Rank), nDCG@k (normalized
Discounted Cumulative Gain) and MAP@k (Mean
Average Precision). From an intent detection per-
spective, we also evaluate out-of-scope accuracy
across different thresholds. We use accuracy as
the metric for evaluation of OOS queries. In case
the top predicted label score is less than a speci-
fied threshold, then the top-k results are shown as
suggestions to the user. Metrics like MRR, nDCG
and MAP put emphasis on the ordering of the final
responses and hence are useful for evaluating the
effectiveness of this approach.

7 Results

Table 2 and 3 show the Top-1 accuracy for all ex-
periments. Table 4 shows the performance of the
MiniLM-L6 model in top-3 setting. Figure 1 fur-
ther shows its OOS and in-scope accuracy against
different thresholds.

From our experiments, we find that the fine-
tuned Bi-Encoder models perform the best across
all datasets. All the Bi-Encoder embedding ap-

proaches significantly outperform the other ap-
proaches in few-shot setting in spite of being con-
strained with the last layer fine-tuning strategy.

For HINT3 datasets, we use the benchmarking
results as reported by Arora et al. (2020) for com-
parison. We find that the fine-tuned Bi-Encoder
shows better performance than all benchmarked
chatbot solutions on both full and constrained
datasets. We noticed improvement while fine-
tuning the pre-trained Bi-Encoder models using the
Question pair approach. We also note that online
triplet loss based fine-tuning performed marginally
better as compared to contrastive Loss for all the
base models other than MPNet model on Haptik
dataset. We observe that the question pair / triplet
training strategy mitigates the effect of fewer sam-
ples. Reducing sample sizes of the Q-Q pairs from
200 K to 50 K balanced samples hurts the perfor-
mance across all datasets.

Fine-tuning the task adapted pre-trained mod-
els shows much better results in comparison to the
base pre-trained models in most of the Dialoglue
datasets but the gains are either less or deteriorate
for Haptik datasets. In Haptik datasets, the median
examples per intent is quite low as compared to
Dialoglue, with some intents having only 1 sample.
There would be no triplets formed for such sam-
ples. We also see a wide variation in the number
of examples per intent ranging from 3 to 95 in the
Curekart dataset. This would reduce the number of
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Curekart Powerplay11 SOFMattress
Method Full Set Subset Full Set Subset Full Set Subset
BM25 72.34 71.20 51.63 49.09 58.44 52.24
TF-IDF 72.56 70.35 53.81 52.72 59.74 54.54
BERT - MP 52.87 50.21 30.54 26.18 38.09 32.03
ConvBERT - MP 65.92 63.27 42.18 37.45 49.35 47.18
ConvBERT - FT(C) 77.40 75.22 46.9 43.6 62.33 56.27
SBERT (MiniLM-L6) 82.52 79.64 64.00 62.54 74.58 71.42
SBERT (MiniLM-L6) - FT(C) 87.38 86.06 64.00 63.2 78.78 77.48
SBERT (MiniLM-L6) - FT(C) 50K 86.28 86.94 61.45 58.9 75.32 74.89
SBERT (MiniLM-L6) - FT(T) 86.50 85.17 61.80 64.36 77.90 74.02
SBERT (MiniLM-L6) - PT-FT(C) 85.39 85.39 62.54 61.81 73.16 73.59
SBERT (MPNet) - FT(T) 85.61 84.51 66.54 64.00 74.45 73.59
SBERT (MPNet) - PT-FT(C) 88.05 87.83 62.18 61.81 75.32 76.19
BERT - FT(C) 55.75 58.63 18.18 18.91 41.56 38.96
SBERT Cross-Encoder - FT(C) 65.48 67.92 51.27 49.09 58.40 60.60
Dialogflow 75.00 71.20 59.60 55.60 73.10 65.30
Rasa 84.00 80.50 49.00 38.50 69.20 56.20
LUIS 59.30 49.30 48.00 44.00 59.30 49.30
Haptik 72.20 64.00 66.50 59.20 72.20 64.00
BERT Full Training 73.50 57.50 58.50 53.00 73.50 57.10

Table 3: Top-1 accuracy of models on HINT3(v1) test sets with a threshold of 0.1. Here, MP stands for Mean-
Pooling, FT for fine-tuning, (C) for Contrastive loss, (T) for Triplet loss and PT for pre-training.

triplets for such intents.

While Cross-Encoder strategies are supposed to
be superior, we find that the Cross-Encoder fine-
tuning suffers due to the restrictive training strategy
and performs sub-par when compared to the Bi-
Encoders.

The BERT based classifier also shows poor per-
formance which appears to degrade on datasets
with more classes. In comparison to training BERT
model with all layers unfreezed as reported in the
Arora et al. (2020), we see that the last layer fine-
tuning strategy severely impacts the model perfor-
mance.

We also observe that models pre-trained on in-
domain data such as ConvBERT is superior to base
BERT even as a feature extractor. Interestingly, we
see that even baseline approaches with BM25 and
TF-IDF show better results than pre-trained BERT
in such settings. Fine-tuning the ConvBERT model
on the supervised classification task shows an im-
provement over the pre-trained model. If we look
at the OOS accuracy for the fine-tuned MiniLM-
L6 model, the similarity scores are normally high
and lower thresholds do not have much impact.
We further observe that each dataset has different
thresholds where the best trade-off between OOS

and in-scope accuracy is achieved. The top-3 ac-
curacy of MiniLM-L6 on all datasets including the
challenging Powerplay11 dataset is above 70%. We
choose the fine-tuned Bi-Encoder models based on
superior performance with our training strategy.

8 Deployment

Smaller models give us more scalability at the cost
of accuracy while larger models tend to have lower
throughput and higher memory requirements. The
model selection is done based on the specific busi-
ness need which dictate these three metrics. Table 5
shows the load testing results using Locust frame-
work, where we measure the mean latency per re-
quest and the request per second (RPS) achieved.
The models were tested under increasing loads un-
til RPS was stagnant and latency shot up. The
results depict the performance at the maximum
load the model can comfortably handle. The mod-
els are hosted via Kubernetes and deployed as a
microservice using native Pytorch inference. Ma-
chine configuration used for locust testing was c2-
standard-4 machine (4 vCPU and 16GB RAM) on
Google Cloud Platform. From Table 6, we find
that weight switching saves 81.5% memory per ten-
ant for MiniLM-L6. For the larger model MPNet,
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Curekart Powerplay11 SOFMattress CLINC150
Metrics Full Subset Full Subset Full Subset Sample-5 Sample-10
Success Rate 89.80 88.93 73.81 73.09 81.38 81.81 94.22 95.08
MRR 88.38 87.38 68.42 67.45 79.94 79.43 88.88 90.77
nDCG 89.33 88.69 72.74 71.48 81.06 81.33 93.09 94.33
MAP 88 87 68 67 80 79 89 91

Table 4: Top-3 accuracy of fine-tuned MiniLM-L6 on the OOS datasets

(a) In-scope accuracy (b) OOS accuracy

Figure 1: In-scope and OOS accuracy on different datasets for fine-tuned MiniLM-L6 model.

it saves 92.5% per tenant. The benefits of weight
switching increases as model sizes gets larger. We
see that fine-tuned Bi-Encoder models work best
in terms of accuracy in few-shot setting. We also
have a latency benefit as the question embeddings
are computed upfront and cached. At inference,
prediction are done as cosine similarity between
the query embeddings and the cached question em-
beddings. For further gains, we cache these tenant
specific embeddings using FAISS or ANNOY 2.
While the task adapted pre-trained models worked
quite well in terms of accuracy, it entails repeated
pre-training of the model for every new tenant from
a niche domain and the subsequent fine-tuning. It
poses a hindrance in decoupling tenant data seam-
lessly. However, it is still a very viable approach in
case of separate hosting of domain specific models.

Model Median 90%ile RPS
latency latency

MiniLM-L6 93 260 22.9
MPNet 210 500 6.2

Table 5: Load testing results with latency and requests
per second (RPS) for best models. All latency values in
milliseconds (ms).

Model Memory requirement
Full model Weight switch

MiniLM-L6 110 20.5
MPNet 560 41.5

Table 6: Memory increase per tenant for the best per-
forming models. All values are in MegaBytes (MBs)

We choose MiniLM-L6 as it handles higher load at
significantly lower latency as compared to the best
performing model MPNet, with a slight trade-off
in accuracy.

9 Conclusion

We evaluated various methods for retrieval of Busi-
ness FAQs by modeling the problem as an FAQ
retrieval and a few-shot intent detection task. We
proposed a realistic multi-tenant deployment solu-
tion with trade-offs in accuracy while balancing for
cost and latency. Our last layer weight-switching
strategy works well where the model has to be fine-
tuned on tenant specific tasks. We observed that
fine-tuned Bi-Encoder embeddings work best in
a few-shot setting even under a constrained fine-
tuning strategy.

2https://github.com/spotify/annoy

https://github.com/spotify/annoy
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10 Limitations

Although the weight switching approach is highly
scalable with increase in number of tenants, it has
few limitations. Our last-layer weight switching
strategy is more effective for heavier models and
the benefit starts to diminish with lighter models.
Although this approach is highly scalable, imple-
menting it for inference frameworks such as ONNX
Runtime and NVIDIA Triton is not straightforward.
Hence, we are currently limited to using native Py-
Torch inference which has higher latency. Apart
from this, fine-tuning only the last layer also con-
straints the model training leading to lower accu-
racy as compared to training all the layers. All
our experiments showcase benefits only with base
models and do not showcase inference benefits us-
ing other strategies such as quantization, pruning,
ANNs and caching. Such strategies can make the
system more scalable.
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Appendix

A Dataset details

The details regarding different datasets is given
in Table 7. The dataset BANKING77 consists of
77 intents for 1 domain, CLINC150 has 150 in-
tents across 10 domains and HWU64 has 64 intents
across 21 domains. Curekart, Powerplay11 and
SOFMattress have 28, 59 and 21 intents respec-
tively. Powerplay11 is a challenging set with some
intents having only 1 sample even in full dataset
and median samples per intent being 3 in the subset
variant. The total number of Query-Question (Q-Q)
pairs generated for each dataset is also shown.
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Datasets Intents (Domains) Min Max Median Samples q-Q Pairs
BANKING77 77 (1) 30 167 108 8.6K -
BANKING77-5 77 (1) 5 5 5 385 73920
BANKING77-10 77 (1) 10 10 10 770 296065
CLINC150 150 (10) 100 100 100 15K -
CLINC150-5 150 (10) 5 5 5 750 280875
CLINC150-10 150 (10) 10 10 10 1500 1124250
HWU64 64 (21) 33 159 156 8.9K -
HWU64-5 64 (21) 5 5 5 320 51040
HWU64-10 64 (21) 10 10 10 640 204480
Curekart 28 (1) 3 95 14 600 179700
Curekart-Subset 28 (1) 2 72 8 413 85078
SOFmattress 21 (1) 9 34 12 328 53628
SOFmattress-Subset 21 (1) 3 18 7 180 16110
Powerplay 59 (1) 1 46 7 471 110685
Powerplay-Subset 59 (1) 1 24 3 261 33930

Table 7: Details of datasets used along with number of Q-Q pair generated.Min,Max and Median are on samples per
intent


