
Proceedings of EMNLP 2022 Industry Track, pages 171–178
December 9–11, 2020. ©2022 Association for Computational Linguistics

171

Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching

Justin Chiu Keiji Shinzato
Rakuten Institute of Technology

Rakuten Group Inc.
{justin.chiu, keiji.shinzato}@rakuten.com

Abstract
Matching a seller listed item to an appropriate
product is an important step for an e-commerce
platform. With the recent advancement in deep
learning, there are different encoder based ap-
proaches being proposed as solution. When
textual data for two products are available,
cross-encoder approaches encode them jointly
while bi-encoder approaches encode them sep-
arately. Since cross-encoders are computation-
ally heavy, approaches based on bi-encoders
are a common practice for this challenge. In
this paper, we propose cross-encoder data anno-
tation; a technique to annotate or refine human
annotated training data for bi-encoder models
using a cross-encoder model. This technique
enables us to build a robust model without an-
notation on newly collected training data or fur-
ther improve model performance on annotated
training data. We evaluate the cross-encoder
data annotation on the product matching task
using a real-world e-commerce dataset contain-
ing 104 million products. Experimental results
show that the cross-encoder data annotation
improves 4% absolute accuracy when no an-
notation for training data is available, and 2%
absolute accuracy when annotation for training
data is available.

1 Introduction

Product matching refers to the task of determining
whether two different entries in the product catalog
refer to the same real-world product. It is a core
task for an e-commerce company where product
catalog entries come from different sources and du-
plicates need to be identified and managed. There
are two popular types of deep learning models that
had been applied to the recent product matching
work; cross-encoder (Li et al., 2020; Peeters et al.,
2020) and bi-encoder (Shah et al., 2018; Tracz et al.,
2020). Figure 1 depicts the architectures to demon-
strate the difference between two models. When
you have textual data for two products such as title
pairs, the cross-encoder encodes them jointly, and

26

Knowledge Distillation from Cross-Encoder to Bi-Encoder

BERT

CLS title A CLS title B

CLS CLS

Score

Similarity

BERT

CLS title A SEP title B

Score

CLS

Classifier

BERT

Bi-encoder Cross-encoder

Figure 1: Bi- and cross-encoders using BERT.

the interaction between the two occurs through all
encoder layers. The bi-encoder encodes both of
them separately and there is no interaction between
them until computing similarity.

The cross-encoder can capture more context due
to its more complex interaction between the two
inputs of data. However, because of its complex-
ity, the model requires much more computational
resources and time. A previous work (Reimers and
Gurevych, 2019) reported that it takes 65 hours
to find the most similar pair from a collection of
10,000 sentences using the cross-encoder (which
requires us building 100,000,000 pairs for cross-
encoder to process), while it only takes 5 seconds
to encode all 10,000 sentences and compute co-
sine similarity for every possible pairs using the
bi-encoder; that is 46,800 times difference in pro-
cessing time. Since an e-commerce platform could
easily have millions of products in its product cat-
alog, such a volume will be a great challenge to
use an approach that requires lots of computing
resources, such as the cross-encoder. As a result,
the bi-encoder is more viable for product matching
in actual production systems.

In this paper, we propose cross-encoder data an-
notation, which is a technique that benefits from
both model architectures. We first apply a cross-
encoder on training data for a bi-encoder, and then
train a bi-encoder using the data with high predic-
tion scores from the cross-encoder. This process



172

is a way to utilize the knowledge learned in the
cross-encoder to support the bi-encoder training.
This approach is inspired by knowledge distilla-
tion (Hofstätter et al., 2020), where information
learned by the cross-encoder is passed to the bi-
encoder through the loss function. This can also
be considered as a semi-supervised approach for
product matching, where the new data is unlabeled.

In this paper, we make three major contributions.
First, we demonstrate that our cross-encoder data
annotation is effective for the product matching
task on a real-world e-commerce dataset. Select-
ing the subset that both cross-encoder prediction
and human annotation consider positive can train a
better performance model in comparison to base-
line. This can happen in an e-commerce company
where different existing trained models are avail-
able for research purposes and new data are coming
in. When building a model with the human anno-
tated new data, our approach is applicable.

Second, we show that even when the human
annotation of the bi-encoder training data is not
available, we can use the prediction result from the
cross-encoder as the data annotation, and build a
model that performs better than a model based on
product search results. This scenario can happen
when reliable annotation for the new data is not
available, and we can use the prediction of the
cross-encoder to replace human annotation.

Finally, from the first contribution, we get to
train a better model with less training data. This is
not a common practice in deep learning since more
training data is usually preferred. Our analysis
shows that through the cross-encoder data anno-
tation, we focus our training data on less queries.
Since the bi-encoder tries to learn the difference
between the two, the cross-encoder data annotation
removes extreme samples in training data, which
acts similarly to noise removal.

2 Product Matching

Given a product entry, a system is required to find
entries in a product corpus that represent the same
product, despite that the content in the entries are
different. A product entry contains a set of informa-
tion for a specific product, such as title, description,
image, or categories. The multiple entries for the
same product can be created by different vendors
using the same e-commerce system. Assuming that
our product corpus C contains M product entries
for N different products C = {p1, p2, p3..., pM},

when given a query product pq, we want to find a
target product pt that matches the query product in
the corpus. The product corpus can be the product
database for a deployed e-commerce system, which
means the corpus size can easily contain over tens
of millions of product entries.

We consider product matching as an informa-
tion retrieval problem. We learn the similarity be-
tween the product entries, and use the similarity
between query product pq and target product pt
to decide whether two product entries are for the
same product. This approach does not have to re-
train the model every time the number of products
N changes. By increasing the N in the product cor-
pus C, we can increase the coverage of our product
matching system.

3 Real-World E-Commerce Scenario

As a solution to the real-world product matching,
there are two different types of approaches. The
first is an approach based on a bi-encoder and an-
other is based on a cross-encoder. We refer to
the bi-encoder as known bi-encoder, and the cross-
encoder as known cross-encoder. These known
models require annotated data, which can be con-
sidered as the system that already exists in the e-
commerce platform or systems that researchers de-
velop as a proof-of-concept.

Each time a new item is received, sellers on the e-
commerce platform upload the product data to the
product database. Since the uploaded data some-
times contain incorrect information, a business unit
in the e-commerce company periodically inspects if
product data is correct. These inspection results can
be regarded as human annotated data. Therefore,
regardless of the annotation, new data is accumu-
lated in the e-commerce platform. To incorporate
the latest product information into a production sys-
tem, we want to build a new bi-encoder using the
new data. We exploit the known bi-encoder and
known cross-encoder to train the new bi-encoder
effectively, which is our key contribution for this
work.

In the rest of this section, we describe the known
bi-encoder, the cross-encoder, and how to train the
new bi-encoder using these existing models.

3.1 Known Bi-Encoder

The known bi-encoder serves as a simple search
engine to create training data for the known cross-
encoder and new bi-encoder. We train the known



173

bi-encoder using triplet loss and in-batch negative,
as reported in previous work (Karpukhin et al.,
2020) for the open-domain Question Answering
(QA) task. One key difference from the previous
work is that we use one encoder to encode product
title pairs although the bi-encoder for the QA task
requires two different encoders, one to encode the
question, and another to encode potential answer
passages. We use BERT (Devlin et al., 2019) as
an encoder, and regard the embeddings of [CLS]
token as a representation of the given product title.

After training the bi-encoder, we encode our en-
tire product corpus with the trained model, and then
index them using FAISS (Johnson et al., 2019) of-
fline. FAISS is an open-source library for similarity
search that can be easily applied onto billions of
vectors. After we have our entire corpus indexed,
whenever we received a new query product, we can
encode it with the same model and retrieve top k
product titles from the FAISS index that are clos-
est to the encoded query in the product embedding
space.

3.2 Known Cross-Encoder
The known cross-encoder serves as a complex
model you can built from the annotated training
data to capture the most contextual information
between product pairs. We employ BERT as an
encoder, and put a classifier layer on the top of
BERT. We convert product title pairs in the form of
[CLS] Title 1 [SEP] Title 2. We regard the
embeddings of [CLS] token obtained from BERT
as a representation of the title pairs, and feed it to
the classifier layer to judge if both titles refer the
same product.

3.3 New Bi-Encoder
The new bi-encoder is the model we want to build
when new data becomes available. The new data
might come with reliable annotations or not, yet
we still want to train model from it so our model
can capture the most up to date information.

To train the new bi-encoder, we first retrieve rel-
evant products for each query product using the
known bi-encoder, and then apply the known cross-
encoder to product pairs constructed from query
and relevant products. For the pairs that the known
cross-encoder predicts as matching pairs, we an-
notate positive pairs as training data. We call this
approach cross-encoder data annotation. When
using the cross-encoder data annotation, no human
annotations for this training set are required, which

we believe will be a convenient scenario in a real-
world, large-scale setup. Similarly to the known
bi-encoder, after training the new bi-encoder, we
index the entire product corpus using the model
and FAISS.

When building the new bi-encoder, in the ideal
scenario, annotation of the training data will be
accurate and available so we can simply use the
human annotations to decide what are the matching
pairs. We can further improve the quality of hu-
man annotation by using the known cross-encoder
to annotate the same data, and then use the inter-
section of both sets as positive training data. This
will lead to a smaller training set than human an-
notation. However, there could be situations where
such high quality human annotations are not avail-
able. As such, we directly use the set annotated by
the known cross-encoder as positive training data.

4 Experiments

Our experiments are focused on the new bi-encoder.
There are two main scenarios for our experiments,
depending on whether the human annotations of the
new products are available. For each scenario, we
compare the experimental result with and without
the cross-encoder data annotation. When the hu-
man annotations of the new products are available,
we intersect human annotations with cross-encoder
data annotations to improve the quality of train-
ing data. When the human annotations of the new
products are not available, we use the cross-encoder
data annotation for model training.

In future work, we will compare the new bi-
encoder with a bi-encoder model trained with all
query products used for training the known bi-
encoder, known-cross encoder, and the new bi-
encoder. The reason why we skip this compari-
son is that the goal of our experiments is to see
how changing the annotation of the same data such
as doing intersection with other annotations can
improve models.

4.1 Dataset

Our experiments are based on our in-house dataset.
The dataset contains product entries that are cre-
ated by sellers on our e-commerce platform, and
each entry consists of product ID,1 title and descrip-
tion written in Japanese. The entries that refer the
same product have the same product ID. The total
number of products is 104 million. We regard this

1More precisely, it is a global trade item number (GTIN).



174

Parameter Cross-encoder Bi-encoder

Batch size 128 128
Max seq. length 256 64
Learning rate 1e-05 1e-05
Temperature n/a 1.0
Warmup rate 0.1 n/a
Vocabulary size 32,000 32,000
Max epoch 10 20

Table 1: Hyper-parameters for each model.

dataset as the product corpus. We only use the title
in the product entry for model training. This avoids
the mismatch where some sellers provide rich prod-
uct descriptions while others provide limited or no
descriptions.

4.2 Model

As encoders for cross- and bi-encoder models, we
adopt BERT base (Devlin et al., 2019) in Japanese
from Huggingface2 and use its tokenizer to seg-
ment product titles into sub-words. We convert all
characters in the titles into full-width before the
segmentation. The average length of a product title
is 27 sub-words.

The hyper parameters we used for training are
reported in Table 1.

4.3 Training

To train the known bi-encoder, known cross-
encoder, and new bi-encoder, we use three unique
sets of 110K products as query products. We se-
lected these query products from the results of busi-
ness operation provided from a business unit in the
company. Each query product has a product ID that
the business unit assigned through the operation.
There is no overlap of the product IDs within the
three sets of the query products. We use 100K of
the products as a training set and 10K products as
a development set.

4.3.1 Known Bi-Encoder
For each entry in the first set of 110K query prod-
ucts, we randomly select a product title in the cor-
pus having the same product ID, and we use these
selected pairs as positive pairs for training. For neg-
ative pairs, we adopt the in-batch negative strategy
proposed by Karpukhin et al. (2020).

2https://huggingface.co/cl-tohoku/
bert-base-japanese

4.3.2 Known Cross-Encoder
The known cross-encoder is trained on the second
set of 110K query product titles. We search these
110K product titles on the product corpus with the
known bi-encoder to collect top 50 products for
each query. This creates 5.5 million pairs of prod-
uct titles, including both positive and negative pairs.
Five million pairs are used as training data and
the rest as development data. We randomly select
2.56 million pairs from the five million pairs and
build the known cross-encoder. The benefit for con-
structing training pairs following this approach is
to incorporate hard negative pairs into the training.
Since hard negative pairs are similar in text, but do
not refer to the same product, we can expect that
the model learns the difference between products
such as differences in product color.

4.3.3 New Bi-Encoder
The new bi-encoder is built on the third set of 110K
query product titles and is the main focus of this
paper. The set is similar to the situations where new
products come into the product corpus. We want
to build the bi-encoder using these new data. The
new bi-encoder is built differently depending on
whether the annotation for the new data is available.

When Available For each query product, we
search the product corpus with its title using the
known bi-encoder and collect the top 50 products.
After collecting the top 50 products, we first use our
human annotation to create training pairs based on
all matching according to the annotation between
the query product title and the retrieved product
titles. This setup creates 113,374 training pairs
that we called human annotated training pairs. We
then use the known cross-encoder to predict all the
product pairs in the top 50 retrieved results. For all
the pairs that the known cross-encoder predicted as
a match, we called them cross-encoder annotated
training pairs, which have 107,059 pairs. Lastly,
we perform an intersection on the human annotated
training pairs and the cross-encoder annotated train-
ing pairs to utilize the knowledge in both pairs.

As a result, we obtain 84,688 training pairs
which we called intersection pairs. The bi-encoder
trained with the intersection pairs is our proposed
approach for this scenario.

When Not Available The bi-encoder trained
with the cross-encoder annotated training pairs is
our proposed approach.

https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/cl-tohoku/bert-base-japanese


175

Training data Accuracy

Human (baseline) 0.7356
Intersection (ours) 0.7575

Table 2: Results when new data annotation is available.

4.4 Baselines

We prepare different baselines depending on
whether the annotation for the new data is avail-
able. When the annotation is available, the model
trained with the human annotated pairs is a base-
line. On the other hand, when the annotation is not
available, we first search the query product titles on
product corpus with the known bi-encoder. We still
collect the top 50 retrieved results. However, since
the annotation is not available, we only use all the
top 1 retrieved results for every query product to
create product pairs for training the baseline. Since
we have one pair per query, we will have 100,000
training pairs in this setup. We call this dataset top
1 product pairs.

4.5 Evaluation

We select 9,991 products from the operation results,
and use them as evaluation data. The data has
less than 2% overlap between each of the 110K
product sets described above. This set can help us
understand whether our models can be effective to
the product that is not in our training data.

For the evaluation, we chose a model with the
lowest loss value on the development set. The eval-
uation measure is the top 1 accuracy of the search
result. We check if the top 1 retrieved product and
the query product are the same product.

4.6 Results

Tables 2 and 3 show the results for using our cross-
encoder data annotation. When the annotation of
training data is available, we can further refine the
quality by conducting an intersection between the
human annotation and the cross-encoder data an-
notation. Since the human annotated training pairs
is larger than the intersection pairs, we can also
observe that more training data does not guarantee
better performances. When the annotation is not
available, we can see that the model with the cross-
encoder data annotation outperforms the baseline,
which relies on the retrieval approach, to form pos-
itive training data. Our cross-encoder annotation
result is also slightly better than the human annota-

Training data Accuracy

Top 1 product pairs (baseline) 0.6985
Cross-encoder (ours) 0.7423

Table 3: Results when new data annotation is not avail-
able.

Training data # of query products

Human 46,160
Cross-encoder 42,186
Intersection 36,872

Table 4: Number of query products in different training
data.

tion result. This could be caused by the randomness
on the training data, or our cross-encoder annota-
tion is focused on lesser queries, which will be
discussed in the section 5.1.

5 Analysis

Since our experiments use the identical modeling
approach, we focus on understanding the compo-
sition of training data and how such differences in
training data affects the prediction performance.

5.1 Analysis of Training Data

We studied how many matching pairs are created
for each query. In the retrieval phase, since we use
every matching pair available, it is possible to have
multiple matching pairs for a single query product.
Table 4 shows the number of query products in each
set. Note that although we have 100K query prod-
ucts to search the corpus to form query pairs, we
only have positive product pairs constructed from
46K product queries in the human annotation. This
is because there are query products that the known
bi-encoder does not return matching products in the
top 50 results. Those query products cannot form
any training pairs. As such, even if the human anno-
tation training data have 113K pairs, they are from
46K distinct products. The number of query prod-
ucts dropped to 42K for the cross-encoder training
pairs, and further lowered to 36K for the intersec-
tion of both sets. This reduced number of queries
makes training process focus on the product pairs
that are relatively easy to judge as the same product.
In other words, removing some extreme training
instances is effective to train better models, and it
might work similar to removing data noise. A set



176

Title 1 Title 2

【１ケース】ファンタグレープ　１６０ｍ
ｌ缶

【送料無料】　コカ・コーラ　ファンタグ
レープ　１６０ｍｌ缶　３０入　果汁ブレン
ドのフルーティーなおいしさ　果汁１％配合
　【コカコーラからお客様へ直接お届けしま
す】【代引不可】

[1 case] Fanta Grape 160 ml Can [Free Shipping] Coca-Cola Fanta Grape 160 ml
Can 30 Packs Fruity Taste of Fruit Juice Blend
Contain 1% Fruit Juice [From Coca-Cola to you
directly] [Cash on delivery is not available]

Table 5: Example of a positive title pair removed by the intersection process (top) and its translation (bottom).

Type # of pairs

Both incorrect 2,227
Only human correct 196
Only intersection correct 414
Both correct 7,154

Table 6: Number of title pairs in the test set for each
correct/incorrect type.

of less diverse training data could model the most
common difference between the two product titles
and contribute to better performance.

Table 5 shows an example of a positive product
title pair removed by the intersection process. Even
though they refer to the same product, and the iden-
tical product name (i.e., Fanta Grape) also shows
up in both titles, we can observe the differences
in both titles. In addition to the product name, the
product title 2 contains extra descriptions such as
a manufacturer name, a quantity, and shipping in-
formation. Learning from pairs with unbalanced
product information might impact the effectiveness
of features such as manufacturer names and quanti-
ties, which affects the overall performance of the
trained model. We can expect that the intersection
process removes such unbalanced pairs from the
training data.

5.2 Analysis of Prediction Results

Table 6 shows the numbers of title pairs in the
test set when we categorize the pairs according to
the judgment results of the human and intersection
models. From the table we can see that the number
of the pairs in “Only intersection correct” is two
times larger than that in “Only human correct.” To
see what kind of product pairs in the test set the

0

0.2

0.4

0.6

0.8

1

[1, 1999] [2000, 3998] [3999, 5997] [5998, 7996] [7997, 9991]
Ranking of query items in the test set

Both incorrect Only intersection correct

Only human correct Both correct

Figure 2: Ratio of correct and incorrect predictions of
each model at each range. The x-axis shows the ranges
of ranking when we sort title pairs in ascending order
according to the distance returned from FAISS for the
human annotation model. The title pair with shorter
distance is at higher ranking.

cross-encoder data annotation effectively works,
we investigate squared Euclidean (L2) distance be-
tween two product titles returned from FAISS for
our human annotation model. We first sort the
title pairs in ascending order according to the dis-
tances returned from the human annotation model,
and then categorize the title pairs into five ranges
equally. After that, for each pair in each range, we
check if the prediction of the intersection model is
correct.

Figure 2 shows the ratio of correct and incorrect
predictions of each model at each range. From
the figure, we can observe that the portion labeled
“Only intersection correct” gets larger as the rank-
ing gets lower, and is always larger than the portion
of “Only human correct.” This means that our in-



177

tersection model has improvement on the subset
of pairs that are far in distance in the embedding
space created by the human annotation model.

5.3 Analysis for Continuous Improvement

As new data keep coming into the system in the
real-world e-commerce scenario, we can continu-
ously improve our models by integrating the train-
ing data of new model into the training data of
known models. However, given the training data
of updated cross-encoder model has more negative
pairs comparing with positive pairs, this updated
might have class imbalance issue where it will be
mostly negative pairs. This can be addressed by
setting a threshold during training data updates to
ensure certain percentage of pairs that need to be
positive pairs, and ensure the proper class balance
in the updated training data.

6 Related Work

Product matching is a fundamental task for an e-
commerce platform. Given the text in product en-
tries, we want to match it to a specific product so
duplicates can be identified. Earlier works tried to
solve it by extracting defined product attributes and
perform matching based on the extraction results
(Mauge et al., 2012; Ghani et al., 2006).

Recently, more efforts have shifted toward focus-
ing on text (Shah et al., 2018; Tracz et al., 2020).
This avoids the need of doing attribute extraction
and can directly be used on product titles and de-
scriptions. There are two main directions for these
efforts. One is considering the product matching
task as an extreme classification problem, and an-
other considering it as a zero-shot learning prob-
lem. As an extreme classification problem (Shah
et al., 2018), the paper built a multi-class classi-
fier that categorizes each input product informa-
tion into a class, whereas each class represents a
different product. The challenge is how to man-
age a multi-class classifier with several millions
of classes, and the need to retrain the classifier ev-
ery time a new product has entered the database.
On the other hand, when considering a zero-shot
learning problem, it focuses on learning the differ-
ence between the product texts (Tracz et al., 2020;
Xiong et al., 2020). This makes it easier to apply
the model on new products and more ideal in a pro-
duction scaling environment. Both cross-encoder
and bi-encoder had been used for solving product
matching as a zero-shot learning problem. How-

ever, the computational complexity of the cross-
encoder makes it hard to scale millions of items.
For the bi-encoder models, different loss functions
(Reimers and Gurevych, 2019; Tracz et al., 2020)
had been applied to the task but the approaches are
fundamentally similar.

In addition, there are several works in different
domains that inspired our paper. Knowledge dis-
tillation (Hofstätter et al., 2020) is proposed to let
a teacher model instruct a student model through
learning. While their focus is on training, we ap-
plied similar ideas for data annotation. The bi-
encoder approach for retrieval was also used in
the open-domain QA task (Karpukhin et al., 2020;
Yamada et al., 2021). Though we do not need
two separate encoders for the question and answer
separately, the retrieval task is still similar in im-
plementation. There are also works (Luan et al.,
2021) focused on analysis representation for text
retrieval. Our cross-encoder and bi-encoder models
also use the difference in the representation created
by different encoder for the product matching task.

7 Conclusion

We demonstrated that we can use a cross-encoder
to provide data annotation and to improve product
matching performance on a bi-encoder. While such
an approach can be useful when human annotation
for new data is not available, it can also improve the
quality of human-annotated data by conducting in-
tersection. Our empirical analysis suggests that the
intersection of our cross-encoder annotation and hu-
man annotation creates more focused training data
that improves the quality of the product embedding
space. As a result of this annotation technique,
we obtained a new way to improve human annota-
tion quality or building bi-encoder model without
human annotation for product matching.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


178

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema,
and Andrew Fano. 2006. Text mining for product
attribute extraction. ACM SIGKDD Explorations
Newsletter, 8(1):41–48.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint
arXiv:2010.02666.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan,
and Wang-Chiew Tan. 2020. Deep entity matching
with pre-trained language models. arXiv preprint
arXiv:2004.00584.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329–
345.

Karin Mauge, Khash Rohanimanesh, and Jean-David
Ruvini. 2012. Structuring E-commerce inventory.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 805–814, Jeju Island, Korea.
Association for Computational Linguistics.

Ralph Peeters, Christian Bizer, and Goran Glavaš. 2020.
Intermediate training of bert for product matching.
small, 745(722):2–112.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Kashif Shah, Selcuk Kopru, and Jean-David Ruvini.
2018. Neural network based extreme classification
and similarity models for product matching. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 3 (Industry Papers), pages 8–15, New Orleans
- Louisiana. Association for Computational Linguis-
tics.

Janusz Tracz, Piotr Iwo Wójcik, Kalina Jasinska-
Kobus, Riccardo Belluzzo, Robert Mroczkowski,
and Ireneusz Gawlik. 2020. BERT-based similar-
ity learning for product matching. In Proceedings
of Workshop on Natural Language Processing in E-
Commerce, pages 66–75, Barcelona, Spain. Associa-
tion for Computational Linguistics.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi.
2021. Efficient passage retrieval with hashing for
open-domain question answering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 979–986, Online.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://aclanthology.org/P12-1085
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/N18-3002
https://doi.org/10.18653/v1/N18-3002
https://aclanthology.org/2020.ecomnlp-1.7
https://aclanthology.org/2020.ecomnlp-1.7
https://doi.org/10.18653/v1/2021.acl-short.123
https://doi.org/10.18653/v1/2021.acl-short.123

