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Abstract

Task-oriented dialogue systems in industry
settings need to have high conversational ca-
pability, be easily adaptable to changing sit-
uations and conform to business constraints.
This paper describes a 3-step procedure to
develop a conversational model that satis-
fies these criteria and can efficiently scale
to rank a large set of response candidates.
First, we provide a simple algorithm to semi-
automatically create a high-coverage template
set from historic conversations without any an-
notation. Second, we propose a neural archi-
tecture that encodes the dialogue context and
applicable business constraints as profile fea-
tures for ranking the next turn. Third, we de-
scribe a two-stage learning strategy with self-
supervised training, followed by supervised
fine-tuning on limited data collected through
a human-in-the-loop platform. Finally, we de-
scribe offline experiments and present results
of deploying our model with human-in-the-
loop to converse with live customers online.

1 Introduction

A Task Oriented Dialogue (TOD) system aims to
accomplish specific tasks such as hotel reserva-
tion (Budzianowski et al., 2018), flight booking,
customer support (Moore et al., 2021) and so on.
An end-to-end TOD system directly takes a multi-
turn dialogue context as input and predicts the next
response with a single model (Wen et al., 2016).
These can be developed using either retrieval-
based approaches (Tao et al., 2021; Chen et al.,
2017) where the model ranks a response from a
pre-constructed response pool; or generative ap-
proaches where a response is sequentially gener-
ated with encoder-decoder architectures (Serban
et al., 2017; Sordoni et al., 2015). Although gen-
erative models are widely studied in literature for
dialogue systems (Hosseini-Asl et al., 2020; Yang
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(a) V0: Response Ranking with Poly-Encoder

(b) V1: Response Ranking with Shared Bert

Figure 1: Production Ranking Models. The dialogue
history, response and profile features are encoded with
transformers (top) or using a shared Bert. Cross-
attention layers learn the semantic correlation between
history, features and candidate response. A score func-
tion computes and ranks candidate responses.

et al., 2021) as they are capable to generate free
text, it is nearly impossible to provide guarantees
on the style, quality and privacy risks for their real-
world applications.

In this work, we focus on the development and
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deployment of a retrieval-based conversational
system for an online retail store, in the customer
service domain.

Our main contributions are:

1. We design a simple yet effective algorithm
for generating a large, representative re-
sponse pool from un-annotated dialogues and
show that it can achieve high coverage for
handling natural language conversations.

2. We present an approach which combines self-
supervised training (from human-human con-
versations) and supervised fine-tuning (from
human-in-the-loop interactions) for learning
dialogue models in real industry settings.

3. We enhance state-of-the-art Poly-Encoders
architecture for retrieval based dialogue sys-
tem, incorporating multi-modal information
from dialogue text, and non-textual features
associated with the order and the customer.

4. We present a breakdown of development and
deployment stages of the conversational sys-
tem from offline evaluation –> controlled
human-in-the-loop setting –> fully online on
live traffic with real customer contacts.

2 Related Work

Retrieval-based dialogue systems (Tao et al.,
2021) involve single- and multi-turn response
matching (Chen et al., 2017; Lu et al., 2019;
Henderson et al., 2019; Gu et al., 2020; Whang
et al., 2020; Poddar et al., 2022; Xu et al., 2021;
Vig and Ramea, 2019). The selection of an ap-
propriate response is usually based on comput-
ing and ranking the similarity between context
and response. Two popular model architectures
for such similarity computation between inputs,
is Cross-encoders (Wolf et al., 2019), which per-
form full self-attention over a given input and label
candidate; and Bi-encoders (Dinan et al., 2018),
which encode the input and candidate separately
and combine them at the end for a final repre-
sentation. Bi-encoders have the ability to cache
the encoded candidates, and reuse their represen-
tations for fast inference. Cross-encoders, on the
other hand, often achieve higher accuracy but are
prohibitively slow at test time. A recent method,
Poly-encoders (Humeau et al., 2019), combines
the strengths from the two architectures, and al-
lows for caching response representations while
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Figure 2: Template coverage on general conversations
for Return Refund intent. Upper bound is established
by adding templates to the pool based on human expert
suggestions through several months of active use.

implementing an attention mechanism between
context and response for improved performance.
Transformer-based architectures (Vaswani et al.,
2017; Devlin et al., 2019) are widely used to en-
code information in TOD systems. For instance,
TOD-BERT (Wu et al., 2020) incorporates user
and system tokens into the masked language mod-
eling task and uses a contrastive objective func-
tion to simulate the response selection task. In this
work, we also adapt the Transformer architectures
and enhance Poly-Encoders to encode conversa-
tional history, response and profile features.

3 Response Pool Creation

We semi-automatically extract a broad template
pool from a large number of anonymized human
dialogues. We first select the template texts from
human responses in actual dialogues. This ensures
that the bot language conforms to the desired style.

Our primary selection criteria for response can-
didates are frequency and novelty. We iteratively
select sentences that are (1) most frequently used
in human dialogues, and (2) contain information
different from already selected responses (detailed
algorithm in Appendix A). This directly maxi-
mizes the dialogue model’s coverage, as measured
by the fraction of contexts for which the model has
a suitable response in the pool. An alternative ap-
proach would have been clustering frequent sen-
tences and selecting a representative for each clus-
ter (Hong et al., 2020) as templates. We instead
opted for the deterministic procedure which is
more intuitive for ingesting prior linguistic knowl-
edge and provides interpretability.
Quantitative Evaluation of Coverage: Figure 2
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shows the BLEU score by aligning the best match-
ing templates to unconstrained human-human dia-
logues. As can be seen, with the growing size of
the template pool, the BLEU score approaches this
upper bound, proving that the proposed approach
can achieve strong conversational capacity. Simi-
lar to (Swanson et al., 2019), we see that a set of
500 − 1k sentences can achieve good coverage of
domain-specific conversations.

Template Decorations: We enhance the tem-
plates through attaching metadata, like calls to
external APIs and constraints on profile features.
For example, a template ‘I have issued a re-
fund to your credit card’, will have an action
that triggers an API call for issuing the refund.
Through profile feature constraints
we enforce consistency requirements on the dia-
logue, for example, filtering out the above tem-
plate if an order is not eligible for refund. This
establishes guarantees that the bot is always con-
sistent with business policies.

4 Model Architecture

We represent a dialogue Di = {a1, u1, . . . , an}
as a set of user (ui) and agent (ai) turns. While
conversing with a user, agents look up information
related to the particular order and item to deter-
mine applicable business policies and constraints.
This may include item category, its delivery sta-
tus, whether it was already refunded, among oth-
ers; we encode these as categorical features.

We create multiple input-output tuples by split-
ting a complete dialogue transcript at each agent
turn (e.g. at turn k). The model learns to pre-
dict the next agent response (ak) given the di-
alogue history so far and the features that en-
code item level, customer level information and
applicable policies. We flatten the history into
a single sequence by concatenating all agent and
user turns (xh). We introduce two marker tokens
[AGENTSTART] and [USERSTART] to mark the
beginnings of an agent and user turn respectively.
The features are also represented as a sequence,
where each feature is encoded as a key_value pair
(xf ).

Figure 1 presents the overall architecture of
our proposed ranking model extended from Poly-
Encoder (Humeau et al., 2019). We use sepa-
rate transformers (Vaswani et al., 2017) as encoder

blocks (M) for all inputs and encode them as:

vh =Mh(xh),vh ∈ RLh×d (1)

vf =Mf (xf ),vf ∈ RLf×d (2)

vr =Mr(xr),vr ∈ RLr×d (3)

where d is the dimension of the output vector, and
Lh, Lf , Lr are maximum sequence lengths of his-
tory, features and responses respectively, and xr is
the target response.

Over the sequences we apply self-attentions to
obtain latent representations. We represent the re-
sponse using a single vector zr ∈ Rd. For the
multi-turn dialogue context and feature sequence
we learn mh and mf representations, respectively,
i.e. zh ∈ Rmh×d and zf ∈ Rmf×d. We use 300
history representations (mh) and 50 profile repre-
sentations (mf ) in our experiments.

To learn history-response and feature-response
correlations we apply cross-attention layers.

ah = Attcross(K = zh, V = zh, Q = zr) (4)

af = Attcross(K = zf , V = zf , Q = zr) (5)

where K,V,Q present the key, value, query re-
spectively, ah ∈ Rd and af ∈ Rd are the final
history and profile representations.

We then merge the two modalities of informa-
tion from history and profile features through a
2-layer MLP to represent the complete dialogue
context:

ahf = F([ah,af ]) (6)

A score function is used to rank the candidate
responses given a (history, profile) pair through
computing similarity using dot-product.

s = fscore(ahf , zr) (7)

We train the model in end-to-end manner using
a binary cross-entropy loss.

5 Model Development

In order to protect customer experience and trust,
we do not simply train a model on human-human
conversation data and deploy it to live traffic di-
rectly. To utilize the expertise of our customer ser-
vice agents, we introduce a subsequent stage that
not only acts as an intermediate test-bed, but also
provides a fly-wheel to annotate data. Our model
training consists of the following two stages.
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5.1 Self-supervised Training
A large volume of anonymized human-human
conversations is used for learning an initial dia-
logue model via Self-Supervised Training (SST).
The goal is to rank the correct next utterance
higher compared to other randomly sampled ut-
terances given the dialogue history and associated
profile features. Note that this model is indepen-
dent of the response pool discussed in Section 3.

5.2 Supervised Fine-Tuning
We use the model obtained from the previous stage
to collect supervision data within a human-in-the-
loop environment. In this setting, whenever a cus-
tomer starts a contact, the utterance, along with
profile features, is passed on to the SST model.
The entire response pool is ranked by the model
and top k responses are shown to human agents.
They have three options for responding to the
customer- a) accept the suggestion, b) pick a dif-
ferent template from the pool, c) indicate a failure
of the pool (no response in the pool can be used to
progress the conversation) or the constraints (e.g. a
refund should be offered but it is not available).

We utilize the data collected through this
human-in-the-loop setup for further Supervised
Fine-Tuning (SFT) of the model. The key dif-
ference compared to the previous stage is that in
this setup both the positive and negative responses
come from the response pool. We create a set of
N candidates with the one that the human expert
accepted or searched as positive. The negative
candidates are sampled randomly from the tem-
plate pool. Whenever the response used by the
expert was obtained through search, we leverage
the model-suggested responses as hard negatives.

The primary goal of this human-in-the-loop
stage is to collect the best possible data for su-
pervised training. Instead of the straightforward
approach of suggesting the top-scored template to
human experts, we found that a sampling strategy
among high scoring templates can boost impres-
sions for less frequent templates. This helps im-
proving the utility of the collected data. 1

6 Evaluation

We conduct offline and online experiments on in-
ternal conversational datasets of an e-commerce
customer service from the following two intents,

1For space constraints, the implementation details and
experimental results are found in Appendix C

Start Return Return Refund

Unlabeled Labeled Unlabeled Labeled

# Dialogues 824K 30K 918K 21.6K
Avg. # Turns 18.9 13.5 30.6 8.7

Table 1: Overview of datasets.

1. Start-Return (SR): where a customer wants to
initiate a return of an item.
2. Return-Refund Status (RRS): all post-return
cases where customer may enquire about the sta-
tus of a return or refund already issued / currently
under processing.

6.1 Experimental Setup
Datasets. The dataset statistics are summarized in
Table 1. We tokenize and sentence split dialogue
turns using NLTK toolkit (Loper and Bird, 2002).
We split each dataset to train/dev/test sets with ra-
tio 90:5:5 and use the most frequent 30K, 10K to-
kens as dialogue encoder vocabulary for Start Re-
turn and Return Refund intent, respectively.
Model Training. We train and fine-tune the mod-
els on the unlabeled and labeled intent datasets, re-
spectively. We use a learning rate of 0.00015 and
train for 30 epochs with early stopping.
Metrics. For offline evaluation, we use the stan-
dard ranking metrics Recall@k, and MRR (Mean
Reciprocal Rank), and a metric for offline manual
evaluation for top scored template, namely,
1. Template Precision (TP): For 200 samples
drawn randomly from test set, we use the model
to rank templates in the pool. We manually evalu-
ate the acceptability of the top-ranked template by
the model and report an averaged precision.

For online evaluation we introduce:
2. Turn-level Acceptance Rate (TAR@k): Naccept

Ntotal
,

Naccept is the number of turns accepted by human
expert out of the number of total turns Ntotal. TAR
is an online correspondent of the Recall@k met-
ric. A higher value of TAR indicates model’s ca-
pability of handling a conversation well, through
ranking of the template pool.
3. Task Completion (TC): The percentage of con-
tacts that agents were able to resolve - either by
accepting model suggestion or searching the pool.
TC measures the quality and capacity of the pool
and sets an upper bound for the bot’s success rate.
4. Automated Task Completion (ATC): Success
rate of the deployed bot; i.e. the percentage of con-
tacts where the system is able to resolve the cus-
tomer issue, such that the same customer doesn’t



183

Intent
Offline Metrics Online Metrics

Rec@1/29 MRR TP TAR@4 TAR@1 TC

SR 76% 86% 76% – 71% 52%
RRS 71% 81% 71% 50% 17%† 39%

Table 2: Offline and Online results for initial dialogue
model trained with self-supervision. † RRS was launched
in top-4 suggestion mode, while the better performing SR in-
tent was launched in top-1 suggestion mode.

repeat the contact within next 24 hours.

6.2 Self-Supervised Training Results
We first report offline and online results of mod-
els trained using human-human dialogues in self-
supervised manner. We deploy the trained model
in online human-in-the-loop setup (described in
Section 5.2) and measure TAR@k and TC. We
share our key learnings in this section.
Performance varies depending on domain com-
plexity: From the results in Table 2, we first ob-
serve the significant gap in online metrics between
the two intents, which shows that the performance
of dialogue systems in real-world conversations
are highly dependent on the complexities of the
domain. This primarily reflects in the lower task
completion rates (TC) of RRS, where dialogues
often become open-ended when discussing issues
with a previous return, compared to the more pro-
cedural dialogues about starting a return.
Human choices are often arbitrary among close
alternatives: In the RRS intent we conducted the
online experiment by displaying top-4 templates
to the agents instead of a single one. This de-
creases TAR@1 by ~15%. Using more sugges-
tions generally improves the agent’s productivity
due to limited search. However, we observed that
human choices among similar templates are often
arbitrary, leading to performance drops.
Features are indisposable: For RRS the TAR@4
was also quite low, especially given that SR had
TAR@1 above 70%. The main reason was the lack
of crucial features, like granular tracking informa-
tion from the carrier companies about the return
package. This limited its ability to accurately con-
dition on external factors compared to human ex-
perts. This underlines the saliency of features (or
external knowledge) in a practical TOD setting.
Data-driven templates enable transfer learn-
ing: From the offline results we note that the man-
ually annotated TP metric closely resembles Re-
call@1 for both intents. This implies that the
model is able to learn from human-human conver-

Intent Offline Metrics Online Metrics

Rec@1/29 MRR TAR@1 TC

SR 80.9% 89.1% 84.9% 56.6%
RRS 76.4% 84.9% 46.6% 46.3%

Table 3: Offline and Online results post finetuning

sations and apply it for ranking the restricted tem-
plate set. Having a large template pool that follows
a similar data distribution as the original agent re-
sponses helps in achieving this smooth transition.
Large template pool is effective for handling
conversations at scale: The contact-level metric
(TC) shows that with the generated template pool
52.1% contacts could be fully resolved for the SR
intent. This demonstrates the potential of using
a large representative set of agent responses for
tackling in-domain task oriented conversations.

6.3 Results After Supervised Fine-Tuning
We explore two fine-tuning strategies with the lim-
ited data collected from human-in-the-loop stage.
Catastrophic Forgetting with training only on
restricted language: Figure 3a shows that fine-
tuning with only the limited supervised data leads
to better performance on the supervised test set
(SFT) but increasingly worse performance on the
general conversation test set (SST) as training pro-
gresses. This implies that as the model is be-
ing trained on this restricted data distribution, it is
‘forgetting’ previously learned knowledge through
self-supervision. To mitigate this, we adopt a
simple replay mechanism (Rolnick et al., 2019).
We augment the fine-tuning dataset by mixing
in equal number of training instances from the
self-supervised dataset. As seen from Figure 3b,
training with the balanced dataset leads to consis-
tently better results on both datasets. This proves
the ability of the model to learn from the lim-
ited supervised dataset without overriding previ-
ous knowledge. Similar results were observed for
RR intent Figure 3b ((c)-(d))
Supervision from human-in-the-loop signifi-
cantly boosts performance: Table 3 shows the
performance after supervised fine-tuning. In this
experiment, the offline test set contains template
responses from the human-in-the-loop setup, in
contrast to the general conversation responses con-
sidered in offline evaluation in Table 2. Offline
metrics for both intents are generally higher com-
pared to the general test set (Table 2). This is ex-
pected, since by restricting to specific template set
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Figure 3: Evaluation after fine-tuning with labels collected from human-in-the-loop platform on the SR dataset ((a)
and (b)) and the RR dataset ((c) and (d)). X-axis: checkpoints, Y-axis: performance.

the language variation in agent turns is greatly re-
duced, making the ranking task easier. More im-
portantly, we observe the increase in the online
metric TAR post fine-tuning, demonstrating the ef-
fectiveness of the two-stage training strategy.

Human-in-the-loop setup also augments the
template pool: The increase in TC is indepen-
dent of training strategies and fueled by enhance-
ments to the template pool using suggestions from
the human experts engaged in the supervised data
collection process. It is noteworthy that the initial
(automatically collected) template pool attained a
high 92% and 84% of the TC compared to these
refinements. This demonstrates the efficacy of the
proposed template creation method (Section 3).

6.4 Deployment

A key advantage of the proposed model architec-
ture is its inference efficiency. The textual repre-
sentation of templates can be encoded once at ini-
tialization and cached for future calls. For each
template only the cross-attention layers and final
scoring needs to be re-computed. This lets the
inference latency scale linearly with template set
size (Figure 4). On c5.2xlarge CPU instances
with 1k templates the latency is below 0.5 sec,
which is sufficient for real time conversation with
users; on a small GPU instance g4dn.xlarge
up to 5k templates can be scored within 50 ms.

While the results after supervised fine tuning
for SR reach sufficiently high quality for deploy-
ment of the chatbot, additional improvements are
needed for RRS, especially in providing the es-
sential package tracking information through fea-
tures. The Start Return chatbot achieved 48.3%
Automated Task Completion (ATC) after deploy-
ment.
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Figure 4: Inference speed with growing template pool

7 Developing with Pre-trained Language
Models

We continue developing and improving our mod-
els after deployment. With the initial model
launched, we explore plugging in pre-trained lan-
guage models like BERT as our text encoder (Fig-
ure 1b). We adopt a single shared encoder to sim-
plify our architecture and limit the memory foot-
print of training and hosting a large model. Addi-
tionally, we convert the item features to have more
semantic names (e.g. ‘eligible for refund’) and ap-
pend them to dialogue history for generating the
complete context. This allows the self-attention
mechanism of the transformer module to capture
multi-modal interactions between features and di-
alogue turns that are grounded on them. We use
batch negatives during training and learn the next
response prediction task using categorical cross-
entropy loss.

Table 4 shows the offline evaluation results
(analogous to Table 2) for the two intents. Us-
ing PLMs clearly help in improving performance
at a much higher data efficiency - with only 20%
of training data the BERT initialized model out-
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Data Size Model
SR RRS

Rec@1 MRR Rec@1 MRR
100% no PLM 76.1% 85.5% 71.2% 81.0%
20% bert-base 83.2% 89.5% 76.3% 85.1%
50% bert-base 88.2% 92.9% 81.4% 88.7%

Table 4: Offline performance comparison for pre-
trained language model as text encoder

performs our previous model, which did not use
any pre-training but was trained on 100% available
in-domain dataset. We further fine-tune the mod-
els using the supervised data collected through the
human-in-the-loop setup described in Section 5.2.

Next, we deployed the improved BERT model
for SR intent to live customer traffic. Similar to
the offline results, we observed a significant im-
provement in ATC to 55.3% for the BERT model
compared to 48.3% for our previous model that
did not use any pre-trained language model. In fu-
ture we plan to deploy for the RRS intent as well
and compare both performance and efficiency.

8 Conclusion

We presented a neural, retrieval-based dialogue
model that ranks responses from a large, data-
driven template pool. Pre-defined responses make
it possible to enforce requirements for consistency
to business policies and the proposed template
mining method provides good conversational ca-
pacity. The model is accurate and efficient in terms
of inference speed to handle conversations in real
time. A human-in-the-loop setup lets us effec-
tively collect a small-sized labeled dataset to im-
prove the quality for online deployments.

Offline and online results demonstrate that this
is a viable approach for developing TOD systems
for practical usecases. While RRS showed good
improvements with our training protocol, it needs
further work to be deployed. Performance on the
SR intent permitted the deployment of the model;
its live success rate almost reaches the 56% up-
per bound that humans achieve in the controlled
setting. Anecdotal evidence2 from customer feed-
back shows that successful dialogues by the model
provide good conversational experience.

2We include few positive user feedback in Appendix B.

Ethical considerations

Development and experiments. We used
anonymized text dialogue snippets to train the
models. The system predicts template responses,
hence the model described in this work has no way
to reveal customer information. This is actually
a key theoretical advantage to generative models.
We do not release the datasets used in the experi-
ments.

Failure modes. Regarding risks related to sys-
tem errors, incorrect predictions of the models de-
scribed in this work may result in a confusing di-
alogue experience for customers. However, the
practical risk related to such confusion is limited,
because the chatbot operates in a semi-automation
setting where it naturally predicts and transfers the
contact to a human expert upon a drifting dialogue
history. Moreover, customers also have an option
to talk to a human associate upon request, if they
consider the system doesn’t work as expected.
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A Response Pool Creation

a-to-z book confirmation dropoff hold name price reimbursement security transaction
accept box contact e-mail id notification print reorder sell transfer
access business correspondence elaborate ignore number priority repeat seller transit
account call cost email inconvenience option problem replace sender understand
action cancel create error inform order proceed replacement service understanding
address card credit escalate information pack process representative ship update
allow carrier cvc exception initiate package product request shipment ups
alternative center damage exchange inventory packaging promo require shipping url
amount certificate delay expedite investigate party promotion research solution use
apologize charge deliver experience investigation patience provide resolution specialist verify
apology check delivery expire issue pay purchase resolve status visa
apply checking department extend item payment qr responsibility stay wait
arrange claim detail fee label perfect quantity restock stock waive
arrive click device feedback leadership phone re-order restocking store warehouse
assistance code digit find link photo reason resubmit subscription warranty
associate come disarm follow locker pick receipt retrocharge suggest website
authorization compensation discount fulfil mail pickup receive return supervisor window
availability complaint display fulfillment mailing picture refer returnable support
balance complete dispose fund manufacturer place reflect review team
bank concern disregard gift member policy refund safety time
billing condition donate guarantee method post regard scan track
birth confirm drop help money prefer register screenshot tracking

Table 5: Important lemmas utilized for template selection.

Algorithm 1 Response Pool Generation Process
1: Preprocess data by sentence splitting, tokenization, part-of-speech tagging lemmatization.
2: Transform each sentence into a sequence of verb, noun, adjective, adverb lemmas by dropping punctuation and

non-content words of other parts of speech.
3: Manually review top 1k frequent verb and noun lemmas to retain a list of keywords kw. . We kept altogether 215

lemmas that can be found in Table 5, with ~30 minutes of manual effort.
4: Template set T = ∅
5: for sentence s ∈ dataset do [in decreasing order of frequency]
6: for sentence t ∈ T do
7: sim(s, t) = exp(

∑2
k=1 ln(Jk(sn,tn))

2
)

8: sim(s, T ) = argmaxt∈T (sim(s, t))
9: if sim(s, T ) < λ then

10: if freq(s) > f1 then
11: T = T + {s}
12: if freq(s) > f2 & s ∩ kw 6= ∅ then
13: T = T + {s}
14: Manually remove sentences from T that have grammatical errors or are inappropriate for usecase (e.g. greetings). . We

used λ = 0.4, f1 = 350, f2 = 15. Jk denotes Jaccard similarity of unigrams (k = 1) and bigrams(k = 2)

B User Feedback

CHATBOT: You can also leave a comment about how your experience went. This helps me improve.
USER: Thanks so much!!! I was afraid I’d not get a refund, let alone get a return. Thanks so very much
CHATBOT: Again, I am sorry for the trouble that you had faced due to this circumstance and but for now do you have some clarification

or further question regarding with my resolution?
USER: No thank you
CHATBOT: How does that sound?
USER: Sounds ok.....is there another product you would recommend that will work?
CHATBOT: Would there be anything else I can do to help?
USER: no. Thanks for your help Mr. or Mrs. Bot

Table 6: Examples for positive user feedback.
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C Template Exploration

One of limitations that we observed from model
online deployment is that our deterministic mod-
els always to try to rank the high volume tem-
plates. This gives less opportunity to the templates
with lower frequency. For instance, for some tem-
plates with similar semantic meaning, “No wor-
ries, let me see what I can do to help you out" is
a high frequency template, while “No worries, I
will check that for you real quick.” is a low fre-
quency template. To improve the diversity of tem-
plates, we enable the deterministic ranking mod-
els with exploration capability by using Gumbel-
Softmax Trick (Jang et al., 2017; Maddison et al.,
2017), which is originally proposed to make dis-
crete variables to be differentiable. Here we only
use the sampling functionality with temperature to
control the degree of exploration. The main idea
is to replace the original sigmoid score function
with Gumbel-Softmax. For each inference run, we
sample a template based on the computed scores.

C.1 Dataset and Implementations

We collected the human-in-the-loop data from de-
ployed deterministic ranking model and explo-
ration model. Over around 8 weeks, we collected
67, 136 samples as training set, 5000 and 8196
samples as validation and test set respectively, for
each model. To make a fair comparison, we en-
sure the evaluated sets for each model are same.
We have totally three types of datasets for eval-
uation: (1) DA: the test set is a combination of
the test set of deterministic SFT data, exploration
SFT dataset and general conversation SST dataset.
(2)DB: SST test dataset; (3) DC : SST validation
dataset.

We use the original ranking setting for experi-
ment as described in Sec.3, and set temperature=1.
We want to examine: (1) how fast the explo-
ration model can help to explore and lift those tail
templates; (2) and the predictive performance of
exploration model as compared to deterministic
model.

C.2 Exploration Results

Table 7 presents the accuracy, Recall@1 and MRR
performance for each model. As we can see, ex-
ploration ranking model doesn’t hurt the original
predictive performance when performing explo-
ration on templates. This is important in real-
world setting, because the degraded model perfor-
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Figure 5: The median of cumulative frequency of tem-
plates over time (days) for deterministic and explo-
ration models.

Model / Dataset Loss Acc Recall@1 MRR

Md(DA) 0.2186 0.9203 0.9430 0.9707
Me(DA) 0.2161 0.9197 0.9434 0.9710

Md(DB) 0.2284 0.9161 0.9397 0.9691
Me(DB) 0.2257 0.9163 0.9397 0.9691

Md(DC) 0.1756 0.9322 0.6094 0.7547
Me(DC) 0.1749 0.9320 0.6162 0.7584

Table 7: The performance comparison between deter-
ministic ranking model (Md) and exploration ranking
model (Me) on different evaluated datasets.

mance usually leads to unsatisfactory customer ex-
perience.

Figure 5 demonstrates that the exploration rank-
ing model helps to generate a target K impression
for the average template 2-3 faster than that of de-
terministic ranking model.


