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Introduction

Welcome to the 26th edition of the Conference on Computational Natural Language Learning (CoNLL).
For the fifth time in a row, CoNLL is collocated and co-organized with EMNLP. The COVID-19 pande-
mic is still not behind us, but possibilities of traveling and meeting in person are increasing again. As
such, this year’s edition is hybrid with both in-person and online talks and poster presentations.

CoNLL 2022 follows CoNLL 2020 and CoNLL 2021 in making this the third edition that specifically
“focuses on theoretically, cognitively and scientifically motivated approaches to computational lingui-
stics.” Just like in the previous two editions, this new focus was specified in the call for papers, in the
instructions to reviewers and area chairs and is emphasized in publicity around the conference. Following
EMNLP, we had a hybrid call accepting both direct and ARR submissions.

We received 102 direct submissions and 5 ARR submissions. From the direct submissions, 94 were sent
out to reviewers (the other 8 being either retracted or desk rejected). The 5 ARR submissions were direc-
tly sent to our area chairs with their ARR reviews. We accepted 28 papers, 26 being direct submissions
and 2 ARR submissions. In addition, CoNLL will feature two keynote talks by Noah Goodman and Al-
lyson Ettinger. We thank both of them for accepting our invitation and are looking forward to their talks.
We furthermore would like to thank all members of our program committee, listed on page iv, and our
Area Chairs for many of whom the schedule overlapped with their Summer Break, in alphabetical order:
Andrew Caines, Tanmoy Chakraborty, Kai-wei Chang, Ryan Cotterell, Dan Goldwasser, Micha Elsner,
Rob van der Goot, Jena Hwang, Nora Hollenstein, Dieuwke Hupkes, Joseph Le Roux, Dipendra Misra,
Preslav Nakov, Nanyun Peng, Maja Popovic, Emily Prud’hommeaux, Roi Reichart, Nathan Schneider,
Kevin Small, Rui Wang, Adina Williams, Mark Yatskar.

Special thanks go to our publication chair R. Thomas McCoy, our publicity chair Jack Hessel and Web-
master Jens Lemmens. Without them, these proceedings could not have been completed or authors and
other interested community members would have missed important information.

We received many useful tips and pieces of information from last year’s organizers, Arianna Bisazza and
Omri Abend as well as from SiGNLL President Julia Hockemaier and SiGNLL Chair Afra Alishahi.
Thank you for your support!

We hope you enjoy these proceedings.

Antske Fokkens and Vivek Srikumar
CoNLL 2022 conference co-chairs
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Abstract

We present a multilingual bag-of-entities model
that effectively boosts the performance of zero-
shot cross-lingual text classification by extend-
ing a multilingual pre-trained language model
(e.g., M-BERT). It leverages the multilingual
nature of Wikidata: entities in multiple lan-
guages representing the same concept are de-
fined with a unique identifier. This enables
entities described in multiple languages to be
represented using shared embeddings. A model
trained on entity features in a resource-rich
language can thus be directly applied to other
languages. Our experimental results on cross-
lingual topic classification (using the MLDoc
and TED-CLDC datasets) and entity typing (us-
ing the SHINRA2020-ML dataset) show that
the proposed model consistently outperforms
state-of-the-art models.

1 Introduction

In the zero-shot approach to cross-lingual transfer
learning, models are trained on annotated data in a
resource-rich language (the source language) and
then applied to another language (the target lan-
guage) without any training. Substantial progress
in cross-lingual transfer learning has been made
using multilingual pre-trained language models
(PLMs), such as multilingual BERT (M-BERT),
jointly trained on massive corpora in multiple lan-
guages (Devlin et al., 2019; Conneau and Lample,
2019; Conneau et al., 2020a). However, recent em-
pirical studies have found that cross-lingual trans-
fer learning with PLMs does not work well for
languages with insufficient pre-training data or be-
tween distant languages (Conneau et al., 2020b;
Lauscher et al., 2020), which suggests the difficulty
of cross-lingual transfer based solely on textual in-
formation.

We propose a multilingual bag-of-entities (M-
BoE) model that boosts the performance of zero-

∗ Work done as an intern at Studio Ousia.

shot cross-lingual text classification by automati-
cally generating links to a language-agnostic knowl-
edge base (KB) and injecting features of these en-
tities into PLMs. KB entities, unlike words, can
capture unambiguous semantics in documents and
be effectively used to address text classification
tasks (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013; Song et al.,
2016; Yamada and Shindo, 2019). In particular, our
model extends PLMs by using Wikidata entities as
input features (see Figure 1). A key idea behind
our model is to leverage the multilingual nature of
Wikidata: entities in multiple languages represent-
ing the same concept (e.g., Apple Inc.,애플,アッ
プル) are assigned a unique identifier across lan-
guages (e.g., Q312). Given a document to be classi-
fied, our model extracts Wikipedia entities from the
document, converts them into the corresponding
Wikidata entities, and computes the entity-based
document representation as the weighted average of
the embeddings of the extracted entities. Inspired
by previous work (Yamada and Shindo, 2019; Pe-
ters et al., 2019), we compute the weights using
an attention mechanism that selects the entities rel-
evant to the given document. We then compute
the sum of the entity-based document representa-
tion and the text-based document representation
computed using the PLM and feed it into a linear
classifier. Since the entity vocabulary and entity
embedding are shared across languages, a model
trained on entity features in the source language can
be directly transferred to multiple target languages.

We evaluate the performance of the M-BoE
model on three cross-lingual text classification
tasks: topic classification on the MLDoc (Schwenk
and Li, 2018) and TED-CLDC (Hermann and
Blunsom, 2014) datasets and entity typing on the
SHINRA2020-ML (Sekine et al., 2020) dataset.
We train the model using training data in the source
language (English) and then evaluate it on the tar-
get languages. It outperforms our base PLMs (i.e.,

1



Figure 1: Architecture of M-BoE. Given a document, the model extracts Wikipedia entities, converts them into
corresponding Wikidata entities, and calculates the entity-based document representation by using the weighted
average of the embeddings of the entities selected by an attention mechanism. The sum of the entity-based
representation and the representation computed using a multilingual PLM is used to perform linear classification for
the task.

M-BERT (Devlin et al., 2019) and the XLM-R
model (Conneau et al., 2020a)) for all target lan-
guages on all three tasks, thereby demonstrating
the effectiveness of the entity-based representation.
Furthermore, our model performs better than state-
of-the-art models on the MLDoc dataset.

Our contributions are as follows:

• We present a method for boosting the per-
formance of cross-lingual text classification
by extending multilingual PLMs to leverage
the multilingual nature of Wikidata entities.
Our method successfully improves the per-
formance on multiple target languages simul-
taneously without expensive pre-training or
additional text data in the target languages.

• Inspired by previous work (Yamada and
Shindo, 2019; Peters et al., 2019), we in-
troduce an attention mechanism that enables
entity-based representations to be effectively
transferred from the source language to the tar-
get languages. The mechanism selects entities
that are relevant to address the task.

• We present experimental results for three
cross-lingual text classification tasks demon-
strating that our method outperforms our
base PLMs (i.e., M-BERT and XLM-R) for
all languages on the three tasks and outper-
forms state-of-the-art methods on the MLDoc

dataset.

2 Related Work

Cross-lingual PLMs Zero-shot cross-lingual
transfer learning approaches have relied on par-
allel corpora (Xu and Wan, 2017) or multilingual
word representation (Duong et al., 2017). Con-
siderable progress has been made on PLMs for
various cross-lingual transfer tasks. The representa-
tive models are M-BERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020a), which are multi-
lingual extensions of BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), respectively. Both
models are pre-trained on massive corpora of ap-
proximately 100 languages. LASER (Artetxe and
Schwenk, 2019) is a PLM trained on a parallel
corpus of 93 languages by using a sequence-to-
sequence architecture.

Improving cross-lingual transfer learning Sev-
eral studies have attempted to improve cross-
lingual transfer learning by using additional text
data in the target language. Lai et al. (2019) pro-
posed using an unlabeled corpus in the target lan-
guage to bridge the gap between the language
and the domain. Dong et al. (2020) and Keung
et al. (2019) incorporated adversarial training us-
ing unlabeled target language examples. Dong and
de Melo (2019) and Eisenschlos et al. (2019) pre-
sented methods for data augmentation in which

2



pseudo-labels are assigned to an unlabeled corpus
in the target language. Conneau and Lample (2019)
additionally pre-trained BERT-based models using
a parallel corpus. However, these methods require
extra training on additional text data for each tar-
get language, and their resulting models work well
only on a single target language. Unlike these meth-
ods, our method does not require extra training and
improves performance simultaneously for all target
languages with only a single PLM. Furthermore,
our method can be easily applied to these models
since it is a simple extension of a PLM and does
not modify its internal architecture.

Enhancing monolingual PLMs using entities
Several methods have been proposed for improv-
ing the performance of PLMs through pre-training
using entities. ERNIE (Zhang et al., 2019) and
KnowBert (Peters et al., 2019) enrich PLMs by
using pre-trained entity embeddings. LUKE (Ya-
mada et al., 2020b) and EaE (Févry et al., 2020)
train entity embeddings from scratch during pre-
training. However, all of these methods are aimed
at improving the performance of monolingual tasks
and require pre-training with a large corpus, which
is computationally expensive. Our method dynami-
cally injects entity information into PLMs during
fine-tuning without expensive pre-training.

Several studies have attempted to incorporate
entity information into PLMs after pre-training to
enhance the performance of monolingual tasks. Os-
tendorff et al. (2019) concatenated contextualized
representations with knowledge graph embeddings
to represent author entities and used them as fea-
tures for the book classification task. E-BERT
(Poerner et al., 2020) inserts KB entities next to
the entity names in the input sequence to improve
BERT’s performance for entity-centric tasks. Ver-
linden et al. (2021) introduced a mechanism for
combining span representations and KB entity rep-
resentations within a BiLSTM-based end-to-end in-
formation extraction model. Unlike these methods,
our method aims to improve the cross-lingual text
classification by combining PLMs with language-
agnostic entity embeddings.

Text classification models using entities Sev-
eral methods have been commonly used to address
text classification using entities. Explicit seman-
tic analysis (ESA) is a representative example; it
represents a document as a bag of entities, which
is a sparse vector in which each dimension is a

score reflecting the relevance of the text to each
entity (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013). More re-
cently, Song et al. (2016) proposed cross-lingual
explicit semantic analysis (CLESA), an extension
of ESA, to address cross-lingual text classification.
CLESA computes sparse vectors from the intersec-
tion of Wikipedia entities in the source and target
languages using Wikipedia language links. Unlike
CLESA’s approach, we address cross-lingual text
classification by extending state-of-the-art PLMs
with a language-agnostic entity-based document
representation based on Wikidata.

The most relevant to our proposed approach is
the neural attentive bag-of-entities (NABoE) model
proposed by Yamada and Shindo (2019). It ad-
dresses monolingual text classification using enti-
ties as inputs and uses an attention mechanism to
detect relevant entities in the input document. Our
model can be regarded as an extension of NABoE
by (1) representing documents using a shared entity
embedding across languages and (2) combining an
entity-based representation and attention mecha-
nism with state-of-the-art PLMs.

3 Proposed Method

Figure 1 shows the architecture of our model. The
model extracts Wikipedia entities, converts them
into Wikidata entities, and computes the entity-
based document representation using an attention
mechanism. The sum of the entity-based document
representation and the text-based document repre-
sentation computed using the PLM is fed into a
linear classifier to perform classification tasks.

3.1 Entity detection

To detect entities in the input document, we use two
dictionaries that can be easily constructed from the
KB: (1) a mention-entity dictionary, which binds an
entity name (e.g., “Apple”) to possible referent KB
entities (e.g., Apple Inc. and Apple (food)) by using
the internal anchor links in Wikipedia (Guo et al.,
2013), and (2) an inter-language entity dictionary,
which links multilingual Wikipedia entities (e.g.,
Tokyo, 도쿄, 東京) to a corresponding identifier
(e.g., Q7473516) of Wikidata.

All words and phrases are extracted from the
given document in accordance with the mention-
entity dictionary1, and all possible referent entities

1Following past work (Yamada and Shindo, 2019), name
overlap bounds are resolved by detecting only the earliest and
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Dataset Language Train Dev. Test
MLDoc 8 1,000 1,000 4,000

TED-CLDC 12 936 105 51–106
SHINRA 30 417,387 21,967 30k–920k

Table 1: Number of examples in MLDoc, TED-CLDC, and SHINRA2020-ML datasets.

are detected if they are included as entity names in
the dictionary. Note that all possible referent enti-
ties are detected for each entity name rather than
a single resolved entity. For example, we detect
both Apple Inc. and Apple (food) for entity name
“Apple”. Next, the detected entities are converted
into Wikidata entities if they are included in the
inter-language entity dictionary.

3.2 Model
Each Wikidata entity is assigned a representation
vei ∈ Rd. Since our method extracts all possible
referent entities rather than a single resolved entity,
it often extracts entities that are not related to the
document. Therefore, we introduce an attention
mechanism inspired by previous work (Yamada
and Shindo, 2019; Peters et al., 2019) to prioritize
entities related to the document. Given a document
with K detected entities, our method computes the
entity-based document representation z ∈ Rd as
the weighted average of the entity embeddings:

z =
K∑

i=1

aeivei , (1)

where aei ∈ R is the attention weight correspond-
ing to entity ei and calculated using

a = softmax(W⊤
a ϕ), (2)

ϕ(ei, d) =

[
cosine(h,vei)

pei

]
(3)

where a = [ae1 , ae2 , · · · , aeK ] are the attention
weights; W a ∈ R2 is a weight vector; ϕ =
[ϕ(e1, d), ϕ(e2, d), · · · , ϕ(eK , d)] ∈ R2×K repre-
sents the degree to which each entity ei is related to
document d; and ϕ(ei, d) is calculated by concate-
nating commonness2 pei with the cosine similarity
between the document representation computed us-
ing the PLM, h ∈ Rd (e.g., the final hidden state
of the [CLS] token), and entity embedding, vei .

The sum of this entity-based document represen-
tation z and text-based document representation h

longest ones.
2Commonness (Mihalcea and Csomai, 2007) is the proba-

bility that an entity name refers to an entity in Wikipedia.

is fed into a linear classifier3 to predict the proba-
bility of label c:

p(c | h, z) = Classifier(h+ z). (4)

4 Experimental Setup

In this section, we describe the experimental setup
we used for the three cross-lingual text classifica-
tion tasks.

4.1 Entity preprocessing

We constructed a mention-entity dictionary from
the January 2019 version of Wikipedia dump4 and
an inter-language entity dictionary from the March
2020 version in the Wikidata dump,5 which con-
tains 45,412,720 Wikidata entities (e.g., Q312). We
computed the commonness values from the same
versions of Wikipedia dumps in the correspond-
ing language, following the work of Yamada and
Shindo (2019).

We initialized Wikidata entity embeddings using
pre-trained English entity embeddings trained on
the KB. To train these embeddings, we used the
open-source Wikipedia2Vec tool (Yamada et al.,
2020a). We used the January 2019 English
Wikipedia dump mentioned above and set the di-
mension to 768 and the other parameters to the
default values. We initialized an entity embedding
using a random vector if the entity did not exist in
the Wikipedia2Vec embeddings. Note that we used
only English Wikipedia to train the entity embed-
dings.

4.2 Data

We evaluated our model using three datasets: ML-
Doc (Schwenk and Li, 2018), TED-CLDC (Her-
mann and Blunsom, 2014), and SHINRA2020-ML
(Sekine et al., 2020).

MLDoc is a dataset for multi-class text classi-
fication, i.e., classifying news articles into four

3In preliminary experiments, we also tested concatenation,
but observed worse overall results than with summation.

4https://dumps.wikimedia.org/
5https://dumps.wikimedia.org/

wikidatawiki/entities/
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Model en fr de ja zh it ru es target avg.
MultiCCA (Schwenk and Li, 2018) 92.2 72.4 81.2 67.6 74.7 69.4 60.8 72.5 71.2
LASER (Artetxe and Schwenk, 2019) 89.9 78.0 84.8 60.3 71.9 69.4 67.8 77.3 72.8
M-BERT 94.0 79.4 75.1 69.3 68.0 67.1 65.3 75.2 71.4 ± 1.4

+M-BoE 94.1 84.0 76.9 71.1 72.2 70.0 68.9 75.5 74.1 ± 0.7
XLM-R 94.4 84.9 86.7 78.5 85.2 73.4 71.3 81.5 80.2 ± 0.5

+M-BoE 94.6 86.4 88.9 80.0 87.4 75.6 73.7 83.2 82.2 ± 0.6

Table 2: Classification accuracy for topic classification on MLDoc dataset; “target avg.” indicates average scores for
target languages.

Model en fr de it ru es ar tr nl pt pl ro target avg.
M-BERT 51.6 47.7 43.9 50.6 47.9 53.1 41.3 44.2 49.4 46.2 45.1 45.4 47.1 ± 1.4

+M-BoE 52.9 49.5 46.2 53.3 49.2 54.7 44.7 49.1 51.0 47.6 47.7 48.2 49.6 ± 1.1
XLM-R 51.5 49.5 49.7 48.7 48.3 51.2 45.6 51.3 48.8 46.3 48.3 48.4 49.1 ± 1.8

+M-BoE 51.7 50.0 53.8 51.3 52.3 52.9 50.5 53.1 52.0 49.3 50.5 49.6 51.8 ± 0.9

Table 3: F1 score for topic classification on TED-CLDC dataset.

categories in eight languages. We used the en-
glish.train.1000 and english.dev datasets, which
contain 1000 documents for training and validation
data. As in the previous work (Schwenk and Li,
2018; Keung et al., 2020), we used accuracy as the
metric.

TED-CLDC is a multi-label classification
dataset covering 15 topics in 12 languages based
on the transcripts of TED talks. This topic classifi-
cation dataset is exactly like the MLDoc dataset
except that the classification task is more difficult
because of its colloquial nature and because the
amount of training data is small. Following the
previous work (Hermann and Blunsom, 2014), we
used micro-average F1 as the metric.

SHINRA2020-ML is an entity typing dataset
that assigns fine-grained entity labels (e.g., Per-
son, Country, Government) to a Wikipedia page.
We used this dataset for multi-label classification
tasks; we used all datasets in 30 languages except
English for the test data. Note that our model does
not use information in the test data during train-
ing because we only use the English Wikipedia to
train our entity embeddings. Following the original
work (Sekine et al., 2020), we used micro-average
F1 as the metric.

We created a validation set by randomly select-
ing 5% of the training data in TED-CLDC and
5% of the training data in SHINRA2020-ML. In
all experiments, we trained our model on English
training data, optimized hyper-parameters using
English development data, and evaluated it on the
remaining languages. A summary of the datasets is

shown in Table 1.

4.3 Models

We used M-BERT (Devlin et al., 2019) and XLM-
Rbase (Conneau et al., 2020a) as the baseline multi-
lingual PLMs to evaluate the proposed method. We
added a single fully-connected layer on top of the
PLMs and used the final hidden state h of the first
[CLS] token as the text-based document representa-
tion. For the MLDoc dataset, we trained the model
by minimizing the cross-entropy loss with softmax
activation. For the TED-CLDC and SHINRA2020-
ML datasets, we trained the model by minimizing
the binary cross-entropy loss with sigmoid activa-
tion. For these two tasks, we regarded each label as
positive if its corresponding predicted probability
was greater than 0.5 during inference.

For topic classification using MLDoc, we com-
pared the performance of the proposed model with
those of two state-of-the-art cross-lingual models:
LASER (Artetxe and Schwenk, 2019) (see Section
2), and MultiCCA (Schwenk and Li, 2018), which
is based on a convolutional neural network with
multilingual word embeddings. To ensure a fair
comparison, we did not include models that use
additional unlabeled text data or a parallel corpus
to train models for each target language.

For entity typing, we tested a model that uses or-
acle entity annotations (i.e., hyperlinks) contained
in the Wikipedia page to be classified instead of
entities detected using the entity detection method
described in Section 3.1. Note that this model also
uses attention mechanisms and pre-trained entity
embeddings.
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fr de ja zh it ru es ar tr nl pt pl ro hi no
M-BERT 68.5 84.2 81.3 80.7 85.2 81.4 85.6 57.4 50.7 55.6 80.4 77.7 76.9 81.8 83.6

+M-BoE 69.3 85.1 82.5 82.2 86.4 83.2 86.6 61.9 54.0 59.0 81.7 79.4 80.5 82.9 84.8
+Oracle M-BOE 75.4 85.2 81.9 81.8 86.5 83.0 86.5 61.9 53.7 61.7 81.8 79.7 79.9 83.0 84.8

XLM-R 73.0 82.6 77.4 75.1 84.2 81.0 85.3 58.9 69.1 63.7 79.8 80.0 76.9 83.3 82.4
+M-BoE 77.4 84.5 79.0 77.0 85.6 83.2 85.8 63.3 72.3 65.5 80.7 81.8 77.8 84.8 84.0
+Oracle M-BOE 76.5 84.8 79.6 77.2 85.5 83.4 86.2 63.0 71.8 67.6 80.4 81.5 78.8 84.8 83.2

th ca da fa id sv vi bg cs fi he hu ko uk target avg.
M-BERT 84.0 81.5 80.1 80.2 72.4 79.4 79.3 74.0 74.6 75.7 74.0 77.1 81.3 78.0 76.6 ± 0.7

+M-BoE 85.1 83.2 81.4 82.1 75.4 82.4 81.2 76.1 76.8 77.6 78.1 79.2 82.9 80.0 78.7 ± 0.5
+Oracle M-BOE 85.3 83.2 82.3 82.4 75.5 82.0 81.6 76.6 77.4 77.4 77.8 78.7 83.3 79.9 79.0 ± 0.5

XLM-R 81.4 79.0 81.0 82.4 75.5 75.5 80.7 76.0 77.9 74.7 70.5 73.1 82.6 74.3 77.1 ± 1.2
+M-BoE 82.1 80.9 83.3 84.1 78.2 78.7 81.9 79.1 79.6 76.9 71.9 75.5 84.0 77.0 79.2 ± 0.9
+Oracle M-BOE 81.8 81.2 82.9 83.9 78.3 78.2 82.5 79.1 79.9 77.1 71.8 75.8 83.92 76.9 79.2 ± 0.9

Table 4: F1 score for entity typing on SHINRA2020-ML dataset.

4.4 Detailed settings

We tuned the hyper-parameters on the basis of the
English validation set. The details on the hyperpa-
rameters of the models can be found in Appendix A.
We trained the models using the AdamW optimizer
with a gradient clipping of 1.0.

In all experiments, we trained the models until
the performance on the English validation set con-
verged. We conducted all experiments ten times
with different random seeds, and recorded the aver-
age scores and 95% confidence intervals.

5 Results

Tables 2, 3, and 4 show the results of our experi-
ments. Overall, the M-BoE models outperformed
their baselines (i.e., M-BERT and XLM-R) for
all target languages on all three datasets. Further-
more, there was a significant difference in the mean
scores for the target languages for those models in
a paired t-test (p < 0.05). In particular, the perfor-
mance of our model clearly exceeded that of the
M-BERT baseline by 2.7% in accuracy, 2.5% in
F1, and 2.1% in F1, on the MLDoc, TED-CLDC,
and SHINRA2020-ML datasets, respectively.

For entity typing, using the entities detected with
our simple dictionary-based approach achieved
comparable performance to using gold entity
annotations (Table 4: Oracle M-BoE) on the
SHINRA2020-ML dataset, which clearly demon-
strates the effectiveness of our attention-based en-
tity detection method.

6 Analysis

We conducted a series of experiments to analyze the
performance of our model on the MLDoc dataset
(Table 5). We first analyzed the impact on the per-
formance of each component in the M-BoE model,

Setting
M-BoE M-BoE

(M-BERT) (XLM-R)
target avg. target avg.

Full model 74.1 82.2
Attention mechanism:

without attention 70.5 81.1
commonness only 72.4 81.8
cosine only 72.8 81.8

Entity embeddings:
random vectors 73.0 80.9
KG embedding 73.2 81.4

Entity detection method:
entity linking 71.7 80.5
entity linking + att 73.0 81.9

Baseline 71.4 80.2

Table 5: Results of analysis of our model on MLDoc.

including the attention mechanism, pre-trained en-
tity embeddings, and entity detection methods. We
then evaluated the sensitivity of the model’s per-
formance to differences in the number of detected
entities for each language. Finally, we conducted
qualitative analysis by visualizing important enti-
ties.

6.1 Attention mechanism

We examined the effect of the attention mechanism
on performance. When the attention mechanism
was removed (Table 5: Attention mechanism), the
performance was substantially lower than with the
proposed model. This indicates that the attention
mechanism selects the entities that are effective in
solving the classification task. Next, we examined
the effectiveness of the two features (i.e., cosine
and commonness) in the attention mechanism by
excluding them one at a time from the M-BoE
model. Table 5 shows that there was a slight drop
in performance when either of them was not used,
indicating that both features are effective.
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Model en (train) fr de ja zh it ru es avg.
External entity linking 20.0 19.2 14.6 8.15 5.2 11.7 12.7 13.8 13.2
Dictionary-based method (ours) 105.8 97.8 78.9 47.9 34.5 53.2 64.6 72.3 64.2

Table 6: Comparison of the number of detected entities on MLDoc dataset. Numbers indicate average number of
entities detected for each example.

(a) M-BoE (M-BERT) (b) M-BoE (XLM-R)

Figure 2: Classification accuracy for each entity detection rate using MLDoc dataset.

6.2 Entity embeddings

To investigate the effect of entity embedding ini-
tialization, we replaced Wikipedia2Vec with (1)
random vectors and (2) knowledge graph (KG)
embeddings (Table 5: Entity embeddings). For
KG embedding, we used ComplEx (Trouillon
et al., 2016), a state-of-the-art KG embedding
method. We trained the ComplEx embeddings
on the wikidata5m dataset (Wang et al., 2021)
using the kge tool.6 We set the dimension to
768 and used the default hyper-parameters for
everything else in the wikidata5m-complex
configuration in the tool. The results show
that using Wikipedia2Vec was the most effective
although using KG embeddings was better than
using random vectors.

6.3 Entity detection method

To verify the effectiveness of our dictionary-based
entity detection method, we simply replaced it with
a commercial multilingual entity linking system,
Google Cloud Natural Language API7 (Table 5:
Entity detection method). All entities were de-
tected with the API and converted into Wikidata
entities, as explained in Section 3.1. Note that
unlike our dictionary-based method, the entity link-
ing system detects a single disambiguated entity

6https://github.com/uma-pi1/kge
7https://cloud.google.com/

natural-language

for each entity name.

The results show that our entity detection method
outperformed the API. We attribute this to the num-
ber of entities detected with our dictionary-based
detection method. As shown in Table 6, the number
of entities detected with the entity linking system
was substantially lower than with our entity detec-
tion method because, unlike our method, the sys-
tem detects only disambiguated entities and does
not detect non-named entities. Therefore, we at-
tribute the better performance of our method com-
pared with that of the API to (1) non-named entities
also being important features and (2) the inability
to use the correct entity if the disambiguation error
is caused by entity linking.

Furthermore, as described in Section 5, our
entity detection method performed competitively
with the human-labeled entity annotations on the
SHINRA2020-ML dataset.

Next, we examined the performance impact of
the number of detected Wikidata entities. For the
full model and no attention model, we observed a
change in performance when some percentage of
the entities were randomly removed during train-
ing and inference. Figure 2 shows that, the higher
the entity detection rate, the better the performance
of the full model. When the attention mechanism
was removed, however, there was no consistent
trend. The performance remained the same or even
dropped. These results suggest that the more enti-

7

https://github.com/uma-pi1/kge
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language


(a) MLDoc (b) TED-CLDC

Figure 3: Pearson correlation coefficient and scatter plot of average number of detected entities and rate of
improvement in performance (Rate) for each target language.
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Figure 4: Example results for MLDoc. “Top three entities” indicates the three most influential entities selected by
attention mechanism.

ties detected, the better the performance, and that
the attention mechanism is important for this con-
sistent improvement.

6.4 Performance sensitivity to language
differences

In our method, the number of detected Wikidata
entities during inference differs depending on the
target languages. We investigated how this affects
performance. For each of the datasets, we com-
puted the Pearson’s correlation coefficient between
the number of detected entities and the rate of im-
provement over the baseline performance for each
language (Figure 3). As a result, there was no clear
trend in the correlation coefficients, which ranged
from -0.3 to 0.2. These results indicate that the per-
formance was consistently improved for languages
with a small number of detected entities. We at-
tribute this to the ability of our method to detect
a sufficient number of entities, even for languages

with a relatively small number of entity detections.

6.5 Qualitative analysis

To further investigate how the M-BoE model im-
proved performance, we took the MLDoc docu-
ments that our model classified correctly while M-
BERT did not and examined the influential entities
that were assigned the largest attention weights by
the M-BoE model. Figure 4 shows three examples
in which the M-BoE model effectively improved
performance. Overall, it identified the entities that
were highly relevant to the document. For example,
the first document is a Japanese document about
the Taiwanese stock market, and the M-BoE model
correctly identified the relevant entities, including
Stock certificate, Share price, and Taiwan Capital-
ization Weighted Stock Index.
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7 Conclusions

Our proposed M-BoE model is a simple extension
of multilingual PLMs: language-independent Wiki-
data entities are used as input features for zero-
shot cross-lingual text classification. Since the
Wikidata entity embeddings are shared across lan-
guages, and the entities associated with a document
are further selected by the attention mechanism, a
model trained on these features in one language
can efficiently be applied to multiple target lan-
guages. We achieved state-of-the-art results on
three cross-lingual text classification tasks, which
clearly shows the effectiveness of our method.

As future work, we plan to evaluate our model
on low-resource languages and a variety of natural
language processing tasks, such as cross-lingual
document retrieval. We would also like to inves-
tigate whether our method can be combined with
other methods, such as using additional textual data
in the target language.
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Appendix for “A Multilingual Bag-of-Entities Model for
Zero-Shot Cross-Lingual Text Classification”

A Hyper-parameter Details

We conduct a grid-search for batch size ∈ {16, 32, 64, 128} and learning rate ∈ {1e−05, 2e−05, 5e−05}.
The chosen hyperparameters for each model are shown in Table 7.

Model MLDoc TED-CLDC SHINRA2020-ML
M-BERT 32 / 2e-05 16 / 2e-05 128 / 5e-05
XLM-R 32 / 2e-05 16 / 5e-05 64 / 2e-05
M-BoE (M-BERT) 32 / 2e-05 16 / 2e-05 128 / 5e-05
M-BoE (XLM-R) 32 / 2e-05 16 / 5e-05 64 / 2e-05

Table 7: Hyper-parameters used for experiments. In each cell, the left value indicates batch size, and the right value
indicates learning rate.
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Abstract

Are the predictions of humans and language
models affected by similar things? Research
suggests that while comprehending language,
humans make predictions about upcoming
words, with more predictable words being pro-
cessed more easily. However, evidence also
shows that humans display a similar processing
advantage for highly anomalous words when
these words are semantically related to the pre-
ceding context or to the most probable contin-
uation. Using stimuli from 3 psycholinguis-
tic experiments, we find that this is also al-
most always also the case for 8 contemporary
transformer language models (BERT, ALBERT,
RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J,
and XGLM). We then discuss the implications
of this phenomenon for our understanding of
both human language comprehension and the
predictions made by language models.

1 Introduction

Humans process words more easily when they
more contextually predictable, whether predictabil-
ity is determined by humans (Fischler and Bloom,
1979; Brothers and Kuperberg, 2021) or language
models (McDonald and Shillcock, 2003; Levy,
2008; Smith and Levy, 2013). Work on the N400,
a neural signal of processing difficulty, has pro-
vided evidence that the neurocognitive system un-
derlying human language comprehension preacti-
vates words based on the extent to which they are
predictable from the preceding context—thus, pre-
dictable words are easier to process because they
or their features have already been activated before
they are encountered (Kutas and Hillyard, 1984;
Van Petten and Luka, 2012). This has led many to
argue that we should consider the human language
comprehension system to be engaging in prediction
(DeLong et al., 2005; Kutas et al., 2011; Van Pet-
ten and Luka, 2012; Bornkessel-Schlesewsky and
Schlesewsky, 2019; Kuperberg et al., 2020; De-

Long and Kutas, 2020; Brothers and Kuperberg,
2021).

However, words that are either semantically re-
lated to the elements of the preceding context or to
the most likely next word are also processed more
easily, even if they are semantically implausible
and ostensibly unpredictable. These are known as
related anomaly effects. For an example of the for-
mer, consider the sentences in (1) that were used as
experimental stimuli by Metusalem et al. (2012).

(1) My friend Mike went mountain biking
recently. He lost control for a moment and
ran right into a tree. It’s a good thing he was
wearing his ______.

(a) helmet
(b) dirt
(c) table

Helmet is the most predictable continuation of
the sentence, as determined based on cloze proba-
bility (Taylor, 1953, 1957)—the proportion of peo-
ple to fill in a gap in a sentence with a specific
word. Thus, unsurprisingly, helmet elicited the
smallest N400 response, indicating that it is most
easily processed. Dirt and table are both implau-
sible continuations, and equally improbable based
on human responses (both have a cloze probability
of zero). Yet Metusalem et al. (2012) found that
dirt, which is semantically related to the preceding
context of mountain biking, elicits a smaller N400
response than table, which is not. This suggests
that something about dirt’s relation to the mountain
biking event causes it to be preactivated more than
table, despite their seemingly equal implausibility
and unpredictability.

The sentences in (2), used as experimental stim-
uli by Ito et al. (2016), provide an example of
the other previously-discussed form of related
anomaly—where a word semantically related to
the most probable continuation (in this case, that

13



with the highest cloze) is easier to process than
one that is not. Even though tail and tyre are both
implausible continuations with a cloze probability
of zero, Ito et al. (2016) find that tail, which is
semantically-related to the highest-cloze continua-
tion dog, elicits a smaller N400 response than tyre,
which is not.

(2) Meg will go to the park to walk her ______
tomorrow.

(a) dog
(b) tail
(c) tyre

In sum, words related to elements of the preced-
ing context or to the most probable continuation of
a sequence appear to be more preactivated in the
brain than words that are not, even when both are
highly anomalous. This effect has been replicated
many times (Kutas and Hillyard, 1984; Kutas et al.,
1984; Kutas, 1993; Federmeier and Kutas, 1999;
Metusalem et al., 2012; Rommers et al., 2013; Ito
et al., 2016; DeLong et al., 2019; for review see
DeLong et al., 2019).

The key question, therefore, is whether the same
neurocognitive system underlying the predictability
effects on the N400 also underlie related anomaly
effects. Under one account (DeLong et al., 2019;
DeLong and Kutas, 2020), the predictive system
that underlies predictability effects also leads to
these related anomalous words being ‘collaterally
facilitated’ (DeLong and Kutas, 2020, p. 1045) due
to their shared semantic features. Under this ac-
count, therefore, related anomaly effects can all be
explained as by-products of our predictive system
and the semantic organization of information in the
brain. However, there is no direct evidence that
this is the case—in fact, given the metabolic costs
of preactivation (Brothers and Kuperberg, 2021),
it may intuitively seem unlikely that an efficient
predictive system would lead to implausible and
otherwise anomalous words being preactivated. In
fact, many researchers have argued that one or more
associative mechanisms are required to explain re-
lated anomaly and other similar effects (Lau et al.,
2013; Ito et al., 2016; Frank and Willems, 2017;
Federmeier, 2021).

As systems designed specifically to predict the
probability of a word given its context, language
models offer a means to test the viability of the
former hypothesis. If language models calcu-
late that related but anomalous words are more

predictable than unrelated anomalous words, this
would demonstrate that related anomaly effects
can be produced by a system engaged in predic-
tion alone. This would show that it is possible
that related anomalies can be ‘collaterally facili-
tated’ (DeLong and Kutas, 2020, p. 1045) by a
predictive mechanism in human language compre-
hension. Thus, it would remove the need to posit
additional associative mechanisms on the basis of
related anomaly effects, which could greatly sim-
plify our understanding of human language com-
prehension.

This is what we test in the present study. We run
the stimuli from 3 psycholinguistic experiments
carried out in English (Ito et al., 2016; DeLong
et al., 2019; Metusalem et al., 2012) through 8
contemporary transformer language models (De-
vlin et al., 2019; Radford et al., 2019; Liu et al.,
2019; Lan et al., 2020; Conneau et al., 2020; Black
et al., 2021; Wang and Komatsuzaki, 2021; Lin
et al., 2021), calculating the surprisal (negative log-
probability) of each word for which the N400 was
measured. We then compare whether, in line with
the N400 response, anomalous words that are se-
mantically related to the context have significantly
lower surprisals than unrelated words.

2 Related work

There have been a wide range of attempts to com-
putationally model the N400 (Parviz et al., 2011;
Laszlo and Plaut, 2012; Laszlo and Armstrong,
2014; Rabovsky and McRae, 2014; Frank et al.,
2015; Ettinger et al., 2016; Cheyette and Plaut,
2017; Brouwer et al., 2017; Rabovsky et al., 2018;
Venhuizen et al., 2019; Fitz and Chang, 2019; Au-
rnhammer and Frank, 2019; Michaelov and Bergen,
2020; Merkx and Frank, 2021; Uchida et al., 2021;
Szewczyk and Federmeier, 2022; Michaelov et al.,
2022). One of the most successful and influential
approaches has been to model the N400 using the
surprisal calculated from neural language models—
surprisal has been found to be a significant predic-
tor of single-trial N400 data (Frank et al., 2015;
Aurnhammer and Frank, 2019; Merkx and Frank,
2021; Michaelov et al., 2021; Szewczyk and Feder-
meier, 2022; Michaelov et al., 2022), and has been
found to be similar to the N400 response in how it is
affected by a range of experimental manipulations
(Michaelov and Bergen, 2020; Michaelov et al.,
2021). A key finding is that better-performing and
more sophisticated language models perform better
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at predicting the N400 (Frank et al., 2015; Aurn-
hammer and Frank, 2019; Michaelov and Bergen,
2020; Merkx and Frank, 2021; Michaelov et al.,
2021, 2022). For this reason, we use contemporary
transformer language models in the present study.

We use experimental stimuli from 3 experiments.
Stimuli from one of these experiments (Ito et al.,
2016) have been previously used in computational
analyses of the N400. This is one of several sets
that Michaelov and Bergen (2020) attempt to model
using recurrent neural network (RNN) language
models, finding that they can indeed calculate that
words related to the highest-cloze continuation are
more predictable than unrelated words. In the
present study, we test whether this result can be
replicated on a larger number of language models,
and specifically, transformer language models.

There has also been work looking at how lan-
guage models deal with semantic relatedness to the
highest-cloze continuation based on stimuli from
other N400 experiments. Michaelov and Bergen
(2020), for example, find that in cases where the
related and unrelated words are both plausible, the
related continuations are more strongly predicted
by RNNs (Gulordava et al., 2018; Jozefowicz et al.,
2016), in line with the original N400 results (Kutas,
1993). Michaelov et al. (2021) conceptually repli-
cate this finding on a different dataset (Bardolph
et al., 2018) using one of the same RNNs (Jozefow-
icz et al., 2016) and GPT-2 (Radford et al., 2019).
However, these prior efforts differ from the present
study in that they investigate N400s and surprisal to
words that are all plausible continuations of the sen-
tence, and where they both have a low but generally
non-zero cloze probability. In the stimuli analyzed
in the present study, by contrast, both the related
and unrelated words are anomalous—they have a
cloze probability of zero, and are implausible con-
tinuations. Thus, their preactivation does, at least
intuitively, appear to be more clearly ‘collateral’.

We are only aware of one previous study that
directly compares the predictions of transformers
and the human N400 response on related anomaly
stimuli. Ettinger (2020) evaluates BERT in terms
of its similarity to cloze—because the predictions
of a language model, being incremental, may show
similar effects to those found in the N400 (see also
Michaelov and Bergen, 2020 for discussion). For
this reason, Ettinger (2020) tests how good BERT is
at predicting the highest-cloze (most probable) con-
tinuations in the stimuli over anomalous but seman-

tically related continuations, but does not directly
look at the related anomaly effect—whether the
related anomalous continuations are more strongly
predicted than the unrelated anomalous continu-
ations. Thus, to the best of our knowledge, the
present study is the first to investigate whether the
predictions of transformer language models display
related anomaly effects like humans do.

Finally, there has been some work investigating
whether language models display priming effects
(e.g. Prasad et al., 2019; Misra et al., 2020; Kass-
ner and Schütze, 2020; Lin et al., 2021; Lindborg
and Rabovsky, 2021). The effect found by Me-
tusalem et al. (2012)—that words related to the
events described in the context are preactivated
more strongly than words that are not—is a form
of semantic priming, as it results in the increased
preactivation of a word based on the semantic con-
tent stimulus that has been recently encountered
(i.e. the event described in the preceding linguistic
context). Thus, our investigation of the patterns in
the prediction of the the stimuli from Metusalem
et al. (2012) is intended to further our knowledge of
priming in language models—specifically, whether
there are systematic ways in which context shapes
the extent to which anomalous words are predicted.

3 General Method

In this study, we took the stimuli from a range of ex-
periments (Ito et al., 2016; DeLong et al., 2019; Me-
tusalem et al., 2012) and ran them through a num-
ber of transformer language models. We used the
transformers (Wolf et al., 2020) implementations of
the (largest and most up-to-date versions of each of
the) following models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), XLM-R (Conneau et al., 2020), GPT-2 (Rad-
ford et al., 2019), GPT-Neo (Black et al., 2021),
GPT-J (Wang and Komatsuzaki, 2021), and XGLM
(Lin et al., 2021). We chose these models to cover
a number of both autoregressive (GPT-2, GPT-Neo,
GPT-J, XGLM) and masked (BERT, RoBERTa,
ALBERT, XLM-RoBERTa) language model archi-
tectures. Given the recent increase in popularity of
multilingual language models, we also made sure
to include one autoregressive (XGLM) and one
masked (XLM-RoBERTa) multilingual language
model, in case there is a difference based on the
number of languages that a model is trained on.

All experimental stimuli used in the present
study have been made available by the original
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authors of their respective papers as appendices
or supplementary materials. In our analysis, we
truncated all stimuli to be the preceding context of
the critical word (the word for which the N400 was
measured). We then used the language models to
calculate the probability of the next word, and neg-
ative log-transformed (using a logarithm of base 2,
following Futrell et al., 2019) these probabilities to
calculate the surprisal of each word. For words not
present in the vocabulary of each model, we tok-
enized the word, and then progressively calculated
the surprisal of each sub-word token given the pre-
ceding context; with the sum of all the surprisals
(equivalent to the the negative log-probability of
the product of all the probabilities) being used as
the total surprisal for the word. In this way, we
calculated the surprisal of each critical word given
its preceding context only.

All graphs and statistical analyses were created
and run in R (R Core Team, 2020) using Rstudio
(RStudio Team, 2020) and the tidyverse (Wickham
et al., 2019), lme4 (Bates et al., 2015), and lmerTest
(Kuznetsova et al., 2017) packages. All reported
p-values are corrected for multiple comparisons
based on false discovery rate across all statistical
tests carried out (Benjamini and Hochberg, 1995).
Because of this correction procedure, if any models
display related anomaly effects, this is evidence
that prediction alone can account for them.

All of the code for running the experi-
ments and carrying out the statistical analyses is
provided at https://github.com/jmichaelov/
collateral-facilitation.

4 Experiment 1: Ito et al. (2016)

4.1 Introduction
We begin with Ito et al. (2016), who investigated
whether relatedness to the highest-cloze continu-
ation of a given sentence impacts the amplitude
of the N400 response. They presented human par-
ticipants with experimental stimuli that included
a word that was either the highest-cloze continu-
ation of a sentence, semantically related to that
highest-cloze continuation, similar to the highest-
cloze continuation in terms of their form (e.g. hook
and book), or unrelated. For the purposes of the
present study, we are interested in semantic related-
ness and thus do not consider the formal relatedness
condition. Thus, we look at the stimuli from the
three experimental conditions exemplified in (3)—
an example of Predictable, Related, and Unrelated

continuations for one sentence frame.

(3) Lydia cannot eat anymore as she is so ______
now.

• full (Predictable)
• half (Related)
• mild (Unrelated)

Ito et al. (2016) find that related continuations
elicit a smaller N400 response than unrelated con-
tinuations. As stated, this finding was successfully
modeled using the surprisal of two RNN language
models by Michaelov and Bergen (2020).

In the present study, we aim to investigate
whether this can be replicated with contemporary
transformer language models. Thus far, only one
study (Merkx and Frank, 2021) has directly com-
pared the N400 prediction capabilities of RNNs
and transformers while matching number of pa-
rameters, training data, and language modeling
performance, finding that transformers are better
predictors of N400 amplitude overall. We might
therefore expect that the transformers used in the
present study should model the related anomaly ef-
fect found by Ito et al. (2016) at least as well as the
RNNs used by Michaelov and Bergen (2020). How-
ever, a key feature of Merkx and Frank’s (2021)
study is that it uses naturalistic stimuli. This makes
the experiment more ecologically valid, but as has
been pointed out (Michaelov and Bergen, 2020;
Brothers and Kuperberg, 2021), this means that we
cannot tell whether the higher correlation between
surprisal and N400 amplitude is due to any factors
that we are interested in investigating—Merkx and
Frank (2021) do not consider how relatedness to a
previously-mentioned event or to most predictable
continuation impacts surprisal and the N400. For
this reason, it is in fact far from clear that we should
expect this specific related anomaly effect to be
modeled as well by transformers as by RNNs. How-
ever, if it is, this would demonstrate the effect in
two different language model architectures, fur-
ther strengthening the idea that a predictive system
alone can explain related anomaly effects.

Thus, in the present study, we investigate
whether the results of Michaelov and Bergen (2020)
replicate beyond the two RNNs tested, and cru-
cially, whether the results replicate with trans-
former language models. Specifically, we test
whether the surprisal elicited by implausible stim-
uli related to the highest-cloze continuation is lower
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Figure 1: Mean surprisal elicited by each language model for the Ito et al. (2016) stimuli related and unrelated to
the most probable (highest-cloze) continuation of each sentence. Error bars indicate standard error.

Model Test Statistic Corrected p
BERT F (1, 120) = 7.15 0.0093

ALBERT F (1, 92) = 20.6 < 0.0001

RoBERTa F (1, 159) = 60.8 < 0.0001

XLM-R F (1, 126) = 21.2 < 0.0001

GPT-2 F (1, 157) = 64.0 < 0.0001

GPT-Neo F (1, 152) = 64.1 < 0.0001

GPT-J F (1, 149) = 62.5 < 0.0001

XGLM F (1, 146) = 72.6 < 0.0001

Table 1: The results of a Type III ANOVA (using Sat-
terthwaite’s method for estimating degrees of freedom;
Kuznetsova et al., 2017) on the Ito et al. (2016) stimuli,
testing for which language models experimental condi-
tion (related or unrelated) is a significant predictor of
their surprisal. This is the case for all language models.

than the surprisal elicited by implausible stimuli
unrelated to the highest-cloze continuation.

4.2 Results
The results of the experiment are shown in Fig-
ure 1. As can be seen, numerically, related words
elicit lower surprisals than unrelated words, indi-
cating that they were more highly predicted by the
language models. This in turn suggests that these
models do in fact collaterally predict the related

continuations.
In order to test this more directly, we ran sta-

tistical analyses of the surprisals elicited by the
language models. This was done by constructing
linear mixed-effects regressions for each language
model surprisal with experimental condition as a
main effect, and the maximal random effects struc-
ture that would successfully converge for all mod-
els (see Barr et al., 2013). For all regressions except
for that predicting RoBERTa surprisal, this random
effects structure was a random intercept of sentence
frame and of critical word. For the RoBERTa sur-
prisal regression, the latter random intercept was
removed due to it causing a singular fit. As creating
null models with only the random effects structure
resulted in singular fits for multiple regressions,
we were unable to run likelihood ratio tests to test
whether experimental condition—that is, whether
the word was semantically related or unrelated to
the highest-cloze continuation—was a significant
predictor of surprisal. For this reason, we instead
tested whether experimental condition was a signif-
icant predictor of surprisal by running a Type III
ANOVA using Satterthwaite’s method for estimat-
ing degrees of freedom (Kuznetsova et al., 2017)
on the aforementioned linear mixed-effects mod-
els that included experimental condition as a fixed
effect.

The results of the tests are shown in Table 1. As
can be seen, condition is a significant predictor of
the surprisal from every language model, confirm-
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Figure 2: Mean surprisal elicited by each language model for the DeLong et al. (2019) stimuli related and unrelated
to the most probable (highest-cloze) continuation of each sentence. Error bars indicate standard error.

ing that language models predict related stimuli to
be more likely than unrelated stimuli.

The results of this experiment demonstrate that
all the language models tested—BERT, ALBERT,
RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J, and
XGLM—display the related anomaly effect in re-
sponse to the Ito et al. (2016) stimuli. All eight
models predict implausible continuations that are
related to the most probable continuations to be
more likely those that are unrelated.

5 Experiment 2: DeLong et al. (2019)

5.1 Introduction
DeLong et al. (2019) also investigated the differ-
ence between the N400 amplitude elicited by im-
plausible words that are related or unrelated to the
most predictable (highest-cloze) continuation. As
in Ito et al. (2016), these stimuli were chosen such
that both related and unrelated words were highly
implausbile—in this case, ‘unpredictable words
were strategically chosen not to make sense in their
given contexts’ (DeLong et al., 2019, p. 4). These
stimuli are exemplified by the set shown in (4).

(4) The commuter drove to work in her ______
after breakfast.

• car (Predictable)
• brakes (Related)
• poetry (Unrelated)

Model Test Statistic Corrected p
BERT F (1, 159) =< 0.1 0.9322

ALBERT F (1, 112) = 6.3 0.0138

RoBERTa F (1, 159) = 50.7 < 0.0001

XLM-R F (1, 132) = 18.2 0.0001

GPT-2 XL F (1, 134) = 120.7 < 0.0001

GPT-Neo F (1, 142) = 111.7 < 0.0001

GPT-J F (1, 141) = 132.6 < 0.0001

XGLM F (1, 159) = 122.4 < 0.0001

Table 2: The results of a Type III ANOVA (using Sat-
terthwaite’s method for estimating degrees of freedom;
Kuznetsova et al., 2017) on the DeLong et al. (2019)
stimuli, testing for which language models experimental
condition (related or unrelated) is a significant predictor
of their surprisal. This is the case for all language mod-
els except BERT.

Like Ito et al. (2016), DeLong et al. (2019) find
that overall, related continuations elicit a smaller
N400 response than unrelated continuations.

5.2 Results
As in Experiment 1, we ran the stimuli from the
original experiment through the 8 language models
and calculated the surprisal of each critical word.
The results of the experiment are shown in Figure 2.
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In all models except BERT, related stimuli all elicit
numerically lower surprisals than unrelated stimuli,
indicating that they were more highly-predicted by
the language models.

We again ran the same statistical test as in Exper-
iment 1, testing whether experimental condition (re-
lated or unrelated to the highest-cloze continuation)
is a significant predictor of the surprisal elicited by
the stimuli in each language model. The ALBERT,
XLM-R, GPT-2, GPT-Neo, and GPT-J regressions
had random intercepts of sentence frame and criti-
cal word, while the BERT, RoBERTa, and XGLM
regressions had only random intercepts for sen-
tence frame. The results of the Type III ANOVA are
shown in Table 2. Condition is a significant predic-
tor of the surprisal of every model except BERT—
in these models, related stimuli are predicted to be
more likely continuations of the sentence than un-
related stimuli. Thus, with the exception of BERT,
we replicate the findings of Experiment 1.

6 Experiment 3: Metusalem et al. (2012)

6.1 Introduction
Metusalem et al. (2012) investigated the extent to
which relatedness to the event described in the pre-
ceding context impacts the amplitude of the N400
response. Metusalem et al. (2012) presented human
participants with experimental stimuli that included
either the most probable (highest-cloze) continua-
tion of a sentence, an implausible continuation that

was related to the event described, or an implau-
sible continuation that was unrelated to the event
described. All of the implausible stimuli also had a
cloze probability of zero. The stimuli are exempli-
fied by the set for a single sentence frame shown
in (5).

(5) We’re lucky to live in a town with such a
great art museum. Last week I went to see a
special exhibit. I finally got in after waiting in
a long ______.

• line (Predictable)
• painting (Related)
• toothbrush (Unrelated)

Metusalem et al. (2012) found that despite their
implausibility and improbability (based on cloze),
critical words related to the event described in the
context preceding them elicited smaller N400 re-
sponses than words that were unrelated to the event,
a clear example of a related anomaly effect.

6.2 Results
As in Experiments 1 and 2, we ran the stimuli from
the original experiment through the 8 language
models and calculated the surprisal of each critical
word. The results of the experiment are shown in
Figure 3. As in Experiment 1, numerically, in all
models related stimuli elicit lower surprisals than
unrelated surprisals, indicating that they were more
highly predicted by the language models.
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Figure 3: Mean surprisal elicited by each language model for the Metusalem et al. (2012) stimuli related and
unrelated to the most probable (highest-cloze) continuation of each sentence. Error bars indicate standard error.
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Model Test Statistic Corrected p
BERT F (1, 29) = 77.1 < 0.0001

ALBERT F (1, 29) = 78.7 < 0.0001

RoBERTa F (1, 28) = 188.1 < 0.0001

XLM-R F (1, 34) = 83.4 < 0.0001

GPT-2 XL F (1, 35) = 211.5 < 0.0001

GPT-Neo F (1, 42) = 200.1 < 0.0001

GPT-J F (1, 35) = 265.5 < 0.0001

XGLM F (1, 33) = 222.5 < 0.0001

Table 3: The results of a Type III ANOVA (using Sat-
terthwaite’s method for estimating degrees of freedom;
Kuznetsova et al., 2017) on the Metusalem et al. (2012)
stimuli, testing for which language models experimental
condition (related or unrelated) is a significant predictor
of their surprisal. This is the case for all language mod-
els.

We again ran the same statistical analyses as in
Experiments 1 and 2, constructing linear mixed-
effects regression models, all of which had random
intercepts of sentence frame and critical word. Us-
ing a Type III ANOVA, we tested whether experi-
mental condition (related or unrelated to the event
described in the preceding context) is a significant
predictor of N400 amplitude. The results are shown
in Table 3. As can be seen, experimental condition
was a significant predictor of the surprisal of all
models.

7 General Discussion

7.1 Summary of Results
In all but one specific case—BERT in Experiment
2—experimental condition significantly predicted
language model surprisal in the same direction as
human N400 responses. The results of Experiments
1 and 2, therefore demonstrate convincingly that,
like humans, language models do tend to predict
that anomalous words related to the most probable
continuation are more probable than anomalous
words that are not. The results of Experiments
3, analogously, demonstrate that like humans, lan-
guage models tend to predict that anomalous words
related to a relevant event described in the pre-
ceding context are more probable than anomalous
words that are not. Thus, like the human language
comprehension system, language models exhibit

related anomaly effects.

7.2 Psycholinguistic implications
These results have clear implications for psycholin-
guistic research on the effects of related anomalies
on human language processing. First, a predictive
system can display the effects—in fact, there is
only one set of stimuli for which not all models do.
This demonstrates the sufficiency of a predictive
system for preactivating related anomalous stimuli
to a greater degree than unrelated anomalous stim-
uli. In other words, based on a parsimony criterion,
there is no need to posit that related anomaly effects
on human language processing require something
beyond a predictive system such as an associative
system, either instead of or in addition to a predic-
tive one.

Second, both kinds of related anomaly effect
explored—the reduction in N400 amplitude corre-
lated with relatedness to the most probable contin-
uation and that correlated with relatedness to the
event in the preceding context—are explainable by
a single mechanism. This may seem counterintu-
itive, given how intuitively different the effects may
seem. Yet this finding is consistent with the idea
in the literature that the two effects can be consid-
ered different variants of the same phenomenon
(DeLong et al., 2019; DeLong and Kutas, 2020).

Given that this study is based on computational
modeling, we should note that the results do not
constitute direct proof of a neurocognitive predic-
tive system or of the lack of the involvement of an
additional associative mechanism. However, they
are consistent with such accounts, and open the
door for future research, both computational and
experimental. For example, it may be the case that
other phenomena that have been argued to consti-
tute evidence for a separate associative mechanism
(see Federmeier, 2021, for review) may also be ex-
plainable on the basis of prediction. On the other
hand, the approach we use here can also be used
to design stimuli that do not differ in probability in
order to further test whether prediction can explain
all related anomaly effects.

7.3 Implications for NLP
The results of the present study demonstrate that re-
lated anomaly effects occur in contemporary trans-
former language models. Based on the present
study, this does not appear to be impacted by
whether the model is an autoregressive or masked
language model; or by whether the model is mono-
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lingual or multilingual. In fact, the only model
that does not show the effect every time is BERT,
the least powerful model tested (all other models
are either larger, trained on more data, or both).
Thus, in line with previous research showing that
higher-quality language models better predict hu-
man processing metrics (Merkx and Frank, 2021),
the present results suggest that better language mod-
els are also more likely to display human-like pat-
terns of prediction.

The results of this study also have several im-
plications for understanding how the predictions
of humans and language models relate. As has
been previously discussed, some researchers have
argued that we should evaluate the predictions of
language models based on cloze probability (Et-
tinger, 2020). In fact, some have suggested training
models on cloze probabilities (Eisape et al., 2020).
However, the results of this study, along with others
(Frank et al., 2015; Aurnhammer and Frank, 2019;
Michaelov and Bergen, 2020; Aurnhammer and
Frank, 2019; Merkx and Frank, 2021; Szewczyk
and Federmeier, 2022; Michaelov et al., 2022), sug-
gest that the predictions of language models are
highly correlated with N400 amplitude; and recent
work has argued that that the activation states of
transformers are highly correlated with activation
in the brain during language comprehension more
generally (Schrimpf et al., 2020). Thus, while it
may be useful for certain tasks to have cloze-like
predictions, it may be the case that we are gener-
ally more likely to get N400-like predictions from
language models.

If so, this is a cause for both optimism and pes-
simism. Given that humans are the gold-standard
in natural language tasks generally, if a language
model can make predictions that closely match
those that humans make as part of language com-
prehension, this may also suggest that the represen-
tations learned are at least in some ways function-
ally similar to those that humans use to generate
the same predictions. On the other hand, by the
same token, it may suggest a limit to the possibil-
ities of language modeling alone—there is much
more to language comprehension than the kinds
of prediction that underlie the N400 response (see,
e.g., Ferreira and Yang, 2019; DeLong and Kutas,
2020; Kuperberg et al., 2020).

8 Conclusion

In order to better understand related anomaly ef-
fects in humans, we investigated whether contem-
porary transformer language models display them.
We found that in all but one case, they do, suggest-
ing that related anomaly effects in both humans
and language models may be driven by prediction
alone.
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A Limitations

As mentioned the discussion section, one limitation
of the present study is that while it demonstrates
that it is possible for related anomaly effects to
emerge from a system engaged in prediction alone,
it does not directly demonstrate that this is what is
occurring in humans.

A further limitation is that we model the results
of three related anomaly experiments out of the
larger total number that have been carried out (for
review, see DeLong et al., 2019). However, given
how consistent related anomaly effects appear to
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be (DeLong et al., 2019), and how consistent our
results are (after statistical correction for multiple
comparisons, all three related anomaly effects are
modeled by all but one transformer, which only
fails to model one effect), we do not believe this
presents a problem for our analysis.

Finally, the three experiments modeled were all
carried out in English. Related anomaly effects
have been reported in other languages (DeLong
et al., 2019) such as Dutch (Rommers et al., 2013);
and these are not modeled in our study. Thus, it
is an open question whether our results general-
ize to related anomaly effects in languages other
than English. However, we also note the evidence
that higher-quality models are better at predicting
N400 amplitude (Merkx and Frank, 2021). For this
reason, given the overwhelming focus on English
in computational linguistics (Bender, 2009, 2011;
Tsarfaty et al., 2013; Munro, 2015; Mielke, 2016;
Kim et al., 2016; Amram et al., 2018; Bender, 2019;
Clark et al., 2022), current language model archi-
tectures are likely to be best suited to predicting
English—indeed, current state-of-the-art models
such as GPT-3 (Brown et al., 2020), OPT (Zhang
et al., 2022), PaLM (Chowdhery et al., 2022), and
LaMDA (Thoppilan et al., 2022) are trained mostly
or only on English data. Thus, while the focus on
modeling English may be an issue for the field as a
whole, in this case, focusing on experiments carried
out in English may in fact give us the best possi-
ble chance to evaluate what the human predictive
system could predict.

B Models used

The details of the models used in this study are
provided in Table 4.

Model Name Full Name on the Hugging Face Model Hub Reference
BERT bert-large-cased-whole-word-masking Devlin et al. (2019)
ALBERT albert-xxlarge-v2 Lan et al. (2020)
RoBERTa roberta-large Liu et al. (2019)
XLM-R xlm-roberta-large Conneau et al. (2020)
GPT-2 XL gpt2-xl Radford et al. (2019)
GPT-Neo EleutherAI/gpt-neo-2.7B Black et al. (2021)
GPT-J EleutherAI/gpt-j-6B Wang and Komatsuzaki (2021)
XGLM facebook/xglm-7.5B Lin et al. (2021)

Table 4: Transformer langauge models used in the present study. All were accessed using the transformers (Wolf
et al., 2020) package.
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Abstract
This paper investigates how hate speech varies
in systematic ways according to the identi-
ties it targets. Across multiple hate speech
datasets annotated for targeted identities, we
find that classifiers trained on hate speech tar-
geting specific identity groups struggle to gen-
eralize to other targeted identities. This pro-
vides empirical evidence for differences in hate
speech by target identity; we then investigate
which patterns structure this variation. We find
that the targeted demographic category (e.g.
gender/sexuality or race/ethnicity) appears to
have a greater effect on the language of hate
speech than does the relative social power of
the targeted identity group. We also find that
words associated with hate speech targeting spe-
cific identities often relate to stereotypes, his-
tories of oppression, current social movements,
and other social contexts specific to identities.
These experiments suggest the importance of
considering targeted identity, as well as the so-
cial contexts associated with these identities, in
automated hate speech classification.

Warning: This paper contains offensive and
hateful terms and concepts. We have chosen
to reproduce these terms for clarity in aiding
efforts against hate speech.

1 Introduction

Researchers working in natural language process-
ing (NLP) often treat hate speech as a binary, uni-
fied, concept that can be detected from language
alone. However, as a linguistic concept that relies
heavily on social context, hate speech contains a
variety of related phenomena (Brown, 2017). Hate
speech is characterized by variation in linguistic
features (e.g. implicit vs. explicit), context (e.g.
platforms, prior conversations), and communities
(social histories and hierarchies). This paper fo-
cuses on a crucial aspect of this variation: how hate
speech varies by the identity groups it targets.

To study this variation, we analyze hate speech
datasets that include annotations for which identity

group is targeted. Drawing from multiple of these
datasets, we sample new corpora that target the
same identity group. These identity groups vary
according to several dimensions, including relevant
demographic category (e.g. gender, religion) and
relative social power (e.g. socially marginalized or
dominant). We empirically test which dimensions
most clearly separate different forms of hate speech
by evaluating how well classifiers trained on one
set of identities generalize to hate speech directed
at different sets of identities.

We find that hate speech varies most prominently
by the targeted demographic category and less so
by the social power of the targeted identity group.
Theorists working in philosophy and sociolinguis-
tics have drawn attention to how hate speech di-
rected at marginalized groups differs from hate
directed toward socially dominant groups (Butler,
1997; Lakoff, 2000). However, we do not find that
hate speech toward dominant groups is sufficiently
different to consistently increase classification per-
formance when removed from existing datasets.

Analyzing the most representative terms in hate
speech directed toward different identities, we
find that many words reflect identity-specific con-
text such as histories of oppression or stereo-
types. These results have implications for NLP
researchers building generalizable hate speech clas-
sifiers, as well as for a more general understanding
of variation in hate speech.

Contributions

1. An empirical analysis of variation in hate
speech by target identity. Specifically, how
well classifiers trained on hate speech directed
toward specific identities generalize to hate
speech directed at other identities.

2. An analysis of which dimensions of social
difference (demographic category, power)
among targeted identities reflect the most vari-
ation in hate speech.
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3. A qualitative analysis of the hate speech terms
most strongly associated with specific target
identities.

2 Hate Speech

Hate speech is an example of a “thick concept” with
a set of related, but difficult to define meanings and
understandings (Pohjonen and Udupa, 2017). Le-
gal theorist Alexander Brown (2017) argues for a
set of attributes that make an expression more or
less likely to be considered hate speech, similar to
Wittgenstein’s “family resemblances” concept. Key
attributes include an incitement of emotion and vi-
olence, and a direction of that incitement toward a
targeted identity group (Sanguinetti et al., 2018; Po-
letto et al., 2021). Though others have studied the
linguistic properties of this incitement (Marsters,
2019; Wiegand et al., 2021), we focus on how vari-
ation in the identity group targeted by hate speech
affects the linguistic characteristics of hate speech.

2.1 Variation by identity

Identities are central to hate speech. Classifiers
often learn to associate the presence of identity
terms, especially derogatory ones, with hate speech
and abusive language (Dixon et al., 2017; Uyheng
and Carley, 2021). Computational studies of the
targets of online hate speech have included mea-
surement studies of its prevalence toward different
targets. Silva et al. (2016) and Mondal et al. (2017)
searched for templates such as “I hate ___” to mea-
sure hate toward different identity groups. We ana-
lyze datasets manually annotated with the targets
of hate speech. This captures a broader range of
hate speech, including indirect hate speech and
stereotypes. ElSherief et al. (2018a,b) investigated
differences between hate toward groups versus in-
dividual targets. In contrast, we compare differ-
ences among identity targets. Rieger et al. (2021)
measured multiple types of variation, including
by identity target, in hate speech from fringe plat-
forms such as 4chan and 8chan. We test if such
differences affect the generalization of hate speech
classifiers.

Many identities are involved in the production
and recognition of hate speech, including the iden-
tities of those who produce hate speech and those
who annotate hate speech datasets. The post his-
tory and inferred gender of social media users
have been found to be useful in predicting hate
speech (Waseem and Hovy, 2016; Unsvåg and

Gambäck, 2018; Qian et al., 2018). Waseem (2016)
find differences in hate speech annotations between
crowdworkers and experts, while Sap et al. (2022)
find differences by the political ideology of annota-
tors. We focus on identities presented in the hate
speech itself.

2.2 Generalizability

In this paper, we evaluate the ability of hate speech
classifiers to generalize across targeted identities.
Gröndahl et al. (2018) find that hate speech models
generally perform poorly on data that differs from
their training data; we look at how shifts in the
distribution of identity targets affects generaliza-
tion. Swamy et al. (2019) look at generalizability
across subtasks of abusive language detection and
find that a larger proportion of hateful instances
aids generalization. Pamungkas et al. (2020) and
Fortuna et al. (2020) find that hate speech models
using variants of BERT (Devlin et al., 2019) gen-
eralize better than other models. We thus use a
variant of BERT in our generalization experiments.
See Yin and Zubiaga (2021) for a more thorough
survey on generalizability in hate speech detection.

3 Data

From surveys of hate speech datasets (Vidgen and
Derczynski, 2020; Poletto et al., 2021) and the Hate
Speech Dataset Catalogue1, we selected datasets
with annotations for targeted identities. We only
selected datasets that do not restrict target identities
in order to minimize differences in other properties
(e.g, domain, year) when comparing across targeted
identities. This excludes hate speech datasets and
shared tasks that focus on particular targeted iden-
tity groups, such as women or immigrants (Kwok
and Wang, 2013; Basile et al., 2019).

We also did not consider hate speech datasets
that label targeted demographic category, such as
race or gender (Waseem, 2016), but do not specify
the identity group targeted. Demographic category
is just one of the dimensions of similarities and
differences among identity groups that we wish
to compare for their affect on hate speech. We
included datasets from all domains, except those
with synthetic data.

Since we only found one non-English dataset
that contained unrestricted annotations for targeted
identities (Ousidhoum et al., 2019), we focus on
hate speech in English in this work.

1https://hatespeechdata.com/
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For generalization analyses, we sampled corpora
specific to identity groups across datasets large
enough to contain a minimum number of instances
of hate speech against enough groups (described
in Section 4.1). These are the first 4 datasets noted
in Table 1. All datasets are used in the analysis of
removing dominant groups (Section 6.2).

Datasets are resampled to a 30/70 ratio of hate to
non-hate to eliminate a source of variance among
hate speech datasets known to affect generaliza-
tion (Swamy et al., 2019). Non-hate instances
are upsampled or downsampled to meet this ra-
tio, which was chosen as typical of hate speech
datasets (Vidgen and Derczynski, 2020). If they
do not already contain a binary hate speech label,
dataset labels are binarized as described in Ap-
pendix A.

3.1 Target identity label normalization

Annotations for targeted identities vary consider-
ably across datasets. Some of these differences
are variations in naming conventions for identity
groups with significant similarity (‘Caucasian’ and
‘white people’, for example). Other identities are
subsets of broader identities, such as ‘trans men’ as
a specific group within ‘LGBTQ+ people’.

To construct identity-based corpora across
datasets, we normalized and grouped identities an-
notated in each dataset. One of the authors, who has
taken graduate-level courses on language and iden-
tity, manually normalized the most common iden-
tity labels in each dataset and assigned these nor-
malized identity labels into broader identity groups
(such as ‘LGBTQ+ people’). Intersectional iden-
tities, such as ‘Chinese women’, were assigned to
multiple groups (in this case ‘Asian people’ and
‘women’). Hate speech was often directed at con-
flated, problematic groupings such as ‘Muslims and
Arabs’. Though we do not condone these group-
ings, we use them as the most accurate descriptors
of identities targeted.

4 Cross-Identity Generalization

We examine variation among hate speech target-
ing different identities in a bottom-up, empirical
fashion. In order to do this, we construct corpora
of hate speech directed at the most commonly an-
notated target identities, grouped and normalized
as described in Section 3.1. We then trained hate
speech classifiers on each target identity corpus and
evaluated on corpora targeting other identities.

Along with practical implications for hate speech
classification generalization, this analysis suggests
which similarities and differences among identities
are most relevant for differentiating hate speech.

4.1 Data sampling
In order to have enough data targeting many iden-
tities and to generalize beyond the particularities
of specific datasets, we assembled identity-specific
corpora from multiple source datasets. To mitigate
dataset-specific effects, we uniformly sampled hate
speech instances directed toward target identities
from the first 4 datasets listed in Table 1. We se-
lect these datasets since they contain enough data to
train classifiers targeting a sufficient variety of iden-
tities. The corpus for each target identity contains
an equal amount of hate speech drawn from each of
these datasets, though the total number of instances
may differ among corpora. Negative instances were
also uniformly sampled across datasets, and were
restricted to those which had no target identity an-
notation or an annotation that matched the target
identity of the hate speech.

We selected target identities that contained a
minimum of 900 instances labeled as hate across
these four datasets after grouping and normaliza-
tion. We selected this threshold as a balance be-
tween including a sufficient number of identities
and having enough examples of hate speech toward
each identity to train classifiers. In order to in-
clude a variety of identities in the analysis while
maintaining uniform samples for each dataset, we
upsample identity-specific hate speech from indi-
vidual datasets up to 2 times if needed. Corpora
are split into a 60/40 train/test split. Selected target
identities and the size of each corpus can be found
in Table 2. These identity-specific corpora, which
are samples of existing publicly available datasets,
are available at https://osf.io/53tfs/.

4.2 Cross-identity hate speech classification
Due to the high performance of BERT-based mod-
els on hate speech classification (Mozafari et al.,
2019; Samghabadi et al., 2020), we trained and
evaluated a DistilBERT model (Sanh et al., 2019),
which has been shown to perform very similarly to
BERT on hate speech detection with fewer param-
eters (Vidgen et al., 2021). Models were trained
with early stopping after no improvement for 5
epochs on a development set of 10% of the training
set. An Adam optimizer was used with an initial
learning rate of 10−6. Input data was lowercased
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Dataset Domain Original size
Civil Comments (Borkan et al., 2019) News comments 1999516
Social Bias Inference Corpus (Sap et al., 2020) Reddit, Twitter, Gab, Stormfront 44781
Kennedy et al. (2020) YouTube, Twitter, Reddit 39565
HateXplain (Mathew et al., 2021) Twitter, Gab 20148
Contextual Abuse Dataset (Vidgen et al., 2021) Reddit 27494
ElSherief et al. (2021) Twitter 19650
Salminen et al. (2018) YouTube, Facebook 3222

Table 1: Overview of datasets used in this study. Original size is the number of instances before resampling for
experiments. The last 3 datasets are only used in the experiment removing hate toward dominant social groups
(section 6.2).

Corpus Train size Test size
Women 27960 18624
Black people 17664 11776
Muslims, Arabs 13712 9136
LGBTQ+ people 10544 7000
Asian people 7968 5312
Latinx people 7016 4688
Jews 5080 3400
White people 2328 1560
Men 1832 1232
Christians 1816 1224

Race/ethnicity 71024 47240
Gender/sexuality 63032 42056
Religion 32144 21376

Marginalized 168904 112792
Dominant 7952 5368

Table 2: Number of instances in corpora used in gen-
eralization experiments. These corpora are sampled by
target identity uniformly from the first 4 datasets listed
in Table 1.

and an uncased base DistilBERT model was fine-
tuned using the Hugging Face Transformers pack-
age, Keras, and Tensorflow. We removed URLs,
hashtags and @mentions of users, but kept emoji
in preprocessing. To mitigate random variation, we
trained separate DistilBERT models 5 times and
report the average performances.

As a baseline, we also evaluated a logistic re-
gression classifier with TF-IDF unigram features
over the entire vocabulary. This classifier used L2
regularization with a constant C = 1.

Results from only the DistilBERT models are
reported as they consistently outperformed the
logistic regression model by 0.1 F1 or more.
Generalization performance trends across identi-
ties were similar for DistilBERT and logistic re-

Tr
ai

n

Asian 71.5 40.2 30.6 39.4 49.9 24.4 26.6 35.9 42.2 24.9

Black 39.5 78.2 29.7 32.7 48.4 23.9 30.3 28.4 49.3 28.6

Christians 23.7 27.1 52.1 40.5 27.1 25.4 22.2 33.5 25.6 21.5

Jews 20.6 21.2 35.0 79.9 18.3 17.7 14.8 25.5 21.7 14.3

Latinx 44.5 39.4 33.4 35.5 68.2 24.1 23.2 30.1 48.0 23.2

LGBTQ+ 15.7 22.2 27.8 20.3 15.2 72.4 32.4 15.2 14.8 29.1

Men 24.0 39.3 33.0 26.5 27.3 45.5 47.2 28.2 31.0 39.9

Muslims, Arabs 40.8 38.6 51.5 57.3 40.8 28.0 30.8 77.0 34.1 30.1

White 29.1 36.9 27.6 25.7 35.7 15.8 24.9 19.8 70.6 19.3

Women 35.2 48.5 47.7 45.0 36.2 57.3 58.6 42.4 40.7 70.1

Asian
Black

Christians

Jews
Latinx

LGBTQ+

Men
Muslims, Arabs

W
hite

Women

Test

Table 3: Hate speech classification performance (F1
score) across identity-specific corpora

gression. Code for these analyses are available
at https://github.com/michaelmilleryoder/
hate_speech_identities.

4.3 Results

Table 3 shows generalization performance, mea-
sured by F1-score on the positive class of hate
speech, across identity splits. We choose F1 on
the ‘hate’ class since that focuses on performance
in detecting hate speech across different target iden-
tities, rather than the non-hate instances which may
or may not target identities. Generalization across
target identities is poor, often dropping from over
70 F1-score when training and test sets match by
targeted identity to less than 40 when they do not.

Following Uyheng and Carley (2021), we per-
form a PCA dimensionality reduction of this gen-
eralization performance to 2 factors in order to
visualize which target identities exhibit similarities
(Figure 1).

Evident from this PCA is a clustering of iden-

30

https://github.com/michaelmilleryoder/hate_speech_identities
https://github.com/michaelmilleryoder/hate_speech_identities


0.4 0.2 0.0 0.2 0.4 0.6

1st Principal Component

0.4

0.2

0.0

0.2

0.4

0.6

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt

Asian

Black

Christians

Jews

Latinx LGBTQ+

Men

Muslims, Arabs
White

Women

PCA of crossidentity hate speech prediction

Demographic category
race/ethnicity
religion
gender

Power
marginalized
dominant

Figure 1: PCA of cross-identity hate speech classifi-
cation performance. Hate speech classifiers trained on
data targeting identities in the same demographic cate-
gories perform most similarly.

tity targets by demographic category. In particular,
three clusters are evident: identities that reference
religion are in a similar space, while identities that
reference race and ethnicity are in a different space,
as are terms that reference gender and sexuality.
We look specifically at the effect of these distinc-
tions on hate speech in Section 5.

Three identities included have relative social
power in the European and North American
English-speaking contexts from which our datasets
were drawn: white people, Christians, and men.
These identities do not form a clear cluster in Fig-
ure 1, though they contain factor loadings relatively
close to 0 for both factors. In Section 6, we in-
vestigate how hate speech varies according to the
relative social power of the identities targeted.

5 Variation by Demographic Category

Poor generalization results across identity targets
(Table 3) suggest that hate speech varies signifi-
cantly by the identities it targets. Our results also
suggest that this variation patterns largely by de-
mographic categories such as race/ethnicity, gen-
der/sexuality, and religion (Figure 1). We hypothe-
size that if demographic categories are particularly
discriminative, hate speech classification perfor-

Tr
ai

n

Race/
ethnicity 76.6 73.7 41.8

Religion 56.3 78.5 30.2

Gender/
sexuality 48.1 48.4 70.9

Race/ethnicity

Religion

Gender/sexuality
Test

Table 4: Hate speech generalization performance (F1
on hate) by demographic category.

mance will drop sharply when attempting to gener-
alize across categories.

To test this, we manually assigned normalized
and grouped identities to the categories referenced
by the identity. For example, the identity of ‘Asian’
references race/ethnicity, while ‘Asian women’ ref-
erences both race/ethnicity and gender/sexuality.
In cases where target groups fit multiple categories
(which is not common), we include instances in
all corpora they reference. Though targeted iden-
tities sometimes reference categories such as pol-
itics, interests, and age, the only categories that
met a threshold of 900 hate speech instances uni-
formly sampled across datasets were race/ethnicity,
religion, and gender/sexuality. Details on corpora
constructed by category can be found in Table 2.

We then train DistilBERT hate speech classifica-
tion models on each corpus and test on all others
to measure generalization performance in the same
way as for identity generalization. Results can be
found in Table 4.

Performance drops across identity categories,
sometimes falling by almost half of the F1-
score. This suggests that for purposes of auto-
matic classification, hate speech varies significantly
by demographic category. Classifiers generalize
particularly poorly from race/ethnicity and reli-
gion to gender/sexuality, and less poorly between
race/ethnicity and religion. This may be because
of the blurred lines in hate speech targets between
racial and religious categories, for example, by
conflating Muslims and Arabs or targeting Jews by
both religious and racial characteristics.
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6 Variation by Power

Another significant dimension of variation among
targeted identities is relative social power in the so-
cieties from which hate speech data has been drawn.
Work on hate speech detection in NLP is often
motivated as an effort to fight sexism, racism, ho-
mophobia, and other oppressions of marginalized
groups, and improve participation of these groups
online (Mathew et al., 2021; Jurgens et al., 2019).
However, this work often frames hate speech as
a property of language without considering social
context. Abstracting away from the particulars
of targeted identities, datasets often include hate
speech directed at any identity group, regardless
of the social context of power or marginalization.
Such datasets thus include hate speech directed to-
ward groups with relative social power, such as
white people or men in English-speaking European
and American contexts.

Calls are growing to consider the role of power
and historical oppression in NLP work (Blodgett
et al., 2020; Field et al., 2021). Moreover, some
theorists of social meaning in language argue that
hate speech is fundamentally different when di-
rected at social groups with power (Butler, 1997;
Lakoff, 2000). They note that such speech does
not reference the same historical threat of possible
violence and recurring oppression as does hate di-
rected toward marginalized groups. From a lens
of social dominance theory (Sidanius and Pratto,
1999), hate speech serves either to perpetuate or
challenge group hierarchies depending on its target.
Activists have called for social media platforms
to incorporate this social context by treating hate
speech toward marginalized groups as more seri-
ous than hate directed toward groups with relative
social power (Nurik, 2019; Dwoskin et al., 2020).

For these theoretical and practical reasons, we
consider empirical differences in hate speech based
on the social power of targeted identity groups.
Similar to previous experiments, we test the gener-
alization of classifiers across identities with differ-
ent levels of social power. We also test for effects
on classification performance when removing hate
directed toward socially dominant identity groups
from hate speech datasets. If this type of hate is suf-
ficiently different, including it could “muddy” the
concept we are after and reduce the effectiveness
of classifiers in identifying hate speech. Remov-
ing it would more closely match commonly stated
motivations of NLP work on hate speech.

6.1 Generalization

Just as with demographic categories, we construct
separate corpora of hate speech directed at identi-
ties with relative social power and identities with
relative social marginalization.

We manually label normalized, grouped identity
terms with a coarse-grained label as either dom-
inant, marginalized, or other. This labeling was
done by one of the authors familiar with the North
American and European English-speaking contexts
from which hate speech datasets were drawn. Iden-
tity groups certainly have different social power
depending on the setting. For example, though
LGBTQ+ people are generally marginalized, gay
men in LGBTQ+ spaces can have higher social
power relative to people with more marginalized
genders and sexualities (Stulberg, 2018). Our goal
in annotation was to label identity groups for which
there would be broad agreement of enduring dom-
inance or marginalization in North American and
European English-speaking societies. All other
cases were marked other. This included political
identities such as ‘Republican’ or ‘liberal’, since
political power is generally transient in these soci-
eties. Some targeted identities were intersectional,
that is, contained multiple identity groups, such as
“white women” or “transgender men”. These cases
were taken case-by-case, considering the marginal-
ization of each identity component and marking
other for many tough cases. A full list of identities
labeled as dominant and marginalized is available
in Table 7 in Appendix A. Any identities not in
these lists were marked other by default.

Some datasets all annotators to mark multiple
targeted identities. We marked these instances as
directed to marginalized groups if there was only
marginalized or other identities targeted. Instances
with both marginalized and dominant identities
targeted were marked as other. Details on corpora
constructed by power are in Table 2.

As with identities and demographic categories,
we evaluated the ability of DistilBERT hate speech
classification models to generalize across marginal-
ized and dominant identity targets (Table 5).

Generalization does not suffer as much across
target identities with differences in social power,
particularly when trained on the corpus of hate di-
rected at marginalized identities. This suggests that
which target identities have power does not struc-
ture variation in hate speech as much as differences
in demographic category.
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Tr
ai

n
Dominant 57.9 42.1

Marginalized 61.3 72.8

Dominant

Marginalized
Test

Table 5: Hate speech generalization performance (F1
on hate) by relative social power.

6.2 Removing hate speech toward socially
dominant groups

We further evaluate the effect of removing hate
speech toward socially dominant groups on clas-
sification performance. We hypothesize that if it
is sufficiently different, as some theorists argue,
then it may act as noise. For this experiment, we
resample all 7 hate speech datasets listed in Table 1
separately instead of combining across datasets as
in generalization experiments. This allows us to
see trends across even more datasets than we could
examine if uniformly sampling from just those with
enough to reach a certain threshold.

We resample each dataset to exclude or include
hate toward dominant social groups. All instances
are the same between these samples except for
instances of hate speech toward dominant social
groups and those instances replaced by them. This
allows a comparison across samples of equal size
and hate speech ratio.

Removing hate speech toward any set of target
identities could improve performance since the re-
maining instances are more likely to be similar to
each other. For this reason we compare removing
hate speech toward dominant groups with removing
hate speech toward a set of non-dominant identities.
We select these “control” identities to be similar
in frequency across datasets to identities labeled
as dominant. Specifically, we match each identity
labeled as dominant with the non-dominant iden-
tity that has the closest log frequency distribution
across datasets (by Euclidean distance).

We perform 5x2-fold cross-validation with a Dis-
tilBERT model to estimate performance with and
without dominant or control identities. Parameters
are the same as were used with the models built
to test generalization, and 10% of training sets are
used as development sets for early stopping.

Two out of the 7 datasets, ElSherief et al. (2021)
and HateXplain, show significant improvement af-
ter removing hate speech toward dominant social
identities. However, when removing the control
identities, 2 out of the 7 datasets, Civil Comments
and HateXplain, also show significant improve-
ments, while the Social Bias Inference Corpus
shows a significant decrease in performance. This
does not show convincing evidence that hate speech
toward dominant groups is sufficiently different to
act as noise for hate speech classification.

7 Lexical Variation Across Target
Identities

To explore how hate speech varies by target iden-
tity, we examine the words most strongly asso-
ciated with each target identity and grouping of
identities. We use the Sparse Additive Genera-
tive Model (SAGE; Eisenstein et al., 2011) to find
words that are most representative of each hate
speech corpus. SAGE finds representative words
by learning a generative model that contrasts terms
in documents in a section of a corpus with a back-
ground frequency distribution over the whole cor-
pus. We run SAGE over 3 separate corpora: one
where each section is an identity-specific split, an-
other with category splits, and another with splits
by relative social power. We run SAGE with a
vocabulary size of the most frequent 3000 words
and a smoothing rate of 50. Larger vocabulary
sizes and lower smoothing included less informa-
tive, specialty words that did not occur frequently
in the corpus. The 10 most representative terms for
each of these splits are shown in Table 6.

Identity terms, many of them derogatory, form
the bulk of these representative words. This pro-
vides more evidence for the centrality of identities
to hate speech (Uyheng and Carley, 2021). Some
representative words relate to identity-specific his-
tories of oppression. For example, ‘oven’ and ‘gas’
are representative terms of antisemitic hate speech.
Identity-specific stereotypes are also visible: ‘ter-
rorist’ and ‘bomb’ are top terms in hate speech
against Muslims and Arabs. Current culture wars
issues are also relevant. For example, transphobic
attitudes around bathrooms are reflected in the top
terms in hate speech targeting LGBTQ+ people.
‘BLM’, for the Black Lives Matter movement, is a
top term associated with anti-Black hate speech.

The difficulty in a binary distinction of domi-
nance and marginalization can be seen through the

33



Identity Top terms

Asian chinese, china, asian, ching, chong, asians, japanese, chinaman, ch*nk, japan
Black n*ggas, black, n*gga, n*gger, africa, blm, negro, ethiopian, blacks, african
Christians priest, catholic, jesus, priests, bible, christians, christianity, christian, church
Jews jewish, jews, holocaust, jew, israel, hitler, gas, oven, zionist, k*ke
Latinx latinos, latino, mexico, mexican, mexicans, beaner, sp*c, latin, hispanic, beaners
LGBTQ+ transgender, transgendered, transgenders, bisexual, queers, bathroom, f*g, gay
Men divorce, dudes, men, male, negative, movies, man, priests, soy, dad
Muslims, Arabs islam, muslim, islamic, muslims, isis, terrorist, terrorists, iran, bomb, radical
White redneck, white, supremacist, supremacy, mudshark, trash, fascist, shootings
Women hoes, sexist, woman, hoe, feminist, women, feminists, feminism, slut, bitches

Category

Gender/sexuality hoes, dyke, transgender, f*ggot, f*g, sexist, sexual, lesbian, hoe, dykes
Race/ethnicity chinese, black, blacks, asian, asians, mexicans, whites, africa, supremacist
Religion catholic, priest, christians, christian, christianity, religion, church, jesus, koran

Power

Dominant priest, catholic, priests, jesus, catholics, virgin, church, devil, dress
Marginalized muslim, muslims, she, islam, her, woman, n*gger, black, jews, women

Table 6: Most representative terms (lowercased) in corpora divided by different target identity sets from SAGE.

most representative words in hate directed toward
groups with high relative social power. As a marker
of Christianity, ‘Catholic’, for example, could be
seen as dominant in European and American con-
texts where Christianity has historically been a reli-
gion with relative social and cultural prominence.
However, some white nationalist groups such as
the Ku Klux Klan have targeted Catholics as out-
side idealized Christian Protestantism (Burris et al.,
2000; Berlet and Vysotsky, 2006). ‘Redneck’ and
‘trash’ are top terms in hate targeting white people,
and ‘virgin’, a top term in hate targeting dominant
groups, is used in jokes stereotyping incest. Such
terms target poor white people based mainly on
class. Also in the top terms against white people
is ‘mudshark’, a derogatory term targeting white
women who have relationships with Black men.
These terms target groups that are marginalized
within broadly dominant groups: white women,
poor white people, and Catholics. Such examples
show how social power is relative, complex, and in-
tersectional. They also evidence a tendency for hate
speech to target marginalized groups, even within
groups that have higher relative social power.

8 Discussion

Our results demonstrate that hate speech varies
considerably according to which identities are tar-

geted. We show evidence that classifiers trained on
hate toward one target identity generalize poorly
to other target identities, especially across demo-
graphic categories such as race/ethnicity, religion
and gender/sexuality.

These results suggest that the designers of hate
speech classifiers pay attention to the distribution
of targeted identities in training data. Many com-
monly used hate speech datasets do not specify this
information. If the distribution skews toward a par-
ticular identity group (such as anti-Black racism),
then using such a classifier on data that has a differ-
ent distribution (e.g., mostly antisemitic) would
likely give poor performance. More generally,
these results suggest a value in treating hate speech
as a social and linguistic category with lots of in-
ternal variance. This variance depends in part on
the social context around targeted identities.

Classifiers trained on hate speech toward dom-
inant or marginalized groups suffered somewhat
when tested on the opposite group. However, we
did not find evidence that removing hate speech
toward dominant groups clarifies the hate speech
signal enough to consistently increase performance
beyond what might be expected by removing a ran-
dom set of targeted identities. This suggests that
differences based on the social context of power do
not affect the language of hate speech enough to
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be easily detectable by machine learning classifiers.
Differences in severity between hate speech tar-
geting socially marginalized or powerful groups is
more likely a matter of interpretation by those with
social knowledge of power in a particular society.

9 Conclusion

We present a meta-analysis of hate speech datasets
annotated for identity group targets. This analysis
shows that hate speech differs significantly by tar-
get identity, as classifiers trained on hate speech
toward one identity do not generalize well to other
identities. We then examine what factors of social
context structure this variation by target identity.
We find evidence for hate speech varying substan-
tially by demographic category, and less so by the
relative social power of targeted identities.

These results reinforce the importance of varia-
tion by social context within hate speech and sug-
gest that researchers pay attention to variation by
target identity. Future work may address improving
generalization across target identities by strategi-
cally sampling training data or incorporating mul-
tiple identity-specific classifiers. Similar analyses
may also be conducted on multilingual hate speech
datasets in future work.

10 Limitations and Ethics

As a meta-analysis of existing datasets, this study
is limited by the availability of hate speech data
labeled with target identity. Performance estimates
with and without hate speech toward dominant
groups would be more reliable with more labeled
hate speech toward socially dominant groups. The
scarcity of hate speech against socially dominant
groups is not coincidental: this speech is less proto-
typically considered hate speech than that against
marginalized groups. This can be seen in the
dataset from Kennedy et al. (2020), for example,
where annotators rate the average severity of hate
against dominant groups as less than the average
severity of hate against marginalized groups.

Another limitation is that datasets each have their
own definitions of hate speech and associated anno-
tation criteria, which may vary considerably. We at-
tempted to mitigate the effects of any one dataset’s
definition with uniform sampling (see Section 4.1).
Since we take these annotations as representative
of hate speech, it is necessary to be mindful that we
are not capturing any true sense of “hate speech”,
but simply what annotators have identified as hate

speech. However, we wished to investigate the role
of target identity in existing hate speech classifi-
cation approaches, for which existing datasets and
their associated definitions are most relevant.

These datasets are only in English and largely
reflect European and American societies. Our find-
ings are specific to this context. Experiments on
multilingual datasets may reveal other trends and
reflect different social associations around identity
terms, which are culturally specific.

When sampling identity-based corpora from
datasets, we attempted to control for the idiosyn-
crasies of any particular dataset. However, the sizes
of the resulting identity-specific corpora vary de-
pending on how much hate speech directed toward
them occurs across datasets. This could influence
our generalization experiments. Classifiers trained
on identities with small corpora still perform well
on test sets of identities with the same demographic
category, the general trend we report. As seen in
Figure 1, identities with lots of data sometimes ex-
hibit behavior similar to identities with not as much
data. These factors lead us to doubt that corpus size
has a large impact on generalization results.

Care must always be taken to specify that dif-
ferences based on identity, in this case hate speech
directed toward identities, are due to social, not
biological, factors (Hanna et al., 2020; Lu et al.,
2022). We attempt to be clear that these differences
are the result of social context.
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A Appendix

We applied the following transformations to
datasets for binary hate speech labels:

• Civil Comments (Borkan et al., 2019): toxic-
ity value >= 0.5 was labeled hate

• Social Bias Inference Corpus (Sap et al.,
2020): offensive value > 0.5 was labeled hate,
following the original paper’s binarization

• Kennedy et al. (2020): hate speech value > 1
was labeled hate

• HateXplain (Mathew et al., 2021): labeled
hate if any annotator labeled the instance as
hate

• Contextual Abuse Dataset (Vidgen
et al., 2021): labeled hate if any
of the following labels was present:
AffiliationDirectedAbuse, Slur,
IdentityDirectedAbuse

• ElSherief et al. (2021): we paired implicit hate
(which was annotated with identity targets)
with non-hate from stage 1 annotations

• Salminen et al. (2018): labeled hate if the
class was labeled hateful
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Marginalized women, people with mental disabilities, black people, gay men, transgender people,
muslims, jewish people, gay people, sexual and gender minorities, feminists, chinese
women, people with autism, lgbtqa community, people from china, illegal immi-
grants, people from pakistan, working class people, elderly people, non-white people,
people from mexico, people from india, people with aspergers, people with mental
health issues, people with disabilities, romani people, ethnic minorities, immigrants,
minorities, jews, blacks, black folks, illegals, people of color, non-whites, islamic
people, gays, mexicans, illegal aliens, arabs, africans, refugees, indians, hispanics,
black men, arabians, hindus, black lives matter, iranians, mexican, latino folks, asian
folks, foreigners, jewish folks, muslim folks, latino/latina folks, physically disabled
folks, mentally disabled folks, lesbian women, folks with mental illness/disorder,
holocaust victims, native american/first nation folks, trans women, arabic folks, folks
with physical illness/disorder, overweight/fat folks, trans men, rape victims, bisex-
ual women, children, poor folks, african folks, ethiopians, bisexual men, sexual
assault victims, harassment victims, africa, old folks, orphans, mexican folks, in-
dian folks, child rape victims, ethiopian folks, child sexual assault victims, young
children, ethiopian, genocide victims, pregnant folks, ethiopia, pedophilia victims,
kids, japanese, chinese folks, holocaust survivors, asian, black, latinx, middle eastern,
native american, pacific islander, hindu, jewish, muslim, immigrant, migrant worker,
undocumented, non_binary, transgender_men, transgender_unspecified, transgen-
der_women, bisexual, gay, lesbian, seniors, disability_physical, disability_cognitive,
disability_neurological, disability_visually_impaired, disability_hearing_impaired,
disability_unspecific, disability_other, disability, xenophobia, islam, jews/judaism,
special_needs, african_descent, indian/hindu, asians, asian people, muslims and ara-
bic/middle eastern people, lgbtq+ people, victims of violence, non-binary people,
older people, bisexual people, chinese people, arabic/middle eastern people, african
people, indian people, ethiopian people, japanese people, mexican people, transgender
men, undocumented immigrants, latinx people, native american people, people with
physical disabilities, transgender women, buddhists, indigenous people, gay or lesbian
people, gay and lesbian people

Dominant involuntary celibates, white people, police officers, people from america, men, chris-
tians, rich people, white men, whites, white folks, conservative males, white con-
servatives, white liberals, americans, white nationalists, male conservatives, cops,
police, white, conservative men, christian folks, christian, straight, middle_aged, law
enforcement, wealthy people, corporations, military, armed forces, straight people,
middle-aged people

Other left-wing people, moderators, liberals, communists, left-wing people (social justice),
non-gender dysphoric transgender people, right-wing people, democrats, activists
(anti-fascist), donald trump supporters, republicans, conservatives, gamers, activists
(animal rights), people with drug problems, fans of anthropomorphic animals (“fur-
ries”), catholics, progressives, leftists, white women, antifa, germans, journalists,
islamists, southerners, media, religious people, assault victims, mass shooting victims,
terrorism victims, ugly folks, atheist, buddhist, mormon, specific country, teenagers,
young_adults, terrorism, humanity, left_wing_people, terrorists, mormons, atheists,
young adults, nonreligious people

Table 7: Labels of relative social power assigned to lowercased identity terms from hate speech datasets. Any
identities not in these lists were marked other by default.
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Abstract

Conventional natural language process (NLP)
generation models are trained offline with
a given dataset for a particular task, which
is referred to as isolated learning. Research
on sequence-to-sequence language generation
aims to study continual learning model to con-
stantly learning from sequentially encountered
tasks. However, continual learning studies often
suffer from catastrophic forgetting, a persistent
challenge for lifelong learning. In this paper,
we present a novel NLP transformer model that
attempts to mitigate catastrophic forgetting in
online continual learning from a new perspec-
tive, i.e., attention calibration. We model the at-
tention in the transformer as a calibrated unit in
a general formulation, where the attention cal-
ibration could give benefits to balance the sta-
bility and plasticity of continual learning algo-
rithms through influencing both their forward
inference path and backward optimization path.
Our empirical experiments, paraphrase gener-
ation and dialog response generation, demon-
strate that this work outperforms state-of-the-
art models by a considerable margin and effec-
tively mitigate the forgetting.

1 Introduction

Sequence-to-sequence (Seq2Seq) generation has
been widely applied in artificial learning (AI) sys-
tem to deal with various challenging tasks, e.g.,
paraphrase, dialogue system (Bordes et al., 2016),
machine translation, etc. In addition, powerful rep-
resentation learning (e.g., Transformer) have been
used in Seq2Seq models, which have taken the
state-of-the-art of generation models to a new level.
Generally, nature language generation (NLG) mod-
els leverage an encoder to create a vector repre-
sentation for source inputs, and then pass this rep-
resentation into a decoder so as to output a target
sequence word by word. For example, Bart (Lewis
et al., 2019) is such a transformer-based NLG ar-
chitecture that is equipped with the BERT-type net-

work structure (Devlin et al., 2019) as its encoder
and with the GPT-type structure as the decoder.

Despite the remarkable ability on sequence gen-
eration, the conventional paradigm aims to learn
a Seq2Seq model on the whole available dataset,
which limits its ability in accumulating knowledge
in continual learning scenario. When switching to
a new task from some previously learned ones, the
fine-tuned model on the new task sometimes faces
a significant performance drop on previous learned
data, where such a phenomenon is also referred to
as catastrophic forgetting (Parisi et al., 2019; Mai
et al., 2021; Yin et al., 2021; Li et al., 2022a,b). In
contrast, humans and animals exhibit remarkable
ability to deal with new tasks by effectively adapt-
ing their acquired knowledge without forgetting the
previously learned skills. If one desires to build a
human-like NLG model, continual learning ability
is a necessary skill for achieving this goal.

The existing replay-based continual learning
approaches have taken into account of differ-
ent perspectives of the model training process
to remedy the catastrophic forgetting dilemma,
such as regularizing the parameter change dur-
ing training (Chaudhry et al., 2018; Parisi et al.,
2019), selective memory storage or replay (Aljundi
et al., 2019), Bayesian and variational Bayesian
training (Kirkpatrick et al., 2017; Nguyen et al.,
2018), and task-specific parameterization of the
model (Pham et al., 2021; Singh et al., 2020). In
this paper,we tackle the problem from a novel angle
that is distinct to all the aforementioned attempts,
i.e., seeking a better balance between stability and
plasticity with neuron calibration. Specifically, we
refer to neuron calibration as a process of math-
ematically adjusting the transformation functions
in various layers of transformer-based architecture.
In this way, the neuron calibration is able to prior-
itize both model parameter and feature map that
are suitable to new tasks. In detail, our proposed
neuron calibration approach regularizes the param-
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eter update against catastrophic forgetting via pos-
ing a trainable soft mask on the attention and fea-
ture maps, which then influences both the model
inference process and the model training process
through the forward inference path and the back-
ward optimization path.

The contributions of our work are three-fold:
(i) we introduce a general and light-weight feature
calibration approach to tackle task-incremental con-
tinual learning problems where the models are for-
mulated as feed-forward transformer-based func-
tion approximations; (ii) we formulate a novel
task-incremental learning paradigm to train the
calibrated model with an interleaved optimization
scheme to mitigate the forgetting issue; (iii) we in-
dicate through extensive empirical experiments that
the proposed method could outperform the recent
continual learning algorithms on Seq2Seq language
generation applications.

2 Related Work

Continual Learning. Existing continual learning
methods can be classified into three categories. The
regularization approaches (Li and Hoiem, 2017;
Zenke et al., 2017; Schwarz et al., 2018) impose a
regularization constraint to the objective function to
mitigate the catastrophic forgetting. The rehearsal
approaches (Rolnick et al., 2019; Aljundi et al.,
2019; Buzzega et al., 2020; Wang et al., 2022) al-
locate a small memory buffer to store and replay
the exemplar from the previous task to consoli-
date the historical knowledge. The architectural
approaches (Rusu et al., 2016; Serra et al., 2018;
Singh et al., 2020; von Oswald et al., 2020) avoid
catastrophic forgetting through approximating the
training of the task-specific network and allowing
the expansion of the parameters during continual
learning. Nonetheless, all these methods are con-
fined to supervised classification problem, which
limits their application in real-life problems. Life-
long GAN (Zhai et al., 2019) tackles the genera-
tion problem of continual learning and learn task-
specific representation on shared parameters. Their
method is restricted to image generation tasks and
not directly applicable to NLP benchmark datasets.

Continual Language Generation. Few work has
been done in continual learning for Seq2seq lan-
guage generation. The most relevant work is
from Mi et al. (2020), which propose a contin-
ual learning framework that builds a human-like
dialogue system in an incremental learning man-

ner. Specifically, this method combines the mem-
ory replay with the regularization technique to ad-
dress the catastrophic forgetting, and empirically
achieves a promising result on the MultiWoZ-2.0
dataset. Nonetheless, their system is specifically
designed for the dialogue task and lacks generaliza-
tion to Seq2Seq tasks. Our method differs from Mi
et al. (2020) in terms of the following three points:
(i) our method is built upon a neuron calibration
approach, where such contribution is orthogonal
to that from all the previous works; (ii) our pro-
posed method does not engage any task-specific
part; (iii) we do not store the historical exemplar
from the episodic memories during training. In ad-
dition, our proposed method could be adapted to
various seq2seq language generation applications,
such as summarization, translation, paraphrases,
dialog response generation.

3 Method

3.1 Preliminary

We introduce the setting of online continual learn-
ing. Formally, we denote the sequence of train-
ing tasks in continual learning as {T1, · · · , TT }.
The tasks come and go in an online fashion, and
the training data for each task is available only
at that time slot. When the new task arrives, the
previous task’s data is deleted and cannot be used
any more. For the t-th task, we denote its training
dataset as Dt. The objective of the task is to learn
a transformer-based generation model. Our work
tackles the natural language generation (NLG)-
based continual learning problems and thus the
model is typically modeled as a feed-forward trans-
former with L-blocks (i.e, {li}Li=1), with its corre-
sponding parameters denoted as {θi}Li=1.

3.2 Transformer Calibration

We introduce a general calibration mechanism to
tackle the continue learning problems on Seq2Seq
generation, where the models are parameterized by
the transformer-based NLG models. By applying
neuron calibration, we aim to adapt the transforma-
tion function in the deep transformer layers. Our
proposed learning paradigm with neuron calibra-
tion could perform both model selection and feature
selection to effectively avoid catastrophic change
on the model parameters while accomplishing a
stable consolidation of knowledge among tasks. In
this framework, the calibration module is indepen-
dent from the pre-trained base model in order to
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Figure 1: Overview of our proposed transformer calibration for continual learning framework. This method consists
of two types of calibration modules: attention calibration module (ACM) and feature calibration module (FCM),
which are sequentially applied to the layers in the multi-head attention model (as shown in the figure) to calibrate
the attention signals and feature maps, respectively.

preserve the learned knowledge and avoid catas-
trophic forgetting. Figure 1 provides an illustration
of our neuron calibration process.

Formally, we introduce two types of general cal-
ibration modules to be applied on the transformer-
based NLG models: (i) attention calibration module
(ACM) and (ii) feature calibration module (FCM).
The attention calibration module learns to scale the
attentions of the transformer function whereas the
feature calibration module learns to scale the fea-
ture map output from the transformer block. When
calibrating the i-th layer of the transformer block,
we use Ai to denote its scaled attention function
after applying attention calibration (ACM). Mean-
while, we use hi and h̃i to denote the output fea-
ture maps before and after applying feature calibra-
tion (FCM), respectively.

We first introduce the formulation for ACM. To
calibrate the attention, we first define a learnable
matrix Φi ∈ RN×N , which presents the importance
of each pair of words, where N is the maximal
number of words in the sentence and a subset of
parameters is used according to sentence length.
The scale dot-product attention is formulated as:

Atten = Softmax
(
QiK

⊤
i ⊙

(
Φi√
d

))
Vi (1)

where ⊙ is the element-wise product. As Φi is
learned across the sequential tasks, the task-aware
attention can serve as a task representation instead
of traditional task embedding. The overall cali-
brated attention can be decoupled into two parts:
theQK⊤ term presents the content-based attention,

and Φi/
√
d term acts as the soft mask for attention

calibration. This united design offers more task
adaptation by suppressing the unrelated attention
values and highlighting the important ones. With
the ACM, the calibrator module plays a crucial role
during the model training process: at the forward
inference path, it scales the value of the attention
in the attention block to make prediction; at the
backward learning path, it serves as a prioritized
weight to regularize the update on parameters.

By applying attention calibration on transformer
blocks, the attention function at the i-th layer
Atten(Qi,Ki, Vi,Φi) is parameterized by Φi and
produces the output as follows,

hi = FAi(hi−1), s.t. Ai = Atten(Qi,Ki, Vi,Φi)
(2)

The output hi of the attention function is then pro-
cessed by a feature calibration module (FCM) to
generate the calibrated feature map for that layer.
We use Ωλi(·) to denote the feature transformation
function at the i-th layer, parameterized by λi. With
FCM, the calibration parameters also interact with
the feature map hi with a multiplicative operation.
Specifically, the calibrated feature is computed as:

Ωλi(hi) = tile(λi)⊙ hi, λi ∈ Rd, hi ∈ RN×d

(3)
given the dimension of feature map d.

In the end, the outputs from (2) and (3) get added
up in an element-wise manner by a residual con-
nection. This is followed by normalization and acti-
vation operations to produce a final output for that
layer. In summary, the overall calibration process
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for the i-th layer could be formulated as follows,

h̃i = σ (LN (Ωλi (FAi (hi−1))⊕FAi (hi−1))) ,
(4)

where LN (·) denotes the layer normalization, ⊕
denotes an element-wise addition operator, and σ(·)
is an activation function. Then h̃i is sent as input
to the i + 1-th layer in the feed-forward network.
All the aforementioned calibrator parameters are
initialized with a value of 1 at the start of training.
We illustrate an example case of applying the cali-
bration on a transformer-based model in Figure 1.

3.3 Learning Calibration Parameters

We propose an interleaved learning paradigm to
train the calibrated transformer model. In the train-
ing procedure, we aim to exploit the training of the
calibrator parameters to mitigate the catastrophic
forgetting on the continual learning. Since the ‘for-
getting’ in the training is often attributed to dra-
matic changes in parameter values, we design the
learning objective for the calibrator learning as to
regularize the parameter change after accessing the
new knowledge not to be biased too much from the
model values learned from previous ones.

To formulate the objective function for the cali-
brated model training, we inherit the elastic weight
consolidation (EWC) approach proposed in Kirk-
patrick et al. (2017) . Specifically, EWC approxi-
mates the true posterior distribution for the contin-
ual learning parameters by a Gaussian distribution
given by the mean from the previous tasks and
a diagonal precision from the Fisher information
matrix. In this work, we formulate a weight cali-
bration process to prevent the catastrophic change
on model parameters. Then we train the calibrator
parameters with the following loss function,

Lc = vec
(
θ − θt

)⊤
Λtvec

(
θ − θt

)
︸ ︷︷ ︸

term (a)

+βLt(Ψ, λ, θ)︸ ︷︷ ︸
term (b)

(5)
where β is a trade-off parameter, and the operator
vec (·) stacks the tensor into a vector.

The matrix Λt in term (a) are the Fisher infor-
mation matrix, which is obtained from the data
training loss for previous observed tasks, while
the Lt(Ψ, λ, θ) in term (b) is the loss for the cur-
rent task. The two terms perform the consolidation
process to retain the essential parameters towards
past knowledge when the base model parameters
are trained to absorb new tasks. To consolidate the

knowledge on the calibrated model, the Fisher in-
formation matrix is computed upon the gradients
on calibrated parameters.

3.4 Optimization
We formulate the optimization process to train the
calibrated model under an iterative optimization
schema, with the parameters from the base model
and those from the calibration module being op-
timized by the loss function (5). During the inter-
leaved optimization process, we first fix θt and take
gradient steps with regard to {Ψ, λ} as follows:

Ψt+1 ← Ψt − α▽Ψ Lc ((Ψ, λ), θt,Dt) , (6)

λt+1 ← λt − α▽λ Lc ((Ψ, λ), θt,Dt) , (7)

Then, we go on to optimize the base model param-
eter when the inference takes place with the up-
dated base model,

θt+1 ← θt − α▽θ Lc (θ, (ψt+1, λt+1),Dt) (8)

where α is the learning rate. By employing the cal-
ibrated parameterization of the transformer-based
network, and optimizing it with the iterative learn-
ing scheme, our method achieves the trade-off be-
tween new data adaptation and past knowledge con-
solidation. We present the details in Algorithm 1.

Algorithm 1: Transformer Calibration for
Continual Learning Algorithm (TCCL)

Input: Base model θ, calibrator (Φ, λ)
learning rate α, trade-off parameter
β, training data {Dtr1 , ...,DtrT }, test
data {Dte1 , ...,DteT }

Output: Base model Fθ, calibrator F(Φ,λ).
function train_and_eval

Randomly initialize θ, Ψ and λ.
for t← 1 to T do

for b← 1 to nbatch do
Observe a batch of data
Bt = {xi, yi}bsi=1 from Dtrt .

Φ′ ← Φ− α∇ΦLc(Bt; θ,Φ, λ)
λ′ ← λ− α∇ψLc(Bt; θ,Φ, λ)
θ′ ← θ − α∇θLc(Bt; θ,Φ′, λ′)
Compute Λt according to∇θLc

for te← 1 to t do
Evaluate testing accuracy for the

current model on Dte1,...,t:
ŷ1,...,t ← F(Dte1,...,t; θt,Φt, λt)
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4 Empirical Experiments

We evaluated the proposed algorithm on seq2seq
generation tasks. We applied the algorithms on two
datasets for seq2seq generation tasks in the contin-
ual learning. We also conducted the ablation study
with respect to attention calibration and feature cali-
bration to evaluate the robustness and effectiveness
of the proposed calibration techniques.

4.1 Application: Paraphrase Generation

Dataset. For paraphrase generation, we train the
model over three existing paraphrase datasets,
Quora1, Twitter2 and Wiki_data (linked-wiki-
text2)3, in a sequential manner, where the model ob-
serves the three sequential tasks (i.e., datasets) one
by one. See Table 1 for Statistics of the datasets.

train valid test
Quora 111,947 8,000 37,316
Twitter 85,970 1,000 3,000
Wiki_data 78,392 8,154 9,324
total 276,309 17,154 49,640

Table 1: Statistics of Dataset on Paraphrase Generation

Experimental Setting. We exploit the SOTA gener-
ation model, BART, as the generation model back-
bone in the continual learning framework. We com-
pare our approach with the following baselines:

• Finetune: for each new task, the model is ini-
tialized with the parameters learned from pre-
vious observed tasks, and then fine-tuned with
data of the current new task.

• Full: the model is trained with all the available
instances from three datasets together, which
regarded as the up-bounded performance for
the continual learning techniques.

• EWC: the EWC (Kirkpatrick et al., 2017) is
introduced in the objective function to train
the model over the sequential tasks.

For evaluation metrics, we use Bleu4, RougeL
and Meteor for the Seq2Seq generation tasks. To
measure the forgetting rates of different methods,
we basically exploit the model learned on t-th task
to evaluate its performance on previous tasks, i.e.,

1https://huggingface.co/datasets/quora
2https://metatext.io/datasets/paraphrase-and-semantic-

similarity-in-twitter-(pit)
3https://paperswithcode.com/dataset/wikitext-2

1, · · · , t− 1 task. We tune the learning rate α from
{10−3, 10−2, ..., 100} for both model parameter
and calibrator parameter, and trade-off parameter
β from {0.1, 0.5, 1, 5, 10}. Meanwhile, the batch
size is set to be {128, 256, 512} on all datasets. All
training and evaluation experiments are performed
using Tesla V100S GPUs. The whole learning pro-
cess takes around 0.5 GPU day.

4.1.1 Experimental Results

Accuracy Measurement: Table 2 presents the ac-
curacy results in the continual learning setting,
where the model is evaluated after the model has
been trained on sequential tasks one after another.
In the table, the first three models are independent
baselines trained on either one of three datasets.
As expected, model trained on new dataset may
suffer the significant performance drop on previous
instances, due to the data distribution gap between
old and new datasets. For example, twitter includes
the short casual text while Wiki_data contains for-
mal academic text.

For the fine-tune, the model is trained in a Quora-
Tweeter-Wiki (QTW) order, in which the model is
initialized with the model parameters learned on the
previous task and then fine tuned over the follow-
ing task. We observe that finetune results on Quora
and Wiki_data are comparable with those when
building the model from scratch. In addition, EWC
can achieve a better performance than Finetune and
independent training over any evaluation metrics
on Quora and most metrics on Twitter and Wiki,
demonstrating the effectiveness of EWC in contin-
ual learning. Nonetheless, our calibration model
consistently achieves the best performance across
all sequential tasks, demonstrating that the calibra-
tion model yields a promising domain adaptation
in continual learning.

Forgetting Measurement. Table 3 presents the
results when the current models are evaluated on
testing data from the previous tasks. The purpose
of this experimental setting is to measure the for-
getting rate of the models in the sequential train-
ing. In the order of QTW, the results are evaluated
on Quora after the model is trained on Twitter, as
well as on Quora and Twitter after the model is
trained on Wiki. Our method is compared with in-
dependent baseline, finetune and EWC. Table 3 in-
dicates that our method obtains a less performance
drop than Finetune and EWC, with a low forget-
ting rate. Moreover, after the model is trained on
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Quora Test Twitter Test Wiki Test
Models bleu4∗ rougeL meteor bleu4∗ rougeL meteor bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 35.47 57.49 54.57 4.60 9.76 7.50
Wiki_data-trained 22.38 43.44 46.23 9.32 17.93 21.03 42.12 73.86 73.10
Finetune 30.11 55.85 57.17 35.79 56.32 54.93 42.12 73.86 73.10
EWC 30.25 56.16 57.98 33.52 54.41 54.21 42.15 73.53 73.59
Ours 32.14 58.12 59.13 36.81 58.46 55.32 44.47 74.49 73.66
Full 33.99 59.56 61.67 38.56 58.76 56.01 46.86 76.59 75.91

Table 2: Results of model evaluations on QTW setting
(bleu4∗ denotes a more strict scoring version for the baseline evaluation)

Train: Twitter→ Test: Quora
Models bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 15.80 46.59 47.31
EWC 15.63 41.53 46.03
Ours 15.93 46.65 45.81

Train: Wiki_data→ Test: Quora
Models bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 19.07 51.76 55.95
EWC 19.63 49.35 53.02
Ours 21.39 53.62 56.44

Train: Wiki_data→ Test: Twitter
Models bleu4∗ rougeL meteor
Twitter-based 35.79 56.32 54.93
Finetune 14.09 37.97 45.89
EWC 14.84 38.65 46.33
Ours 16.62 40.25 48.44

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

Wiki, the performance on Quora is even improved
from the one after trained on Twitter. Moreover,
this work outperforms EWC on all the evaluation
domains with a noticeable margin, which demon-
strates that our calibration module is effective to
boost the performance for continual learning via
properly regularizing the parameter update against
catastrophic forgetting. Overall, the empirical re-
sult demonstrates that the calibration mechanism
can mitigate the forgetting issue greatly.

Ablation Study. We conduct the ablation study
where several simplified versions of the calibration
framework are evaluated in order to understand
the effects of different components. Specifically,
we evaluate the model variants without attention
calibration module (i.e., w/o ACM), or feature cal-
ibration module (i.e., w/o FCM), or EWC regu-

Quora Test Wiki_data Test
Models bleu4∗ meteor bleu4∗ meteor
Finetune 30.11 57.17 42.12 73.10
w/o FCM 33.32 59.32 43.33 73.10
w/o ACM 32.25 58.91 42.15 72.59
w/o R 33.77 59.57 43.51 72.93
Ours 35.44 61.45 44.47 73.66

Table 4: Ablation studies on the proposed calibration
components and regularizion terms.

larization term (i.e., w/o R), and present the com-
parison result in Table 4. From the table, we can
observe that (i) equipped with ACM or FCM, the
performance is apparently better than the original
backbone since dropping the calibration module
(“w/o ACM" and “w/o FCM") would degrade the
performance; (ii) EWC regularization is also ef-
fective, indicated by the better result than the one
without EWC regularization term (“w/o R"). Over-
all, the results demonstrate that calibrating on latent
feature and attention value is a promising direction.

Next we aim to investigate the effect of the at-
tention calibration that is performed on three dif-
ferent attentions in the transformer model. Specif-
ically, we equipped the calibration component on
either one of the self-attention of encoder, the self-
attention of decoder and the encoder-decoder (ED)
attention. The comparison results in Table 5 indi-
cate that (i) the self-attention calibration on encoder
is more effective to boost the performance; (ii)
the calibration on encoder-decoder attention yields

Quora Test
Model Variants bleu4∗ rougeL meteor
Self-Attention (E) 33.31 59.94 59.56
Self-Attention (D) 32.65 58.76 58.34
ED-Attention (D) 34.81 60.55 60.33
Ours (All) 35.44 61.37 61.45

Table 5: Ablation studies of the calibration different
attention blocks in language model.
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SOURCE BART Ours TARGET

What is the best home workout
to reduce waist fat?

How can I reduce my
waist fat through a diet?

What is best home remedy for
reducing belly fats?

What is best home remedy for
reducing belly fats?

What’s it like to be
in a relationship with
a married man?

What is it like for
a married man to be
in a relationship?

What’s it like to be
in a relationship with
a married man?

What’s it like to be
in a relationship with
a married man?

which provides a conventional
sonic underscore to the
onscreen action

which provides a sonic
underscore to the onscreen
action

which provides a conventional
sonic underscoring to the
onscreen action

which provides a conventional
underscore to the onscreen
action

Example gymnasium scene’s
first encounter with Angela

Example gymnasium scene,
Angela ’s first encounter
with Angela

For example, the gymnasium
scene, Pfaster ’s first encounter
with Angela

One example is the gymnasium
scene, Lester ’s first encounter
with Angela.

Table 6: Examples of the generated paraphrases by BART and Ours on QTW data setting.

much better results than other two self-attentions.
Overall, the results demonstrate that the attention
calibration plays an important role for boosting the
performance of the transformer-based generation
model.

Case Study. In Table 6, we perform the case stud-
ies on paraphrase generation tasks. All examples
are results generated by the final model, e.g., the
model trained on Wiki_data is used to generate
samples on Quora, Twitter, Wiki_data. Among the
four examples, the first two is from Quora, and
the others from Wiki_data. We compare our gen-
erated sentence with ones from BART backbone.
From the table, we observe that our method has a
better generation on all four cases. In those gen-
eration samples, the colored parts are key words.
Yet, BART model either fails to generate those key
words or creates the examples of false causality. In
contrast, our method is able to generate key words
in all cases with correct word relations.

4.2 Application: Dialog Response Generation

Dataset. The proposed model is evaluated on the di-
alog response generation task using the MultiWoZ-
2.0 dataset (Budzianowski et al., 2018), which
contains 6 domains (Attraction, Hotel, Restaurant,
Booking, Taxi and Train) and 7 DA intents (“In-
form, Request, Select, Recommend, Book, Offer-
Booked, No-Offer"). We follow the setting (Mi
et al., 2020) to generate the train/validation/test
splits of MultiWoz. The details of the dataset is
present in Table 7.

Experimental Setting. To evaluate the method
performance, we exploit the slot error rate (SER)
and BLEU4 score as the evaluation metrics. The
lower value of SER indicates a better performance.
To estimate the forgetting rate, the above met-

Domain and Intents of MultiWoZ-2.0 Data
Domains #. Total Intents #. Total
Attraction 8,823 Inform 28,700

Hotel 10,918 Request 7,621
Restaurant 10,997 Select 865
Booking 8,154 Book 4,525

Taxi 3,535 Recommend 3,678
Train 13,326 Offer-Booked 2,099

No-Offer 1,703

Table 7: Statistics on the Dialog Response dataset

rics are reported in two continual learning set-
tings (Kemker et al., 2018): Ωall = 1

T

∑T
i=1Ωall,i

and Ωfirst = 1
T

∑T
i=1Ωfirst,i, where T is total

number of tasks in the sequential order. Ωall,i is the
test performance on all the tasks evaluated by the
model learned with the i-th task, while Ωfirst,i is
the test result on the first task after the i-th task has
been learned.

Our work exploits the well-known seq2seq gen-
eration model, conditional variational encoder
(CVAE) as the backbone model, and the proposed
model is compared with the following baselines:

a) Finetune: the model trained from previous ob-
served tasks is used to be fine-tuned with data of
the current new task.
b) Full: this model is trained with the data from
current tasks and all historical tasks together.
c) ARPER (Mi et al., 2020): the model introduces
memory replay and adaptive regularization together
to mitigate the catastrophic forgetting issue.
d) ER: the model with the chosen exemplars that
best approximate the mean DA vector (Rebuffi
et al., 2017).

For CVAE, we equipped the feature calibration
module on the backbone, due to no attention on
the CVAE. In the following experiment, we follow
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the setting (Mi et al., 2020) and utilize the selected
exemplars to compute the Fisher information as in
the function (5).

4.2.1 Comparison Result
We conduct comparison experiments with baselines
with various number of exemplars. The first one is
that all methods do not use any exemplars. The rea-
son for this comparison is that our proposed method
is memory-free, i.e., no memory buffer required to
store and replay the exemplar for data rehearsal. In
such setting, ARPER reduces to the general reg-
ularization technique. Table 8 gives the evidence
that without any exemplars, our method achieves a
better performance than ARPER in both Ωall and
Ωfirst, with a noticeable margin. We observe that
the ARPER severely relies on the exemplars. With-
out the exemplars, the ARPER suffer a significant
performance drop in terms of the accuracy, even
poorer than Finetune.

With the increased number of exemplars, our
method can obtain a better performance since the
fisher matrix in our objective can cumulative the
informative data throughout the training process.
In addition, ER and APRE are memory-based tech-
niques and are obviously beneficial from the ex-
emplars. Nonetheless, our method can consistently
outperform APRER and ER in both settings of 250
exemplars and 500 exemplars. That indicates that
our memory-free calibration technique can effec-
tively exploit the exemplar knowledge without the
need of data storage for the exemplars.

4.2.2 Dynamic Results in Continual Learning
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Figure 2: BLEU-4 and SER on all observed domains
(solid) and on the first domain (dashed) over the six
continually observed domains using 250 exemplars.

Figure 2 presents the comparison results along
the six continually observed domains of dialog re-
sponse. We compare the performance of the cal-
ibrated model with the original CVAE backbone.
With more tasks continually learned, our method
gradually performs better performance than the
original backbone. On the first task (dashed lines),

Zero exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 67.23 0.360 105.33 0.181
ARPER 63.54 0.360 102.87 0.192
Ours 56.90 0.395 68.60 0.258
ALL 4.26 0.599 3.60 0.616

250 exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 16.89 0.535 9.89 0.532
ARPER 5.22 0.590 2.99 0.624
Ours 4.41 0.603 2.33 0.635
ALL 4.26 0.599 3.60 0.616

500 exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 12.25 0.555 4.53 0.568
ARPER 5.12 0.598 2.81 0.627
Ours 4.33 0.606 2.21 0.638
ALL 4.26 0.599 3.60 0.616

Table 8: Average Results of all the methods when
learning six domains using 0/250/500 exemplars.
(BLEU4 follows the setting in Mi et al. (2020))

the calibrated model outperforms the original one
on both metrics. These results illustrate the advan-
tage of our calibration components throughout the
entire continual learning process.

5 Conclusions

We propose an efficient seq2seq generation model
with the calibration on the transformer, where a
fixed architecture network after calibration can dy-
namically adjust the function with respect to each
individual task. To optimize our method, we fur-
ther propose a reproductive learning equipped with
an iterative optimization objective that trade-off
between plasticity and stability. Moreover, our cal-
ibration module is very light-weight without in-
troducing any task-specific parameters. Extensive
empirical experiments indicate that our approach
outperforms the baselines and achieves a promising
result. We also indicate that the calibration module
and interleaved optimization play a vital role to
boost the performance. Finally, extending the cali-
bration module to multi-lingual pre-trained model
is a promising future research direction.
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Abstract

Social media plays an increasing role in our
communication with friends and family, and
in our consumption of entertainment and in-
formation. Hence, to design effective ranking
functions for posts on social media, it would
be useful to predict the affective responses of a
post (e.g., whether it is likely to elicit feelings
of entertainment, inspiration, or anger). Similar
to work on emotion detection (which focuses
on the affect of the publisher of the post), the
traditional approach to recognizing affective re-
sponse would involve an expensive investment
in human annotation of training data.

We create and publicly release CAREdb, a
dataset of 230k social media post annotations
according to seven affective responses using
the Common Affective Response Expression
(CARE) method. The CARE method is a
means of leveraging the signal that is present in
comments that are posted in response to a post,
providing high-precision evidence about the
affective response to the post without human
annotation. Unlike human annotation, the anno-
tation process we describe here can be iterated
upon to expand the coverage of the method,
particularly for new affective responses. We
present experiments that demonstrate that the
CARE annotations compare favorably with
crowdsourced annotations. Finally, we use
CAREdb to train competitive BERT-based mod-
els for predicting affective response as well as
emotion detection, demonstrating the utility of
the dataset for related tasks.

1 Introduction

Social media and other online media platforms
have become a common means of not only inter-
acting and connecting with others, but also find-
ing interesting, informing, and entertaining content.
Users of those platforms depend on the ranking sys-
tems of the recommendation systems to show them
information they will be most interested in and to
safeguard them against unfavorable experiences.

Figure 1: Overview of the CARE Method (pseudo-code
in Appendix, Algorithm 1). The top half of the figure
(steps 1–3) shows how the affective response to a post
is computed by aggregating the expressed affects in
comments from users viewing the post. The bottom
half of the figure (steps A–C) shows how we expand the
collection of CARE patterns and the lexicon based on
labels that have been obtained from prior iterations.

Towards this end, a key technical problem is to
predict the affective response that a user may have
when they see a post. Some affective responses
can be described by emotions (e.g., angry, joyful),
and others may be described more as experiences
(e.g., entertained, inspired). Predicting affective
response differs from emotion detection in that the
latter focuses on the emotions expressed by the
publisher of the post (referred to as the publisher
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affect in Chen et al. (2014)) and not on the viewer
of the content. While the publisher’s emotion may
be relevant to the affective response, it only pro-
vides a partial signal (Dwivedi-Yu et al., 2022),
and the two are not always equivalent (see Figure 2
for an illustrative example). Affective response
for recommender systems has shown to be critical
in several applications such as music, emotional
health monitoring systems, product and travel rec-
ommendations (Rosa et al., 2015, 2018; Akram
et al., 2020; Artemenko et al., 2020; Dwivedi-Yu
et al., 2022).

Figure 2: An example case of differing publisher affect
and affective response. This work focuses on affective
response through signals such as comments and reac-
tions. Post image sourced from Shutterstock (Tapia).

Current approaches to predicting affective re-
sponse require obtaining training data from human
annotators who try to classify content into classes
of a given taxonomy. However, obtaining enough
training data can be expensive, and moreover, due
to the subjective nature of the problem, achieving
consensus among annotators can be challenging.
Some methods explore inferring responses from
physiological data or facial expressions from users,
but this is a highly invasive process and can be diffi-
cult to scale to multiple users. (Tkalčič et al., 2017,
2019; Angelastro et al., 2019).

This paper introduces the Common Affective
Response Expression method (CARE for short), a
means of obtaining labels for affective response in

an unsupervised way from the comments written in
response to online posts. CARE uses patterns and
a keyword-affect mapping to identify expressions
in comments that provide high-precision evidence
about the affective response of the readers to the
post. For example, the expression “What a hilar-
ious story” may indicate that a post is humorous
and “This is so cute” may indicate that a post is
adorable. We seed the system with a small number
of high-precision patterns and mappings. We then
iteratively expand on the initial set by considering
frequent patterns and keywords in unlabeled com-
ments on posts labeled by the previous iteration.

Using CARE, we create the largest dataset to
date for affective response, CAREdb, which con-
tains 230k posts annotated according to 7 affec-
tive responses. We validate the effectiveness of
CARE by comparing the CARE annotations with
crowdsourced annotations. Our experiments show
that there is a high degree of agreement between
the annotators and the labels proposed by CARE
(e.g., in 90% of the cases, at least two out of three
annotators agree with all the CARE labels). Fur-
thermore, we show that the CARE patterns/lexicon
have greater accuracy than applying SOTA emo-
tion recognition techniques to the comments. Us-
ing CAREdb, we train CARE-BERT1, a BERT-based
model that can predict affective response without
relying on comments. CARE-BERT provides strong
baseline performance for the task of predicting af-
fective response, on par with the SOTA models for
emotion recognition. Furthermore, we show that
CARE-BERT can be used for transfer learning to a
different emotion-recognition task, achieving sim-
ilar performance to Demszky et al. (2020), which
relied on manually-labeled training data.

In summary, our contributions are as follows:

• CARE, a novel method for leveraging the sig-
nal present in comments in order to label the
affective response of a post, without the need
for human annotation.

• CAREdb, a dataset of 230k annotated posts ac-
cording to 7 affective responses using CARE.

• Error analysis using human annotations for a
sampled set of posts from CAREdb.

• Quantitative results that demonstrate CARE
performs better than a method leveraging a
state-of-the-art publisher-affect classifier.

1The CARE patterns, lexicon, CAREdb, and CARE-
BERT are made available at https://github.com/
facebookresearch/care.
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• CARE-BERT: A model for labeling affective
response from the post text, without the need
for comments.

• Transfer learning experiments that demon-
strate transferability to different emotion-
recognition tasks under low-resource settings.

2 Related work

We first situate our work with respect to previous
research on related tasks.

2.1 Emotion detection in text

Approaches to emotion detection can be broadly
categorized into three groups: lexicon-based, ma-
chine learning, and combinations of the first two.
The lexicon-based approach typically leverages lex-
ical resources such as lexicons and encoded rules
to guide emotion prediction (Tao, 2004; Ma et al.,
2005; Asghar et al., 2017). Though these methods
can be fast and interpretable, they are often not as
robust and flexible because of the constraints of the
lexicon (Alswaidan and Menai, 2020; Acheampong
et al., 2020). Additionally, the scope of emotions
predicted by these works is usually fairly small,
ranging from two to five, and most datasets uti-
lized are usually smaller than 10k, making it un-
clear if they extrapolate well. Among the ML ap-
proaches, many SOTA works employ deep learning
methods (Demszky et al., 2020; Felbo et al., 2017;
Barbieri et al., 2018; Huang et al., 2019a; Bazi-
otis et al., 2017; Huang et al., 2019b), but while
these show significant improvement over prior tech-
niques, they are highly uninterpretable and often
require prohibitively large human-labeled datasets
to train. In both the lexicon-based approach and the
ML-approach, the classes of emotions predicted in
these works are usually non-extendable or require
additional labeled data.

While there are some commonalities between
works in emotion detection and affective response
detection, the problems are distinct enough that
we cannot simply apply emotion recognition tech-
niques to our setting. Emotion recognition focuses
on the publisher affect (the affect of the person
writing the text). The publisher affect may pro-
vide a signal about the affective response of the
reader, but there is no simple mapping from one
to the other. For example, being ‘angered’ is an
affective response that does not only result from
reading an angry post—it can result from a mul-
titude of different publisher affects (e.g. excited,

angry, sympathetic, embarrassed, or arrogant). For
some affective responses, such as feeling ‘grateful’
or ‘connected’ to a community, the corresponding
publisher affect is highly unclear.

2.2 Affective response detection
There have been some works that address affec-
tive response through natural language in limited
settings, such as understanding reader responses
to online news (Katz et al., 2007; Strapparava and
Mihalcea, 2007; Lin et al., 2008; Lei et al., 2014).
In contrast, our goal is to address the breadth of
content on social media. There are works which
use Facebook reactions as a proxy for affective re-
sponse, but these are constrained by the pre-defined
set of reactions (Clos et al., 2017; Raad et al.,
2018; Pool and Nissim, 2016; Graziani et al., 2019;
Krebs et al., 2017). The work described in Rao et al.
(2014) and Bao et al. (2012) attempts to associate
emotions with topics, but a single topic can have a
large variety of affective responses when seen on
social media, and therefore their model does not
apply to our case. Some works in the computer
vision community study affective response to im-
ages (Chen et al., 2014; Jou et al., 2014); as they
note, most of the work in the vision community
also focuses on publisher affect.

2.3 Methods for unsupervised labeling
A major bottleneck in developing models for emo-
tion and affective response detection is the need for
large amounts of training data. As an alternative
to manually-labeled data, many works utilize meta-
data such as hashtags, emoticons, and Facebook
reactions as pseudo-labels (Wang et al., 2012; Sut-
tles and Ide, 2013; Hasan et al., 2014; Mohammad
and Kiritchenko, 2015). However, these can be
highly noisy and limited in scope. For example,
there exist only seven Facebook reactions, and they
do not necessarily correspond to distinct affective
responses. Additionally, for abstract concepts like
emotions, hashtagged content may only capture a
superficial interpretation of the concept. For exam-
ple, searching #inspiring on Instagram will return
many photos featuring selfies or obviously inspira-
tional quotes, which do not sufficiently represent
inspiration. The work we present here extracts la-
bels from free-form text in comments rather than
metadata. The work done in Sintsova and Pu (2016)
is similar to our work in that it pseudo-labels tweets
and extends its lexicon, but the classifier itself is
a keyword, rule-based approach and is heavily re-
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liant on the capacity of these lexicons. In contrast,
our work leverages the high precision of CARE and
uses these results to train a model, which is not con-
strained by the lexicon size in its predictions. Our
method also employs bootstrapping to expand the
set of patterns and lexicon, similar to Agichtein and
Gravano (2000) and Jones et al. (1999) but focuses
on extracting affect rather than relation tuples.

3 The CARE Method

In this section, we provide a formal description
of CARE for annotating the affective response of
posts. Before we proceed, we note two aspects of
affective responses. First, there is no formal defi-
nition for what qualifies as an affective response.
In practice, we use affective responses to under-
stand the experience that the user has when seeing
a piece of content, and these responses may be both
emotional and cognitive. Second, the response a
user may have to a particular piece of content is
clearly a very personal one. Our goal here is to pre-
dict whether a piece of content is generally likely
to elicit a particular affective response. In practice,
if the recommendation system has models of user
interests and behavior, these would need to be com-
bined with the affect predictions for personalized
predictions.

3.1 CARE patterns and the CARE lexicon

CARE is composed of two major components:
CARE patterns, regular expressions used to extract
information from the comments of a post, and the
CARE lexicon, a keyword-affect dictionary used
to map the comment to an affect.

CARE patterns are not class or affect-specific
and leverage common structure present in com-
ments for affective response extraction. There is an
unlimited number of possible CARE patterns, but
we seeded the system with six CARE patterns and
an additional 17 more were automatically discov-
ered using the expansion method. In the same spirit
as Hearst Patterns (Hearst, 1992), CARE patterns
are tailored to extract specific relationships and rely
on two sets of sub-patterns:

• Exaggerators {E}: words that intensify or ex-
aggerate a statement, e.g., so, very, or really.

• Indicators {I}: words (up to 3) that exist in
the CARE lexicon, which maps the indicator
to a particular class. For example, ‘funny’ in
“This is so funny” would map to amused.

We present the six CARE patterns below that
were used to seed the system: (The symbol ∗

(resp. +) indicates that zero (resp. one) or more
matches are required.) Example: This is so amaz-
ing!

• Demonstrative Pronouns:
{this|that|those|these}{is|are}*{E}∗{I}+

Example: This is so amazing!

• Subjective Self Pronouns:
{i|we}{am|is|are|have|has}*{E}∗{I}+

Example: I am really inspired by this recipe.

• Subjective Non-self Pronouns:
{he|she|they}{is|are|have|has}*{E}∗{I}+

Example: They really make me mad.

• Collective Nouns:
{some people|humans|society}{E}+{I}+

Example: Some people are so dumb.

• Leading Exaggerators: {E}+{I}+

Example: So sad to see this still happens.

• Exclamatory Interrogatives:
{what a|how}{E}+{I}+

Example: What a beautiful baby!

Given the indicators extracted by the CARE pat-
terns, the CARE lexicon is responsible for mapping
the comment to particular affective responses. The
lexicon contains 163 indicators for the 7 classes we
consider (123 of which were automatically iden-
tified in the expansion process described in the
next section). We also considered using other lexi-
cons (Strapparava and Valitutti, 2004; Poria et al.,
2014; Staiano and Guerini, 2014; Esuli and Se-
bastiani, 2006; Mohammad et al., 2013), but we
found that they were lacking enough application
context to be useful in our setting. Table 1 shows
the affects in the CARE lexicon and corresponding
definitions and example comments that would fall
under each affect (or class). The classes excited,
angered, saddened, and scared were chosen since
they are often proposed as the four basic emotions
(Wang et al., 2011; Jack et al., 2014; Gu et al.,
2016; Zheng et al., 2016). The classes adoring,
amused, and approving were established because
they are particularly important in the context of
social media for identifying positive content that
users enjoy. Overall, a qualitative inspection in-
dicated that these seven have minimal conceptual
overlap and sufficiently broad coverage. We note,
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however, that one of the benefits of the method we
describe is that it is relatively easy to build a model
for a new class of interest compared to the process
of human annotation.

3.2 Labeling posts
Here we describe how to combine and use the two
major components (CARE patterns and lexicon)
at the comment-level in order to annotate the post-
level affective response. The pipeline for labeling
posts is shown in steps 1–3 of Figure 1 and de-
scribed in detail in Appendix, Algorithm 1. We
begin with reg-ex matching of CARE patterns and
individual sentences of the comments. We truncate
the front half of a sentence if it contains words
like ‘but’ or ‘however’ because the latter half usu-
ally indicates their predominant sentiment. We
also reject indicators that contain negation words
such as ‘never’, ‘not’, or ‘cannot’ (although one
could theoretically map this to the opposite affec-
tive response using Plutchik’s Wheel of Emotions
(Plutchik, 1980)). Note that contrary to traditional
rule-based or machine-learning methods, we do not
strip stop words (e.g., ‘this’ and ‘very’) because
it is often crucial to the regular expression match-
ing, and this specificity has a direct impact on the
precision of the pipeline.

Given the reg-ex matches, we use the lexicon
to map the indicators to the publisher affect of the
comment (e.g., excited). It is important to note
that the expressed affects of the comments should
intuitively equate to the affective responses of a
post. Consequently, we obtain post-level affective
response labels by aggregating the comment-level
labels and filtering out labels that have a support
smaller than t. Specifically, a post would be labeled
with the affective response a if at least t of the com-
ments were labeled with a. In our experiments,
we used a value of t = 5, after qualitative inspec-
tion of CAREdb, discussed in Section 4. We note,
however, that it is possible for a comment to be
labeled according to multiple classes if it has mul-
tiple indicators. In reality, the program should be
permissive of multiple labels for a single comment,
because emotions are in many cases not mutually
exclusive—an individual, for example, could be ex-
periencing both sadness and anger simultaneously.

3.3 Expanding CARE patterns/lexicon
We seeded our patterns and lexicon with a small
intuitive set. We then expanded these by looking at
common n-grams that appear across posts with the

same label (steps A–C of Figure 1). At a high level,
for a given affect a, consider the set, comm(a), of
all the comments on posts that were labeled a, but
did not match any CARE pattern. From these com-
ments, we extract new keywords (e.g. ‘dope’ for
approving as in ‘This is so dope.’) for the CARE
lexicon by taking the most frequent n-grams in
comm(a) but infrequent in comm(b), where b in-
cludes all classes except a. On the other hand, the
most common n-grams co-occuring with multiple
classes were converted to regular expressions and
then added as new CARE patterns (see Table B1
for a few examples). We added CARE patterns
according to their frequency and stopped when we
had sufficient data to train our models. After two
expansion rounds, the set of patterns and indicators
increased from 6 to 23 and 40 to 163, respectively.
Counting the possible combinations of patterns and
indicators, there are roughly 3500 distinct expres-
sions. When considering the possible 23 CARE
patterns, 163 CARE lexicon indicators, and 37
exaggerators, there are a total of 130k possible
instantiations of a matching comment.

4 Evaluating CAREdb

In this section we apply our method to social me-
dia posts and validate these annotations using hu-
man evaluation (Section 4.1). Section 4.2 discusses
class-wise error analysis, and in Section 4.3, we ex-
plore the alternative possibility of creating CAREdb
using a SOTA publisher-affect classifier (Demszky
et al., 2020) to label the comments instead of using
the CARE patterns/lexicon.

CAREdb: Our experiments use a dataset that is
created from Reddit posts and comments in the
pushshift.io database that were created between
2011 and 2019. We create our dataset, CAREdb, as
follows. We used CARE patterns and the CARE
lexicon to annotate 34 million comments from
24 million distinct posts. After filtering with a
threshold of t = 5, we obtained annotations for
400k posts (the total number of posts that have
at least 5 comments was 150 million). The low
recall is expected given the specificity of CARE
patterns/lexicon. We also filtered out posts that
have less than 10 characters, resulting in a total of
230k posts in CAREdb. Table 1 shows the break-
down of cardinality per affective response. 195k of
the posts were assigned a single label, whereas 26k
(resp. 8k) were assigned two (resp. three) labels.
Note that the distribution of examples per class in
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AR Definition Example comment Size

Adoring Finding someone or something cute, adorable, or attractive. He is the cutest thing ever. 36
Amused Finding something funny, entertaining, or interesting. That was soooo funny. 30
Approving Expressing support, praise, admiration, or pride. This is really fantastic! 102
Excited Expressing joy, zeal, eagerness, or looking forward to something. Really looking forward to this! 41
Angered Expressing anger, revulsion, or annoyance. I’m so frustrated to see this. 26
Saddened Expressing sadness, sympathy, or disappointment. So sad from reading this. 34
Scared Expressing worry, concern, stress, anxiety, or fear. Extremely worried about finals. 2

Table 1: Definition of affective responses (AR), examples of comments which would map to each affective response,
and the number of posts (in thousands) per class in CAREdb. The portion of each example which would match a
CARE pattern in a reg-ex search is italicized.

CAREdb is not reflective of the distribution in the
original data, because different classes have differ-
ent recall rates. The CAREdb dataset features the
pushshift.io ID and text of the post as well as the
annotations using CARE.

4.1 Human evaluation

In our next experiment, we evaluate the labels pre-
dicted by CARE with the help of human annotators
using Amazon Mechanical Turk (AMT), restrict-
ing to those who qualify as AMT Masters and have
a lifetime approval rating greater than 80%. The
dataset for annotation was created as follows. We
sub-sampled a set of 6000 posts from CAREdb, en-
suring that we have at least 500 samples from each
class and asked annotators to label the affective re-
sponse of each post. Annotators were encouraged
to select as many as appropriate and also permitted
to choose ‘None of the above’ as shown in Fig-
ure C1. In addition to the post, we also showed
annotators up to 10 sampled comments from the
post in order to provide more context. This was
also done in an effort to make the comparison to
CARE more fair, since CARE relies upon having
access to the comments of the post. Every post was
shown to three of the 91 distinct annotators. For
quality control, we also verified that there no indi-
vidual annotator provided answers that disagreed
with the CARE labels more than 50% of the time
on more than 100 posts.

We observed an average Fleiss’ kappa score of
0.59, which is considered moderate agreement, the
breakdown of which is shown in Table C1. Table 2
shows that the rate of agreement between the anno-
tators and the labels proposed by the CARE method
is high. For example, 94% of posts had at least one
label proposed by CARE that was confirmed by 2
or more annotators, and 90% had all the labels con-
firmed. The last column measures the agreement
among annotators on labels that were not suggested

by CARE, which was 53% when confirmed by 2
or more annotators. We expected this value for
‘other’ to be reasonably large because the CARE
patterns/lexicon were designed to generate a highly
precise set of labels, rather than highly comprehen-
sive ones. However, the value is still much smaller
relative to the agreement rate for the CARE labels
(53% versus 94%). On average, each annotation
answer contained around 1.8 labels per post (with
a standard deviation of 0.9). We note that ‘None of
the above’ was chosen less than 0.2% of the time.
Table C2 and Figure C2 present annotator agree-
ment statistics and label prevalence, respectively,
broken down by class.

# Agree Any CARE All CARE Other

≥ 1 98 96 82
≥ 2 94 90 53
= 3 80 76 24

Table 2: The rate of agreement between the annotators
and the labels proposed by CARE. The first column
specifies the number of annotators to be used for con-
sensus. The rest of the columns shows, for all posts, the
average rate of intersection of the human labels with at
least one CARE label, all CARE labels, and any label
that is not a CARE label.

4.2 Error Analysis

Evaluating CARE reveals that the accuracy of
CARE varies by class (Figure C2), and in particu-
lar, is lower for amused and excited. As can be seen
from the interclass Spearman correlations (Fig-
ure G4) and a two-dimensional projection of the
embeddings of the labeled comments (Figure G3),
there appears to be non-trivial overlap amongst the
classes amused, excited, and approving. To better
understand if certain pattern or indicator matches
are at fault here, we investigate the precision and
recall at the pattern and lexicon level.
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Figure 3: Precision versus recall of each class using
varying thresholds (t = 0 to 9). Ground truth labels
utilized are those which have at least 2 out of 3 annotator
agreement. For clarity, only odd values of t are labeled.

Recall that instantiating a match for a comment
involves choosing a (pattern, keyword) combina-
tion. Separating the lexicon from the patterns en-
ables us to encode a large number of instantiated
patterns parsimoniously, but some pair combina-
tions provide a much weaker signal than others,
particularly for the class amused (see Figure H6 for
examples). Hence, for future iterations of CARE,
we intend to implement a mechanism to exclude
certain pattern and keyword combinations and a
means for using different thresholds for each class.

Alternatively, another mechanism for accom-
modating these class-wise discrepancies in perfor-
mance is by tuning for each class an optimal thresh-
old t (i.e., the number of matched comments we
need to see in order to reliably predict a label). Fig-
ure 3 shows how the precision and recall of each
class varies according to different threshold val-
ues. To achieve precision and recall greater than
0.7, a threshold of 1 actually seems viable for most
classes, while for amused and excited a threshold of
at least 3 is needed. In fact, for most of the classes,
using thresholds larger than 3 has negligible impact
on the precision score, but does reduce the recall.

4.3 Can we leverage emotion classification?
Recall, steps 1 and 2 of Figure 1 uses the CARE
patterns and lexicon to label the publisher affect of
the comments. Conceivably, this could have been
done instead by using a SOTA emotion classifier
such as the GoEmotions classifier (Demszky et al.,
2020), which is trained specifically to predict the

publisher affect of Reddit comments. Here, we
show that our method for labeling the publisher
affect of comments performs comparatively bet-
ter. Let us define the method CAREG, a modified
version of the CARE method where steps 1 and
2 are replaced with labels using the GoEmotions
classifer. We apply CAREG to our human anno-
tated dataset (Section 4.1) by first applying the
GoEmotions classifier to all comments of the posts.
These GoEmotion labels are then mapped to our
taxonomy in Table 1 using the mapping defined in
Table 3, which is based on the grouping of emo-
tions at the Ekman level used in Demszky et al.
(2020). We then, as usual, aggregate and filter post
labels according to a threshold t.

CAREG (Table F4) shows a relative decrease of
12.9% and 18.0% in the rate of annotator agreement
with any and all labels, respectively, compared to
that of CARE. These decreases hold even when
partitioning on each individual class. The compara-
tively lower performance of CAREG is most likely
due to the low F1-scores (<0.4) of the GoEmo-
tions classifer for nearly half of the 28 classes, as
reported in the original work Demszky et al. (2020,
Table 4). It is also important to note that in addition
to demonstrating higher precision, CARE patterns
and lexicon are valuable because they do not re-
quire human annotated data, unlike GoEmotions.
It may, however, be useful to leverage multiple
emotion detection approaches. Section F discusses
a potential ensembling strategy for this.

To validate the mapping in Table 3, we applied
steps 1 and 2 of CARE to the GoEmotions dataset
(see Section E), and computed the rate of agree-
ment among the labels in our defined mapping.
We find this rate of agreement to be high (87.3%
overall). Note, we perform this equivalence at
the publisher affect level, because as discussed be-
fore, the affective response and publisher affect are
not always equivalent. In addition to prior work
(Dwivedi-Yu et al., 2022), Section D presents ex-
periments that indicate that affective response and
publisher affect labels intersect only 44% of the
time.

5 Predicting affective response for posts
without comments

In this section we describe CARE-BERT, a multi-
label affective response classifier that is trained
only on the post-level text and annotations in
CAREdb. Such a model is important in order to
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AR GoEmotion label % agree

Amused Amusement 79.8
Approving Admiration, Approval 89.3

Excited Joy 81.3
Angered Anger, Annoyance, Disgust 93.3
Saddened Disappointment, Sadness 90.9

Scared Fear, Nervousness 84.9

Table 3: CARE to GoEmotions mapping. The last col-
umn summarizes the rate at which the mapping holds.
The average across all datapoints was 87.3%.

make predictions early in the life of the post and
in cases where the comments may not exist or
may not match any CARE patterns or keywords.
Note that the model is not given the comments text
and is therefore not restricted to the CARE pat-
tern/lexicon semantics. In section 5.2, we describe
how CARE-BERT can be further fine-tuned for re-
lated tasks like emotion detection.

5.1 Creating and evaluating CARE-BERT

We train CARE-BERT with the CARE labels in
CAREdb, using the pre-trained model bert-base-
uncased from the Huggingface library (Wolf et al.,
2020). We use a max length of 512 and we add
a dropout layer with a rate of 0.3 and a dense
layer to allow for multi-label classification. We
used an Adam optimizer with a learning rate of
5e-5, a batch size of 16, and 5 epochs. We used a
train/validation/test split of 80/10/10%. See Sec-
tion I for other settings we explored.

The evaluation on the human-annotated set (held
out from training) is shown in Table 4. We use
labels with support from all annotators as ground
truth. The classes of lowest prevalence, such as
scared, had the poorest results, while the more
frequent classes (adoring, approving, saddened)
had the highest results. To put these results in
perspective, we use the mapping in Table 3 and
compare with the numbers from Demszky et al.
(2020). Note, the comparison is not for the same
dataset—our results pertain to predicting on the
post, whereas GoEmotions predicts the comments.
Still, CARE-BERT demonstrates a 35% improve-
ment in the overall micro-averaged F1-score.

CARE vs. CARE-BERT: Compared to the hu-
man annotators and CARE, CARE-BERT is disad-
vantaged by not having access to the comments.
We use human annotated set of CAREdb and find
that 0.89 of the CARE labels are also proposed
by human annotators, while this value is 0.72 for

CARE-BERT (Table J6). In Table J7 we display se-
lect examples that may illustrate reasons for this
discrepancy. Firstly, one of the challenges that
CARE-BERT faces is that there may not be suffi-
cient context in the post alone. In the example
“Who is this LIRIK guy, and why does he have 50K
subscribers” it is challenging to predict that some
people find the subject adorable without additional
context. Relatedly, the conversation that the post
initiates can be challenging to foresee. The last
example reads "AskReddit: Imagine the last thing
you ate has been made illegal. What would that
be?" In some cases, commenters just ate something
they didn’t like and are therefore content with the
premise. In other cases, commenters just ate some-
thing they very much enjoy and are saddened by
the hypothetical. Our results show that this is not
particular to ‘AskReddit’ posts, and given these
challenges, it is reasonable that the CARE method
provides more reliable labels.

Affect P R F1 GoEmotions F1

Adoring 0.73 0.66 0.70 -
Amused 0.63 0.54 0.60 0.80

Approving 0.73 0.72 0.75 0.53
Excited 0.58 0.52 0.58 0.51
Angered 0.70 0.61 0.69 0.40
Saddened 0.78 0.62 0.73 0.39

Scared 0.68 0.3 0.47 0.54

micro-avg 0.70 0.68 0.69 0.51
macro-avg 0.69 0.62 0.65 0.53

stdev 0.06 0.12 0.09 0.14

Table 4: Precision (P), recall (R), and F1 of CARE-
BERT using CAREdb on the post text of the human-
annotated set and F1-scores of the GoEmotions classifier
from Demszky et al. (2020) on comments.

5.2 Transfer learning to emotion detection

We now demonstrate that CARE-BERT is also useful
for pre-training of another related task in a setting
with limited annotated data. We consider trans-
fer learning to the ISEAR Dataset (Scherer and
Wallbott, 1994), which is a collection of 7666 state-
ments from a diverse set of 3000 individuals la-
beled according to six categories (anger, disgust,
fear, guilt, joy, sadness, and shame). The labels
pertain to the publisher affect and not affective re-
sponse, as considered in this work. Our experiment
explores transfer learning to predict the labels in
the ISEAR dataset using an additional drop-out
layer of 0.3 and a dense layer.

Our experiments follow closely to that of Dem-
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szky et al. (2020) and uses different training set
sizes (500, 1000, 2000, 4000, and 6000) for 10
different train-test splits. We plot the average and
standard deviation in the F1-scores across these
10 splits in Figure 4. We compare four differ-
ent fine-tuning setups: the first two are trained us-
ing CARE-BERT and then fine-tuned on the bench-
mark dataset, one with no parameter freezing
(no_freeze), and one with all layers but the last
two frozen (freeze). The third setup is similar to
CARE-BERT (no_freeze) but is trained on GoEmo-
tions rather than CAREdb. The last setup is the
bert-base-uncased model trained only on ISEAR,
where all setups use the same architecture and hy-
perparameters as discussed in Section 5.

Our values differ slightly from that cited in Dem-
szky et al. (2020) due to the small differences in
architecture and hyperparameters. However, the
overall results corroborate that of Demszky et al.
(2020) in that models with additional pre-training
perform better than the baseline (no additional pre-
training) for limited sample sizes. From Figure 4,
it is apparent that CARE-BERT and the model built
from GoEmotions perform essentially on par in
these transfer learning experiments, in spite of the
fact that CARE-BERT does not utilize human anno-
tations. It is also worth noting that GoEmotions
and the ISEAR dataset address the same task (emo-
tion detection) while CARE-BERT predicts affective
response. The comparable performance of CARE-
BERT with the GoEmotions models demonstrates
the utility of CARE-BERT for other tasks with lim-
ited data and the promise of CARE as a means of
reliable unsupervised labeling.

6 Conclusion

We described a method for extracting training data
for models that predict the affective responses of a
post on social media. CARE is an efficient, accu-
rate, and scalable way of collecting unsupervised
labels and can be extended to new classes. Using
CARE, we created CAREdb, a large dataset which
can be used for affective response detection and
other related tasks, as demonstrated by the compet-
itive performance of CARE-BERT to similar BERT-
based models in emotion detection. We release the
annotations and models in the hopes that this will
unlock future research.

In particular, there are two main cases in which
CARE can be improved upon: (1) when there does
not exist a set of common phrases that are indica-

Figure 4: The F1-score of each model using varying
training set sizes of the ISEAR dataset. The light blue
line refers to using CARE-BERT, but with freezing all
parameters except in the last layer. The dark blue is the
same but without freezing. Lastly, the purple line refers
to the same architecture as CARE-BERT (no freezing) but
trained on GoEmotions instead of CAREdb, and the red
line is trained only on the ISEAR dataset using a bert-
base-uncased model with the same hyperparameters.

tive of an affect, and (2) when an indicator maps
to multiple affects. In the latter case, there is still
partial information that can be gleaned from the
labels. In addition to developing methods for the
above cases, future work also includes incorpo-
rating emojis, negations, and punctuation, extend-
ing to new classes, or possibly using embedding
similarity rather than exact match for the CARE
patterns. Finally, we also plan to investigate the
use of CARE for predicting the affective response
to images as well as multi-modal content such as
memes.
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A Broader Impact

Any work that touches upon emotion recognition
or recognizing affective response needs to ensure
that it is sensitive to the various ways of expressing
affect in different cultures and individuals. Clearly,
applying the ideas described in this paper in a pro-
duction setting would have to first test for cultural
biases. To make “broad assumptions about emo-
tional universalism [would be] not just unwise,
but actively deleterious” to the general community
(Stark and Hoey, 2021). We also note that emotion
recognition methods belong to a taxonomy of con-
ceptual models for emotion (such as that of Stark
and Hoey (2021) and these “paradigms for human
emotions [...] should [not] be taken naively ground
truth.”

Before being put in production, the method
would also need to be re-evaluated when applied
to a new domain to ensure reliable performance in
order to prevent unintended consequences. Addi-
tionally, our work in detecting affective response
is intended for understanding content, not the emo-
tional state of individuals. This work is intended to
identify or recommend content, which aligns with
the user’s preferences. This work should not be
used for ill-intended purposes such as purposefully
recommending particular content to manipulate a
user’s perception or preferences.

B Details on expanding CARE

n-gram frequency class

adorable 9000 Adoring
gorgeous 8422 Adoring
fantastic 7796 Approving

interesting 5742 Amused
sorry for your 5202 Saddened

brilliant 4205 Approving
fake 2568 Angered

sorry to hear 2323 Saddened
why i hate 1125 Angered

i feel like 293 pattern
you are a 207 pattern
this is the 173 pattern

this made me 110 pattern
he is so 102 pattern

Table B1: Examples of n-grams resulting from
GetNgrams in Algorithm 1 and steps B1 and B2 of
Figure 1. The n-grams above the middle line are added
to the lexicon under the specific class listed, while the
n-grams below are used for further expansion of CARE
patterns after translating to reg-ex format manually.

Algorithm 1 on page 18 presents pseudo-code for
the process of labeling posts and expanding CARE
patterns and the CARE lexicon. Table B1 presents
example results from the expansion process.

C Annotation details

Figure C1: Interface for crowdsourcing process using
Amazon Mechanical Turk. Three distinct annotators
were used to annotate each post. Annotators were told
an affective response is an emotion or cognitive response
to the post and the definitions and examples in Table 1
were shown to them.

AR % w/ Avg Fleiss’
support support kappa

Adoring 99.2 2.8 0.78
Amused 93.2 2.1 0.43

Approving 98.8 2.8 0.51
Excited 83.6 2.1 0.58
Angered 99.4 2.8 0.59
Saddened 99.6 2.9 0.61

Scared 98.8 2.6 0.64
Average 96.1 2.6 0.59

Table C2: The percent of CARE-labeled examples (max-
imum of 100) with agreement from at least one labeler
by class and of those examples, the average number of
annotator agreement (maximum of 3). The third column
shows the Fleiss’ kappa, which was computed for class
a based on the presence and absence of label a by each
annotator for a given post. The bottom row is the aver-
age over all classes.

The annotators were paid a competitive wage in
order to temper the effects of the ethical and sam-
pling limitations and concerns as described in Fort
et al. (2011) and Paolacci and Chandler (2014).
Figure C1 shows the interface used for crowdsourc-
ing human annotations for evaluating CARE pat-
terns. To better understand annotation results for
each class, we present Table C2, which shows an-
notator agreement statistics broken down by class.
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We also computed Fleiss’ kappa for each class,
where a value between 0.41-0.60 is generally con-
sidered moderate agreement and a value between
0.61-0.80 is substantial agreement. As can be seen,
classes such as adoring have high average anno-
tator support and Fleiss’ kappa while others like
amused have low average annotator support and
Fleiss’ kappa, an observation that aligns with the
findings in Section 4.2.

Figure C2: Prevalence of class labels according to an-
notations from AMT on which at least two annotators
agree upon (blue) and according to CARE (orange). The
prevalence of approving was much higher from AMT,
likely due to a large perceived overlap in the definitions
of approving and other classes such excited.

D Are affective response and publisher
affect the same?

The GoEmotions dataset and classifier target the
publisher affect (of comments), whereas CARE-
BERT and CARE target the affective response (of
posts). In an effort to study the correlation be-
tween affective response and publisher affect, we
compare the following sets of labels: 1) human an-
notations of GoEmotion and the predicted affective
responses using CARE-BERT applied to GoEmo-
tions and 2) CARE labels for posts in CAREdb and
the predicted publisher affects using the GoEmo-
tions classifier applied to CAREdb. Specifically,
for every annotated label (i.e., not from a classifier)
we count the percentage of the time where there
is intersection with the set of predicted labels (i.e.,
from a classifier).

The results of these experiments are shown in
Table D3, broken down according to the class of the
annotated label. Overall, the percentage of affec-
tive response and publisher affect label agreement
(44%) is moderate but seems to indicate that the
affective response detection and emotion detection

are not necessarily the same problem, in particular
for scared and approving. The classes approving,
excited, and angered have a large variance between
the two datasets, where the first (Table D3, second
column) uses comments and the second (Table D3,
third column) uses posts. This could be due to the
classification errors (either by GoEmotions or by
CARE-BERT) or due to the type of the text (com-
ment or post). More research and data collection
is needed to understand the relationship between
affective response and publisher affect.

AR GoEmotions CAREdb Average

Amused 63 54 59
Approving 8 47 28

Excited 52 24 38
Angered 4 74 39
Saddened 60 62 61

Scared 44 34 39
Average 39 49 44

Table D3: Rate of intersection between affective re-
sponse and publisher affect labels. The first column
denotes the class. The second column denotes the per-
cent of the time an annotated label in GoEmotions exists
in the set of predicted labels by CARE-BERT when ap-
plied to the GoEmotions dataset. The third column
denotes the percent of the time an annotated label in
CARE-BERT exists in the set of predicted labels by the
GoEmotions classifier when applied to CAREdb. The
last column is the row-wise average.

E Using CARE patterns/lexicon to
predict publisher affect in GoEmotions

The GoEmotions dataset (Demszky et al., 2020) is
a collection of 58k Reddit comments labeled ac-
cording to the publisher affect from a taxonomy
of 28 emotions. There exists a natural mapping
from 6 of our classes to those of GoEmotions (the
exception being adoring) based on the definitions
alone. Hence, applying CARE patterns/lexicon to
the GoEmotions dataset presents another way of
validating the quality of steps 1 and 2 of CARE.
The number of examples in GoEmotions with la-
bels belonging to these 6 classes was 21.0k and the
number of comments that were labeled by CARE
patterns/lexicon was 1259. Table 3 compares the
human annotations in the GoEmotions dataset with
the labels that CARE patterns/lexicon assigned to
the comments and shows that they have a high de-
gree of agreement.

While the low recall is certainly a limitation
of CARE patterns and lexicon when applied to
a specific small dataset, we emphasize that the pri-
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mary intention of CARE patterns is to generate
a labeled dataset in an unsupervised manner, so
one can start training classifiers for that affective
response. Given the abundance of freely available
unlabeled data (e.g., on Reddit, Twitter), recall is
not a problem in practice. In the next section and
in Section 4.3, however, we discuss how existing
emotion classifiers, such as the GoEmotions classi-
fier (Demszky et al., 2020) can also be leveraged
in the CARE method.

F CARE and CAREG evaluation details

CAREG refers to the CARE method, where steps
1 and 2 of Figure 1 use the GoEmotions classifier
instead of CARE patterns. To evaluate how CARE
and CAREG compares, we use the same human-
labeled dataset described in Section 4.1 and applied
the GoEmotions classifier to all the comments be-
longing to these posts (72k comments). We then
mapped the predicted GoEmotion labels to CARE
pattern labels using the mapping in Table 3. GoE-
motion and CARE labels not in the mapping are
excluded from this analysis.

Threshold Any CAREG All CAREG Other

t = 1 95 34 25
t = 2 91 61 42
t = 3 87 71 51
t = 4 81 73 57
t = 5 73 67 62
t = 6 58 56 70
t = 7 47 45 76
t = 8 38 37 81
t = 9 30 29 84
t = 10 24 23 88

max 89 89 60
CARE 93 89 54

ensemble 94 83 49

Table F4: The rate of intersection between labels agreed
upon by at least two annotators and the labels proposed
by CAREG. The first column indicates the threshold t
used in CAREG. Using annotations agreed upon by at
least two annotators, the rest of the columns show the
rate of agreement with at least one predicted label, all
predicted labels, and any human-annotated label that
was not predicted. The row labeled ‘max’ refers to
choosing the comment-level label with the highest fre-
quency for each post. For context, the results for CARE
using t = 5 are shown in the penultimate row. The last
row presents results from combining the CARE pattern
labels and the GoEmotion labels using t = 4.

The same metrics for ≥ 2 annotator agreement
in Table 2 are shown in Table F4 for multiple thresh-
olds and for all classes, excluding adoring. CARE

labels consistently demonstrate higher agreement
with human annotations than those of CAREG. The
last row of Table F4 shows results for an ensem-
bling approach where steps 1 and 2 use labels from
both CARE patterns in addition to the labels from
the GoEmotions classifier, where the former uses
t = 5 and the latter uses t = 4 in step 3 (optimal
values for each approach, respectively). This en-
sembling approach does reasonably well and can
be used to include classes in the GoEmotions tax-
onomy that do not exist in the taxonomy of Table 1.
Given other emotion classifiers, one could poten-
tially include those as well.

G Multi-dimensional scaling pairwise
plots

Figure G3: The two-dimensional projection (using
MDS) of sentence embeddings of comments suggests
that the CARE-based predictions correspond to similar-
ity in the embedding space. Colors correspond to the
labels given by CARE labeling, which were not given
to the embedding model or the MDS.

We visualize the degree of overlap between
the sentence embeddings (using Sentence-Bert
(Reimers and Gurevych, 2019)) of 100 com-
ments in CAREdb for each class. We then use
multi-dimensional scaling or MDS (Cox and Cox,
2008) to map the embeddings to the same two-
dimensional space using euclidean distance as the
similarity metric, as shown in Figure G3 and Fig-
ure G5. Note that the MDS process does not use
the class labels. As can be seen, there is sub-
stantial overlap between amused and other classes,
as well as between excited and approving. Fig-
ure G4 shows the Spearman correlation between
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each class and a hierarchical clustering using the
AMT-annotated dataset, and corroborates that ap-
proving and excited indeed do have the highest
degree of correlation. Given that the average num-
ber of human annotations per post was 1.8 (Sec-
tion 4.1), it is likely that a portion of this over-
lap can be attributed to the multi-label nature of
the problem as well as the moderate correlation
between certain classes such as excited and ap-
proving (Figure G4). See Figure G5 for plots of
multi-dimensional scaling for every pair of classes,
as referenced in Section 4.2.

Figure G4: Pairwise Spearman correlation between each
pair of classes, computed using the degree of annotator
support for each class given a post. The dendrogram
represents a hierarchical clustering of the data, correctly
capturing the distinction between positive and negative
classes.

H Pattern match analysis

To investigate why higher thresholds would be
needed for certain classes, we analyze the CARE
patterns and lexicon at the class level.

Let us define a match as a tuple containing the
pattern name and the word or phrase which maps
the comment to an affect according to the CARE
lexicon. We could also consider exaggerators in
our analysis, but here we assume a negligible ef-
fect on differentiating reliability. We previously
assumed that each instantiated match should have
the same weight of 1, but this may not be appropri-
ate, considering that some patterns or words may
be more reliable.

As can be seen in Figure H6, there are some
cases in which the keyword in general seems to
have a high false positive rate (e.g., happy) and in

other cases it appears the erroneous combination of
a particular pattern and keyword can lead to high
false positive rates. For example, while the match
‘(so very, funny)’ has a low false positive rate of
0.2, ‘(I, funny)’ has a much higher false positive
rate of 0.57, which intuitively makes since ‘I’m
funny’ does not indicate being amused. We also
investigated whether individual patterns are prone
to higher false positive rates, which does not seem
to be the case. For future iterations of CARE, one
could also use the true positive rate as the weight of
a match to obtain a weighted sum when aggregating
over comments to label a post.

Figure H6: Scatter plot of the total frequency of a match
versus its false positive rate. Ground truth labels used
here are those from AMT and agreed upon by at least
2 annotators. For clarity, a match is shown only if its
total count was 10 or more and if it belongs to one of
the three classes (adoring, amused, and excited). Only
those which contain the keywords ‘sweet’ (adoring),
‘funny’ (amused), and ‘happy’ (excited) are labeled.

I Modeling details

AR Precision Recall F1

Positive 0.95 0.95 0.94
Negative 0.77 0.77 0.78

micro-avg 0.89 0.91 0.90
macro-avg 0.86 0.86 0.86

stdev 0.10 0.13 0.11

Table I5: Accuracy of CARE-BERT for the two-class
case: POSITIVE versus NEGATIVE. Note that amused,
excited, adoring, and approving were mapped to positive
and angered, saddened, and scared were mapped to
negative.
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We began with the hyper-parameter settings in
Demszky et al. (2020) and explored other hyper-
parameter settings (batch sizes [16, 32, 64],
max length [64, 256, 512], drop out rate [0.3,
0.5, 0.7], epochs [2-10]) but found minimal im-
provements in the F1-score, as computed by the
scikit-learn package in python. Running
this on two Tesla P100-SXM2-16GB GPUs took
roughly 19 hours. We also experimented with
higher thresholds for the parameter t (see Sec-
tion 3.2) but saw marginal improvements, if any.

We developed two versions of CARE-BERT: one
using the classes in Table 1, and a simpler one
using only the classes POSITIVE, and NEGATIVE.
The first four rows in Table 1 are considered pos-
itive while the last three are negative, the results
of which are featured in Table I5. Naturally, the
two-class model that blurs the differences between
classes with the same valence has higher results.

J Modeling Analysis

Human CARE CARE-BERT

Human 1.0 0.55 0.51
CARE 0.89 1.0 0.72

CARE-BERT 0.72 0.62 1.0

Table J6: Percentage of agreement between annotation
schemes. Each entry corresponds to the percentage of
all labels the annotation scheme along the row agrees
with the annotation scheme along the column.
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Algorithm 1: Algorithm for producing candidates for new CARE patterns and indicators in the
CARE lexicon. The algorithm uses three hyperparameters t (the minimum number of comments
to label a post), f_lexicon (the minimum frequency of a n-gram to be added to the lexicon), and
f_pattern (the minimum frequency of an n-gram to be a candidate pattern) which was set to 5,
1000, and 100, respectively. The resulting list of candidate patterns needs to be manually converted
into a regular expression matching the structure outlined in Section 3.1.
Data: C: set of comments, P : set of corresponding posts, L: dictionary of keywords to class

(CARE lexicon), D: list of non-class-specific regular expressions (CARE patterns)
1 lexicon_candidates← [], pattern_candidates← []
2 labeled_posts← LabelPosts (C, P , L, D), ngrams← GetNgrams (labeled_posts, C)
3 for a in all classes do
4 // Add an ngram as a lexicon candidate if it is exclusively in high frequency with class a
5 for ngram in ngrams[a] do
6 if frequency of ngram in ngrams[a] ≥ f_lexicon then
7 for b in all classes where b ̸= a do
8 if ngram in ngrams[b] and frequency of ngram in ngrams[b] ≥ f_lexicon then
9 Break and continue to new n-gram

10 Append ngram to lexicon_candidates, if not added already

11 // Add an ngram as a pattern candidate if in high enough frequency and present in another class
12 for ngram in ngrams[a] do
13 if total freq. of ngram in ngrams ≥ f_pattern and ngram in ngrams[b] for b ̸= a then
14 Append ngram to pattern_candidates, if not added already

Result: lexicon_candidates, pattern_candidates
15

16 Function LabelPosts(C, P , L, D):
17 labeled_comments← {}, labeled_posts← {}
18 // For each comment, apply reg-ex and map indicator to affect using the lexicon
19 for c in C do
20 if indicator is non-empty after reg-ex matching and in lexicon then
21 Append c to labeled_comments[L[indicator]]

22 // For each post, aggregate comment labels to label post
23 for p in P do
24 for a in all classes do
25 if number of comments belonging to post p and labeled as class a ≥ t then
26 Append p to labeled_posts[a]

27 return labeled_posts

28

29 Function GetNgrams(labeled_posts, C):
30 ngrams← {}
31 for a in all classes do
32 // Get the n-grams of all comments belonging to a post labeled as a
33 for p in labeled_posts[a] do
34 for c in C belonging to post p do
35 Add 1-grams, 2-grams, and 3-grams of comment c to ngrams[a]

36 return ngrams
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Figure G5: Subplots of plotting the multi-dimensional scaling from Figure G3 for each pairwise comparison of the
7 classes. The rows and columns follow in the order adoring, amused, approving, excited, angered, saddened, and
scared. The entire grid is symmetric for ease of exploration.
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Table J7: Examples of posts labeled according to human annotators, CARE, and CARE-BERT. The first three show
examples where all three labeling schemes agree, the second three demonstrates examples where external knowledge
may be needed, and the last three shows examples where the trajectory of the discussion may be more unpredictable.
Note: CARE-BERT does not get access to the comments.

Post Comments Human CARE CARE-BERT

Anxiety: I just want to say that
I’m trying...I may not be suc-
cessful, but I’m trying.

Dude, very proud of you my friend.
Don’t give up.; Good for you. I’m
proud of you for trying. Keep at it.;
Happy for you.

approving approving approving

AskReddit: What’s something
you’ve been wanting to get off
your chest but are too scared to?

I’m scared to end up alone and
unloved.; I’m so scared to graduate
college.; I just got engaged, but I’m
not actually happy about it.

saddened;
scared

saddened;
scared

saddened; scared

AskReddit: What movie really
emotionally impacted you?

A Walk to Remember. So sad.; It’s a
Wonderful Life. Makes me so teary-
eyed.; Dead Ringer. Made me so de-
pressed.

saddened;
approving

saddened;
approving

saddened; approv-
ing

Hockey: The Vancouver
Canucks have landed a spot in
the playoffs!

This is excellent news!; Holy shit, this
is exciting!; Hell yeah, fuck the kings!

angered;
excited;
approving

excited excited

Panthers: Divisional Playoffs -
Panthers vs. 49ers - Discussion
Thread Let’s do this!

I’M SO MAD; I’m freakin’ scared,
man.; Screw the whiners! They’re go-
ing to regret the day they stepped on
our turf!

angered;
approving

angered angered; excited

InfertilityBabies: Going to be a
line jumper! The doctor says my
BP isn’t stellar so I am in L and
amp;D until Monday morning
(37 weeks) induction!

Good luck! So exciting!; Congrats!
You’re about to be a mom! I’m very
excited for you!!!; Super exciting!

excited excited approving

AskReddit: What is your fa-
vorite TV series ever?

Arrow. It’s amazing!; Walking Dead.
So excited for the new season!; Teen
Titans. It’s the best show ever.

approving;
excited

approving approving; amused

Hearthstone: Who is this LIRIK
guy, and why does he have 50K
subscribers?

This is hilarious; What an idiot. Do
more research before posting; He’s an
adorable guy.

amused;
angered;
adoring

amused excited

AskReddit: Imagine that the last
thing you ate has been made il-
legal. What would that be?

Pizza, and now I’m super sad.; Frozen
lasagna. Good riddance.; French onion
dip. I love that stuff.

approving;
saddened

saddened approving
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Abstract

While there is increasing concern about the in-
terpretability of neural models, the evaluation
of interpretability remains an open problem,
due to the lack of proper evaluation datasets and
metrics. In this paper, we present a novel bench-
mark to evaluate the interpretability of both neu-
ral models and saliency methods. This bench-
mark covers three representative NLP tasks:
sentiment analysis, textual similarity and read-
ing comprehension, each provided with both
English and Chinese annotated data. In order
to precisely evaluate the interpretability, we
provide token-level rationales that are carefully
annotated to be sufficient, compact and compre-
hensive. We also design a new metric, i.e., the
consistency between the rationales before and
after perturbations, to uniformly evaluate the in-
terpretability on different types of tasks. Based
on this benchmark, we conduct experiments on
three typical models with three saliency meth-
ods, and unveil their strengths and weakness
in terms of interpretability. We will release
this benchmark1 and hope it can facilitate the
research in building trustworthy systems.

1 Introduction

In the last decade, deep learning (DL) has been
rapidly developed and has greatly improved vari-
ous artificial intelligence tasks in terms of accuracy
(Deng and Yu, 2014; Litjens et al., 2017; Pouyanfar
et al., 2018). However, as DL models are black-box
systems, their inner decision processes are opaque
to users. This lack of transparency makes them
untrustworthy and hard to be applied in decision-
making applications in fields such as health, com-
merce and law (Fort and Couillault, 2016). Conse-
quently, there is a growing interest in explaining the
predictions of DL models (Simonyan et al., 2014;
Ribeiro et al., 2016; Alzantot et al., 2018; Bastings
et al., 2019; Jiang et al., 2021). Accordingly, many

1https://www.luge.ai/#/luge/task/taskDetail?
taskId=15

Sentiment Analysis (SA)
Instanceo: although it bangs a very cliched drum at times,
this crowd-pleaser’s fresh dialogue, energetic music, and
good-natured spunk are often infectious.
Sentiment label: positive
Instancep: although it bangs a very cliched drum at times,
this crowd-pleaser’s novel dialogue, vigorous music, and
good-natured spunk are often infectious.
Sentiment label: positive

Semantic Textual Similarity (STS)
Instance1o: Is there a reason why we should travel alone?
Instance2o: What are some reasons to travel alone?
Similarity: same
Instance1p: Is there any reason why we travel alone?
Instance2p: List some reasons to travel alone?
Similarity: same

Machine Reading Comprehensive (MRC)
Question: What part of France were the Normans located?
Articleo: ...and customs to synthesize a unique “Norman”
culture in the north of France. ...
Answer: north
Question: Where in France were the Normans located?
Articlep: ...and customs to synthesize a unique “Norman”
culture in the north of France. ...
Answer: north

Table 1: Examples from our benchmark. In each in-
stance, colored tokens are rationales, and tokens in the
same color constitute an independent rationale set. Each
perturbed example (p) is created on an original example
(o), where underlined tokens in the original example
have been altered. The consistency of rationales under
perturbations is used to evaluate interpretability.

evaluation datasets are constructed and the corre-
sponding metrics are designed to evaluate related
works (DeYoung et al., 2020; Jacovi and Goldberg,
2020).

In order to accurately evaluate model inter-
pretability2 with human-annotated rationales3 (i.e.,
evidence that supports the model prediction), many
researchers successively propose the properties that
a rationale should satisfy, e.g., sufficiency, compact-

2Despite fine-grained distinctions between “interpretabil-
ity” and “explainability”, we use them interchangeably.

3In this paper, we focus on highlight-based rationales,
which consist of input elements, such as words and sentences,
that play a decisive role in the model prediction.
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ness and comprehensiveness (see Section 3.3 for
their specific definitions) (Kass et al., 1988; Fischer
et al., 1990; Lei et al., 2016; Yu et al., 2019). How-
ever, the existing datasets are designed for different
research aims with different metrics, and their ratio-
nales do not satisfy all properties needed, as shown
in Table 2, which makes it difficult to track and
facilitate the research progress of interpretability.
In addition, all existing datasets are in English.

Meanwhile, many studies focus on designing
guidelines and metrics for interpretability evalua-
tion, where plausibility and faithfulness are pro-
posed to measure interpretability from different
perspectives (Herman, 2017; Alvarez Melis and
Jaakkola, 2018; Yang et al., 2019; Wiegreffe and
Pinter, 2019; Jacovi and Goldberg, 2020). Plausi-
bility measures how well the rationales provided
by models align with human-annotated rationales.
With different annotation granularities, token-level
and span-level F1-scores are proposed to measure
plausibility (DeYoung et al., 2020; Mathew et al.,
2021). Faithfulness measures to what extent the
provided rationales influence the corresponding
predictions. Some studies (Yu et al., 2019; DeY-
oung et al., 2020) propose to compare the model’s
prediction on the full input to its prediction on
input masked according to the rationale and its
complement (i.e., non-rationale). However, it is
difficult to apply this evaluation method to non-
classification tasks, such as machine reading com-
prehension. Furthermore, the model prediction on
the non-rationale has gone beyond the standard
output scope, e.g., the prediction label on the non-
rationale should be neither positive nor negative in
the sentiment classification task. Thus the metric
provided by this method can not generally and may
not precisely evaluate the interpretability.

In order to address the above problems, we re-
lease a new interpretability evaluation benchmark
which provides fine-grained rationales for three
tasks and a new evaluation metric for interpretabil-
ity. Our contributions include:

• Our benchmark contains three representative
tasks in both English and Chinese, i.e., senti-
ment analysis, semantic textual similarity and
machine reading comprehension. Importantly,
all annotated rationales meet the requirements of
sufficiency, compactness and comprehensiveness
by being organized in the set form.

• To precisely and uniformly evaluate the inter-
pretability of all tasks, we propose a new eval-

uation metric, i.e., the consistency between the
rationales provided on examples before and af-
ter perturbation. The perturbations are crafted in
a way that will not change the model decision
mechanism. This metric measures model fidelity
under perturbations and could help to find the
relationship between interpretability and other
metrics, such as robustness.

• We give an in-depth analysis based on three typi-
cal models with three popular saliency methods,
as well as a comparison between our proposed
metrics and the existing metrics. The results
show that our benchmark can be used to evaluate
the interpretability of DL models and saliency
methods. Meanwhile, the results strongly indi-
cate that the research on interpretability of NLP
models has much further to go, and we hope our
benchmark will do its bit along the way.

2 Related Work

As our work provides a new interpretability evalua-
tion benchmark with human-annotated rationales,
in this section, we mainly introduce saliency meth-
ods for the rationale extraction, interpretability eval-
uation datasets and metrics.

Saliency Methods In the post-hoc interpretation
research field, saliency methods are widely used
to interpret model decisions by assigning a distri-
bution of importance scores over the input tokens
to represent their impacts on model predictions
(Simonyan et al., 2014; Ribeiro et al., 2016; Mur-
doch et al., 2018). They are mainly divided into
four categories: gradient-based, attention-based,
erasure-based and linear-based. In gradient-based
methods, the magnitudes of the gradients serve as
token importance scores (Simonyan et al., 2014;
Smilkov et al., 2017; Sundararajan et al., 2017).
Attention-based methods use attention weights as
token importance scores (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). In erasure-based meth-
ods, the token importance score is measured by the
change of output when the token is removed (Li
et al., 2016; Feng et al., 2018). Linear-based meth-
ods use a simple and explainable linear model to ap-
proximate the evaluated model behavior locally and
use the learned token weights as importance scores
(Ribeiro et al., 2016; Alvarez-Melis and Jaakkola,
2017). These methods have their own advantages
and limitations from aspects of computational effi-
ciency, interpretability performance and so on (Nie
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Datasets Granularity Properties
Sufficiency Compactness Comprehensiveness

e-SNLI⋆ (Camburu et al., 2018) word % ! %

HUMMINGBIRD (Hayati et al., 2021) word !− % –
HateXplain (Mathew et al., 2021) word !− – !

Movie Reviews⋆ (Zaidan and Eisner, 2008) snippet ! % %

CoS-E⋆ (Rajani et al., 2019) snippet !− % !

Evidence Inference⋆ (Lehman et al., 2019) snippet ! % %

BoolQ⋆ (DeYoung et al., 2020) snippet ! % !

WikiQA (Yang et al., 2015) sentence ! % –
MultiRC⋆ (Khashabi et al., 2018) sentence ! % !

HotpotQA (Yang et al., 2018) sentence ! % !

FEVER⋆ (Thorne et al., 2018) sentence ! % –
SciFact (Wadden et al., 2020) sentence ! % –
Ours word ! ! !

Table 2: Statistics of existing datasets with highlight-based rationales. The datasets marked with ⋆ are collected and
modified by ERASER (DeYoung et al., 2020). ERASER manually reviews and constructs snippet-level rationales to
make them satisfy sufficiency and comprehensiveness. !− represents the rationale contains key words, but does not
contain enough information for the prediction. The value ‘-’ represents the property is not mentioned in the paper.

et al., 2018; Jain and Wallace, 2019; De Cao et al.,
2020; Sixt et al., 2020).

Interpretability Datasets Many datasets with
human-annotated rationales have been published
for interpretability evaluation, e.g., highlight-based
rationales (DeYoung et al., 2020; Mathew et al.,
2021), free-text rationales (Camburu et al., 2018;
Rajani et al., 2019) and structured rationales (Ye
et al., 2020; Geva et al., 2021). To create high-
quality highlight-based rationales, many studies
give their views on the properties that a rationale
should satisfy. Kass et al. (1988) propose that a ra-
tionale should be understood by humans. Lei et al.
(2016) point that a rationale should be compact
and sufficient, i.e., it is short and contains enough
information for a prediction. Yu et al. (2019) intro-
duce comprehensiveness as a criterion, requiring
all rationales to be selected, not just a sufficient set.
Although the above criteria have been proposed for
highlight rationales, the existing datasets in Table
2 are built with part of them, as they are conducted
on different tasks with individual aims.

Interpretability Metrics For highlight-based ra-
tionales, plausibility and faithfulness are often
used to measure interpretability from the aspects
of human cognition and model fidelity (Arras
et al., 2017; Mohseni et al., 2018; Weerts et al.,
2019). DeYoung et al. (2020) propose to use IOU
(Intersection-Over-Union) F1-score and AUPRC
(Area Under the Precision-Recall curve) score to
measure plausibility of snippet-level rationales.
Mathew et al. (2021) use token F1-score to evaluate

plausibility of token-level rationales. Jacovi and
Goldberg (2020) provide concrete guidelines for
the definition and evaluation of faithfulness. DeY-
oung et al. (2020) propose to evaluate faithfulness
from the perspectives of sufficiency and compre-
hensiveness of rationales (Equation 4). However,
this evaluation manner is only applicable to classi-
fication tasks and brings uncontrollable factors to
interpretability evaluation. Thus Yin et al. (2022)
propose sensitivity and stability as complementary
metrics for faithfulness. Ding and Koehn (2021)
evaluate faithfulness of saliency methods on natu-
ral language models by measuring how consistent
the rationales are regarding perturbations.

In this work, we provide a new interpretability
evaluation benchmark, containing fine-grained an-
notated rationales, a new evaluation metric and the
corresponding perturbed examples.

3 Evaluation Data Construction

As illustrated in Figure 1, the construction of our
datasets mainly consists of three steps: 1) data
collection for each task; 2) perturbed data construc-
tion; 3) iterative rationale annotation and checking.
We first introduce the annotation process, includ-
ing the annotation criteria for perturbations and
rationales. Then we describe our data statistics.
In addition, we show other annotation details in
Appendix A.

3.1 Data Collection
In order to provide a general and unified inter-
pretability evaluation benchmark, we construct
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Figure 1: The construction workflow of our datasets.

evaluation datasets for three representative tasks,
i.e., sentiment analysis, semantic textual similar-
ity, and machine reading comprehension. Mean-
while, we create both English and Chinese evalua-
tion datasets for each task.

Sentiment Analysis (SA), a single-sentence
classification task, aims to predict a sentiment label
for the given instance. For English, we randomly
select 1,500 instances from Stanford Sentiment
Treebank (SST) (Socher et al., 2013) dev/test sets,
and 400 instances from Movie Reviews (Zaidan
and Eisner, 2008) test set. For Chinese, we ran-
domly sample 60,000 instances from the logs of an
open SA API4 with the permission of users. The
annotators select instances for annotation (see Ap-
pendix A for details) and label a sentiment polarity
for each unlabeled instance. Then 2,000 labeled
instances are chosen for building evaluation set.

Semantic Textual Similarity (STS), a sentence-
pair similarity task, is to predict the similarity be-
tween two instances. We randomly select 2,000
pairs from Quora Question Pairs (QQP) (Wang
et al., 2018) and LCQMC (Liu et al., 2018) to build
English and Chinese evaluation data respectively.

Machine Reading Comprehension (MRC), a
long-text comprehension task, aims to extract an
answer based on the question and the correspond-
ing passage. We randomly select 1,500 triples
with answers and 500 triples without answers from
SQUAD2.0 (Rajpurkar et al., 2018) and DuReader
(He et al., 2018) for building English and Chinese
evaluation set respectively.

3.2 Perturbed Data Creation

Recent studies (Jacovi and Goldberg, 2020; Ding
and Koehn, 2021) claim that a saliency method is
faithful if it provides similar rationales for similar
inputs and outputs. Inspired by them, we propose
to evaluate the model faithfulness via measuring
how consistent its rationales are regarding perturba-

4https://ai.baidu.com/tech/nlp_apply/
sentiment_classify. Due to the diversity of these
logs, we choose instances from these logs for annotation.

tions that are supposed to preserve the same model
decision mechanism. In other words, under per-
turbations, a model is considered to be faithful if
the change of its rationales is consistent with the
change of its prediction. Consequently, we con-
struct perturbed examples for each original input.

Perturbation Criteria Perturbations should not
change the model internal decision mechanism. We
create perturbed examples from two aspects: 1) per-
turbations do not influence model rationales and
predictions; 2) perturbations cause the alterations
of rationales and may change predictions. Please
note that the influence of perturbations comes
from human’s basic intuition on model’s decision-
making mechanism. Based on the literature (Jia
and Liang, 2017; McCoy et al., 2019; Ribeiro et al.,
2020), we define three perturbation types.

• Alteration of dispensable words. Insert, delete
and replace words that should have no effect on
model predictions and rationales, e.g., the sen-
tence “what are some reasons to travel alone” is
changed to “list some reasons to travel alone”.

• Alteration of important words. Replace im-
portant words which have an impact on model
predictions with their synonyms or related words,
such as “i dislike you” instead of “i hate you”. In
this situation, the model prediction and rationale
should change with perturbations.

• Syntax transformation. Transform the syntax
structure of an instance without changing its se-
mantics, e.g., “the customer commented the hotel”
is transformed into “the hotel is commented by
the customer”. In this case, the model prediction
and rationale should not be affected.

For each original input, the annotator first se-
lects a perturbation type, then creates a perturbed
example according to the definition of this pertur-
bation type. Please note that the annotators can
select more than one perturbation type for an orig-
inal input. We ask the annotator to create at least
one perturbed example for each original input. And
they need to create at least 100 perturbed examples
for each perturbation type. For each task, we have
two annotators to create perturbed examples and
label golden results for these examples, i.e., sen-
timent label for SA, similarity label for STS and
answer for MRC. According to the perturbation cri-
teria, most of the perturbed examples have the same
results as their original ones. Then we ask the other
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two annotators to review and modify the created
examples and their corresponding results. Since
the annotation task in this step is relatively easy,
the accuracy of created examples after checking is
more than 95%.

3.3 Iterative Rationale Annotation Process
Given an input and the corresponding golden result,
the annotators highlight important input tokens that
support the prediction of golden result as the ratio-
nale. Then we introduce the rationale criteria and
the annotation process used in our work.

Rationale Criteria As discussed in recent stud-
ies (Lei et al., 2016; Yu et al., 2019), a rationale
should satisfy the following properties.

• Sufficiency. A rationale is sufficient if it con-
tains enough information for people to make the
correct prediction. In other words, people can
make the correct prediction only based on tokens
in the rationale.

• Compactness. A rationale is compact if all of its
tokens are indeed required in making a correct
prediction. That is to say, when any token is
removed from the rationale, the prediction will
change or become difficult to make.

• Comprehensiveness. A rationale is comprehen-
sive if its complements in the input can not imply
the prediction, that is, all evidence that supports
the output should be labeled as rationales.

Annotation Process To ensure the data quality,
we adopt an iterative annotation workflow, consist-
ing of three steps, as described in Figure 1.

Step 1: rationale annotation. Based on hu-
man’s intuitions on the model decision mechanism,
given the input and the corresponding golden result,
the ordinary annotators who are college students
majoring in languages label all critical tokens to
guarantee the rationale’s comprehensiveness. Then
they organize these tokens into several sets, each
of which should be sufficient and compact. That is
to say, each set can support the prediction indepen-
dently. As described in Table 1, the first example
contains three rationale sets, and tokens in the same
color belong to the same set. Based on this set form,
the rationale satisfies the above three criteria.

Step 2: rationale scoring. Our senior annota-
tors5 double-check the annotations by scoring the

5They are full-time employees, and have lots of experience
in annotating data for NLP tasks.

Tasks English Chinese
Size RLR RSN Size RLR RSN

SA 1,999 20.1% 2.1 2,160 27.6% 1.4
STS 2,248 50.4% 1.0 2,146 66.6% 1.0
MRC 1,969 10.4% 1.0 2,315 9.8% 1.0

Table 3: Overview of our datasets. “Size” shows the
number of original/perturbed pairs. “RLR” represents
the ratio of rationale length to its input length. “RSN”
represents the number of rationale sets in an input. We
report the average RLR and RSN over all data.

given rationales according to the annotation cri-
teria. For each rationale set, the annotators rate
their confidences for sufficiency and compactness.
The confidences for sufficiency consist of three
classes: can not support result (1), not sure (2)
and can support result (3). And the confidences
for compactness compose of four classes: include
redundant tokens (1), include disturbances (2), not
sure (3) and conciseness (4). Then based on all ra-
tionale sets for each input, the annotators rate their
confidences for comprehensiveness on a 3-point
scale including not be comprehensive (1), not sure
(2), be comprehensive (3).

A rationale is considered to be of high-quality if
its average score on sufficiency, compactness and
comprehensiveness is equal to or greater than 3.0,
3.6, 2.6. That is to say, at least two-thirds of the an-
notators give the highest confidence, and less than
one-third of the annotators give the confidence of
“not sure”. Then all unqualified data whose average
score on a property is lower than the corresponding
threshold goes to the next step.

Step 3: rationale modification. Low-quality ra-
tionales are shown to the ordinary annotators again.
The annotators correct the rationales to meet the
properties with scores below the threshold.

Then the corrected rationales are scored by se-
nior annotators again. The unqualified data after
three loops is discarded. This iterative annotation-
scoring process can ensure the data quality.

Other annotation details, such as annotator infor-
mation, annotation training and data usage instruc-
tions, are described in Appendix A.

3.4 Data Statistics

We give a comparison between our benchmark and
other existing datasets, as shown in Table 2. Com-
pared with existing datasets, our benchmark con-
tains three NLP tasks with both English and Chi-
nese annotated data. Compared with ERASER
which collects seven existing English datasets in
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Models SA STS MRC
Accf Accr Accf Accr F1f F1r

English
LSTM 78.2 86.2 74.6 69.8 54.4 53.4
RoBERTa-base 93.8 92.4 92.7 89.3 71.7 80.8
RoBERTa-large 95.4 91.5 93.2 88.8 76.0 76.7

Chinese
LSTM 60.0 70.4 75.2 80.7 66.4 82.2
RoBERTa-base 59.8 77.0 85.5 88.1 65.8 89.3
RoBERTa-large 62.6 80.6 86.0 87.4 67.8 83.3

Table 4: Model performance on the original full input
(Accf ) and human-annotated rationale (Accr).

its benchmark and provides snippet-level rationales
to satisfy sufficiency and comprehensiveness, our
benchmark provides token-level rationales and sat-
isfies all three primary properties of rationales.

Table 3 shows the detailed statistics of our bench-
mark. We can see that the length ratio and the
number of rationales vary with datasets and tasks,
where the length ratio affects the interpretability
performance on plausibility, as shown in Table 6.

Meanwhile, we evaluate the sufficiency of
human-annotated rationales by evaluating model
performance on rationales, as shown in Table 4.
Despite the input construction based on rationales
has destroyed the distribution of original inputs,
model performance on human-annotated rationales
is competitive with that on full inputs, especially
on MRC task and Chinese datasets. We can con-
clude that human-annotated rationales are suffi-
cient. Meanwhile, we give more data analysis in Ta-
ble 7, such as model performance on non-rationales,
sufficiency and comprehensiveness scores.

4 Metrics

Following existing studies (DeYoung et al., 2020;
Ding and Koehn, 2021; Mathew et al., 2021), we
evaluate interpretability from the perspectives of
plausibility and faithfulness. Plausibility measures
how well the rationales provided by the model
agree with human-annotated ones. And faithful-
ness measures the degree to which the provided
rationales influence the corresponding predictions.

Different from existing work, we adopt token-
F1 score for plausibility and propose a new metric
MAP for faithfulness.

Token F1-score is defined in Equation 1, which
is computed by overlapped rationale tokens. Since
an instance may contain multiple golden rationale
sets, for the sake of fairness, we take the set that
has the largest F1-score with the predicted rationale

as the ground truth for the current prediction.

Token-F1 =
1

N

N∑

i=1

(2× Pi ×Ri

Pi +Ri
)

where Pi =
|Sp

i ∩ Sg
i |

|Sp
i |

and Ri =
|Sp

i ∩ Sg
i |

|Sg
i |

(1)

where Spi and Sgi represent the rationale set of i-th
instance provided by models and human respec-
tively; N is the number of instances.

MAP (Mean Average Precision) measures the
consistency of rationales under perturbations and is
used to evaluate faithfulness. According to the orig-
inal/perturbed input pair, MAP aims to calculate
the consistency of two token lists sorted by token
importance score, as defined in Equation 2. The
high MAP indicates the high consistency.

MAP =

∑|Xp|
i=1 (

∑i
j=1G(xpj , X

o
1:i))/i

|Xp| (2)

where Xo and Xp represent the sorted rationale
token list of the original and perturbed inputs, ac-
cording to the token important scores assigned by
a specific saliency method. |Xp| represents the
number of tokens in Xp. Xo

1:i consists of top-i im-
portant tokens of Xo. The function G(x, Y ) is to
determine whether the token x belongs to the list
Y , where G(x, Y ) = 1 iffx ∈ Y .

Meanwhile, we also report results of metrics
proposed in DeYoung et al. (2020), i.e., IOU F1-
score for plausibility, and the joint of sufficiency
and comprehensiveness for faithfulness.

IOU F1-score is proposed on span-level ratio-
nales, which is the size of token overlap in two sets
divided by the size of their union, as shown by Si
in Equation 3. A rationale is considered as a match
if its Si is equal to or greater than 0.5, as illustrated
by the Greater function.

IOU-F1 =
1

N

N∑

i=1

Greater(Si, 0.5)

where Si =
|Sp

i ∩ Sg
i |

|Sp
i ∪ Sg

i |

(3)

The joint of sufficiency (Score-Suf) and com-
prehensiveness (Score-Com) is shown in Equation
4. A lower sufficiency score implies the rationale
is more sufficient and a higher comprehensiveness
score means the rationale is more influential in the
prediction. A faithful rationale should have a low
sufficiency score and a high comprehensiveness
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Models SA (Acc) STS (Acc) MRC (F1)
Ori Ours Ori Ours Ori Ours

English
LSTM 78.6 78.2 78.6 74.6 58.6 54.4
RoBERTa-base 92.1 93.8 91.5 92.7 78.4 71.7
RoBERTa-large 91.3 95.4 91.4 93.2 83.8 76.0

Chinese
LSTM 86.7 60.0 77.4 75.2 75.0 66.4
RoBERTa-base 95.1 59.8 88.1 85.5 74.4 65.8
RoBERTa-large 95.0 62.6 88.1 86.0 77.8 67.8

Table 5: Conventional performance of base models on
three tasks, where “Acc” is short for accuracy. The “Ori”
dev/test set comes from the same dataset as training set.
“Ours” represents our evaluation datasets.

score.

Score-Suf =
1

N

N∑

i=1

(F (xi)j − F (ri)j)

Score-Com =
1

N

N∑

i=1

(F (xi)j − F (xi \ ri)j)
(4)

where F (xi)j represents the prediction probability
provided by the model F for class j on the input
xi; ri represents the rationale of xi, and xi \ ri
represents its non-rationale.

5 Experiments

5.1 Experiment Settings
We implement three widely-used models and three
saliency methods. We give brief descriptions of
them and leave the implementation details to Ap-
pendix B. The source code will be released with
our evaluation datasets.

Saliency Methods We adopt integrated gradient
(IG) method (Sundararajan et al., 2017), attention-
based (ATT) method (Jain and Wallace, 2019) and
linear-based (LIME) (Ribeiro et al., 2016) method
in our experiments. IG assigns importance score
for each token by integrating the gradient along the
path from a defined input baseline to the original
input. ATT uses attention weights as importance
scores, and the acquisition of attention weights
depends on the specific model architecture. LIME
uses the token weights learned by the linear model
as importance scores.

For each saliency method, we take the top-kd

important tokens to compose the rationale for an
input, where kd is the product of the current input
length and the average rationale length ratio of a
dataset d, as shown by RLR in Table 3.

Comparison Models For each task, we re-
implement three typical models with different net-

work architectures and parameter sizes, namely
LSTM (Hochreiter and Schmidhuber, 1997),
RoBERTa-base and RoBERTa-large (Liu et al.,
2019). Based on these backbone models, we then
fine-tune them with commonly-used datasets of
three specific tasks. For SA, we select training sets
of SST and ChnSentiCorp6 to train models for En-
glish and Chinese respectively. For STS, training
sets of QQP and LCQMC are used to train English
and Chinese models. For MRC, SQUAD2.0 and
DuReader are used as training sets for English and
Chinese respectively. For each task, we select the
best model on the original dev set.

In order to confirm the correctness of our imple-
mentation, Table 5 shows model performances on
both original dev/test and our evaluation datasets.
We can see that our re-implemented models output
close results reported in related works (Liu et al.,
2018; WANG and JIANG; Liu et al., 2019). Mean-
while, the results of Chinese SA and MRC tasks
decrease significantly on our evaluation sets. This
may be caused by the poor generalization and ro-
bustness of the model, as our evaluation datasets
contain perturbed examples and Chinese data for
SA is not from the ChnSentiCorp dataset.

5.2 Evaluation Results

Table 6 shows the evaluation results of inter-
pretability from the plausibility and faithfulness
perspectives. Within the scope of baseline mod-
els and saliency methods used in our experiments,
there are three main findings. First, based on all
models and saliency methods used in our experi-
ments, our metrics for interpretability evaluation,
namely token-F1 score and MAP, are more fine
and generic, especially MAP, which applies to
all three tasks. Second, IG method performs
better on plausibility and ATT method performs
better on faithfulness. Meanwhile, ATT method
achieves best performance in sentence-pair tasks.
Third, with all three saliency methods, in these
three tasks, LSTM model is comparable with
transformer model (i.e., RoBERTa based model
in our experiments) on interpretability, though
LSTM performs worse than transformer in term of
accuracy. We think that the generalization ability
of LSTM model is weak, leading to low accuracy,
even with relatively reasonable rationales.

In the following paragraphs, we first give a com-
parison between our proposed metrics and those

6
https://github.com/pengming617/bert_classification
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Models + Methods
SA STS MRC

Plausibility Faithfulness Plausibility Faithfulness Plausibility Faithfulness
Token-F1↑ IOU-F1↑ MAP↑ Suf↓ Com↑ Token-F1 IOU-F1 MAP Suf Com Token-F1 IOU-F1 MAP

LSTM + IG 36.9 12.1 67.2 -0.025 0.708 54.1 17.3 69.0 0.048 0.441 40.7 11.0 72.3
RoBERTa-base + IG 37.4 10.4 64.1 0.059 0.392 52.9 24.2 65.3 0.153 0.478 42.1 11.0 66.9
RoBERTa-large + IG 35.0 7.9 40.6 0.130 0.260 52.7 35.9 49.7 0.224 0.400 18.0 0.1 18.0
LSTM + ATT 36.6 12.4 67.8 0.123 0.298 49.6 11.8 76.0 0.221 0.313 19.9 0.4 88.3
RoBERTa-base + ATT 33.2 9.4 69.2 0.267 0.128 66.5 54.2 73.6 0.185 0.337 22.6 2.6 55.0
RoBERTa-large + ATT 23.3 3.1 75.9 0.301 0.095 56.8 35.9 75.4 0.136 0.399 26.6 1.3 76.0
LSTM + LIME 36.6 11.3 63.2 -0.040 0.762 54.5 19.2 60.0 0.134 0.311 - - -
RoBERTa-base + LIME 41.5 13.8 61.0 0.032 0.568 58.7 34.9 70.5 0.064 0.509 - - -
RoBERTa-large + LIME 41.4 14.3 62.9 0.053 0.505 61.2 42.3 71.8 0.019 0.524 - - -

Table 6: Interpretability evaluation results on English datasets of three tasks. The metric with ↑ means the higher
the score, the better the performance. Conversely, ↓ means a low score represents a good performance. As LIME is
specially designed for classification tasks, we have not applied it to MRC. Meanwhile, the sufficiency score (Suf)
and the comprehensiveness score (Com) are also only suitable for classification tasks, as shown in Equation 4. Thus
we do not report these two scores on MRC.

used in related studies. Then we give a detailed
analysis about the interpretability results of three
saliency methods and three evaluated models.

Comparison between Evaluation Metrics We
report results of token-F1 and IOU-F1 scores for
plausibility. The higher the scores, the more plau-
sible the rationales. It can be seen that the two
metrics have the similar trends in all three tasks
with all three saliency methods. But token-F1 is
much precise than IOU-F1, as the IOU-F1 score
of a rationale is 1 only if its overlap with ground
truth is no less than 0.5 (Equation 3). However,
in all three tasks, overlaps of most instances are
less than 0.5, especially in the task with a low RLR.
Thus IOU-F1 is too coarse to evaluate token-level
rationales. Instead, token-F1 focuses on evaluat-
ing token impact on model predictions, so as to be
more suitable for evaluating compact rationales.

For faithfulness evaluation, we report results of
MAP, sufficiency and comprehensiveness scores.
We can see that our proposed MAP is an efficient
metric for faithfulness evaluation. Specifically, it
applies to most tasks, especially non-classification
tasks. Moreover, in the two classification tasks
(i.e., SA and STS), with IG and LIME methods,
MAP has the same trend as the other two metrics
over all three models, which further indicates that
MAP can well evaluate the faithfulness of ratio-
nales. With ATT method, there is no consistent
relationship between these three metrics. We think
this is because the calculations of sufficiency and
comprehensiveness scores with ATT method are
not accurate and consistent enough. For exam-
ple, in the SA task, from the comparison of three
saliency methods with LSTM model, we can see
that the rationales extracted by these methods have

similar plausibility scores, but the sufficiency score
with ATT method is much higher than that with
the other two methods. Please note that a low suffi-
ciency score means a sufficient rationale. Similarly,
in the STS task with RoBERTa-base model, the
rationales extracted by ATT method have a higher
plausibility score, as well as a higher sufficiency
score. Finally, we believe that other metrics can be
proposed based on our benchmark.

Evaluation of Saliency Methods LIME, which
uses a linear model to approximate a DL classifica-
tion model, is model-agnostic and task-agnostic. It
obtains the highest performance on token-F1 and
sufficiency scores in SA and STS tasks, as the ratio-
nales extracted by it more accurately approximate
the decision process of DL models. But how to
better apply LIME to more NLP tasks is very chal-
lenging and as the future work.

When comparing IG and ATT, we find ATT per-
forms better on faithfulness and sentence-pair tasks.
In SA and MRC, IG performs better on plausibility
and ATT method achieves better results on faith-
fulness, which is consistent with prior works (Jain
and Wallace, 2019; DeYoung et al., 2020). In STS,
ATT method achieves higher results both on plau-
sibility and faithfulness than IG method. We think
this is because the cross-sentence interaction atten-
tions are more important for sentence-pair tasks.
Interestingly, on all three tasks, there is a positive
correlation between MAP (faithfulness) and token-
F1 (plausibility) with IG method.

Evaluation of Models While analyzing inter-
pretability of model architectures, we mainly fo-
cus on IG and ATT methods, as LIME is model-
agnostic. We find that interpretability of model
architectures vary with saliency methods and tasks.
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Compared with transformer models, based on IG
method, LSTM is competitive on plausibility and
performs better on faithfulness in all three tasks.
On the contrary, based on ATT method, transformer
models outperform LSTM on plausibility and are
competitive on faithfulness in STS and MRC tasks.
As discussed above, the interaction between inputs
is more important in these two tasks.

From the comparison between two trans-
former models with different parameter sizes, i.e.,
RoBERTa-base and RoBERTa-large, we find that
RoBERTa-base outperforms RoBERTa-large on
plausibility with these two saliency methods. In-
terestingly, for faithfulness evaluation, RoBERTa-
base performs better than RoBERTa-large with IG
method, and RoBERTa-large performs better than
RoBERTa-base with ATT method.

We believe these findings are helpful to the fu-
ture work on interpretability.

6 Limitation Discussion

We provide a new interpretability evaluation bench-
mark which contains three tasks with both English
and Chinese annotated data. There are three limita-
tions in our work.

• How to evaluate the quality of human-annotated
rationales is still open. We have several annota-
tors to perform quality control based on human
intuitions and experiences. Meanwhile, we com-
pare model behaviors on full inputs and human-
annotated rationales to evaluate the sufficiency
and comprehensiveness of rationales, as shown
in Table 4 and Table 7. However, this manner
has damaged the original input distribution and
brings uncontrollable factors on model behaviors.
Therefore, how to automatically and effectively
evaluate the quality of human-annotated ratio-
nales should be studied in the future.

• We find that the interpretability of model archi-
tectures and saliency methods vary with tasks, es-
pecially with the input form of the task. Thus our
benchmark should contain more datasets of each
task type ( e.g., single-sentence task, sentence-
pair similarity task and sentence-pair inference
task) to further verify these findings. And we
will build evaluation datasets for more tasks in
the future.

• Due to space limitation, there is no analysis of
the relationships between metrics, e.g., the rela-
tionship between plausibility and accuracy, and

the relationship between faithfulness and robust-
ness. We will take these analyses in our future
work.

Finally, we hope more evaluation metrics and
analyses are proposed based on our benchmark.
And we hope our benchmark can facilitate the re-
search progress of interpertability.

7 Conclusion

We propose a new fine-grained interpretability eval-
uation benchmark, containing token-level ratio-
nales, a new evaluation metric and corresponding
perturbed examples for three typical NLP tasks,
i.e., sentiment analysis, textual similarity and ma-
chine reading comprehension. The rationales in
this benchmark meet primary properties that a ra-
tionale should satisfy, i.e., sufficiency, compactness
and comprehensiveness. The experimental results
on three models and three saliency methods prove
that our benchmark can be used to evaluate inter-
pretability of both models and saliency methods.
We will release this benchmark and hope it can
facilitate progress on several directions, such as
better interpretability evaluation metrics and causal
analysis of NLP models.
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A Other Details of Our Datasets

Other Annotation Details We give more details
about data collection, annotator information, anno-
tation training and payment, and instructions for
data usage.

Data collection. Except for Chinese data of SA,
the annotated instances for other datasets are col-
lected from the existing datasets, as described in
Section 3.1. In the process of collection, we ask an-
notators to discard instances that contain: 1) offen-
sive content, 2) information that names or uniquely
identifies individual people, 3) discussions about
politics, guns, drug abuse, violence or pornography.

Annotator information. We have two ordinary
annotators for each task, and three senior annota-
tors for all tasks. The ordinary annotators annotate
the rationales and modify the rationales according
to the scores from the senior annotators. They are
college students majoring in languages. Our senior
annotators are full-time employees, and perform
quality control. Before this work, they have lots of
experience in annotating data for NLP tasks.

Annotation training and payment. Before real
annotation, we train all annotators for several times
so that they understand the specific task, rationale
criteria, etc. During real annotation, we have also
held several meetings to discuss common mistakes
and settle disputes. Our annotation project for each
task lasts for about 1.5 month. And we cost about
15.5 RMB for the annotation of each instance.

Instructions of data annotation and usage. Be-
fore annotation, we provide a full instruction to all
annotators, including the responsibility for leaking
data, disclaimers of any risks, and screenshots of
annotation discussions. Meanwhile, our datasets
are only used for interpretability evaluation. And
we will release a license with the release of our
benchmark.

Data Analysis We report sufficiency and compre-
hensiveness scores of human-annotated rationales,
as shown in Table 7. The sufficiency scores of
human-annotated rationales are lower than those
of rationales provided by transformer models or
extracted by IG and ATT methods. We can con-
clude that our human-annotated rationales are suf-
ficient. However, with IG and LIME methods, the
comprehensiveness scores of human-annotated ra-
tionales are lower than those of rationales provided
by models. As discussed before, the model perfor-
mance on non-rationales is not accurate enough,

as shown by Accnr, which achieves about 50%
on non-rationales. How to effectively evaluate the
quality of human-annotated rationales should be
studied in the future.

B Implementations Details

B.1 Implementations of Evaluated Models

We utilize HuggingFace’s Transformer (Wolf et al.,
2019) to implement RoBERTa based models for
three tasks. Please refer to their source codes7 for
more details. The LSTM model architectures for
three tasks are shown in Figure 2.

B.2 Implementations of Saliency Methods

We first describe experimental setups for three
saliency methods. Then we introduce implementa-
tion details of attention-based method. Finally, we
illustrate the limitations of LIME in STS and MRC
tasks.

Experimental setup. In IG-based method, to-
ken importance is determined by integrating the
gradient along the path from a defined baseline x0
to the original input. In the experiments, a sequence
of all zero embeddings is used as the baseline x0.
And the step size is set to 300.

LIME uses the token weight learned by the linear
model as the token’s importance score. For each
original input,N perturbed samples which contains
K tokens of it are created. Then the weighted
square loss is used to optimize the selection of
tokens that are useful for the model prediction. In
the experiments, we set N to 5, 000 and K to 10.
In the STS task, an input is a pair of two instances.
Each perturbed sample for an input consists of a
perturbed example for one instance and the original
input for the other instance.

ATT method on LSTM models. Figure 2 shows
the architectures of LSTM models in three tasks.
In the SA task, given the input instance Q, an
LSTM encoder is used to get the representation for
each token, denoted as hQi . And a full connected
layer (FC) is used to get the instance representa-
tion based on the last hidden representation. We
use hfc to represent the representation after the FC
layer. Then the instance representation hfc is fed
into the softmax layer to get the predicted label.
The attention weight for token i in Q is calculated

by hfc·hQi∑|Q|
j=1 h

fc·hQj
, where |Q| represents the number

of tokens in Q. Then the attention weight of the
7https://huggingface.co/transformers/
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Models SA STS MRC
Accf Accr Accnr Suf Com Accf Accr Accnr Suf Com F1f F1r

English
LSTM 78.2 86.2 60.7 0.151 0.217 74.6 69.8 61.3 0.152 0.291 54.4 53.4
RoBERTa-base 93.8 92.4 70.6 0.084 0.251 92.7 89.3 54.8 0.075 0.418 71.7 80.8
RoBERTa-large 95.4 91.5 74.4 0.086 0.234 93.2 88.8 53.9 0.085 0.420 76.0 76.7

Chinese
LSTM 60.0 70.4 48.7 0.172 0.135 75.2 80.7 51.2 0.083 0.339 66.4 82.2
RoBERTa-base 59.8 77.0 50.2 0.252 0.207 85.5 88.1 48.8 0.048 0.399 65.8 89.3
RoBERTa-large 62.6 80.6 47.6 0.212 0.147 86.0 87.4 48.9 0.051 0.433 67.8 83.3

Table 7: Model performance on the original full input (Accf ), human-annotated rationale (Accr), and non-rationale
(Accnr) by removing human-annotated rationale from the original full input. Suf and Com represent the sufficiency
score and comprehensiveness score of the human-annotated rationales, as shown in Equation 4. We do not report
F1nr on the MRC task, as the golden answer is not from the non-rationale.

Figure 2: LSTM model architectures for three tasks.

token is used as its importance score for the model
prediction.

Similarly, in the STS task, the model architec-
ture is mostly the same as that of SA. The main
difference is that the input of STS consists of two
instances, denoted as Q and P , and the concatena-
tion of their last hidden representations is fed into
an FC layer. Then, referring to the attention weight
calculation of Q, the attention weight for the token
in P is calculated by hfc·hPi∑|P |

j=1 h
fc·hPj

, where |P | repre-

sents the number of tokens in P . For each instance
in a pair, we select top-kd important tokens as the
rationale.

In the MRC task, the input also consists of two
sequences: the question Q and the passage P .
We adopt the match-LSTM model (WANG and
JIANG) as our baseline model. The match-LSTM
model uses two LSTMs to encode the question
and passage respectively. Then it uses the standard
word-by-word attention mechanism to obtain the
attention weight for each token in the passage. And
the final representation of each token in the passage
is obtained by combining a weighted version of the
question. We use h̄Pi to represent the representation
of i-th token in the passage. Then the importance

score of j-th token is calculated by Equation 5.

aj =

∑|Q|
i=1 eij

|Q| eij =
hQ
i · h̄P

j∑|Q|
k=1 h

Q
i · h̄P

k

(5)

where aj is used as the importance score of token
j.

ATT method on pre-trained models. Fol-
lowing related studies (Jain and Wallace, 2019;
DeYoung et al., 2020), on transformer-based pre-
trained models, attention scores are taken as the
self-attention weights induced from the [CLS] to-
ken index to all other indices in the last layer. As
the pre-trained model uses wordpiece tokeniza-
tion, we sum the self-attention weights assigned to
its constituent pieces to compute a token’s score.
Meanwhile, as the pre-trained model has multi-
heads, we average scores over heads to derive a
final score. In the MRC task, for each token in
the passage, importance score is taken as the aver-
age self-attention weights induced from this token
index to all indices of the question in the last layer.

Limitations of LIME. Given an input, LIME
constructs a token vocabulary for it and aims to
assign an important score for each token in this
vocabulary. That is to say, for the token that ap-
pears multiple times, LIME neglects its position
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Models + Methods
SA STS MRC

Plausibility Faithfulness Plausibility Faithfulness Plausibility Faithfulness
Token-F1↑ IOU-F1↑ MAP↑ Suf↓ Com↑ Token-F1 IOU-F1 MAP Suf Com Token-F1 IOU-F1 MAP

LSTM + IG 38.2 9.8 60.6 -0.131 0.707 68.2 61.5 58.6 0.336 0.419 19.9 0.6 87.1
RoBERTa-base + IG 35.2 12.5 51.5 0.118 0.489 71.9 71.4 62.1 0.139 0.470 34.0 9.1 67.9
RoBERTa-large + IG 37.9 12.9 43.6 0.123 0.381 71.8 72.0 58.1 0.251 0.547 25.2 1.7 61.9
LSTM + ATT 24.0 9.8 72.6 0.171 0.225 72.7 72.1 77.3 0.110 0.359 2.7 0.0 79.6
RoBERTa-base + ATT 25.7 6.0 69.5 0.191 0.320 67.2 55.4 71.3 0.201 0.399 28.5 5.3 61.4
RoBERTa-large + ATT 30.7 8.2 67.9 0.173 0.248 68.0 59.8 67.0 0.251 0.547 28.5 5.5 48.8
LSTM + LIME 38.6 10.1 59.4 -0.130 0.701 74.8 79.0 65.9 -0.015 0.411 - - -
RoBERTa-base + LIME 37.3 14.3 56.6 0.051 0.660 77.3 83.2 74.8 -0.041 0.494 - - -
RoBERTa-large + LIME 39.0 14.5 53.0 -0.013 0.653 76.8 82.9 74.3 -0.024 0.562 - - -

Table 8: Interpretability evaluation results on Chinese datasets of three tasks.

information and only assigns one score for it. How-
ever, in STS and MRC, the position of a token is
very important. Therefore, It can not guarantee
the effectiveness of evaluation on these two tasks
with LIME. In addition, as LIME is designed for
classification models, it is difficult to apply it to the
MRC task.

C Interpretability Evaluation on Chinese
Datasets

We report interpretability results of three baseline
models with three saliency methods on Chinese
evaluation datasets in Table 8. It can be seen that
interpretability results on Chinese datasets have the
similar trends as those on English datasets. Differ-
ent from the conclusions on English datasets, on
all three tasks, IG-based method outperforms ATT-
based method on plausibility. And ATT method
performs better than IG on faithfulness in SA and
STS tasks.
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Abstract

A number of papers have recently argued in
favor of using artificially generated languages
to investigate the inductive biases of linguistic
models, or to develop models for low-resource
languages with underrepresented typologies.
But the promise of artificial languages comes
with a caveat: if these artificial languages are
not sufficiently reflective of natural language,
then using them as a proxy may lead to inac-
curate conclusions. In this paper, we take a
step towards increasing the realism of artificial
language by introducing a variant of indexed
grammars that draw their weights from hierar-
chical Pitman-Yor processes. We show that this
framework generates languages that emulate
the statistics of natural language corpora better
than the current approach of directly formulat-
ing weighted context-free grammars.

1 Introduction

In the World Atlas of Linguistic Structures, Dryer
(2013) reports that the plurality of world languages
follow a subject-object-verb (SOV) word order.
However, relatively few SOV languages (Japanese,
Turkish, Persian) have a significant Internet foot-
print. Today, the Internet is dominated by subject-
verb-object (SVO) languages like English, Spanish,
and Chinese. The resulting paucity of non-SVO
data makes it difficult to study whether linguistic
models have an inductive bias towards particular
word orders, or to develop models that perform
well on low-resource languages from underrepre-
sented linguistic families. In recent work, Wang
and Eisner (2016), Ravfogel et al. (2019) and White
and Cotterell (2021) argue that artificial languages
could be an effective tool for addressing challenges
like these, enabling researchers to create large cor-
pora that manifest targeted linguistic phenomena.

An obvious objection presents itself: what if the
models aren’t realistic enough? If not, then con-
clusions drawn from artificial languages may not

transfer to natural languages. One response to this
objection would be to abandon the entire enterprise,
and with it the potential advantages of simulated
data. An alternative is to follow the tradition of
other disciplines who model natural systems (e.g.
physics, geology, meteorology) and iterate on these
models until they are sufficiently good predictors
of observed phenomena.

In this spirit, this paper builds upon the frame-
work of White and Cotterell (2021), who used
weighted context-free grammars to construct ar-
tificial languages for studying the inductive biases
of neural language models towards particular word
orders. Observing that their framework did not
account for selectional preference (the linguistic
phenomenon that head words and their syntactic
dependents are not probabilistically independent),
we generalize weighted context-free grammars by
introducing the weighted random-access indexed
grammar, which facilitates the development of ar-
tificial languages that manifest selectional prefer-
ence. We also present a methodology for building
grammars that emulate statistical relationships ob-
served in natural language corpora. Inspired by Teh
(2006), we use hierarchical Pitman-Yor processes
(Pitman and Yor, 1997) as the token-generating
distributions for open-class categories (like noun,
verb, and adjective). We set the hyperparameters
by matching the statistics of the produced artifi-
cial languages with natural language corpora. As
a pilot experiment for our framework, we partially
replicate an experiment performed by White and
Cotterell (2021) that studied the inductive bias of
transformer and LSTM-based language models to-
wards languages featuring various syntactic param-
eter configurations (Chomsky, 1981; Baker, 2008).

Finally, we accompany this paper with a Python
package called testperanto1, to allow researchers
to use and refine our framework for further linguis-

1https://github.com/Mark-Hopkins-at-Williams/
testperanto (Apache 2.0 license)
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Figure 1: A comparison of the singleton proportion curves of adjective-noun bigrams in the Europarl corpus with
bigrams generated using independent adjective and noun distributions.

tic studies.

2 Related Work

Both Wang and Eisner (2016) and Ravfogel et al.
(2019) constructed artificial languages by manipu-
lating sentences from existing natural language cor-
pora. Both approaches made use of a dependency
parser (or a gold parsed corpus) to inform these
manipulations, altering syntactic constituent order
(Wang and Eisner, 2016; Ravfogel et al., 2019) or
token morphology (Ravfogel et al., 2019).

White and Cotterell (2021) argued that manip-
ulated natural language corpora have downsides.
Based on a series of negative results (Cotterell et al.,
2018; Mielke et al., 2019), they suggested that it
may not be possible to remove confounding lin-
guistic features from an existing corpus, making
it difficult to isolate typological features for study.
To maximize the ability to run a controlled experi-
ment, they generated fully artificial languages from
hand-built weighted context-free grammars. How-
ever, although their grammars modeled certain syn-
tactic dependencies (e.g. conjugating a verb with
its subject), they did not model semantic depen-
dencies. We assert that it is prohibitively difficult
to directly formulate weighted context-free gram-
mars that model semantic dependencies (e.g. selec-
tional preference), motivating our extension – the
weighted random-access indexed grammar.

3 Motivation

White and Cotterell (2021) generated artificial
language using a weighted context-free grammar
(WCFG). A WCFG augments a context-free gram-

mar (CFG) with a function q that assigns a non-
negative weight q(r) to each grammar rule r. This
induces a weight for each derivation: the product
of the weights of the rules used in the derivation.
More formal details can be found in Collins (2013).

WCFGs produce terminal symbols (words) ac-
cording to probability distributions that depend ex-
clusively on the grammar nonterminals. Consider
the following CFG:

S → NN VP

VP → VB NN

VB → drank | ate
NN → you | it | water | food

By using plain nonterminals like VB and
NN, the respective probabilities of sentences
it drank water and it drank food depend only
on the probability of the rules VB → water and
VB → food. Crucially, the verb choice does not
differentiate the sentence probabilities. This is un-
realistic – it is more common to drink water than to
drink food, whereas it is more common to eat food
than to eat water. This phenomenon (that linguistic
arguments are not independent of their predicates)
is known as selectional preference.

One way to detect selectional preference (Teh,
2006) is to collect dependency relationships from
a parsed natural language corpus (e.g. amod,
nsubj, dodj) and extract the dependency bigrams
(e.g. for amod, the first three dependency bigrams
in Europarl are internal market, European
citizens, and cultural exception). Then, as
we stream through the dependency bigrams, we
plot either the number of observed bigram types
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Figure 2: An example hierarchical Pitman-Yor process.
NN[] is the global noun distribution. NN[1] and NN[2]
respectively represent the likelihood that a noun is the
subject or object of a verb. NN[2, 27] and NN[2, 28]
respectively represent the likelihood that a noun is the
object of verb 27 (eat) or verb 28 (drink) of the vocab.

(a type-token curve) or the proportion of bigrams
whose type has been observed exactly once (a sin-
gleton proportion curve). In Figure 1, we contrast
the curves generated2 using four Europarl corpora
(Koehn, 2005) with a bigram corpus constructed
by sampling one adjective and one noun from inde-
pendent distributions respectively derived from ad-
jective and noun frequency in the English Europarl
corpus. The curves generated using the indepen-
dent bigram corpus are outliers. For instance, when
the number of observed bigrams is plotted on a log
scale, the natural corpora have roughly linear sin-
gleton proportion curves, whereas the independent
corpus has a considerable bow in the curve.

We would like to generate artificial languages
such that the dependencies have similar statistics to
naturally observed dependencies. Rather than inde-
pendently generating open-class words, Teh (2006)
suggests using a hierarchical Pitman-Yor process
(Pitman and Yor, 1997) – a tree-structured set of
distributions over the same domain, in which child
distributions are resamplings of their parents. Fig-
ure 2 shows an example. A hierarchical Pitman-Yor
process allows us to model context-specific word
distributions (e.g. food is more likely to appear as
the object of the verb eat than water, I, or me) that

2To generate Figure 1, we shuffled the Europarl sentences
and extracted the adjective-noun dependencies using spaCy.
The shuffling smooths irregularities caused by topic shift.

are jointly influenced by global word frequency
priors. A Pitman-Yor process PY(d, θ, Pbase) is
characterized by a discount parameter d ∈ [0, 1),
a strength parameter θ ∈ (−d,∞), and a base
distribution Pbase over integers {1, . . . , V }. We
follow (Teh, 2006) in describing a Pitman-Yor pro-
cess as a stochastic process that generates samples
〈x1, x2, ...〉 from i.i.d. samples 〈y1, y2, ...〉 drawn
from base distribution Pbase. Intuitively, it is a
“rich-get-richer” process, in which the jth sample
xj is set to either the value yi assigned to a previ-
ous x-sample (with probability proportional to the
number of previous x-samples that were assigned
the value yi), or the next y-sample in the sequence
that hasn’t yet been used. Formally, let b1 = 1
and draw subsequent binary values bn+1 from a
Bernoulli (coin-flip) distribution where:

P (bn+1 = 1) =

θ + d
∑

1≤i≤n
bi

θ + n

Variable bn+1 determines whether the (n + 1)th
sample is set to the value of a previous assignment
(bn+1 = 0) or the next unused yi sample (bn+1 =
1). Now define t1 = 1 and consider j, n ∈ Z+. If
bn+1 = 0, then let tn+1 = j with probability:

1

n

∑

1≤i≤n
1(ti = j)

Otherwise, if bn+1 = 1:

tn+1 = 1 +
∑

1≤i≤n
bi

The nth sample drawn from the Pitman-Yor pro-
cess is xn = ytn . A Pitman-Yor process, for all
practical purposes, can generate an “open-class” of
words by using a uniform base distribution Punif

with a sufficiently large vocabulary size V (for our
experiments, we use the space of all 32-bit inte-
gers).

A hierarchical Pitman-Yor process is simply a
Pitman-Yor process that uses another Pitman-Yor
process as its base distribution. For instance, we
could define a global adjective distribution Padj =
PY(0.4, 500, Punif), and then for noun y1 of our
vocabulary, we could define a noun-dependent ad-
jective distribution Padj,y1 = PY(d, θ, Padj).

4 Approach

The main challenge: how do we construct a WCFG
that derives its weights from the linked distribu-
tions of a hierarchical Pitman-Yor process? Con-
cerned with the induction of better n-gram language
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Figure 3: An example derivation, using the indexed
grammar from Figure 4.

ζ

S[] → S[z1] z1 7→ VB[]
S[y1] → NN[z1] VP[y1] z1 7→ NN[1, y1]

VP[y1] → VB[y1] NN[z1] z1 7→ NN[2, y1]
VB[27] → ate

VB[28] → drank

NN[9] → it

NN[56] → food

NN[57] → water

Figure 4: An example indexed grammar. The base
weight w0(ρ) of each indexed rule ρ is 1.

models, previous work (Teh, 2006; Blunsom and
Cohn, 2011) mainly focused on how to incorporate
hierarchical Pitman-Yor processes into sequential
models like Hidden Markov Models. Here, our con-
cern is how to incorporate these distributions into
a generative syntactic model convenient for engi-
neering artificial languages with specific linguistic
typologies. There exist many syntactic models to
choose from, including dependency grammars (Eis-
ner, 1996), tree-adjoining grammars (Joshi, 1987),
lexical functional grammars (Kaplan, 1985), CCGs
(Steedman and Baldridge, 2011), HPSGs (Pollard
and Sag, 1994) and GPSGs (Gazdar et al., 1985). In
this work, we choose to extend context-free gram-
mars, partly because of their popularity and partly
to facilitate comparison with (White and Cotterell,
2021), who used WCFGs – however, our approach
can be adapted to other syntactic formalisms.

4.1 Intuition
Our approach is a variation on indexed grammars
(Aho, 1968; Hopcroft et al., 2001), which augment
CFG nonterminals with a sequence of symbols
called indices. Before going through the formalism,

we briefly preview how it works, using a deriva-
tion (Figure 3) for an example indexed grammar
(Figure 4). At the top level, it applies CFG rule
S[]→ S[28], which involves two choices:

1. the choice of “indexed rule": S[]→ S[z1]

2. the choice of indices to assign to its z-
variables: {z1 7→ 28}

Next, the derivation expands S[28] by applying the
CFG rule S[28] → NN[9] VP[28]. Again, this
involves two choices:

1. the choice of indexed rule: S[y1] →
NN[z1] VP[y1]

2. the choice of indices to assign to its z-
variables: {z1 7→ 9}

Note the role of the variables: y-variables match
LHS indices and copy them to the RHS, whereas
z-variables introduce new indices on the RHS.
Each z-variable zi of an indexed rule is associ-
ated with a key ζ(zi) (Figure 4, right column)
that references a distribution in a “distribution ta-
ble” τ . The weight associated with a derivation
rule (e.g. S[28] → NN[9] VP[28]) is the prod-
uct of the base weight w0 of the indexed rule (e.g.
w0(S[y1]→ NN[z1] VP[y1]), and the probabilities
of the z-assignments (e.g. τ(NN[1, 28])(9)). As
with CFGs, the weight of a derivation is the prod-
uct of the derivation rules.

4.2 Random-access Indexed Grammars
Let Y = {y1, y2, ...} and Z = {z1, z2, ...} be
reserved symbols called y- and z-variables. A
random-access indexed grammar (RIG)3 is a 5-
tuple (N,T, F, S,R) where:

• N is a set of nonterminal symbols

• T is a set of terminal symbols

• F is a set of index symbols, or indices4

• S ∈ N is the start symbol
3The standard definition of indexed grammars (Hopcroft

et al., 2001) treats the indices as a stack, rather than as a
random-access array. Our departure from the standard defini-
tion (introducing y- and z-variables to allow random-access
matching) prioritizes the ease of grammar engineering over
definitional conciseness and representational power. More-
over, since our use case is generation, we are not concerned
with indexed grammar variants that prioritize efficiency of
parsing or induction (e.g. (Gazdar, 1987)).

4In this paper, we will use the set of nonnegative 32-bit
integers as our set F of indices.
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• R is a finite set of indexed rules (to be defined
shortly)

In contrast to standard CFG rules, indexed rules
use indexed nonterminals, symbols of the form
A[φ], where A ∈ N and φ ∈ (F ∪ Y ∪ Z)∗. A
grounded indexed nonterminal is an indexed non-
terminal A[φ] such that φ ∈ F ∗. An indexed rule
has the form:

A[φ]→ rhs

where A[φ] is an indexed nonterminal without z-
variables, and rhs is a sequence of terminals and
indexed nonterminals whose y-variables all appear
in φ.

To define the semantics of a RIG, let a substi-
tution be a function σ : D → F with domain
D ⊆ Y ∪ Z. We apply a substitution σ to a in-
dexed nonterminal A[φ1, . . . , φn] as follows:

σ(A[φ1, . . . , φn]) = A[σ̄(φ1), · · · , σ̄(φn)]

where:

σ̄(x) =

{
σ(x) if x ∈ D
x if x 6∈ D

for x ∈ F ∪ Y ∪ Z. We apply a substitution σ to
an indexed rule ρ by applying σ to every indexed
nonterminal in ρ. For example, if:

σ = {y1 7→ 52, z1 7→ 14}
ρ = S[y1]→ NN[z1] VP[y1]

then:

σ(ρ) = S[52]→ NN[14] VP[52]

Each indexed rule ρ implicitly represents the set
of CFG rules that can be obtained by applying a
substitution to the variables of the indexed rule:

R(ρ) = {σ(ρ) | σ : V (ρ)→ F}

Here, V (ρ) ⊆ Y ∪ Z is the set of variables that
appear in indexed rule ρ. The RIG encodes a CFG
consisting of the union

⋃
ρ∈RR(ρ) of these rules.

4.3 Weighted RIGs
Next, we introduce weights from a hierarchical
Pitman-Yor process. We reference the process dis-
tributions via a distribution table – a function τ
that maps grounded indexed nonterminals to dis-
tributions (e.g. the distributions of a hierarchical

Pitman-Yor process). For instance, in the distri-
bution table τ implied by Figure 2, τ(NN[2, 28])
corresponds to the lower right distribution.

A weighted random-access indexed grammar
(WRIG) is a tuple (G, τ, w0, ζ) where:

• G = (N,T, F, S,R) is a RIG

• τ is a distribution table

• w0 assigns a nonnegative weight (called the
base weight) to each indexed rule ρ ∈ R

• ζ assigns a z-weighting to each indexed rule
ρ ∈ R. The z-weighting ζ(ρ), abbreviated
ζρ for clarity, is a function that assigns an
indexed nonterminal (that may contain y- but
not z-variables) to each z-variable of the rule.

Every WRIG encodes a WCFG. Each CFG rule
r = σ(ρ) encoded by indexed rule ρ (where σ :
V (ρ)→ F is a substitution) has weight:

q(r) = w0(ρ) ·
∏

z∈Z(ρ)
wz(σ(z))

where Z(ρ) ⊆ Z is the set of z-variables that ap-
pear in indexed rule ρ, and wz = τ(σ(ζρ(z))) is
the distribution associated with grounded indexed
nonterminal σ(ζρ(z)) in the distribution table τ .

Example: The second rule of the RIG in Fig-
ure 4 encodes (among others) the CFG rule:

S[28]→ NN[9] VP[28]

The weight of this CFG rule is:

w0(S[y1]→ NN[z1] VP[y1])

· τ(NN[1, 28])(9)

In other words, it is the base weight of the indexed
rule, multiplied by the probability of word 9 (it)
being the subject of verb 28 (drink).

4.4 Voiceboxes
Using a WRIG, syntax can be specified with rela-
tive ease, i.e. without the need to manually formu-
late an arduous number of rules. However, terminal
rules (i.e. rules that generate the lexemes) are a dif-
ferent story. We need an auxiliary mechanism to
automatically invent lexemes from grounded in-
dexed preterminals, i.e. a mechanism that will
translate a preterminal (see Figure 4) like VB[27] –
the 27th verb of the vocabulary – into a lexeme (e.g.,
ate). To do so, we pair the WRIG with a voicebox,
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ζ

S[] → S[z1, z2] z1 7→ VB[], z2 7→ COUNT[]
S[y1, y2] → IC[y1, y2] , DC[z1, z2] z1 7→ VB[], z2 7→ COUNT[]

IC[y1, y2] → NP[z1, y2, 1] VP[y1, y2] z1 7→ NN[1, y1]
DC[y1, y2] → weil NP[z1, y2, 1] VPD[y1, y2] z1 7→ NN[1, y1]
VP[y1, y2] → VB[y1, y2] NP[z1, z2, 2] z1 7→ NN[2, y1], z2 7→ COUNT[]

VPD[y1, y2] → NP[z1, z2, 2] VB[y1, y2] z1 7→ NN[2, y1], z2 7→ COUNT[]
NP[y1, y2, y3] → DT[y2, y3] NN[y1, y2, y3]

Figure 5: A WRIG capturing simple German syntax and morphology. Each indexed rule has base weight 1.

x τ(x) description
VB[] PY(0.4, 1, Punif) global verb distribution
NN[] PY(0.4, 500, Punif) global noun distribution
NN[1] PY(0.4, 500, τ(NN[])) global subject distribution
NN[1, y1] PY(0.4, 10, τ(NN[1])) subject distribution for head verb y1
NN[2] PY(0.4, 500, τ(NN[])) global object distribution
NN[2, y1] PY(0.4, 0.1, τ(NN[2])) object distribution for head verb y1
COUNT[] Unif({1, 2}) global count distribution (1=singular, 2=plural)

Figure 6: Distribution table for the WRIG in Figure 5. Punif is a uniform distribution over all 32-bit integers.

a function that maps grounded indexed nontermi-
nals (specifically, preterminals) to lexemes. The
voicebox is then used to generate terminal rules
on-the-fly. Note that the voicebox can also sup-
port morphology. For example, if the pretermi-
nal VB[27, 3, 1] encodes the third-person singular
conjugation of verb 27, then the voicebox might
produce β(VB[27, 3, 1]) = eats.

5 Demo: Simple German Syntax with
Selectional Preference

To demonstrate how linguistic phenomena can be
modeled by a WRIG, we present a small exam-
ple in Figure 5, whose distribution table is given
by Figure 6. It models various aspects of German
syntax: word order (independent clauses are SVO,
whereas dependent clauses are SOV), verb conjuga-
tion (present singular and present plural), and case
roles (nominative and accusative). Figure 7 shows
the first five sentences of a corpus generated by
the WRIG. To interpret the indexed nonterminals,
note that subject count (1=singular, 2=plural) and
case (1=nominative, 2=accusative) are encoded as
integer indices:

• S[y1, y2], IC[y1, y2],DC[y1, y2]: respectively
produce a sentence, independent clause, and
dependent clause with subject count y2, whose
head is the y1

th verb of the vocabulary

• NP[y1, y2, y3]: produces a noun phrase with
count y2 and case y3, whose head is the y1

th

noun of the vocabulary

• VP(D)[y1, y2]: produces a (dependent clause)
verb phrase with subject count y2, whose head
is the y1

th verb of the vocabulary

• NN[y1, y2, y3]: produces the y1
th noun of the

vocabulary, declined for count y2 and case y3

• VB[y1, y2]: produces the y1
th verb of the vo-

cabulary, conjugated for subject count y2

• DT[y1, y2]: produces a determiner for a noun
with count y1 and case y2

Terminal rules for open-class nonterminals
NN[y1, y2, y3] and VB[y1, y2] are generated by a
voicebox that randomly concatenates German syl-
lables to create new words, and adds German mor-
phological endings based on count and case. For
the closed-class DT[y1, y2], the voicebox generates
the German definite determiner for the specified
count and case. For instance (see Figure 7), the
noun hunghub5 appears as den hunghub when it
is accusative singular and die hunghuben when it
is accusative plural.

5In this grammar, all nouns are masculine. See the
testperanto tutorials for an example of how to model noun
gender.
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Figure 7: Example sentences generated by the simple German WRIG. Observe that the verb milchsichkeiten
strongly tends to take the noun hunghub as its object – the hyperparameters of this particular WRIG have been set
to encourage atypically strong selectional preference between verbs and their objects.

Figure 8: Singleton proportion of verb-object depen-
dency bigrams as corpus size increases.

By associating the noun distributions with the
distributions of a hierarchical Pitman-Yor process,
we also model selectional preference. By assigning
a Pitman-Yor process of very low strength (0.1)
to the verb-dependent object distributions, we en-
force unusually strong selectional preference be-
tween verbs and objects, allowing us to see its man-
ifestation of in just a small sample of generated
sentences (Figure 7). In particular, the invented
verb milchsichkeiten frequently takes the noun
hunghub as its object.

6 Experiment: Word Order Bias

As a pilot study of our framework, we re-created
an experiment performed by White and Cotterell
(2021), who used WCFGs to investigate the induc-
tive biases of neural language models for various
word orders exhibited by natural language. We cre-
ated a WRIG based on their WCFG description,
which produces simple declarative sentences with
relative clauses, prepositional phrases, and clausal
complements. We used a voicebox that assigned
concatenations of random syllables to each generic
noun, verb, and adjective. It used English prepo-

singleton type-token
proportion ratio
dev test dev test

amod base 0.099 0.094 0.23 0.23
ours 0.0074 0.013 0.016 0.018

nsubj base 0.045 0.057 0.083 0.12
ours 0.0044 0.010 0.014 0.041

dobj base 0.081 0.088 0.18 0.22
ours 0.0081 0.014 0.036 0.054

Figure 9: Absolute difference of singleton proportion
and type-token ratio between artificial corpora (ours and
base) and natural corpora (dev and test), averaged over
power-of-two corpora sizes from 27 to 222.

sitions, determiners, and morphology (e.g. verbs
with a singular subject were suffixed with the letter
“s”). We set the parameters of our Pitman-Yor pro-
cesses by specifying discount and strength parame-
ters so that our produced sentences closely matched
the type-token ratio and singleton proportion curves
of the English side of the WMT 2014 German-
English parallel corpus (Bojar et al., 2014; Luong
et al., 2015) for the following dependency bigrams:
adjective-noun (amod), verb-subject (nsubj), verb-
object (dobj). Figure 8 compares the singleton pro-
portion curves of verb-object dependencies for our
generated corpus, versus the development corpus
(WMT 2014 Ger-Eng) and a held-out test corpus:
the English side of the JParaCrawl 3.0 Jpn-Eng cor-
pus (Morishita et al., 2022). We also compare our
corpus statistics to a baseline that attempts to repli-
cate (White and Cotterell, 2021), using independent
adjective, noun, and verb distributions rather than
tied hierarchical Pitman-Yor distributions. Visual
inspection shows that the independent baseline is
an outlier, unrepresentative of the statistics man-
ifested by natural corpora. We can distill these
curves into a single numeric indicator by averaging
the absolute difference between an artificial corpus
curve (ours or base) and a natural corpus curve
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Figure 10: Visualization of experimental results using a
point plot. The transformer produces lower-perplexity
language models for the artificial languages that follow
a Japanese word order, while the LSTM produces lower-
perplexity language models for the artificial languages
that follow an English word order.

(dev or test) for each power of two on the x-axis.
Figure 9 presents these numbers for singleton pro-
portion and the type-token ratio: the statistics for
our generated corpus are an order-of-magnitude
closer to natural corpora than the baseline.

We created two variants of the WRIG, corre-
sponding to the standard word orders of English
and Japanese. For instance, as a head-final lan-
guage, the Japanese WRIG included the rule6:

VP[y1, y2]→ NP[z1, z2] VB[y1, y2]

and as a head-initial language, the English WRIG
included the rule:

VP[y1, y2]→ VB[y1, y2] NP[z1, z2]

Following (White and Cotterell, 2021), the WRIGs
also differed in:

• the position of the complementizer in comple-
ments, relative to the sentential component

• the position of the adposition in adpositional
phrases, relative to the adpositional object

• the position of a relative clause, relative to the
noun it modifies

We generated 1,000,000 sentences for each WRIG
variant, and divided these into ten evenly sized cor-
pora. Each corpus of 100,000 sentences was further

6A brief guide to the referenced indexed nonterminals
of the WRIG: VP[y1.y2] produces a verb phrase with sub-
ject count y2, whose head is the y1

th verb of the vocabulary.
NP[y1, y2] produces a noun phrase with count y2, whose head
is the y1

th noun of the vocabulary. VB[y1, y2] produces the
y1

th verb of the vocabulary, conjugated for subject count y2.

divided into an 80k-10k-10k train-dev-test partition.
On each train set, we trained7 a transformer-based
and an LSTM-based language model, resulting in
10 trained language models (LMs) per choice of
neural architecture and WRIG. Finally, we evalu-
ated these LMs on the respective test sets.

For each architecture (transformer and LSTM)
and word order (English and Japanese), Figure 10
visualizes the test perplexity over the ten trials us-
ing a point plot8. For transformer LMs, we ob-
tained lower perplexity on the languages that fol-
lowed a Japanese word order. For LSTM LMs, we
observed the opposite: a (statistically significant)
lower perplexity on the languages that followed an
English word order. While these results generally
support the findings of White and Cotterell (2021),
White and Cotterell (2021) did not find significant
differences between the LSTM LMs. We find it
encouraging that our results do not differ wildly
from White and Cotterell (2021) (it would be trou-
bling for the prospects of artificial languages if
each iterative improvement dramatically reversed
the conclusions of the previous iteration). At the
same time, we also find it encouraging that the dif-
ferences between their results and ours offer a pos-
sible reconciliation between White and Cotterell
(2021) and Ravfogel et al. (2019), who reported,
based on experiments with naturally-derived cor-
pora, that LSTM LMs performed better on SVO
(versus SOV) languages.

7 Conclusion

With this work, our goal is to enable researchers
to more easily develop models for typologically
diverse languages, and to investigate under what
conditions such models perform effectively. By
demonstrating that RIGs (weighted by hierarchical
Pitman-Yor processes) can model realistic syntac-
tic and semantic dependencies, we hope to provide
some confidence that the framework can prove a
useful proxy for real-world data, when such data is
not readily available. To facilitate adoption of our
framework, we are also releasing an open-source
Python package called testperanto for building
WRIGs, providing fellow researchers with a means
to generate artificial languages that emulate the ty-
pology of the natural languages they seek to study.

7Like White and Cotterell (2021), we used the fairseq
implementation (Ott et al., 2019) of these language models.

8We used seaborn to generate the plot. A point plot shows
the mean of the ten trials (the dot) and the 95% confidence
interval (the line).
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Abstract
Structural probing work has found evidence
for latent syntactic information in pre-trained
language models. However, much of this anal-
ysis has focused on monolingual models, and
analyses of multilingual models have employed
correlational methods that are confounded by
the choice of probing tasks. In this study, we
causally probe multilingual language models
(XGLM and multilingual BERT) as well as
monolingual BERT-based models across vari-
ous languages; we do this by performing coun-
terfactual perturbations on neuron activations
and observing the effect on models’ subject-
verb agreement probabilities. We observe
where in the model and to what extent syn-
tactic agreement is encoded in each language.
We find significant neuron overlap across lan-
guages in autoregressive multilingual language
models, but not masked language models. We
also find two distinct layer-wise effect patterns
and two distinct sets of neurons used for syn-
tactic agreement, depending on whether the
subject and verb are separated by other tokens.
Finally, we find that behavioral analyses of lan-
guage models are likely underestimating how
sensitive masked language models are to syn-
tactic information.

1 Introduction

Syntactic information is necessary for robust gener-
alization in natural language processing tasks (for
a case study using the natural language inference
task, see McCoy et al. 2019). The success of pre-
trained language models (LMs) such as RoBERTa
(Liu et al., 2019) and GPT-3 (Brown et al., 2020)
in many NLP tasks has prompted hypotheses that
they accomplish their performance through struc-
tural representations induced during pre-training,
rather than only lexical or positional represen-
tations (Manning et al., 2020); behavioral evi-
dence for LMs’ syntactic abilities has been found
in masked LMs (MLMs; Warstadt et al., 2020;
Warstadt and Bowman, 2020; Goldberg, 2019) and

autoregressive LMs (ALMs; Hu et al., 2020). Ev-
idence for structural representations has been re-
ported for multilingual pre-trained LMs (Goldberg,
2019; Mueller et al., 2020) and in sequence-to-
sequence models (Mueller et al., 2022).

Despite efforts to understand the structural infor-
mation encoded by pre-trained LMs (Hewitt and
Manning, 2019; Chi et al., 2020; Elazar et al., 2021;
Ravfogel et al., 2021; Finlayson et al., 2021; inter
alia), it remains unclear how and where multilin-
gual models encode this information. Most multi-
lingual probing studies are correlational and use
dependency parsing or labeling as a proxy task in-
dicative of syntactic information (Chi et al., 2020;
Stańczak et al., 2022). This is problematic: Models
do not need structural or word order information to
achieve high performance on dependency labeling
(Sinha et al., 2021), and training a parametric prob-
ing classifier introduces many confounds (Hewitt
and Liang, 2019; Antverg and Belinkov, 2022).

Causal probing, however, enables non-
parametric analyses of models through coun-
terfactual interventions on inputs or model
representations. Causal probing studies have
argued for the existence of specific syntactic
agreement neurons and units in neural language
models (Finlayson et al., 2021; Lakretz et al.,
2019; De Cao et al., 2021), but these studies have
focused on monolingual models—usually (though
not always) in English. Causal methods allow us
to make stronger arguments about where and how
syntactic agreement is performed in pre-trained
LMs, and we can apply them to answer questions
about the language specificity and construction
specificity of syntactic agreement neurons.

In this study, we extend causal mediation analy-
sis (Pearl, 2001; Robins, 2003; Vig et al., 2020) to
multilingual language models, including an autore-
gressive LM and a masked LM. We also analyze
a series of monolingual MLMs across languages.
We employ the syntactic interventions approach
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of Finlayson et al. (2021) on stimuli in languages
typologically related to English, such that we can
observe whether there exist syntax neurons that
are shared across a set of languages that are all
relatively high-resource and grammatically similar.
Our contributions include the following:

1. We causally probe for syntactic agreement
neurons in an autoregressive language model,
XGLM (Lin et al., 2021); a masked language
model, multilingual BERT (Devlin et al.,
2019); and a series of monolingual BERT-
based models. We find two distinct layer-wise
effect patterns, depending on whether the sub-
ject and verb are separated by other tokens.

2. We quantify the degree of neuron overlap
across languages and syntactic structures, find-
ing that many neurons are shared across struc-
tures and fewer are shared across languages.

3. We analyze the sparsity of syntactic agree-
ment representations for individual structures
and languages, and find that syntax neurons
are more sparse in MLMs than ALMs, but also
that the degree of sparsity is similar across
models and structures.

Our data and code are publicly available.1

2 Related Work

Multilingual language modeling. Multilingual
language models enable increased parameter effi-
ciency per language, as well as cross-lingual trans-
fer to lower-resource language varieties (Wu and
Dredze, 2019). This makes both training and de-
ployment more efficient when support for many
languages is required. A common approach for
training multilingual LMs is to concatenate train-
ing corpora for many languages into one corpus,
often without language IDs (Conneau et al., 2020;
Devlin et al., 2019).

These models present interesting opportunities
for syntactic analysis: Do multilingual models
maintain similar syntactic abilities despite a de-
creased number of parameters that can be dedi-
cated to each language? Current evidence suggests
slight interference effects, but also that identical
models maintain much of their monolingual per-
formance when trained on multilingual corpora
(Mueller et al., 2020). Is syntactic agreement, in
particular, encoded independently per language or

1https://github.com/aaronmueller/
multilingual-lm-intervention

shared across languages? Some studies suggest
that syntax is encoded in similar ways across lan-
guages (Chi et al., 2020; Stańczak et al., 2022),
though these rely on correlational methods based
on dependency parsing, which introduce confounds
and may not rely on syntactic information per se.

Syntactic probing. Various behavioral probing
studies have analyzed the syntactic behavior of
monolingual and multilingual LMs (Linzen et al.,
2016; Marvin and Linzen, 2018; Ravfogel et al.,
2019; Mueller et al., 2020; Hu et al., 2020). Re-
sults from behavioral analyses are generally eas-
ier to interpret and present clearer evidence for
what models’ preferences are given various con-
texts. However, these methods do not tell us where
or how syntax is encoded.

A parallel line of work employs parametric
probes. Here, a linear classifier or multi-layer per-
ceptron probe is trained to map from a model’s
hidden representations to dependency attachments
and/or labels (Hewitt and Manning, 2019) to locate
syntax-sensitive regions of a model. This approach
has been applied in multilingual models (Chi et al.,
2020), and produced evidence for parallel depen-
dency encodings across languages. However, if
such probes are powerful, they may learn the target
task themselves rather than tap into an ability of
the underlying model (Hewitt and Liang, 2019),
leading to uninterpretable results. When control-
ling for this, even highly selective probes may not
need access to syntactic information to achieve
high structural probing performance (Sinha et al.,
2021). There are further confounds when analyzing
individual neurons using correlational methods; for
example, probes may locate encoded information
that is not actually used by the model (Antverg and
Belinkov, 2022).

Causal probing has recently become more com-
mon for interpreting various phenomena in neu-
ral models of language. Lakretz et al. (2019) and
Lakretz et al. (2021) search for syntax-sensitive
units in English and Italian monolingual LSTMs
by intervening directly on activations and evalu-
ating syntactic agreement performance. Vig et al.
(2020) propose causal mediation analysis for lo-
cating neurons and attention heads implicated in
gender bias in pre-trained language models; this
method involves intervening directly on the inputs
or on individual neurons. Finlayson et al. (2021)
extend this approach to implicate neurons in syn-
tactic agreement. This study extends their data and
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method to multilingual stimuli and models.
Other causal probing work uses interventions on

model representations, rather than inputs. This
includes amnesic probing (Elazar et al., 2021),
where part-of-speech and dependency information
is deleted from a model using iterative nullspace
projection (INLP; Ravfogel et al., 2020). Ravfo-
gel et al. (2021) employ INLP to understand how
relative clause boundaries are encoded in BERT.

3 Methods

3.1 Causal Metrics

We first define terms to represent the quantities we
measure before and after the intervention. We are
interested in the impact of an intervention x on a
model’s preference yx for grammatical inflections
over ungrammatical ones. We start with the origi-
nal input, on which we apply the null intervention:
This represents performing no change to the orig-
inal input. Given prompt u and verb v, we first
calculate the following ratio:

ynull(u, v) =
p(vpl | usg)
p(vsg | usg)

(1)

Here, usg represents a prompt that would re-
quire a singular verb inflection vsg at the [MASK]
for the sentence to be grammatical; for example,
“The doctor near the cars [MASK] it”. vsg is the
third-person singular present inflection of verb v,
and vpl is the plural present inflection; for exam-
ple, vsg =“observes” and vpl =“observe”. Note
that this ratio has the incorrect inflection as the
numerator; this entails that if the model computes
agreement correctly, we will have y < 1.

We now define the swap-number intervention,
where the grammatical number of u is flipped (re-
sulting in “The doctors near the cars [MASK] it” for
the previous example). This results in the following
expression for y:

yswap-number(u, v) =
p(vpl | upl)
p(vsg | upl)

(2)

Now, the numerator is the correct inflection, so we
expect y > 1.

As we are interested in the contribution of in-
dividual model components to the model’s over-
all preference for correct inflections, we focus on
indirect effects, where we perform interventions
on individual model components and observe the

Figure 1: Example of computing the natural indirect
effect (NIE). We change a neuron’s activation to what
it would have been if we had intervened on the prompt,
then measure the relative change in y.

change in y. In particular, we measure the natural
indirect effect (NIE), as follows.

We intervene on an individual neuron z. We
change z’s original activation given u and v (de-
noted znull(u, v)) to the activation it would have
taken if we had performed the intervention on u
(denoted zswap-number(u, v)). The rest of the neu-
rons retain their original activations. “Natural” here
refers to the fact that our intervention changes the
activation z to the value it would have in another
natural setting u′, rather than setting it to some
predefined constant (such as 0) that it may or may
not obtain given natural inputs. We measure the
relative change in y after applying the intervention
(see Figure 1 for a visual example):

NIE(swap-number, null; y, z) =

Eu,v
[
ynull,zswap-number(u,v)(u, v)− ynull(u, v)

ynull(u, v)

]
=

Eu,v
[
ynull,zswap-number(u,v)(u, v)

ynull(u, v)
− 1

]

(3)

If a neuron encodes useful information for syn-
tactic agreement, we expect y to increase after
the intervention, making the numerator positive.
Positive NIEs indicate that a neuron encodes pref-
erences for correct verb inflections, and negative
NIEs indicate that the neuron prefers incorrect in-
flections. The closer the NIE is to 0, the less of a
contribution a neuron makes to syntactic agreement
in either direction.

3.2 Models

Finlayson et al. (2021) analyzed a series of mono-
lingual autoregressive language models (ALMs):
GPT-2 (Radford et al., 2019), TransformerXL (Dai
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Model Layers Neurons Parameters

BERT 12 9126 110M
mBERT 12 9126 110M

GPT-2 24 25600 345M
XGLM 24 25600 564M

Table 1: The size of each model used in this study. Each
monolingual BERT variant (including the RoBERTa-
based CamemBERT) has the same number of layers,
neurons, and parameters as BERT.

et al., 2019), and XLNet (Yang et al., 2019). Here,
we apply their analysis approach to multilingual
models. Multilingual ALMs are rare in the litera-
ture; to our knowledge, the only ALM designed to
be multilingual is XGLM (Lin et al., 2021),2 which
we employ in this study.

Multilingual MLMs are much more common.
We focus on multilingual BERT (Devlin et al.,
2019). We were unable to analyze XLM-R (Con-
neau et al., 2020), a more recent multilingual MLM
that performs better than mBERT on certain bench-
marks, since its tokenizer splits a large proportion
of our nouns and verbs into multiple tokens, which
greatly constrained the stimuli we could use. In
future work, we intend to address this issue by
developing methods that enable multi-token inter-
ventions, as well as calibrated comparisons across
variable-length sequences.

We also analyze a series of monolingual MLMs—
one for each language included in our sample. Four
of these models were based on BERT: BERT (En-
glish), GermanBERT,3 BERTje (Dutch; de Vries
et al., 2019), and FinnishBERT (Virtanen et al.,
2019). Our French MLM, CamemBERT (Mar-
tin et al., 2020), is based on RoBERTa (Liu et al.,
2019), which is very similar to BERT.

3.3 Materials

We translate the stimuli from Finlayson et al. (2021)
(Figure 2) to French, German, Dutch, and Finnish.
Since the subjects and verbs on which we inter-
vene must be one token each,4 we are restricted

2GPT-3 (Brown et al., 2020) is technically multilingual, as
its training corpus contains data from other languages. How-
ever, it was not designed with multilinguality in mind, and the
vast majority of its training data is English.

3https://www.deepset.ai/german-bert
4It is not clear how to compare the probability of variable-

length sequences in masked language models, and autore-
gressive language models tend to prefer sequences containing
fewer tokens. There have been attempts to compare variable-
length sequence probabilities using iterative approaches (e.g.,

Simple Agreement:
The athlete investigates/*investigate. . .

Across Prepositional Phrase:
The manager behind the bikes
observes/*observe. . .

Across Object Relative Clause:
The farmers that the parent loves
*confuses/confuse. . .

Figure 2: Constructions used in this study, grouped by
whether the subject and verb are adjacent. We use a
subset of constructions from Finlayson et al. (2021), di-
rectly translating the stimuli to French, German, Dutch,
and Finnish. See Appendix A for examples of each
structure in each language.

to very frequent words in the pre-training cor-
pus which do not get split into subwords by a
model’s tokenizer. This limits us to high-resource
language varieties—and as most of the top lan-
guages in mBERT and XGLM’s pre-training cor-
pora are Indo-European, this also limits the typo-
logical range of this method. A virtue of our sam-
ple of languages, however, is that is allows us to
study whether neurons are shared across typologi-
cally similar languages, where shared neurons and
similar layer-wise effect patterns are most likely
to occur: If syntactic agreement neurons are not
shared across similar languages, they are unlikely
to be shared across any languages.

For each structure, we sample up to 200 sen-
tences. If there are fewer than 200 sentences where
the subjects and verbs are single tokens, we take
the entire set of valid stimuli. When we use the
original stimuli from Finlayson et al. (2021), we of-
ten have very few sentences where the subjects and
verbs are single tokens. Thus, we also create short-
word versions of the stimuli, where we use shorter
and more common words (e.g., instead of "man-
agers" or "observe", we can use "cats" or "see").
Our results are consistent when using the original
and short nouns and verbs; see Appendix B.

The original stimuli were generated from a gram-
mar given a list of manually selected terminals.
By generating artificial stimuli and not sampling
sentences from a corpus, we partially control for
memorized sequences or token collocations in the
pre-training corpus.

Schick and Schütze, 2021), though this generally requires
fine-tuning to work properly.
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Figure 3: Natural indirect effects for the top 5% of neurons in each layer for monolingual masked language models.
There are two distinct layer-wise NIE contours in each language, depending on whether the subject and verb are
separated by other tokens (as in ‘across a relative clause’ and ‘across a prepositional phrase’ structures) or not (as in
‘simple agreement’).
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Figure 4: Natural indirect effects for mBERT (top) and
XGLM (bottom) for Germanic languages. There are
two distinct layer-wise NIE patterns in each language.
NIE patterns for the same structure look very similar
across languages.

Finlayson et al. (2021) found two distinct layer-
wise NIE patterns for syntactic agreement: one
when the subject and verb are adjacent (the short-
range effect), and another when they are separated
by any number of tokens (the long-range effect).
To understand whether the short-range effect is due
to preferences for frequent bigrams (rather than
specifically grammatical subject-verb bigrams), we
also design a bigram swap intervention. We use
high-mutual-information adjective-noun English
bigrams as the original inputs and intervene by ran-
domly swapping the first or second words in the
bigram with words from a different bigram. For ex-
ample, given the bigrams coaxial cable and police
officer, we can define ynull = p(officer|coaxial)

p(cable|coaxial) and

yswap-bigram =
p(officer|police)
p(cable|police) . Then we can compute

the NIE as in Equation 3.
Finally, to test whether separate neurons are used

for short- and long-range token collocations in gen-
eral, we also define short- and long-range semantic
plausibility baselines, where nouns are associated
with stereotypical adjectives (e.g., square T.V. and
red apple). The short-range semantic plausibility
intervention is the same as for the bigram inter-
vention: We compute the probability ratio of the
first and second noun in a pair of bigrams before
and after swapping the adjective. For long-range se-
mantic plausibility, the prompt u is “The T.V./apple
is”, and v is the probability ratio of the adjectives
before and after swapping the nouns.

4 Results

4.1 Layer-wise NIE contours are similar
across languages

We present indirect effects for monolingual masked
language models (Figure 3), as well as mBERT
and XGLM (Figure 4). Here, we select the top
5% of neurons per layer by NIE. In each language,
whether in a monolingual or multilingual MLM
or ALM, there are two distinct layer-wise NIE
effect patterns for number agreement: one for
short-range dependencies and one for long-range
dependencies. This agrees with the findings of Fin-
layson et al. (2021) on autoregressive English LMs.
However, these effects look more distinct across
monolingual models, whereas multilingual mod-
els exhibit more similar layer-wise NIE patterns
across languages. In other words, monoligual
models accomplish syntactic agreement in differ-
ent layers and neurons depending on the language
(even though these languages are typologically sim-
ilar), but in multilingual models agreement compu-
tations implicate the same layers across languages.
This does not necessarily mean that the same indi-
vidual neuron are being used cross-linguistically
in multilingual models (we explore this question
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in more detail in §4.2.1); rather, the model may
simply be learning similar layer-wise strategies for
each language.

While prior work finds that syntactic agreement
is easier to learn in languages that have more ex-
plicit morphological cues to hierarchical structure
(Ravfogel et al., 2019; Mueller et al., 2020),5 this
does not necessarily imply that different agreement
mechanisms are learned in such languages. We find
similar layer-wise NIEs in mBERT across each lan-
guage we consider, including Finnish, a non-Indo-
European (specifically, Uralic) language.

4.2 Syntax neurons are shared across
structures, but not with semantic baselines

Here, we analyze to what extent the same neurons
are implicated across syntactic structures and lan-
guages in mBERT. For each structure, we take the
top 30 neurons by indirect effect (from any layer);
we then compute the proportion of such high-NIE
neurons that are shared across structures.

First, we investigate to what extent the neurons
that have high NIE for the syntactic structures are
selective to syntax. We do so by computing the
overlaps in English between neurons with high NIE
for syntactic structures and the neurons with high
NIE for our bigram and semantic plausibility base-
lines. We find that the top syntactic agreement
neurons for any structure are not shared with the
neurons implicated in semantic plausibility or bi-
gram collocation (Figure 5). In other words, the
neurons used for syntactic agreement are spe-
cific to agreement and do not track common bi-
grams more generally.

Figure 5 also shows that neurons are shared
across syntactic structures, providing evidence
for an abstract notion of syntactic agreement en-
coded in mBERT that is separate from the indi-
vidual structures that the model is presented with.
However, the varying extents of overlap indicate
that there are also neurons specialized to particular
structures. To further contextualize these overlap
proportions, we also compute overlaps for simple
agreement in a randomly initialized mBERT, as a
baseline. This experiment yields near-zero over-
laps, indicating that the overlaps across structures
we obtain for mBERT and XGLM are unlikely to

5Explicit case marking correlates well with performance
on syntactic evaluations (Ravfogel et al., 2019), so we would
expect German and Finnish to exhibit different results if these
cues give rise to different agreement computations.
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Figure 5: Neuron overlap across structures (including
baselines) in English for (a) mBERT and (b) XGLM.
There is zero or near-zero overlap between the baselines
and all syntactic agreement structures, whereas overlap
is relatively high (and statistically significant) for all
other structures.

be due to random chance.6

4.2.1 Neurons are shared across languages in
autoregressive language models

The overlap in neurons across languages (Fig-
ure 6) is significant for all structures in XGLM.
For mBERT, overlap is significant between “across
a PP” structures and other long-distance agreement
structures, but not for any other structure pairs.
Note that in XGLM, the diagonal is no darker
than most other squares; in other words, there
is not more cross-lingual neuron overlap for the
same syntactic structure relative to other structures.
These may be generic cross-lingual syntax neu-
rons which are not specialized to any particular
structure or language. We found in §4.2 that there
is almost no overlap between syntactic agreement
neurons and bigram collocation/semantic plausibil-
ity neurons in English, which is further evidence

6For reference, the probability of at least one neuron be-
ing shared between two random samples of 30 neurons in

(m)BERT-base is 1− (9984−30
30 )

(998430 )
≈ .086.
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Figure 6: Cross-lingual neuron overlaps for the top
30 neurons by NIE in (a) mBERT and (b) XGLM.
We present English-French overlaps; overlaps between
other language pairs look similar (see Appendix C). The
overlap percentages in (b) are significantly higher than
random chance. Overlaps for most structure pairs in (a)
are not significant, except for overlaps between ‘Across
a preposition’ structures and other long-range agree-
ment structures.

that these may be more general syntactic agreement
neurons. Nonetheless, overlap is very low across
languages compared to across structures within a
given language. Thus, in autoregressive language
models, syntactic agreement neurons can be
language-specific or cross-lingual, but most are
language-specific. For masked language models,
syntactic agreement neurons are rarely shared
across languages.

4.3 Neuron sparsity differs across structures,
but not across languages

What proportion of LMs’ neurons encode subject-
verb agreement? The sparsity of syntax neurons in
pre-trained models may vary depending on which
language and structure we observe. Lakretz et al.
(2019) and Lakretz et al. (2021) found that agree-
ment neurons are sparse in LSTMs, but it is not
clear whether this would hold for MLMs or large

Language Model % Neurons for TE % Neurons for Max. NIE

en

BERT 1.0% 5.8%
mBERT 1.0% 8.7%
GPT-2 17.5% 25.0%
XGLM 4.5% 16.5%

fr
CamemBERT 6.7% 10.6%
mBERT 3.8% 29.8%
XGLM 3.5% 24.0%

de
GermanBERT 1.0% 8.7%
mBERT 1.0% 6.7%
XGLM 1.5% 18.0%

nl
BERTje 1.0% 5.8%
mBERT 1.0% 2.9%
XGLM 0.5% 37.5%

fi FinnishBERT 1.0% 4.8%

Table 2: Neuron sparsities for the “simple agreement”
structure across languages and models. Multilingual
models do not necessarily encode syntax more sparsely
than monolingual models. Sparsities are generally con-
sistent across languages for the same model.

Transformer-based ALMs. Given our consistent
results across languages, we hypothesize that the
neuron sparsity of subject-verb agreement will be
similar across monolingual models. Given the con-
sistent distinction thus far in how neurons encode
short- and long-range agreement, we also hypothe-
size that neuron sparsity will differ between agree-
ment distances. Due to lower parameterization
per language in multilingual models, however, we
hypothesize that multilingual models encode agree-
ment more sparsely than monolingual models.

We measure sparsity by iteratively selecting the
top k neurons by NIE, intervening on them simul-
taneously, and computing the natural indirect ef-
fect after performing the swap-number interven-
tion. We continue sampling k more neurons and
computing NIEs until we have selected all neurons;
the NIE after intervening on all neurons is equiv-
alent to the total effect (TE).7 Computing effects
for each neuron and each structure is computation-
ally expensive, so we use k = 128 for XGLM and
GPT-2 (0.5% of neurons selected at a time) and
k = 96 for (m)BERT (≈1.0% of neurons selected
at a time).

We report two metrics: (1) the percentage of
neurons at which we see the maximum NIE, and
(2) the minimum percentage of neurons required
for the NIE to reach the TE of the model. These
correspond to the peak NIE and the point at which
the NIEs cross the dashed line in Figure 7.

For ‘simple agreement’ (Table 2), the proportion
of neurons to reach the TE is generally small, espe-

7Intuitively, the TE can be thought of as the preference of
the model as a whole for correct verbs over incorrect verbs.
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Figure 7: Indirect effects when intervening on increas-
ing numbers of neurons in XGLM. The dashed line
represents the total effect. For ‘simple agreement’, there
exists a set of neurons that strongly prefers grammatical
completions; however, there are many more neurons
that have weak preferences against them, and this re-
sults in the model as a whole having weak preferences
for correct verb inflections. For ‘across a singular RC’,
however, almost every set of neurons seems to have
preferences for grammatical inflections.

cially for MLMs. However, the TE itself is often
a couple orders of magnitude smaller for MLMs
than for ALMs; thus, these percentages are not
comparable across model architectures.

The proportion of neurons required to achieve
the maximum NIE is typically lower for MLMs
than ALMs. In other words, syntax neurons are
more sparse in masked language models than
autoregressive language models.8

The percentage of neurons to reach the maxi-
mum NIE does not significantly differ across mono-
lingual and multilingual models, however. This
means that multilingual models do not consis-
tently encode syntactic agreement in a more
sparse way than monolingual models. This and
our neuron overlap results suggest that multilingual
models encode syntactic information in a similar
way to monolingual models (including the pro-
portion of neurons sensitive to syntax), though

8French is an exception: there are more syntax-sensitive
neurons in both monolingual and multilingual models.

most syntax-sensitive neurons tend to be language-
specific rather than shared across languages.

Sparsity also differs across syntactic structures.
For ‘simple agreement’, NIEs peak at around 5–
20% of neurons. For ‘across a singular RC’, the ad-
dition of every k neurons almost always increases
the NIEs. Long-range syntactic information
seems to be distributed throughout the majority
of neurons in XGLM, but short-range syntactic
information is more sparsely encoded.

These numbers hide more interesting trends,
however. The TEs for mBERT are often close to
0 across structures, while the maximum NIEs are
in the hundreds for those same structures.9 This
has interesting implications for interpreting behav-
ioral analyses: studies such as Hu et al. (2020) and
Mueller et al. (2020) suggest that mBERT does
not have strong syntax-sensitive preferences com-
pared to autoregressive language models, and the
low TEs we observe support this. However, this
obscures that there are actually many neurons
in mBERT which are highly sensitive to syn-
tactic agreement, as indicated by the high max-
imum NIEs: we observe weak agreement prefer-
ences in the model as a whole because there are
many more neurons which have weak preferences
against syntactic agreement (i.e., small negative
NIEs), perhaps because those neurons are special-
izing in other phenomena (e.g., token collocations
or semantic agreement). Thus, behavioral analyses
of model behavior may be underestimating the sen-
sitivity of models to syntactic phenomena, for there
is negative interference from neurons that prefer
non-syntax-sensitive completions.

5 Discussion

We observe two distinct layer-wise NIE patterns
for syntactic agreement, depending on whether the
subject and verb are adjacent or separated by other
tokens. This extends the findings of Finlayson et al.
(2021) to multilingual MLMs and ALMs, as well as
monolingual MLMs in various languages. Going
beyond their findings, we ruled out the possibility
that these neurons do not simply track semantic
plausibility or bigram collocations more generally.
While this is not conclusive evidence that these
neurons are specialized to syntax, evidence from
other behavioral and probing studies also supports

9The effect contours for mBERT have a similar contour
to those in Figure 7, though the TE (≈0) and maximum NIE
(≈340) for ‘simple agreement’ are far smaller.
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the existence of neurons focused on syntax (Hewitt
and Manning, 2019; Elazar et al., 2021; Goldberg,
2019). De Cao et al. (2021) found neurons focused
purely on syntax, while Tucker et al. (2022) found
redundantly encoded syntactic information across
neurons. It is not clear how much of the neuron
overlap we observe is due to redundantly encoded
information, but future work could investigate this.

A consistent trend across our experiments is that
ALMs encode syntactic agreement in a distinct way
from MLMs. In ALMs, there is more cross-lingual
and cross-structure neuron overlap than in MLMs;
more similar layer-wise effect patterns across struc-
tures and languages (though they are still distinct);
and a greater proportion of neurons which are sensi-
tive to agreement. This could be partially explained
by ALMs’ left-to-right processing of natural lan-
guage input, which more closely resembles incre-
mental inputs to human learners. MLMs are able to
perform syntactic agreement (Hu et al., 2020; Gold-
berg, 2019), but their fill-in-the-blank pre-training
objectives may induce distinct representations of
sentence structure as compared to models that pro-
cess or predict inputs incrementally.

Why do we observe different indirect effect con-
tours for short- and long-range agreement? Per-
haps syntactic agreement is encoded using a single
mechanism, but the way that syntactic information
is used for predicting output tokens depends on the
structure of the input or prior output tokens. Al-
ternatively, there could be two completely distinct
agreement mechanisms that function in different
ways entirely. While our findings do not disam-
biguate between these possibilities (or some other
separate type or amount of mechanisms), future
work could employ methods like those in Meng
et al. (2022) to observe this distinction more ex-
plicitly. The findings of Meng et al. (2022) suggest
that the model regions that are implicated in say-
ing something are distinct from those implicated in
knowing something—that is, knowledge retrieval
and predicting particular tokens are separate mech-
anisms in pre-trained language models. Perhaps
their method could be extended to study syntac-
tic agreement, such that we can better understand
what, exactly, these distinct indirect effect trends
represent.

6 Conclusions

We have used causal mediation analysis to observe
which neurons track syntactic agreement in multi-

lingual pre-trained language models, and in which
layers they are concentrated. We found two distinct
layer-wise contours for syntactic agreement regard-
less of the language, multilinguality, or architecture
of the model (§4.1); that syntax-sensitive neurons
are shared across languages in autoregressive lan-
guage models (§4.2.1); and that the neuron sparsity
of syntactic agreement is similar in monolingual
and multilingual models (§4.3). We also found that
behavioral analyses of masked language models ob-
scure the extent to which their neurons are sensitive
to syntactic agreement (§4.3).
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A Example Sentences

Here, we present examples of each syntactic struc-
ture we observe in each language.

(1) Simple agreement (English):
.
¯

The woman observes/*observe.

(2) Simple agreement (French):
.
L̄’
The

homme
man

approuve/*approuvent.
approves/*approve.

(3) Simple agreement (German):
.
D̄er
The

Arzt
physician

weiß/*wissen.
knows/*know.

(4) Simple agreement (Dutch):
.
D̄e
The

schrijver
writer

begrijpt/*begrijpen.
understands/*understand.

(5) Simple agreement (Finnish):
.
T̄äti
Aunt

ymmärtää/*ymmärtävät.
understands/*understand.

“The aunt understands/*understand.”

For each of the following syntactic structures
containing a grammatical number attractor, we sep-
arate structures by whether the attractor is singular
or plural. For concision, we simply present ex-
amples of each structure without separating out
examples by the number of the attractor. Note
that Finnish mainly uses postpositions rather than
prepositions; the attractor still intervenes between
the main subject and its verb, but the order of the
preposition and noun phrase is different compared
to the Indo-European languages we consider.

(6) Across a relative clause (English):
.
¯

The woman that the guards like ob-
serves/*observe.

(7) Across a relative clause (French):
.
L̄’
The

homme
man

que
that

le
the

chef
boss

suit
follows

approuve/*approuvent.
approves/*approve.

(8) Across a relative clause (German):
.
D̄er
The

Arzt
physician

den
that

die
the

Tiere
animals

vergeben
forgive

weiß/*wissen.
knows/*know.

(9) Across a relative clause (Dutch):
.
D̄e
The

schrijver
writer

die
that

de
the

ouder
parent

roept
calls

begrijpt/*begrijpen.
understands/*understand.

(10) Across a relative clause (Finnish):
.
T̄äti
Aunt

jota
that

luistelijat
skaters

kehuvat
praise

ymmärtää/*ymmärtävät.
understands/*understand.

“The aunt that the skaters praise under-
stands/*understand.”

(11) Across a prepositional phrase (English):
.
¯

The woman behind the cars ob-
serves/*observe.

(12) Across a prepositional phrase (French):
.
L̄’
The

homme
man

devant
in-front-of

le
the

chat
cat

approuve/*approuvent.
follows approves/*approve.

(13) Across a prepositional phrase (German):
.
D̄er
The

Arzt
physician

nahe
near

den
the

Äpfeln
apples

weiß/*wissen.
knows/*know.

(14) Across a prepositional phrase (Dutch):
.
D̄e
The

schrijver
writer

achter
behind

de
the

fiets
bike

begrijpt/*begrijpen.
understands/*understand.

(15) Across a postpositional phrase (Finnish):
.
T̄äti
Aunt

puiden
trees

lähellä
near

ymmärtää/*ymmärtävät.
understands/*understand.

“The aunt near the trees under-
stands/*understand.”
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Figure 8: Natural indirect effects for the top 5% of neurons in each layer for monolingual masked language models.
The indirect effect contours we observe do not vary significantly when replacing the nouns and verbs with shorter,
more frequent words—except in layer 11 of CamemBERT.
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(b) XGLM

Figure 9: Neuron overlap across structures (including
baselines) in English for (a) mBERT and (b) XGLM.
There is significant overlap between the original stimuli
and short-word stimuli, though this is more the case for
XGLM than mBERT.

B Invariance to Short- and Long-Word
Stimuli

When using the stimuli from Finlayson et al.
(2021), most of the subjects and verbs are split
into multiple tokens. These are generally long and
relatively infrequent nouns and verbs like “man-
agers” and “observe”. We could use more stimuli
if we replace each word with words that are shorter
and more frequent in pre-training corpora, such as
“cats” and “see”.

Will these lexical replacements change the trends
we observe? We observe the layer-wise natural in-
direct effect of the top neurons in each layer for
the original stimuli and the short-word stimuli to
see if lexical replacements have an effect on the
way neurons encode syntactic agreement in mono-
lingual BERT models. Our results (Figure 8) are
nearly identical for the original stimuli and the
short stimuli. A notable exception is layer 11 of
CamemBERT, where indirect effects are so large
that the rest of the effects are dwarfed by compari-
son. However, when excluding this result, indirect
effect contours look similar between original and
short stimuli.

We also compare the extent of neuron overlap
between original and short stimuli for multilingual
BERT and XGLM. Our results (Figure 9) show
a relatively high degree of overlap, especially for
XGLM. However, overlap is somewhat lower than
when we use only one stimulus type (Figure 5).
Ideally, overlap should be nearly 100% along the
diagonal of both matrices if these neurons account
only for syntactic agreement rather than specific
lexical items, so these results suggest that lexical
(and not syntactic) features may account for a no-
table proportion of the neuron overlap we observe
in our previous experiments. Alternatively, it could
mean that these neurons attend both syntactic and
lexical information. Nonetheless, overlaps are still
significant and indirect effects still look similar
when swapping our nouns and verbs, so it is likely
that models are picking up on some abstraction for
syntactic agreement that generalizes across specific
token sequences.

These results suggest that the neuron-level ef-
fects we observe are not simply spurious lexical
correlations. More significantly, this is further evi-
dence that the neuron-level effects we observe are
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not word-level effects, but some more abstract
structural feature(s) that the model has learned.

C Neuron Overlap Across Languages:
Full Results

Here, we present neuron overlaps across languages
for mBERT and XGLM (Figure 10). As in §4.2.1,
we present overlaps for the top 30 neurons (in any
layer of the model) per structure per language. As
before, we find that neuron overlap is generally
greater in autoregressive LMs than masked LMs.

Neuron overlaps are most prominent between
English and French; while not typologically the
most closely related language pair, English and
French share a great deal of vocabulary and have
similar SVO word orders when pronominal objects
are not present. German, meanwhile, uses SOV
with V2 in main clauses.

D Limitations

Perhaps the greatest limitation of our method—
and many other causal probing methods (Vig
et al., 2020; Finlayson et al., 2021; Ravfogel et al.,
2021)—is that we are limited to stimuli where the
subjects on which we intervene and the competing
verb forms are one token each. This greatly limits
the range of subjects and verbs (and languages)
we can consider in this study, especially for more
multilingual models where a greater proportion
of words are split into subwords by the tokenizer.
Models may use a different mechanism altogether
to calculate the probability of two competing verbs
given the presence or lack of a morpheme like {-
s} which expresses number information, and our
method would not allow us to understand where
and how models are performing this kind of agree-
ment. While one can, in theory, compare the proba-
bility of variable-length token sequences in autore-
gressive language models, there is no principled
way to do this in masked language models. And
in practice, autoregressive language models tend
to prefer shorter sequences. Future work could
consider probing methods which allow for variable-
length span predictions.

There are also more general issues with probing
individual neurons. Complex phenomena like syn-
tactic agreement are likely to be encoded in sets
of neurons, rather than individual neurons; indeed,
we find evidence for this in §4.3. This means that
analyzing individual neurons can result in oversim-
plified understandings of where and how certain

phenomena are encoded and used. Future causal
probing work could focus on non-parametric meth-
ods which allow one to probe multiple neurons si-
multaneously, such that we may causally implicate
model regions rather than just individual compo-
nents like neurons or attention heads.
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Figure 10: Neuron overlap for the top 30 neurons in mBERT (top row) and XGLM (bottom row). We show overlaps
between English and French (left), German (center), and Dutch (right).
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Abstract
We present a novel method for unsupervised
cognate/borrowing identification from mono-
lingual corpora designed for low and extremely
low resource scenarios, based on combining
noisy semantic signals from joint bilingual
spaces with orthographic cues modelling sound
change. We apply our method to the North
Indian dialect continuum, containing several
dozens of dialects and languages spoken by
more than 100 million people. Many of these
languages are zero-resource and therefore nat-
ural language processing for them is non-
existent. We first collect monolingual data for
26 Indic languages, 16 of which were previ-
ously zero-resource, and perform exploratory
character, lexical and subword cross-lingual
alignment experiments for the first time at this
scale on this dialect continuum. We create bilin-
gual evaluation lexicons against Hindi for 20 of
the languages. We then apply our cognate iden-
tification method on the data, and show that our
method outperforms both traditional orthogra-
phy baselines as well as EM-style learnt edit
distance matrices. To the best of our knowl-
edge, this is the first work to combine tradi-
tional orthographic cues with noisy bilingual
embeddings to tackle unsupervised cognate de-
tection in a (truly) low-resource setup, showing
that even noisy bilingual embeddings can act as
good guides for this task. We release our mul-
tilingual dialect corpus, called HinDialect, as
well as our scripts for evaluation data collection
and cognate induction.2

1 Introduction

Hindi is listed as one of the 22 official languages
of India, with the latest census showing 43.63% of
Indians as having Hindi as their mother tongue.3

*This work was done at Charles University and Saarland
University as a Masters’ Thesis.

2See http://hdl.handle.net/11234/1-4839
and https://github.com/niyatibafna/
north-indian-dialect-modelling, respectively.

3https://en.wikipedia.org/wiki/2011_Census_of_
India

However, this figure counts speakers of the lan-
guages of the whole Indic/Indo-Aryan (IA) dialect
continuum, the “Hindi Belt”, that stretches from
Rajasthan in the West to Bihar and Jharkhand in the
East, and of which modern standard Hindi is only
a part.4 This continuum, spread out over North
and Central India, contains a wide variety of lan-
guages/dialects that may even be mutually incom-
prehensible, and form subfamilies of their own, e.g.
the Rajasthani, Bihari, or Pahari subfamilies.5

Natural language processing (NLP) resources
for these languages are sorely lacking; most of
these languages, despite having millions of speak-
ers, have little or no monolingual data, no linguistic
resources such as lexicons, grammars, taggers, let
alone more elaborate resources such as parallel data
or pretrained embeddings.

We focus on 26 languages of the Hindi Belt writ-
ten in the Devanagari script and make the following
contributions: (i) we collect the first monolingual
resources for many of these languages, and (ii) we
develop a novel strategy for cognate lexicon induc-
tion in asymmetric truly low-resource scenarios,
tackling this problem for the first time with the
under-researched Indic dialect continuum. Cog-
nate induction is an important first step towards
obtaining bilingual lexicons, one of the most ba-
sic and all-purpose bilingual resources a language
can have. Bilingual lexicons are especially useful
in low-resource scenarios, e.g. for word-by-word
translation, bilingual transfer, and as seeds for a
variety of tasks; they also have applications in his-
torical linguistics. Finally, in the case of severely
under-supported languages, they are crucial for
building dictionaries for speakers and language
learners. In this work, we perform cognate induc-
tion for each language against Hindi, since Hindi

4We also see a shallower north-south dimension to the
continuum, i.e. from Haryana to northern Maharashtra.

5See https://glottolog.org/resource/languoid/
id/indo1321 for the full language tree.
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is the most well-studied and resource-rich of this
set, and therefore the most logical language from
which bilingual transfer may be attempted.

We crawl monolingual data for the continuum,
forming the largest collection (in number of lan-
guages) of a dialect continuum as far as we know.
This also introduces the first monolingual data for
16 zero-resource IA languages to the NLP commu-
nity. Such a corpus has wide applications for work
in transfer, historical linguistics, dialect continua,
and building language support for these communi-
ties. We probe the resulting multilingual collection
at a character, subword and lexical level, finding
a general link between relatedness and genealogi-
cally and geographically proximal languages.

Secondly, we use the corpus for cog-
nate/borrowing induction (CI) for each target
language with Hindi:6 identifying cognates from
monolingual corpora containing fully inflected
word forms in a completely unsupervised manner.7

We work in an asymmetric data scarcity situation:
we have abundant monolingual resources for
Hindi, but only a few thousands/ten thousands of
monolingual tokens for target languages. These
constraints set this task apart from most of the
previous literature on cognate identification (List,
2014; Fourrier et al., 2021; List, 2019; Artetxe
et al., 2018); however, this setting is realistic when
attempting to build resources for truly low-resource
languages. We present two simple but novel
strategies for cognate identification, evaluating
on synthetically created test sets. We experiment
with iteratively learning substitution probabilities
within an edit distance paradigm, as well as
combining noisy semantic signals from a subword
embedding space with orthographic distance
measures, reporting qualitative improvements over
the baseline.

2 Related Work

Data and Resources. Languages in the contin-
uum differ in the amount of resources available.
For the highest resourced languages (this corre-
sponds to Band 1 in Section 5) one can find raw
and annotated corpora, pretrained embeddings, and
evaluation resources (Kunchukuttan et al., 2020;

6Henceforth, we use the term “cognate” as including bor-
rowings.

7While we do have lexical resources for Band 1 and 2
languages including WordNets for some Band 1 languages
(see Table 1 for bands), we simulate low-resource scenarios
consistent with the truly low-resource Band 3 languages

Bojar et al., 2014; Nivre et al., 2016). For medium-
resourced languages (Band 2), we have some col-
lection efforts,8 mostly monolingual (Ojha, 2019;
Ojha et al., 2020; Goldhahn et al., 2012) but in-
cluding some parallel data. Zampieri et al. (2018)
presented a shared task for language identification
for Awadhi, Braj, Bhojpuri, Magahi, and Hindi pro-
viding 15k sentences for each language. Mundotiya
et al. (2021) collect monolingual corpora for Bho-
jpuri, Magahi, and Maithili, as well as POS-tagged
annotated corpora and WordNets9 aligned with
the larger IndoWordNet effort (Sinha et al., 2006)
Mundotiya et al. (2022) presents NER-annotated
corpora and trained NER models for the same 3
languages. The least resourced languages (Band
3) lack any kind of systematic resource and are the
main focus of our work.

Bi/Multilingual Lexicon Induction Much previ-
ous work has been based on non-neural methods.
Batsuren et al. (2019) use semantic relationships
from the Universal Knowledge Core (Giunchiglia
et al., 2018) which is built from existing Word-
Nets,10 gold annotations as well as geographical-
orthographic similarity measures for cognate iden-
tification. Çöltekin (2019) compares linear and
neural models to predict the next edit-distance
based action to perform crosslingual morphologi-
cal inflection. In earlier works, Scherrer and Sagot
(2014), inspired by Koehn and Knight (2002), in-
duced cognate sets in a completely unsupervised
manner using a character-based alignment algo-
rithm, as well as co-occurrence-based context vec-
tors. List (2012) induce cognate sets over aligned
word lists of languages in a language family by it-
eratively learning phonological rules; this is imple-
mented in the software LingPy (List, 2014). Hall
and Klein (2010) work with unaligned word lists
for languages in the same family, modelling trans-
fer within a tree-based framework and learning edit-
distance based transformation matrices for each
vertical edge. Although the idea of learning edit
distance matrices is quite old (Bilenko and Mooney,
2003), it has not been used in combination with
modern embeddings-based methods for cognate
identification as far as we know.

Recently, neural and embeddings-based meth-
ods have been gaining importance. Conneau et al.
(2018) is one of the earliest works to link bilingual

8See www.ldcil.org/resourcesTextCorp.aspx
9Not publicly available yet

10CogNet contains only Band 1 Indic languages
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lexicon induction (BLI) with bilingual embedding
spaces, or the alignment of monolingual embed-
dings. This idea has been explored by other works
that seek to adapt it to low-resource settings or relax
its strong isometry assumption (Dou et al., 2018;
Patra et al., 2019), sometimes using a bootstrapping
strategy for embedding alignment and bilingual lex-
icon induction (Artetxe et al., 2018; Cao and Zhao,
2021). Fourrier et al. (2021) frame cognate induc-
tion as a machine translation problem, finding that
SMT beats NMT over smaller datasets; Kanojia
et al. (2019) identify cognate sets for (Band 1) In-
dian languages using the IndoWordNet combined
with lexical similarity measures, training neural
models over the resulting data.

3 Orthographic Distance for Cognate
Induction

3.1 Baseline Approach

A straightforward approach for CI involves using
orthographic distance as a stand-in for phonolog-
ical distance, motivated by the fact that Devana-
gari is orthographically shallow, that is, spellings
closely represent associated pronunciations. We
consider source words from Hindi; the best cog-
nate candidate in the other language is chosen by
minimizing orthographic distance. We use two dis-
tances: normalized edit distance (NED), that is, the
edit distance normalized by the maximum of the 2
word lengths, thus scaling to 0-1; and Jaro-Winkler
(JW) distance (Winkler, 1990), which weights dif-
ferences higher in the beginnings of strings.

For all approaches, we use a minimum source
frequency of 5, maximum lexicon size of 5000, and
we collect 5 best candidates per source word; this
ensures identical recall over all approaches given a
fixed source language corpus and test lexicon.

3.2 Expectation-Maximisation Approach

A limiting theoretical deficiency in the baseline
approach is that it treats substitutions of any two
characters equally (similarly for insertions and dele-
tions). By contrast, the expectation-maximisation
(EM) approach optimises substitution probabili-
ties iteratively while simultaneously learning cog-
nate pairs, given two lexicons, in an expectation-
maximization style algorithm. We call it EMT,
EM for “Transform probabilities".

Setup. Given two word lists (that may overlap)
WLs and WLt, let the set of all characters of the

source and target side be χs and χt respectively.
We use a scoring function S(ci, cj), that contains
a “score” for replacing any character ci ∈ χs with
cj ∈ χt;11 for a given character in a source word,
S is modelled as a transformation probability dis-
tribution over χt. S is initialized by giving high
probability (in practice, 0.5) to self-transforms and
distributing the remaining probability mass equally
over other characters.

Given that C(a, b) is the number of times we
have seen a→ b, and T (a) is the total number of
times we have seen a on the source side, our score
is the conditional probability:

S(ci, cj) =
C(ci, cj)

T (ci)
(1)

We maintain a list of cognates found over all
EM loops, so that we only update model parameters
once per cognate pair. Note that a word may appear
in many different cognate pairs in this setup.

The EMT Algorithm is composed of two steps.
1) Expectation step. Given a candidate source

and target pair (s, t), we can find Ops(s, t), which
is the minimal list of the operations we need to per-
form to get from s to t. Each member in Ops
is of the type (ci, cj). In addition to “insert”/
“delete”/“replace” operations, we also use a “retain”
operation, for characters that remain the same; we
also want to estimate S(a, a) ∀ a.

The score for the pair (s, t) is computed as

ζ(s, t) = −
∑

(a,b)∈Ops
log10(S(a, b)), (2)

where the lower the ζ the more probable a pair
is a cognate. For a given s, we can then always
find the word that is the most probable cognate as
t = minti ̸=s(ζ(s, ti)).

Note that in the training phase, we disallow s =
t, to mitigate exploding self-transform probabilities.
Finally, we choose the best K of all cognate pairs
i.e. those with the highest confidence, equivalent
to the lowest ζ values.

2) Maximisation step. We update the model pa-
rameters based on the newly identified cognates in
the previous step. This is done by increasing the
counts of all observed edit distance operations:

C(a, b) := C(a, b) + 1 ∀(a, b) ∈ Ops(s, t)
11We model insertion and deletion as special cases of re-

placement, by introducing a null character.
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T (a) := T (a) + 1 ∀(a, b) ∈ Ops(s, t)
Inference is performed by choosing the K best

target candidates that minimise ζ(s, t) as described
above, now allowing self-matches.

4 Semantic Similarity for Cognate
Induction

Orthographic matching, even with tailored and
learnt substitution matrices for a given pair of lan-
guages, may be inherently inadequate, as it pays no
heed to the shared semantics of cognates. We use
bilingual subword embeddings (BE) to address this
problem in the following way: we use the semantic
space to narrow down possible candidates, and then
apply orthographic matching in order to select the
top K candidates. This is a two-stage approach
that relies mainly on two separate metrics: first, the
quality of semantic similarity judgments provided
by a semantic embedding space, and second, or-
thographic similarity judgments provided by the
distance/similarity metric we choose to use.

SEM_JW: BE+JW In this approach, we re-
trieve K nearest neighbours of each source word.
These candidates are scored by an interpolation of
semantic similarity and orthographic distance, with
equal weighting. We use cosine similarity for the
former, and JW for the latter. All words that are
not within the K nearest neighbours (50 in our ex-
periments) are discarded from consideration. The
idea is to mitigate the effect of chance orthographic
similarities.

For candidates, if E(s) is the embedding vector
for string s, we minimize:

D(a, b) = 1− scos(E(a), E(b)) · J(a, b), (3)

where scos(v1, v2) captures the cosine similarity
(scaled to [0, 1]) between vectors v1 and v2, and
J(a, b) is the JW similarity.

SEM_EMT: BE+EMT We seek to combine
the benefits of iteratively learning transformation
probabilities with those of semantic spaces. This
approach is almost identical to that in Section 3.2,
except for the fact that only K = 50 nearest neigh-
bours of a source word in the semantic space are
used as its potential cognate candidates, both dur-
ing training and inference.

5 Data Collection

We apply the methods described above to the Indic
dialect continuum. Since these languages cover a

range of resource situations, we divide them into
three categories, Band 1, 2 and 3, based on amount
of resources, with Band 1 containing the best re-
sourced languages, and Band 3 containing (previ-
ously) zero-resource languages. See Table 1 for a
description of the languages under consideration.

5.1 Monolingual Corpora Crawl
Digital presence of Band 3 languages is low to non-
existent; automatic crawling for content faces the
primary problems of scarcity, script handling, and
automatic language identification between closely
related variants.

Kavita Kosh,12 translating roughly to “poetry
collection”, is an online collection of folksongs
and poems in 31 languages from the IA continuum.
Content is manually curated by the organization;
the poetry consists of works by early contempo-
rary writers, mostly from the late twentieth century.
All content is in Devanagari (transliterated in case
of e.g. Bengali content). The website categorizes
pieces by type, language, author/theme, and possi-
bly additional labels such as anthology. We collect
data for a total of 31 languages, of which we have
folksong data for 26 languages, and poetry data for
18 languages.13,14 We leave out 5 languages for
cognate induction: Bangla, Gujarati, Punjabi (writ-
ten primarily in a different script), Sanskrit and
Pali (extinct languages). The data is cleaned at a
character-level, we filter out words with any charac-
ter not within a specified UTF-8 code-point range
and tokenization is performed by white-space split-
ting. See total counts in tokens in Table 1. Poem
and token counts are reported in Appendix A.15

5.2 Evaluation Data for Cognate Induction
Band 3 languages lack standardized gold bilingual
lexicons that may be used for supervision. After a
survey of possible digital resources for this purpose
(see Appendix B for a listing), we choose to use
Languages Home, an online language learning web-
site,16 containing translations of 80–90 artificially
simple English sentences (e.g. “He ate an apple”,

12http://kavitakosh.org/kk/
13We also include Korku as an outlier datapoint; it is not an

Indic language and therefore lacks the genealogical similari-
ties of the others.

14We preserve the distinction made by the website between
Khadi Boli and Hindi; the former is the closest to what we
consider modern Hindi.

15We have been authorized by the organization to make
the folksongs data available but not the poetry. However, our
crawler is publicly available to use.

16https://www.languageshome.com
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Language Primary Regions Language
(Sub-)Family

Data
(Tok.)

Collected
(Tok.)

# native
speakers

BAND 1

Hindi Uttar Pradesh*, Bi-
har*, Rajasthan*,
13 others

IA Central, Western Hindi 1.86B1 7127997 250M†

Marathi Maharastra*, Goa* IA Southern, Marathic 551M1 3327 73M
Nepali Nepal*, West Ben-

gal*
IA Northern, Eastern Pa-
hari

14M2 692657 16M

Sindhi Sindh*, Pakistan,
Rajasthan, Gujarat

IA Northwestern, Sindhi-
Lahnda

61M5 51458 25M

BAND 2

Bhojpuri Bihar, Jharkhand* IA, Bihari 259K3 197639 40M
Awadhi Bihar IA, Bihari 123K3 500079 38M
Magahi Bihar, Jharkand* IA, Bihari 234K3 84754 40M
Maithili Bihar*, Jharkhand* IA, Bihari 300K4 218339 14M
Brajbhasha Uttar Pradesh IA Central, Western Hindi 249K3 160039 1M

BAND 3

Rajasthani Rajasthan IA Central, Gujarati-
Rajasthani

- 187724 50M

Hariyanvi Haryana, Rajasthan IA Central, Western Hindi - 233003 13M
Bhili Rajasthan, Gujarati,

Madhya Pradesh
IA Central, Bhil - 27326 3M

Korku Madhya Pradesh,
Maharashtra

Austro-Asiatic, North
Munda

- 15509 0.7M

Baiga Chattisgarh IA Central, Chattisgarhi - 13848 UNK
Nimaadi Rajasthan, Madhya

Pradesh
IA Central, Bhil - 14056 2M

Malwi Rajasthan, Madhya
Pradesh

IA Central, Bhil - 9626 5M

Bhadavari Jammu Kashmir IA Northern, Western Pa-
hari

- 990 0.1M

Himachali Himachal Pradesh IA Northern, Himachali - 466 2M
Garwali Uttarakhand IA Northern, Central Pa-

hari
- 92668 6M

Kumaoni Uttarakhand IA Northern, Central Pa-
hari

- 1028 2M

Kannauji Uttar Pradesh IA Central, Western Hindi - 327 9.5M
Bundeli Madhya Pradesh,

Uttar Pradesh
IA Central, Western Hindi - 26928 5.6M

Chattisgarhi Chattisgarh* IA Central, Eastern Hindi - 83226 18M
Bajjika Bihar IA, Bihari - 7414 12M
Angika Bihar, Jharkhand* IA, Bihari - 1265146 15M
Khadi Boli Delhi IA Central, Western Hindi - 4507 UNK

Table 1: Language bands. Note that Band 1 languages may have much more data available from other sources such
as Wikipedia; for Band 2 languages, we may have other sources with the same order of magnitude of data. “Primary
Regions” only mentions places in the Indian subcontinent; * indicates official status. Corpora from which data
counts are taken: 1(Kakwani et al., 2020), 2(Yadava et al., 2008), 3(Zampieri et al., 2018), 4(Goldhahn et al., 2012)
5(Conneau et al., 2020). Speaker counts taken from (latest) 2011 census if available. †: probably inflated
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“He will come”) into 76 Indian languages (includ-
ing some Dravidian languages and IA languages
for which we do not have data). This resource has
the best coverage as well as consistency over Band
3 languages. Of these, 20 languages are of our
interest, including 12 Band 3 languages. This data
is considerably noisy, with problems including the
fact that it is written in “casual” Roman translit-
eration, inconsistent parenthetic explanations, and
code-switching.

We develop a pipeline to extract the aligned lexi-
cons. The pipeline consists of cleaning, transliter-
ation of the Indic side into Devanagari with indic-
trans (Bhat et al., 2015), parallelizing with Hindi
instead of English,17 and finally extracting word-
alignments over the given Hindi-parallel data with
FAST-ALIGN (Dyer et al., 2013).

The resulting lexicons have an average size of
153.6 elements, a minimum size of 118, and a max-
imum of 177. We manually evaluate the Hindi-
Marathi lexicon, finding that 73.5% of 130 source
words contain at least one correct target.18 De-
spite clear problems of noise, and acknowledging
that these lexicons should be post-edited by native
speakers, this is the best possible evaluation data
that we can use, given its coverage and uniform
format; however, we consider it as a relative rather
than absolute indicator of performance.

6 Experiments and Results

6.1 Probing the Monolingual Corpora

We seek to capture a high-level picture of the data
on the character, subword, and lexical level, com-
paring observations with language-specific char-
acteristics from prior knowledge as well as with
expected cross-lingual relationships. For this, we
perform 3 types of experiments.

Character-level. We inspect the symmetric KL-
Divergence19 over characters as well as char-gram
distributions of the languages. For the latter, the
final metric is simply the average over divergence
values for each char-gram length. Since IA lan-
guages are orthographically shallow, inspecting
such distributions of a language may give us a fairly

17Word alignment of Indic languages with Hindi sentences
as compared to English sentences is likelier to be accurate.

18Note that a word equivalent used here may not be a cog-
nate even if a cognate does exist in the language.

19Specifically, for probability distributions P and Q, we
calculate the symmetric quantityDKL(P ||Q)+DKL(Q||P )

good idea of the general usage of consonants and
vowels in the language.

Lexical Overlap. If Li and Lj are the filtered
lexicons of two languages i and j, we calculate

Oij =
|Li ∩ Lj |

min(|Li|, |Lj |)
(4)

for all pairs. We apply a corpus-dependent fre-
quency threshold to the data: we discard all words
in a corpus with size NL that occur with a fre-
quency less than T (NL) = log100(NL) − 1. The
exponent 100 and the constant −1 were chosen
such that the threshold does not grow too quickly,
and that datasets with less than 1000 tokens are
fully retained.

Subword-level. We calculate pairwise subword-
level overlap measures, captured by character
grams of length 2–4,20 thinking of subwords as
approximating morphemic units of the language.
Let’s define Lic as the inventory/lexicon of c-length
char-grams for language i, then the c-char-gram
overlap Oijc for languages i and j is calculated
identically to lexical overlap in Eqn 4.

We would like to weight Oijc according to c,
capturing the idea that it is more of a similarity
signal for two languages to share c-char-grams for
a higher c. For this purpose, we calculate the “uni-
verse of possibilities” for each c; i.e. the total num-
ber Uc of unique c-char-grams that occur in the
entire corpus. Since we want normalizing weights
that are inversely related to the probability of an
accidentally shared c-char-gram, we calculate sub-
word similarity as follows:

Oij =
∑

c

(
Oijc ·

Uc∑
c Uc

)
(5)

Finally, we also calculate pairwise symmetric
KL-Divergence over subword distributions.

Results. Figure 1 is generally representative of
our results across character, subword and lexical re-
sults, both overlap-based and information-theoretic
(see Appendix A for related heatmaps). The fol-
lowing general observations emerge from all the
above experiments. The Purvanchal and eastern
languages from Kannuaji to Angika (represented
in the bottom right), show the highest similar-
ity/overlap within themselves over all calculated
measures. This is expected and confirms that the

20Different ranges yield the same trend.
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Figure 1: Overlap-based similarity over i-char-grams.

corpus represents the close genealogical and cul-
tural ties between these languages.

We see that Hindi has high lexical/subword-level
similarities with almost every language. This could
be the result of the widespread use of Hindi, or its
large dataset, including noise even after filtering.
We also notice that some languages have consis-
tently low lexical similarities with others. In the
case of Korku, this is expected, given that Korku is
a genealogical outlier. In other cases, such as with
Malwi and Himachali, this is probably because the
collected dataset is too small to be representative of
the vocabulary of these languages. In general, and
as expected, the eastern cluster as well as the west-
ern cluster of languages show close relationships
with each other.

6.2 Bilingual Embeddings

We use FASTTEXT (Bojanowski et al., 2017) for
training bilingual embeddings in a simple joint
manner, with minimum corpus frequency accord-
ing to the corpus-dependent threshold T (NL), de-
scribed in Section 6.1; we hope to leverage its us-
age of subword information, given that that we
are dealing with data-scarce morphologically rich
languages.

Visualizations reveal that low-resource target
language words often cluster around each other,
whereas Hindi words and words belonging to both
languages are more meaningfully distributed. (See
Figure 2, Appendix C for other language plots.) A
possible diagnosis is an effect pointed out by Gong
et al. (2018) who show that low-frequency words
tend to cluster together regardless of their seman-
tics. This, along with the fact that we are unfairly

Figure 2: t-SNE visualization (Van der Maaten and
Hinton, 2008). Bhojpuri words cluster together.

applying the same minimum frequency threshold
(better suited for the high-resource anchor) for both
languages by mixing the data, may explain the poor
quality of the target language embeddings. In order
to mitigate the problem, we upsample the target
language data to bring it to the same order of mag-
nitude as the Hindi data.

Results We use the Nepali WordNet to extract a
Hindi–Nepali bilingual lexicon, and we calculated
Recall@50 (given 50 nearest neighbours). We also
use basic visualizations and a crosslingual integra-
tion metric cl_integ, which measures the fraction
of nearest neighbours per word that belong to the
other language, to compare the two sets of embed-
dings, on average. That is, if νE(w,K) is the set
of K nearest neighbours of w in the embedding
space E and ψn(L) is a sample of n words from a
language with lexicon L, then

cl_integ12 =
1

n ·K




∑

w∈
ψn(L1)

∑

w′∈
νE(w,K)

I(w′ ∈ L2)




We report scores as a percentage, with n = 500
and K = 10.

The UPSAMPLE Nepali model has better
Recall@50 for the Hindi–Nepali gold lexicon (33%
vs. 29%).21 Representing cl_integ scores as a pair
of integration values in either direction, i.e. (target-
Hindi, Hindi-target), we find that the UPSAMPLE

21We also evaluated differently sized subsets of Nepali data
for over the WordNet lexicon, which yielded consistent results;
see Appendix C for details and more visualizations.
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Figure 3: Hindi source word: /k@ha:/ (said). SEM_JW
approach performs the best, resulting in Bhojpuri equiv-
alents (except the third prediction) and inflections.
SEM_EMT also results in semantically correct out-
puts (for all but the fourth prediction). The NED/JW
approaches produce orthographically close words that
are semantically unrelated, e.g. /k@hã:/ (where).

models show scores of (43%, 27%), and the JOINT

models show (91%, 14%), averaged over all lan-
guages. We see that the UPSAMPLE models show
less skew by direction, and higher scores for the
latter direction (which is what we use).

Finally, visualizations for different languages
(see Appendix C.1 for an example) show the tar-
get language words to be better distributed in the
UPSAMPLE approach, with more meaningful col-
locations. All of these are good indications that
upsampling did indeed improve the quality of the
bilingual embedding space. We use these for the
subsequent approaches.

6.3 Cognate Induction

Our main results are presented in Table 2. There is
no clear quantitative winner; SEM_JW performs
slightly better than the other approaches on aver-
age. Cognate identification methods usually work
at a much higher accuracy (Beinborn et al., 2013;
Fourrier et al., 2021), 70–90%. The low accuracies
that we record are due to a number of factors: a
much lower resource range, lack of aligned word
lists, lemmatizers, or supervision and evaluation, as
well as noise in the evaluation data. While most lit-
erature assumes lemmatized word lists as input for
this task, we do not have lemmatizers for these lan-
guages and work with fully inflected word forms;
this is a further challenge for our CI strategies.

Qualitatively, we observe significant differences
across models. See Figure 3 for example outputs.

NED/JW: The NED/JW approaches are often
able to capture the correct answer for longer words,

because the closest candidate in edit distance is
likely to be in the ballpark for closely related lan-
guages. However, we also often get outputs (es-
pecially the second or third prediction) that are
entirely off, as is expected from this naive idea.

EMT: Taking a look into the substitution dis-
tributions learnt by EMT, we see that it learns
some expected relationships e.g. the relationship
between /i/ and /i:/, shifts between other vowels,
or the fact that some rarely used characters are
likely to be deleted. However, the approach is not
able to produce good final outputs. We attribute this
to a bad seed; this approach basically depends on
the seed obtained from simple NED to get started,
and if it meanders down a mistaken path, that error
tends to magnify itself due to the iterative nature of
the algorithm, sometimes resulting in even worse
final outputs than simple NED/JW.

SEM_*: The SEM_* approaches are intended
to address the fundamental inadequacy in the above
approaches: the fact that they do not exploit the
shared semantics of cognates. SEM_JW is accord-
ingly better at producing outputs that are semanti-
cally related, besides the required cognates. Top
predictions tend to be similar to those of NED/JW,
but SEM_JW produces a better collection of out-
puts, from the perspective of bilingual lexicons, es-
pecially since it is less biased against a higher num-
ber of substitutions. However, for many words, the
method produces rather Hindi-like outputs, proba-
bly as a result of the persisting problem of language-
wise clustering in the spaces.22 SEM_EMT still
suffers from the same problems as before; we see
therefore that a stronger orthographic distance met-
ric such as JW is better able to spot the cognate
from semantically related words.

7 Discussion and Conclusion

We analyse the performance of the approaches with
respect to the different facets of cognacy.

Variant inflectional endings: Learning the cor-
respondences between inflections in a dialect pair
is a crucial task when it comes to cognate identifi-
cation for fully inflected word forms. In terms of
producing the right answer, we see an intuitive split
between common and rare words when it comes to
other approaches. For common words, SEM_JW

22This problem may be mitigated with a higher target fre-
quency threshold.
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Total Found NED JWM EMT SEM_JW SEM_EMT

Kumaoni 138.0 118.0 5.1 4.2 5.1 5.1 4.2
Marathi 138.0 116.0 7.8 5.2 4.3 1.7 3.4
Bajjika 149.0 123.0 13.8 15.4 13.8 14.6 11.4
Malwi 153.0 125.0 24.8 22.4 20.0 20.0 15.2
Koraku 140.0 116.0 1.7 0.9 1.7 1.7 0.9
Bundeli 139.0 117.0 26.5 25.6 25.6 30.8 26.5
Bhil 156.0 128.0 19.5 21.1 17.2 18.8 18.0
Sindhi 134.0 114.0 10.5 13.2 7.9 10.5 9.6
Magahi 159.0 129.0 17.8 20.9 18.6 20.9 17.1
Chattisgarhi 136.0 115.0 25.2 26.1 24.3 28.7 26.1
Garwali 143.0 120.0 15.8 15.8 15.0 15.8 14.2
Brajbhasha 155.0 127.0 33.9 34.6 32.3 33.9 32.3
Rajasthani 144.0 120.0 30.8 29.2 27.5 31.7 30.0
Bhojpuri 139.0 115.0 31.3 28.7 32.2 30.4 29.6
Maithili 140.0 117.0 17.9 17.1 16.2 18.8 20.5
Hariyanvi 153.0 126.0 38.1 41.3 37.3 43.7 42.9
Awadhi 148.0 123.0 28.5 26.8 22.0 26.0 25.2
Nepali 105.0 95.0 12.6 12.6 9.5 9.5 7.4
Angika 141.0 116.0 21.6 20.7 21.6 22.4 21.6

Average 142.6 118.9 20.1 20.2 18.5 20.3 18.7

Table 2: Results for CI, precision (%) over bilingual lexicons presented in Section 5.2. A precision point is calculated
per source word such that any predicted target exists in the evaluation target set.

is likely to perform better than the other approaches
because the word is well embedded and the correct
word form is likely to be nearby in the semantic
space, and subsequently selected by JW. In these
cases, especially for short words, NED/JW are
likely to be derailed by irrelevant words.

Correct semantics: We would like to have se-
mantically sensible outputs even if the predicted
words are not cognates. Naturally, this is per-
formed best by the SEM_* approaches, although
the NED/JW approaches do better than expected.

Sound changes: Sound change is one of the fun-
damental phenomena of cognacy, and can be un-
derstood in the case of borrowing in the sense of
changed pronunciations. Unfortunately, we do not
have the theoretical data of attested sound changes
across these dialects in order to be best able to
check which approach performs best in this respect.

The SEM_JW produces overall the most re-
spectable outputs, although this is more true for
common words. The main inadequacy of all these
approaches is their inability to capture language-
pair specific correspondences. An extension of this
work could focus on refining something akin to
the SEM_EMT, which has the most theoretical
potential in this direction. Improvements could in-
clude searching the hyperparameter space for better
priors. An investigation into better bi/multilingual
spaces is crucial to generalize good performance

over rare words; future work can look into using
orthographic similarities explicitly while training
the space itself, as well as the utility of zero-shot
multilingual contextual embeddings for this task.

We have presented a new approach to unsuper-
vised cognate identification from monolingual cor-
pora under conditions of asymmetric data scarcity.
We collected monolingual data for 26 Indian lan-
guages of the Indic dialect continuum, 16 of which
previously zero-resource, as well as synthetic eval-
uation data. Our experiments show the benefits
of combining weak semantic signals from static
bilingual embeddings with orthographic cues.
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Figure 4: Character-level symmetric KL-Divergence for
all languages

A Data Collection and Probing

We record counts of tokens from the folksongs and
poetry in Table 3.

A.1 Character-level probes
We inspect a table of character distributions over
the language data after it has been cleaned. As
expected, the commonest and most widely used
consonants and vowels in the IA family form the
bulk of the distributions of most languages, e.g.
/t/, /D/, /a/, /e/. We see some conspicuously low
numbers, e.g. /S/, /v/, and /ï/, fairly common
consonants in the rest of the languages, seem to
be very little used (in this corpus) from Kannauji.
This is in part corroborated by Dwivedi and Kar
(2016), who say that the first two are not native to
Kannuaji but borrowed from Hindi.

We also see spikes in more endemic consonants
as expected, for example /í/ only shows reasonable
percentages in Marathi and Nimaadi. Finally, the
“avagraha” symbol /s/, used in Sanskrit to denote
the deletion of the inherent vowel of the previous
consonant, has only been inherited into the scripts
of certain languages like Nepali and Magahi; in
Hindi, it is sometimes used to denote the elonga-
tion of the previous vowel especially in lyrical texts.
See Figure 4 for a heatmap over pairwise symmet-
ric KL-divergence for character distributions.

A.2 Lexical measures
See Figure 6 for a depiction of pairwise lexical
overlap. We also take a “close-up” look at sections
of the pairwise results for language clusters that
we expect to have closer relationships within the

Figure 5: Pairwise KL-Divergence over distributions of
i-char-grams. Lower is better.

cluster. See Figures 7a,7b,7c. There are 3 such geo-
graphically motivated bands that we are interested
in.

Firstly, we observe the “north” band, includ-
ing Sindhi, Haryanvi, Punjabi, and the Pahari lan-
guages. Then we have the “north-central” band,
which follows the heartland of the Gangetic plains,
from Rajasthan (Rajasthani) across Delhi (Khadi
Boli), Uttar Pradesh (Awadhi, Kannauji), Chattis-
garh (Chattisgarhi), and Bihar (Bhojpuri, Magahi,
Angika). Finally, we have the “central” band across
southern Rajasthan (Bhili), Madhya Pradesh (Ni-
maadi, Malwi) and Maharashtra (Marathi).

We see that the “north-central” band indeed has
the highest inter-similarities with some pairs (even
excluding Hindi) showing similarities at around
70% (Bundeli-Angika, Kannauji-Awadhi). The
“north” band follows; we see that Haryanvi and
Nepali generally have high overlap with surround-
ing languages. Finally, the “central” band shows
Rajasthani as having high lexical similarity with
languages spoken in nearby regions, e.g. Bhili
and Nimaadi; this makes sense, since Rajasthani
is a catch-all for many related languages with high
influence over nearby languages. Baiga shows gen-
erally low similarities except with Chattisgarhi, of
which it is supposed to be a variant.23

Also see a dendrogram induced from lexical sim-
ilarity measures in Figure 8. We see that some
languages expected to be similar are grouped in
the same subtrees e.g. Haryanvi and Rajasthani,
{Awadhi, Angika, Bhojpuri}, as well as {Nimaadi,

23https://glottolog.org/resource/languoid/id/
baig1238
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Language Band Folksongs Poetry Folksongs
tokens

Poetry
tokens

Total
Pieces

Total
tokens

Rajasthani 3 67 1790 7404 180320 1857 187724
Gujarati 1 14 624 1795 73363 638 75158
Himachali 3 3 0 466 0 3 466
Hindi-Urdu 1 1 54408 100 7127897 54409 7127997
Magahi 2 340 376 37587 47167 716 84754
Awadhi 2 47 1333 4942 495137 1380 500079
Punjabi 1 754 0 69595 0 754 69595
Koraku 3 177 0 15509 0 177 15509
Baiga 3 35 0 13848 0 35 13848
Nimaadi 3 157 0 14056 0 157 14056
Khadi Boli 3 42 0 4507 0 42 4507
Bhojpuri 2 131 1275 20350 177289 1406 197639
Garwali 3 128 449 33380 59288 577 92668
Chattisgarhi 3 92 378 33504 49722 470 83226
Brajbhasha 2 83 1441 8883 151156 1524 160039
Bhil 3 155 0 27326 0 155 27326
Sanskrit 3 2 248 184 95450 250 95634
Angika 3 96 6773 21419 1243727 6869 1265146
Hariyanvi 3 554 930 49122 183881 1484 233003
Kannauji 3 6 0 327 0 6 327
Bundeli 3 326 0 26928 0 326 26928
Bangla 1 12 0 838 0 12 838
Malwi 3 129 0 9626 0 129 9626
Marathi 1 5 30 1412 1915 35 3327
Kumaoni 3 9 0 1028 0 9 1028
Bhadavari 3 8 0 990 0 8 990
Nepali 1 0 4753 0 692657 4753 692657
Maithili 2 0 1552 0 218339 1552 218339
Pali 3 0 27 0 5859 27 5859
Bajjika 3 0 71 0 7414 71 7414
Sindhi 1 0 500 0 51458 500 51458

Table 3: Showing crawled corpus counts for all collected languages.
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Malwi, Bhili, and Baiga}. More distantly related
languages like Gujarati, Pali, Bangla and Sanskrit
are placed on the outer parts of the tree. However,
we would have also expected to see Khadi Boli
closer to Haryanvi, and Bajjika closer to Angika
and Bhojpuri.

Figure 6: Lexical Overlap, all languages

A.3 Subword-level
See Figure 5 for a heatmap capturing pairwise sym-
metric KL-Divergence over subword distributions.
Trends are similar to those seen in overlap-based
measures; however, we see that the similarities
against Hindi are lower, suggesting lower influence
of corpus size on the measure.

B Evaluation Data

B.1 Existing resources
For some Band 1 languages (specifically, Hindi,
Nepali, and Marathi), we have WordNets from the
IndoWordNet project (Sinha et al., 2006; Debasri
et al., 2002), from which we can extract equivalents
across languages. We are not concerned, therefore,
with searching for multilingual lexical resources
for Band 1 languages. For some Band 2 languages
(Bhojpuri, Magahi, and Maithili), WordNets are
under way (Mundotiya et al., 2021) but as yet un-
available.

For Band 3, as discussed, we do not have any pre-
existing bilingual or multilingual lexical resources
in a convenient format. We therefore look for bilin-
gual lexicons in the “wild”; that is, blogs, websites,
scanned dictionaries, etc. We list all such raw ma-
terial that we found that could be potentially useful
for this purpose in Table 4. The names of these
resources are listed separately in Table 5.

We exclude a few other resources we found due
to too small a length (< 30 word pairs), or too
unstructured a format; these are unlikely to be of
much help to the NLP community.

B.2 Overview of existing resources

The listed resources cover 4 Band 2 languages and
7 Band 3 languages: this is counting “Bihari” as
the same as Bhojpuri, and Rajasthani the same as
Marwari. Note that these resources may cover more
languages; we have only listed the ones relevant
to this project in the “Languages” column. These
resources have widely different domains, content
types, and formats.

Four of the listed websites disable copying and
webpage inspection, discouraging crawling or re-
using their data; this means that 3 Band 3 languages
are once more resource-less.

Content-wise, we see that many resources have
explanations on the target side (Hindi or English),
rather than equivalents. For this project, that means
that the resource is not really ready-to-use as a
bilingual lexicon, but will require further work in
terms of extracting equivalents from the explana-
tions for the target side, or recasting it as a lexicon
of similar words on the target side, etc. R11 for Ra-
jasthani also requires transliteration for the source
side before it is useful. Finally, we note that even
the resources listed as containing equivalents in
Table 4 usually contain a mixture of equivalents,
explanations, and examples. That is, each resource
would require considerable processing, possibly
manual, to yield a relatively noiseless bilingual
lexicon.

As we discussed, for the purposes of this project,
we would like to have not only bilingual lexicons
per language with an anchor (preferably Hindi),
but also considerable intersections between the lex-
icons to allow the potential of testing multilingual
interactions beyond Hindi-lang tasks. This too,
unfortunately, is likely to be a problem when gath-
ering resources from different sources with rather
small lists, although we can hope to find some com-
mon words.

Given the above problems, including potential
extensive manual efforts to the above individual
resources usable, probable multilingual mismatch,
and low coverage of Band 3 languages despite it all,
we decided not to attempt garnering lexicons from
these different resources for individual languages
with the intention of putting them together.
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(a) Lexical Overlap, “North central” cluster of languages

(b) Lexical Overlap, “Central” cluster of languages

(c) Lexical Overlap, “Northern” cluster of languages

Figure 7: Pairwise lexical overlap for different subsets of languages
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Re-
source

Languages Anchor
language

Content notes Format Approx.
length

R1 Rajasthanir Eng.r Explanations in En-
glish

Simple list >500

R2 Rajasthanid Hind, Engr Hindi equivalents,
English explanation

Webpages by initial
letter

> 500

R3 Angikad Hind, Engr Explanations Each word on diff.
page, disabled
copying

102

R4 Bundelid Hind Equivalents Simple listing, dis-
abled copying

Few 100s

R5 Haryanvid Hind Equivalents Simple list < 100
R6 Chattisgarhid Hind Explanations Webpage per word,

disabled copying
< 100

R7 Chattisgarhid Hind Equivalents List, disabled copy-
ing

Few 100s

R8 Kumaonid r Hind, Engr Equivalents, catego-
rized by themes

Simple list < 100

R9 Brajbhashad Hind Equivalents/ expla-
nations

Mixture of para-
graphs and lists,
rather disorganized

Few 100s

R10 Bhojpurid Hind Mostly equivalents,
also Hindi syn-
onyms

Simple list 400

R11 Hindir,
Marathii,
Nepalii,
“Bihari”i,
Magahid,i,
Marwarii

- Cognates Swadesh list 207

R12 {Bhojpuri, Gar-
wali, Hindi,
Marathi,
Nepali, Ma-
gahi, Maithili,
Sindhi}d,i

Engr Short phrase trans-
lations

Simple list 45 phrases
(on avg.)

Table 4: Raw resources found for different languages. The superscripts d, r and i indicate that the script used for the
language is Devanagari, Roman or IPA respectively. The lexicon length given is an approximation because some of
these formats make it difficult to get the exact number of entries.
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Figure 8: Dendrogram based on lexical overlap.

R11 is naturally exactly what we would have
liked to find, although, again, it may require translit-
eration from IPA from most languages to be useful
(and for Hindi, from a “casual” Roman script). The
main problem, however, is that it deals with 3 Band
1 languages (for which we already have lexicons),
2 Band 2 languages, and only 1 Band 3 language,
making it a low-coverage resource for our situation.

R12 is another interesting multilingual resource,
highly similar to the resource that we finally de-
cided to use, discussed in Section 5.2.

Note that a couple of these resources are valuable
on their own, e.g. R10 for Bhojpuri is extensive,
simply formatted, and relatively neat and consis-
tent; it will not require too much manual work to
convert it into a usable resource for linguists. Sim-
ilarly, R1 and R2 in Rajasthani provide the raw
material for good bilingual lexicons, although they
will first require a good quality transliteration into

Devanagari for the Rajasthani side.

B.3 Collected data

Example of parallel sentence from “Languages
Home”:

English: Will you give me your pen?
Hindi: Kya tum mujhe apna pen doge?

We see that the word “pen” is code-switched in
Hindi, rather than using the Hindi word “kalam”.
However, in other languages such as Bagheli, we
see the word “kalam” used instead.24 Therefore, al-
though the word “kalam” exists in both languages,
this relationship is not obscured because the trans-

24By itself, this difference is not a bad thing given that the
purpose of this website is language learning. In Hindi, the
given parallel sentence is absolutely natural-sounding - people
do often code-switch the word “pen”. Code-switching with
English may be less common in less urban languages such
as Bagheli; thus accounting for the use of the native word
“kalam”.
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Resource Name

R1 Rajasthani Language Dictionary | Rangrasiya
R2 Glossary of Rajasthani Language - Jatland Wiki
R3 Angika Shabdkosh
R4 Bundeli Shabdkosh
R5 (Blog post) Learn Harayanvi Language

Through Hindi Language
R6 Chattisgarhi-Hindi online dictionary
R7 (Post) HS MiXX Entertainment
R8 Kumaoni Boli
R9 (Blog post) Learn Brajbhasha Vocabulary
R10 (Blog post) Bhojpuri dictionary
R11 (Blog post) Swadesh Word List of Indo-

European languages
R12 Omniglot

Table 5: Resource websites: indexed according to Table 4

lator chose to use a different equivalent instead (in
this case, code-switched, but not necessarily so in
other sentences).

We report per-language statistics of the Hindi-
parallel transliterated data in Table 6.

C CI: Using semantic similarity

C.1 Training embeddings: Visualizations

We use t-SNE (Van der Maaten and Hinton, 2008)
to obtain the following visualizations; we per-
formed these for joint models of Bhojpuri, Ra-
jasthani, Hariyanvi, Magahi, and Korku (with
Hindi-Urdu). See Figure 10 for Bhojpuri (the oth-
ers are similar).

The main observations we can make for this
type of model, common to all the languages, is that
the low-resource target language words seem to be
clustered around each other, whereas Hindi words
and words belonging to both languages are better
situated according to their semantics.

For the UPSAMPLE models, we visualize the
same words for these languages; we present a rep-
resentative (Bhojpuri) plot in Figure 10 (lower fig-
ure). While it is not clear from the visualization that
the JOINT_UPSAMPLED models are less language-
wise clustered than the JOINT, the target language
words seem at least much better distributed, and we
see more meaningful collocations (both monolin-
gual in the target language, and cross-lingual) that
we did not see before, such as “we”, “our” (cross-
lingual) in the Bhojpuri. However, it is difficult to
say from such visualizations which space is better

Figure 9: Recall@K for the bilingual FASTTEXT Nepali
embeddings.

embedded.

C.2 Evaluating embeddings

C.2.1 Measuring Integration: cl_integ
See Table 7 for the evaluation for JOINT as well as
UPSAMPLE embeddings for all languages over the
cl_integ metric.

C.2.2 Evaluating embeddings: Nepali
WordNet

As mentioned before, we do in fact have Word-
Nets from the IndoWordNet project (Kakwani et al.,
2020) for Nepali and Marathi, from which bilin-
gual lexicons can easily be extracted. While the
Marathi dataset in our current collection is not very
representative as previously discussed, we eval-
uate the Nepali-Hindi bilingual space using the
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Language Total in
corpus

Unique in
corpus

Total in
test

Unique in
test

Common
in corpus

and test

Frac.
covered

in
corpus1

Frac.
covered
in test2

Brajbhasha 156986 30194 299 161 93 0.12 0.65
Angika 1253545 91757 310 165 102 0.09 0.60
Maithili 218491 41434 273 147 81 0.09 0.54
Magahi 79405 16942 326 172 81 0.11 0.64
Hindi-Urdu 7100394 197355 336 171 165 0.25 0.98
Awadhi 490877 53103 281 145 109 0.05 0.82
Rajasthani 187708 34360 312 161 124 0.11 0.84
Hariyanvi 232526 27431 298 156 123 0.13 0.86
Bhil 27246 5557 319 177 68 0.12 0.48
Chattisgarhi 83073 14463 267 134 95 0.16 0.76
Nepali 688865 104687 203 118 65 0.04 0.62
Bajjika 7412 2788 317 149 55 0.13 0.53
Koraku 15508 2278 262 132 17 0.04 0.23
Malwi 9626 2883 325 163 51 0.12 0.46
Sindhi 52659 11850 250 141 55 0.09 0.51
Bhojpuri 196513 34051 303 146 110 0.16 0.83
Garwali 90234 22655 275 161 86 0.07 0.64
Marathi 3109 1685 230 130 29 0.05 0.37
Kumaoni 1013 441 250 171 16 0.10 0.16
Bundeli 26902 7991 272 147 82 0.12 0.63

Table 6: Evaluation token data statistics post-transliteration, after aligning with Hindi. 1 This reports the fraction of
the corpus (token-wise) that is contained in the test, vice-versa for 2.

128



Figure 10: t-SNE (Van der Maaten and Hinton, 2008) Visualization of Bhojpuri-Hindi bilingual space, JOINT (up)
and UPSAMPLE (down)
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J_12 J_21 U_12 U_21

Sindhi 0.53 0.23 0.31 0.33
Rajasthani 0.78 0.33 0.62 0.40
Punjabi 0.58 0.19 0.40 0.27
Hariyanvi 0.75 0.30 0.66 0.36
Khadi Boli 0.99 0.18 0.76 0.13
Sanskrit 0.33 0.28 0.12 0.26
Bhil 0.92 0.24 0.53 0.34
Koraku 0.59 0.13 0.34 0.10
Baiga 0.97 0.21 0.73 0.31
Nimaadi 0.87 0.16 0.47 0.21
Malwi 0.88 0.14 0.45 0.13
Marathi 0.95 0.20 0.32 0.15
Bhadavari 1.00 0.12 0.81 0.30
Himachali 1.00 0.07 0.48 0.07
Garwali 0.64 0.25 0.25 0.39
Kumaoni 0.97 0.09 0.74 0.05
Kannauji 1.00 0.04 0.66 0.14
Brajbhasha 1.00 0.32 0.74 0.38
Bundeli 0.99 0.21 0.58 0.36
Awadhi 0.69 0.34 0.45 0.43
Chattisgarhi 0.86 0.29 0.51 0.36
Nepali 0.37 0.39 0.31 0.48
Pali 0.57 0.11 0.07 0.10
Bhojpuri 0.91 0.32 0.74 0.41
Bajjika 1.00 0.20 0.74 0.30
Magahi 0.84 0.21 0.44 0.42
Maithili 0.85 0.38 0.57 0.49
Angika 0.63 0.44 0.50 0.40

Table 7: cl_integ values reported as 0-1 measure for
both sets of embedding spaces, in both directions. 12
indicates that we consider the non-Hindi language as
source, and look for the fraction of nearby Hindi words,
21 is vice versa.

# to-
kens

integ_12 integ_21 bl_12 bl_21

JOINT

5000 0.43 0.37 0.30 0.21
50000 0.33 0.38 0.29 0.21
100000 0.29 0.37 0.29 0.20
500000 0.33 0.44 0.29 0.20

UPSAMPLE

500000 0.29 0.42 0.33 0.15

Table 8: Recall@50 for Nepali data splits of different
sizes against Hindi-Nepali lexicon obtained from In-
doWordNet. 12: Nepali as source, 21: Hindi as source.
We also show results for cl_integ and bilingual lexicon
tests for UPSAMPLE Nepali model

Nepali WordNet. We used the WordNet to extract
a Hindi/Urdu-Nepali bilingual lexicon, and we cal-
culated Recall@K, in the following way: for each
Hindi-Urdu word, we extract its K nearest neigh-
bours. If any of those are the gold target, we count
a full point for that word. Finally, we report the
total such points as a percentage of the length of
the gold bilingual lexicon.

See the results for the joint Nepali model in Fig-
ure 9.

Nepali is in the highest range of availability in
our current dataset, so we do not expect these re-
sults to be representative for other languages with
less data. We therefore also look at these results
over artificially smaller cuts of the Nepali dataset.
See Table 8. We also report these numbers for the
UPSAMPLE Nepali model (all data included) in the
same table.

C.2.3 Discussion
There are a couple of interesting things to note
about the above results. We see that cl_integ
shows high values from the LRL to Hindi direc-
tion, but not vice versa. Nepali happens to be an
outlier in this case, which is perhaps unfortunate
since it is unlikely to be representative of the other
languages, and it is the only language we can eval-
uate with more detail.

We notice in Table 8 that the results for the Word-
Net bilingual lexicon test seem to be stable across
different data splits. This is rather suspicious; how-
ever, a possible explanation is that the positives
accrue from frequent words anyway, possible also
present in the Hindi-Urdu data; therefore, reduc-
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ing the number of Nepali tokens does not seem to
affect this number. Note that this is not at all an
indication that the resulting embeddings are of the
same quality, simply that this metric is not able to
capture possible underlying damage.
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Abstract

Warning: This paper has contents which may
be offensive, or upsetting however this cannot
be avoided owing to the nature of the work.

With the rise of online hate speech, automatic
detection of Hate Speech, Offensive texts as
a natural language processing task is getting
popular. However, very little research has been
done to detect unintended social bias from these
toxic language datasets. This paper introduces
a new dataset ToxicBias curated from the ex-
isting dataset of Kaggle competition named
"Jigsaw Unintended Bias in Toxicity Classifica-
tion". We aim to detect social biases, their cat-
egories, and targeted groups. The dataset con-
tains instances annotated for five different bias
categories, viz., gender, race/ethnicity, religion,
political, and LGBTQ. We train transformer-
based models using our curated datasets and
report baseline performance for bias identifica-
tion, target generation, and bias implications.
Model biases and their mitigation are also dis-
cussed in detail. Our study motivates a system-
atic extraction of social bias data from toxic
language datasets. All the codes and dataset
used for experiments in this work are publicly
available1.

1 Introduction

In the age of social media and communications, it is
simpler than ever to openly express one’s opinions
on a wide range of issues. This openness results in a
flood of useful information that can assist people in
being more productive and making better decisions.
According to statista 2, the global number of active
social media users has just surpassed four billion,
accounting for more than half of the world’s popu-
lation. The user base is expected to grow steadily
over the next five years. Various studies (Plaisime

*These authors contributed equally to this work
1https://github.com/sahoonihar/ToxicBias_

CoNLL_2022
2https://www.statista.com/statistics/278414/

number-of-worldwide-social-network-users/

Figure 1: An illustrative example of ToxicBias. During
the annotation process, hate speech/offensive text is
provided without context. Annotators are asked to mark
it as biased/neutral and to provide category, target, and
implication if it has biases.

et al., 2020) say that children and teenagers, who
are susceptible, make up a big share of social me-
dia users. Unfortunately, this increasing number
of social media users also leads to an increase in
toxicity (Matamoros-Fernández and Farkas, 2021).
Sometimes this toxicity gives birth to violence and
hate crimes. It does not just harm an individual;
most of the time, the entire community suffers as
due to its intensity.

We have different perspectives based on race,
gender, religion, sexual orientation, and many other
factors. These perspectives sometimes lead to bi-
ases that influence how we see the world, even if we
are unaware of them. Biases like this can lead us to
make decisions that are neither intelligent nor just.
Furthermore, when these biases are expressed as
hate speech and offensive texts, it becomes painful
for specific communities. While some of these bi-
ases are implied, most explicit biases can be found
in the form of hate speech and offensive texts.

The use of hate speech incites violence and
sometimes leads to societal and political instability.
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BLM (Black Lives Matter) movement is the conse-
quence of one such bias in America. So, to address
these biases, we must first identify them. While
the concepts of Social Bias and Hate Speech may
appear to be the same, there are subtle differences.

This paper expands on the above ideas and pro-
poses a new dataset ToxicBias for detecting social
bias from toxic language datasets. The main contri-
butions can be summarized as follows:

• To the best of our knowledge, this is the first
study to extract social biases from toxic lan-
guage datasets in English.

• We release a curated dataset of 5409 instances
for detection of social bias, its categories, tar-
gets and bias reasoning.

• We present methods to reduce lexical overfit-
ting using counter-narrative data augmenta-
tion.

In the following section we discuss various es-
tablished works which are aligned with our work.
Section 3 provides information about our dataset,
terminology, annotation procedure, and challenges.
In section 3, we describe our tests and results, fol-
lowed by a discussion of lexical overfitting reduc-
tion via data augmentation in section 5. Section 6
discusses the conclusion and future works.

2 Related Work

Offensive Text: Unfortunately, offensive content
poses some unique challenges to researchers and
practitioners. First and foremost, determining what
constitutes abuse/offensive behaviour is difficult.
Unlike other types of malicious activity, e.g., spam
or malware, the accounts carrying out this type of
behavior are usually controlled by humans, not bots
(Founta et al., 2018).The term “offensive language”
refers to a broad range of content, including hate
speech, vulgarity, threats, cyberbully, and other
ethnic and racial insults (Kaur et al., 2021). There
is no single definition of abuse, and phrases like
"harassment," "abusive language," and "damaging
speech" are frequently used interchangeably.
Hate Speech: Hate Speech is defined as speech
that targets disadvantaged social groups in a way
that may be damaging to them. (Davidson et al.,
2017). Fortuna and Nunes (2018) defines Hate
speech as follows: "Hate speech is a language that
attacks or diminishes, that incites violence or hate
against groups, based on specific characteristics

such as physical appearance, religion, national or
ethnic origin, sexual orientation, gender identity
or other, and it can occur with different linguistic
styles, even in subtle forms or when humor is used".
Bias in Embedding: The initial works to explore
bias in language representations aimed at detecting
gender, race, religion biases in word representa-
tions (Bolukbasi et al., 2016; Caliskan et al., 2017;
Manzini et al., 2019). Some of recent works have
focused on bias detection from sentence represen-
tations (May et al., 2019; Kurita et al., 2019) using
BERT embedding.

In addition, there have been a lot of notable ef-
forts towards detection of data bias in hate speech
and offensive languages (Waseem and Hovy, 2016;
Davidson et al., 2019; Sap et al., 2019; Mozafari
et al., 2020). Borkan et al. (2019) has discussed the
presence of unintended bias in hate speech detec-
tion models for identity terms like islam, lesbian,
bisexual, etc. The biased association of different
marginalized groups is still a major challenge in the
models trained for toxic language detection (Kim
et al., 2020; Xia et al., 2020). This is mainly due to
the bias in annotated data which creates the wrong
associations of many lexical features with specific
labels (Dixon et al., 2018). Lack of social context
of the post creator also affect the annotation pro-
cess leading to bias against certain communities in
the dataset (Sap et al., 2019).
Social bias datasets: More recently, many datasets
(Nadeem et al., 2021; Nangia et al., 2020) have
been created to measure and detect social biases
like gender, race, profession, religion, age, etc.
However, Blodgett et al. (2021) has reported that
many of these datasets lack clear definitions and
have ambiguities and inconsistencies in annota-
tions. A similar study have been done in (Sap
et al., 2020), where dataset has both categorical
and free-text annotation and generation framework
as core model.

There have been few studies on data augmen-
tation (Nozza et al., 2019; Bartl et al., 2020) to
decrease the incorrect association of lexical charac-
teristics in these datasets. Hartvigsen et al. (2022)
proposed a prompt based framework to generate
large dataset of toxic and neutral statements to re-
duce the spurious correlation for Hate Speech de-
tection.

However, no study has been done for detect-
ing social biases from toxic languages, which is
a challenging task due to the conceptual overlap
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between hate speech and social bias. Using a thor-
ough guideline, we attempt to uncover harmful bi-
ases in toxic language datasets. The curated dataset
is discussed in length in the next section, as are the
definitions of each category label and the annota-
tion procedure.

3 ToxicBias Dataset

We develop the manually annotated ToxicBias
dataset to enable the algorithm to correctly iden-
tify social biases from a publicly available toxic-
ity dataset. Below, we define social bias and the
categories taken into account in our dataset. The
comprehensive annotation process that we use for
dataset acquisition is then covered.

3.1 Social Bias
People typically have preconceptions, stereotypes,
and discrimination against other who do not belong
to their social group. Positive and negative social
bias refers to a preference for or against persons or
groups based on their social identities (e.g., race,
gender, etc.). Only the negative biases, however,
have the capacity to harm target groups (Crawford,
2017). As a result, in our study, we focus on iden-
tifying negative biases in order to prevent harmful
repercussions on targeted groups. Members of spe-
cific social groups (e.g., Women, Muslims, and
Transgender individuals) are more likely to face
prejudice as a result of living in a culture that does
not sufficiently support fairness. In this work, we
have considered five prevalent social biases:

• Gender: Favoritism towards one gender over
other. It can be of the following types: Alpha,
Beta or Sexism (Park et al., 2018).

• Religion: Bias against individuals on the ba-
sis of religion or religious belief. e.g. Chris-
tianity, Islam, Scientology etc (Muralidhar,
2021).

• Race: Favouritism for a group of people hav-
ing common visible physical traits, common
origins, language etc. It is related to dialect,
color, appearance, regional or societal percep-
tion (Sap et al., 2019).

• LGBTQ: Prejudice towards LGBTQ commu-
nity people. It can be due to societal percep-
tion or physical appearance.

• Political: Prejudice against/towards individu-
als on the basis of their political beliefs. For
example: liberals, conservatives, etc.

Categories Targets
Political liberal, conservative, feminist, etc.
Religion christian, jew, hindu, atheist, etc.
Gender men, women
LGBTQ gay, lesbian, homosexual, etc.
Race black, white, asian, canadians, etc.

Table 1: Bias categories and corresponding targets.

For all of these categories, target terms are the
communities towards which bias is targeted.

3.2 Social Bias Vs Hate Speech

While Social Bias and Hate Speech may appear the
same at first look, they are not. The differences
between them are quite subtle. While hate speech
is always associated with negative sentiment, social
bias can also have positive sentiments. Social bias
is preconceived belief toward or against specific
social identities, whereas hate speech is an explicit
comment expressing hatred against an individual
or a group. Not all hate speech is biased, and not
all biased speech is hate speech. We will use the
following examples to demonstrate the differences:

• Some comments are merely toxic without con-
taining any social biases in them, e.g.
IM FREEEEE!!!! WORST EXPERIENCE OF
MY F**K-ING LIFE

• Toxic comments can be hate speech but not
necessarily biased, e.g.
you gotta be kidding. trump a Christian, nope,
he is the devil, he hates blacks, Hispanics,
muslims, gays, Asians, etc.

• Some comments are just biased with negating
sentiment without containing any toxicity or
hate speech in them, e.g.
All Asian people are bad drivers.

3.3 Annotation Process

The dataset we used for annotation is collected
from a Kaggle competition named "Jigsaw Unin-
tended Bias in Toxicity Classification (jig, 2019;
Research Data, 2018)". It has around two mil-
lion Wikipedia comments annotated for toxicity.
The data also has several other toxicity subtype
attributes such as severe toxicity, obscene, threat,
insult, identity_attack, and sexual_explicit.

We discovered that, with the exception of the
identity_attack column, all of the columns in this
dataset are redundant for the social bias detection
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comment_text label category target implication
I wish gay men would just leave children alone. bias lgbtq gays gays are pedophiles
Islam, unfortunately, is a violent cult. bias religion muslims muslims are violent
Why does Netflix hate gay people? neutral - - -
Liberal women are so #k̂ing ugly! bias political, gender liberals, women prejudice against liberal women
Why are black thugs coming out here murdering locals? What
is the real story? Please someone..hire an investigative journalist.

bias race blacks prejudice against blacks

Table 2: Annotation of Bias along with its category, targeted groups and implication

task. Identity_attack shows denigration of the com-
ment towards a identity. This identity could be
related to race, religion, political affiliation, gen-
der, or sexual orientation. So, we filtered out only
those comments for which identity_attack values
are greater than or equal to 0.5. We annotated this
filtered dataset for the presence of social bias. We
have considered only five bias categories for our
annotation and possible targets listed in Table 1.
We did not include other categories due to their
low presence in the original dataset. The targets
describe any social or demographic groups that is
targeted in the comment. Bias implications are an-
notated in addition to bias categories and relevant
targets. Table 2 shows a sample annotation of this
filtered dataset. The bias implications are simple
free-text reasons showing the stereotype towards
the target group.

The final dataset contains 5409 cases with multi-
ple label annotations. There are 120 distinct terms
for target annotation divided into five categories.
To check the consistency of our framework and to
categorize biases, two different annotators anno-
tated the data independently. Considering the com-
plexity of the task, we provided a detailed guideline
to each of the annotators. Following the thorough
guidelines by Singh et al. (2022), we developed a
series of questionnaires for each categories to as-
sist the annotators. Inter-annotator agreement was
assessed for the first 2500 occurrences, and a Co-
hen’s Kappa value of 64.3 was found, indicating
good agreement between annotators. The figure
2 depicts the distribution of data among multiple
categories. All the disagreements between annota-
tors were resolved by adjudication with the help of
an expert. For details about the annotators, please
refer A.2.

Out of 5409, our dataset has 4325 bias instances
( 80% of dataset) and 1084 neutral (not biased to-
wards any identity). The number of instances for
each category across train, dev., test are shown in
Table 3.

Categories train dev test total
bias 3460 346 519 4325
neutral 867 86 131 1084
race 1769 181 252 2202
religion 1257 120 196 1573
gender 293 24 41 358
lgbtq 453 41 82 576
political 172 20 26 218

Table 3: Distribution of different categories across three
splits of Train, Dev. and Test.

3.4 Annotation Challenges
Several issues were encountered while annotating
harmful datasets, which must be handled to anno-
tate and build a consistent dataset.

• Quoting someone else statements considered
biased? Example:
Trump said "Mexicans are rapists and drug
dealers".

One may argue that such statements are not
biased as they are merely quoting someone
else’s opinions that are not theirs. However,
we label them biased because quoting some-
one else’s statement is just as detrimental and
harmful.

• We believe that asking questions about an is-
sue may not lead to bias. Example:
Black idiot or white idiot. What is the differ-
ence?

One would believe that this phrase is about
idiots in general, without regard to race. As a
result, there will be no prejudice. On the other
hand, some may interpret that both blacks and
whites are referred to as fools here.

• We also encountered statements lacking con-
text. Example:
Is that the white kind? I mean since you hate
whites so much?

Now here, we do not know whether the state-
ment is talking about white colour or white

135



race. We label these kinds of sentences as
neutral

• Some statements were purely made as a per-
sonal attack. These instances were labeled
appropriately as biased or neutral. Example:
Trump pig latin. Oink, oink, oink, grab em by
the poo say

We label this statement as biased because
Trump here represents a certain political party
(community), unlike the below example:
settlers is a demeaning racist term. You
Johnny are a white hating racist.

Here Johnny is not a big political leader
(name). So we mark this as neutral.

• We have encountered many sarcastic instances
in the dataset and label them appropriately.
Example:
Ah yes, re-education! That’s what us nasty
white folks need.

We label this statement as neutral because it’s
a self-criticism sarcastically.

Yeah - - because up until now, Islamic State
really loved the US! And the West in general!
They love us so much sometimes they cut off
peoples heads to keep as a souvenir!

The above statement was labeled as biased as
it is sarcastically showing prejudice against
Islam.

• Some statements are speaker dependent. Ex-
ample:
Shit still happenin and no one is hearin about
it, but niggas livin it everyday.

This statement will not be biased if said by
an African-American; however, it becomes
highly offensive and biased if stated by some-
one else.

4 Experimental Setup

In this section we will discuss about different mod-
els trained for detection of social biases and their
categories. For all our experiment, we split the
data into train, development, and test (80:8:12) set.
Since the dataset was imbalanced with respect to
bias column, we split it in stratified manner.

4.1 Metrices
We report accuracy, macro F1-score, and AUC-
based scores in accordance with best practice.

Figure 2: Distribution of bias categories in ToxicBias.
It is observed that some instances qualified for multiple
bias categories(12.22%)

These metrics would be used to assess the classi-
fier’s ability to distinguish between the bias and
neutral texts along with bias categories. AUC
stands for Area under the ROC curve. ROC curve
depicts the tradeoff between true positive rate
(TPR) and false positive rate (FPR). The AUC value
is high when the TPR is high and the FPR is low.

Borkan et al. (2019) proposed AUC-based met-
rics to quantify the unintended model bias. These
metrics compare the output distributions of in-
stances that include the specific community word
(subgroup distribution) with the rest (background
distribution). The three AUC-based bias scores are
as follows:

1. Subgroup AUC (AUCsub): It calculates
AUC exclusively on a subset of the data for a
specified community word. A low score indi-
cates that the model struggles to differentiate
between bias and neutral comments related to
the community word.

2. Background Positive and Subgroup Neg-
ative AUC (AUCbpsn): AUCbpsn uses the
biased background instances and the neutral
subgroup examples to determine AUC. A low
score indicates that the model has high false
positive rate. The model misinterprets neutral
comments mentioning the community with
biased comments missing it.

3. Background Negative and Subgroup Pos-
itive AUC (AUCbnsp): It uses the neutral
background instances and the biased subgroup
examples to determine AUC. A low score sug-
gests that the model has a high rate of false
negatives. The model misunderstands biased
comments that mention the community with
neutral ones that do not.
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Model P R F1 Acc
Logistic Regression 0.67 0.50 0.46 0.84

Baselines SVM 0.42 0.50 0.46 0.84
Bi-LSTM + Glove 0.59 0.58 0.58 0.78
BERT (Hierarchical) 0.62 0.66 0.64 0.86

Transformers w/o Aug BERT (Multi-task) 0.90 0.52 0.49 0.81
GPT2 0.62 0.66 0.62 0.71
BERT (Hierarchical) 0.86 0.86 0.86 0.88

Transformers /w Aug BERT (Multi-task) 0.86 0.86 0.86 0.87
GPT2 0.81 0.86 0.84 0.81

Table 4: Performance of various models on bias detection task. We report results for baselines, and Transformer
based training. For Transformer based training, we compare performances without data augmentation and with data
augmentation. Best scores are shown in bold.

Model Hierarchical Multi-task
Acc P R F1 Acc P R F1

political 0.96 0.48 0.50 0.49 0.96 0.77 0.57 0.61
gender 0.95 0.47 0.50 0.49 0.95 0.84 0.71 0.76
race 0.84 0.81 0.83 0.82 0.86 0.86 0.88 0.86
religion 0.82 0.82 0.82 0.82 0.93 0.91 0.94 0.92
lgbtq 0.93 0.81 0.81 0.81 0.94 0.86 0.87 0.86

Table 5: Bias Category Detection Results. P, R, F1
and Acc are Precision, Recall, F1-score and Accuracy
respectively. Best scores are shown in bold.

4.2 Baseline Models

We discuss several model architectures for detec-
tion of biases and their categories. For bias detec-
tion, which is a binary class classification task, we
consider Logistic Regression (LR) with TF-IDF
as our baseline model. Our baseline model gives
84% accuracy with 0.46 F1 score. The low F1
score clearly indicates that model has very high
false positive rate and false negative rate. We also
tried Support Vector Machine (linear kernel) with
TF-IDF and LSTM (Huang et al., 2015) with Glove
300d word representation (Pennington et al., 2014).
The best model is observed to be BERT (Devlin
et al., 2019) with 0.64 F1 score. Two different
model settings were used to detect biases and their
categories. We will discuss each of them in detail
in the following sections.

4.3 Hierarchical Model

In the hierarchical model, bias detection and cat-
egory classification was done in two steps. Bias
detection, a binary class classification task, is per-
formed first. If the post has some biases, then its
categories are detected next. Since a post may con-
tain several biases, the bias category detection task
was framed as multi-label classification. Bias detec-

tion results of several models in hierarchical model
architecture is shown in Table 4. Bias category de-
tection results in the hierarchical setting are shown
in Table 5.

4.4 Multi-task Learning
In the context of classification, multi-Task Learn-
ing tries to improve the performance of numerous
classification problems by learning them together.
So instead of predicting bias and its category in two
steps, we can train a model to predict them simul-
taneously in one step. Since there can be multiple
biases in a post, we cannot use logistic regression
or SVM in a multi-label classification task. Hence
in this model architecture, we try LSTM and BERT
models only. We use LSTM with a single output
layer. The last dense layer of the LSTM comprises
six neurons, one to detect bias and the other five to
identify bias categories.

Precision (P), recall (R), F1 (macro values for
all), and accuracy (Acc) for bias detection experi-
ments in Multi-task architecture is shown in Table
4. Table 5 shows the comparison between hierar-
chical and multi-task model for category detection
task.

4.5 Generation Framework
Considering the efficacy of GPT (Radford and
Narasimhan, 2018) based model for classification,
conditional generation tasks (Sap et al., 2020), we
frame the prediction of categorical variables and
implications as generation task. The input is a
sequence of tokens as in Equation1, where wi
are the tokens corresponding to comment text and
[BOS], [SEP], [EOS] are start token, separator to-
ken and end token respectively. Two task specific
tokens ([BON], [BOFF]) were added to the token
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comment_text
Ground truth
label

Predicted
label

Ground truth
category

Predicted
category

Quran is a holy book. neutral bias - religion
So then I was all like "I’d rather get the black plague
and lock myself in an iron maiden than go out with you.

neutral bias - race

Do they come in men’s sizes? neutral bias - gender
What I’ve just shown is that this happens in every black hole. neutral bias - race

Table 6: Error analysis showing model biases from predictions of Multi-task BERT model without augmentation.

Variables BLEU-2 RougeL
Categories 61.60±0.96 88.23±1.23
Target subgroup 52.95±2.84 77.58±4.21
Implications 33.4±1.55 39.5±1.20

Table 7: Evaluation of various generation tasks. The
standard deviations for three runs are also reported.

vocabulary which were used as w[bias ] in the in-
put. Here, [BON], [BOFF] correspond to bias and
neutral instances respectively. As we have many
inputs with multiple bias categories and targets, we
combine them using a comma separator in the raw
text. While encoding the input we use w[C]i , w[T]i

as the token corresponding to them respectively.
Similarly, w[R]i is used for representing the tokens
corresponding to implications.

x = {[BOS], wi, [SEP] w[bias ], [SEP]

w[C]i , [SEP]w[T]i , [SEP]w[R]i , [EOS]}
(1)

For this experiment, we finetune the GPT-2 (Rad-
ford et al., 2018) model with commonly used hy-
perparameters. For training we use cross-entropy
loss as cost function. During inference, we first
calculate the normalized probability of w[bias ] con-
ditioned on the initial part of input and then append
the highest probable token to the input and generate
rest of the tokens till [EOS].

We use BLEU-2 (Papineni et al., 2002) and
RougeL (Fmeasure) (Lin, 2004) as the metrics to
calculate the performance of the model for category,
target and implication of the comment text(Table 7)
and macro F1 as metric for bias evaluation(Table 4).
Performance for category generation is better than
other two variable as it has less ambiguity whereas
the low performance for implications show the vari-
ability in the annotation for implications.

We report all the hyperparameters and training
setup in appendix A.3.

4.6 Results and Discussion
From the above tables, we can infer that the BERT-
based hierarchical model outperforms Multi-task
and GPT-2 models for the bias detection task. In
addition, category identification is performed more
effectively by multi-task model. This is quite ap-
parent from the fact that in multi-task learning each
model aid each others due to shared parameters.
We also see that F1 scores for political and gender
categories are less when compared to other cate-
gories in the category detection task. One plausible
explanation might be the low frequency of such
biases in our dataset. The BLEU scores of cat-
egory and target subgroup generation are higher
than those of bias implication generation, as shown
in Table 7. The fundamental reason for this is that
the bias category and target have less distinct bi-
grams/tri-grams than the implications. We show
an error analysis for categorical prediction tasks
after training the models. We discovered that the
model predicts incorrectly for some simple sen-
tences. A few examples are also listed in the Table
6. This most likely occurred due to lexical over-
fitting/ model bias of the trained model towards
some of the identity specific terminologies. In the
next section, we discuss an approach to reduce
this unwanted behavior of the model using counter-
narrative augmentation.

5 Mitigation of Model Bias

When we look at the incorrectly classified com-
ments in Table 6, we observe that they contain
community words such as ’blacks,’ ’Quran,’ and
so on. Sometimes, due to the presence of these
community terms, our model predicts that these
comments would be biased. In essence, our initial
model is latching onto some community related
terms and hence suffers from model bias. Accord-
ing to (Zueva et al., 2020), most existing models
provide predictions with certain bias. Even if the
statement itself is not toxic, the model commonly
classifies it as toxic if it includes specific frequently
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comment_text
Ground truth
category

Prediction (without
augmentation)

Prediction (with
augmentation)

Quran is a holy book. none religion none
Islam is a peaceful religion. none religion none
Muslims are invaders. religion religion religion
Do they come in men’s sizes? none gender none
What I’ve just shown is that this happens in every black hole. none race none
I’m sick of niggers, it’s a bad neighborhood. I don’t like being
around them, they’re animals.

race race race

Table 8: Error analysis showing the effectiveness of counter-narrative augmentation. After training with augmented
data, the resulting model does not latch on to the community related terms.

Subgroup Count % Bias
all comments 5409 79.92
black 1291 79.55
jewish 269 74.34
lgbt 778 77.24
muslim 1263 87.01
female 586 76.45

Table 9: Percentage of bias comments by identity terms
such as black, jewish, lgbt, muslim, female in the Toxi-
cBias dataset.

targeted identities (such as women, blacks, or Jews).
Similarly, our model incorrectly labels comments
referencing particular identities, such as Blacks,
Muslims, and Whites, as social bias. Model biases
emerge when identity words like Blacks, Whites,
and Muslims appear more frequently in biased com-
ments than in neutral comments. If the training data
for a machine learning model is skewed towards
certain terms, the final model is likely to acquire
this bias. Table 9 shows the bias percentage in Tox-
icBias for several identities/subgroups, indicating
the imbalance for bias labels among those identi-
ties and emphasising the importance of AUC-based
metrics resilient to these data skews.
Counter-narratives: Despite enormous attempts
to build suitable legal and regulatory responses
to hate content on social media platforms, deal-
ing with hatred online remains challenging. If
hate speech is addressed with standard content
deletion or user suspension methods, censorship
may be accused. Actively addressing hate mate-
rial through counter-narratives (i.e., informed tex-
tual responses) is one potential technique that has
received little attention in the academic commu-
nity thus far. A counter-narrative (also known as
a counter-comment or counter-speech) is a reply
that provides non-negative feedback through fact-
based arguments and is often recognized as the

most effective way to deal with hate speech.

subgroup AUCsub ↑ AUCbpsn ↑ AUCbnsp ↑
black 0.48 0.50 0.49
jewish 0.47 0.50 0.49
lgbt 0.81 0.83 0.82
muslim 0.82 0.82 0.82
female 0.81 0.81 0.81

Table 10: AUC based scores for subgroups on bias detec-
tion model trained without data augmentation. Higher
AUC values for each target subgroup indicate reduced
lexical overfitting/model bias for those targets.

subgroup AUCsub ↑ AUCbpsn ↑ AUCbnsp ↑
black 0.86 0.78 0.97
jewish 0.91 0.93 0.91
lgbt 0.89 0.91 0.93
muslim 0.96 0.97 0.86
female 0.93 0.94 0.93

Table 11: AUC based scores on bias detection model
trained after data augmentation. Higher AUC values for
each target subgroup indicate reduced lexical overfitting/
model bias for those targets.

We use two counter-narrative datasets to reduce
the model biases: CONAN (Chung et al., 2019)
and Multi-target CONAN (Fanton, Margherita and
Bonaldi, Helena and Tekiroğlu, Serra Sinem and
Guerini, Marco, 2021). These datasets provide
counter-narratives to hate speech or stereotypes
directed towards social groups such as Muslims,
Blacks, Women, Jews, and LGBT people. So they
do not contain any negative social biases towards
those groups. Combining these counter narratives
ensures that the resulting dataset will have more
neutral/positive instances mentioning those iden-
tity terms. Adding these counter narratives to our
dataset significantly decreased model biases. We
used total of 7219 counter-narratives related to
jews (593), muslim (4996), black (352), homosex-
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ual_gay_or_lesbian (617), and female (661). As
illustrated in table 10, black and jewish identities
suffer from both high false positives and high false
negatives. However, after counter-narrative aug-
mentation, the resulting model appears to be ca-
pable of dealing with the problem of model bias.
Table 11 shows the reduction in model bias using
AUC-based metrics. Table 8 includes an error anal-
ysis to show how CONAN has helped reduce model
bias.

6 Conclusion and Future Work

We have demonstrated that identity attacks or hate
speech often incorporate social biases or stereo-
types. However, not all hate speech can be labeled
as social bias. Some of them are merely personal in-
sults. Filtering out such biases from hate speech is
not a trivial task. Furthermore, we have frequently
observed that detecting bias without context for
the comment or demographic information of the
comment holder makes the annotation much more
challenging. However, detecting these social bi-
ases from toxic datasets, which are available in
relatively large amounts, will be a useful starting
point for social bias research in other forms of text.

The issue of model bias is also observed during
inference. The imbalanced existence of particular
community terms (muslims, whites, etc.) might
lead to a model labeling a comment as biased. To
attenuate model biases, we used counter-narratives
and showed that they help significantly to reduce
model biases. From our study, we also observe
that biases can have directions too. So basically,
biases can occur against specific communities and
in favour of a community. We intend to detect such
biases in future work.
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8 Limitations

The most notable limitation of our work is the lack
of external context and small-sized dataset. In our

present models, we have not considered any exter-
nal context that can be useful for the categorization
task, such as the profile bio, user gender, post his-
tory, etc. Our work currently considers only five
types of social biases, not all other possible dimen-
sions of bias. We also concentrated on using only
the English language in our work, and the dataset
is oriented toward western culture. The bias anno-
tations in the dataset may not be very relevant to
people of non-western culture. Furthermore, Multi-
lingual bias is not taken into account.
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Serra Sinem and Guerini, Marco. 2021. Human-in-
the-Loop for Data Collection: a Multi-Target Counter
Narrative Dataset to Fight Online Hate Speech. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys, 51:1–30.

Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large scale
crowdsourcing and characterization of twitter abusive
behavior.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
Toxigen: A large-scale machine-generated dataset for
adversarial and implicit hate speech detection.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging.

Simrat Kaur, Sarbjeet Singh, and Sakshi Kaushal.
2021. Abusive content detection in online user-
generated data: A survey. Procedia Computer Sci-
ence, 189:274–281. AI in Computational Linguis-
tics.

Jae Yeon Kim, Carlos Ortiz, Sarah Nam, Sarah Santiago,
and Vivek Datta. 2020. Intersectional bias in hate
speech and abusive language datasets.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in contex-
tualized word representations.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Thomas Manzini, Lim Yao Chong, Alan W Black, and
Yulia Tsvetkov. 2019. Black is to criminal as cau-
casian is to police: Detecting and removing multi-
class bias in word embeddings. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 615–621, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ariadna Matamoros-Fernández and Johan Farkas. 2021.
Racism, hate speech, and social media: A system-
atic review and critique. Television & New Media,
22(2):205–224.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Marzieh Mozafari, Reza Farahbakhsh, and Noël Crespi.
2020. Hate speech detection and racial bias mitiga-
tion in social media based on BERT model. CoRR,
abs/2008.06460.

Deepa Muralidhar. 2021. Examining Religion Bias in
AI Text Generators, page 273–274. Association for
Computing Machinery, New York, NY, USA.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R Bowman. 2020. Crows-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. arXiv preprint arXiv:2010.00133.

Debora Nozza, Claudia Volpetti, and Elisabetta Fersini.
2019. Unintended bias in misogyny detection. In
IEEE/WIC/ACM International Conference on Web
Intelligence, WI ’19, page 149–155, New York, NY,
USA. Association for Computing Machinery.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

141

http://arxiv.org/abs/1703.04009
http://arxiv.org/abs/1703.04009
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1145/3232676
https://doi.org/10.1145/3232676
http://arxiv.org/abs/1802.00393
http://arxiv.org/abs/1802.00393
http://arxiv.org/abs/1802.00393
https://doi.org/10.48550/ARXIV.2203.09509
https://doi.org/10.48550/ARXIV.2203.09509
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/https://doi.org/10.1016/j.procs.2021.05.098
https://doi.org/https://doi.org/10.1016/j.procs.2021.05.098
http://arxiv.org/abs/2005.05921
http://arxiv.org/abs/2005.05921
http://arxiv.org/abs/1906.07337
http://arxiv.org/abs/1906.07337
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.1177/1527476420982230
https://doi.org/10.1177/1527476420982230
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
http://arxiv.org/abs/2008.06460
http://arxiv.org/abs/2008.06460
https://doi.org/10.1145/3461702.3462469
https://doi.org/10.1145/3461702.3462469
https://doi.org/10.1145/3350546.3352512
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2799–2804, Brussels, Belgium. Association for Com-
putational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Marie Plaisime, Candace Robertson-James, Lidyvez
Mejia, Ana Núñez, Judith Wolf, and Serita Reels.
2020. Social media and teens: A needs assess-
ment exploring the potential role of social me-
dia in promoting health. Social Media + Society,
6(1):2056305119886025.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Civil Research Data. 2018. Civil comments.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias
in hate speech detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1668–1678, Florence, Italy. Asso-
ciation for Computational Linguistics.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. ACL.

Sandhya Singh, Prapti Roy, Nihar Sahoo, Niteesh
Mallela, Himanshu Gupta, Pushpak Bhattacharyya,
Milind Savagaonkar, Nidhi Sultan, Roshni Ramnani,
Anutosh Maitra, and Shubhashis Sengupta. 2022.
Hollywood identity bias dataset: A context oriented
bias analysis of movie dialogues. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 5274–5285, Marseille, France. Eu-
ropean Language Resources Association.

Stefanie Ullmann and Marcus Tomalin. 2020. Quar-
antining online hate speech: technical and ethical
perspectives. Ethics and Information Technology,
22(1):69–80.

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols
or hateful people? predictive features for hate speech
detection on twitter. In Proceedings of the NAACL
Student Research Workshop, pages 88–93, San Diego,
California. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. 2020.
Demoting racial bias in hate speech detection. In
Proceedings of the Eighth International Workshop
on Natural Language Processing for Social Media,
pages 7–14, Online. Association for Computational
Linguistics.

Nadezhda Zueva, Madina Kabirova, and Pavel Kalaidin.
2020. Reducing unintended identity bias in Russian
hate speech detection. In Proceedings of the Fourth
Workshop on Online Abuse and Harms, pages 65–69,
Online. Association for Computational Linguistics.

A Appendix

A.1 Ethical Considerations

Our work aims at capturing various social biases in
toxic social media posts and demonstrates the an-
notation quality on biases in one of existing dataset.
We also discuss the challenges we faced while do-
ing the annotation of the dataset, specifically due
to the absence of context for each instance in the
dataset. Also, study of social biases come with eth-
ical concerns of risks in deployment (Ullmann and
Tomalin, 2020). As these toxic posts can create
potentially harm to any user or community, it is
required to conduct this kind of research to detect
them. If done with precautions, such research can
be quite helpful in automatic flagging of toxic and
harmful online contents.

Researchers working the problem of social bias
detection on any form of text would benefit from
the dataset we have collated and from the infer-
ences we got from multiple training strategies.

A.2 Annotator Demographics and Treatment

Both the annotators were trained and selected
through extensive one-on-one discussions, and
were working voluntarily. Both of them went
through few days of initial training where they
would annotate many examples which would then
be validated by an expert and were communicated
properly about any wrong annotations during train-
ing. As there are potential negative side effects of
annotating such toxic comments, we used to have
regular discussion sessions with them to make sure
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they are not excessively exposed to the harmful
contents. Both the annotators were Asian male
and were of age between 23 to 26. The expert was
an Asian female with post-graduation degree in
sociology.

A.3 Training Details
A.3.1 BERT Training
We finetune 12 layer BERT base uncased with
batch size of 32 for two epochs. Max token
length of 128 is used. We experiment with learn-
ing rates of 2e− 5, 3e− 5, 4e− 5, 5e− 5 with
AdamW(Loshchilov and Hutter, 2019) optimizer
and epochs of 5, 10, 20. We also use a dropout
layer in our model. AdamW optimizer with learn-
ing rate = 5e−05, epsilon = 1e−08, decay = 0.01,
clipnorm = 1.0 were used.

A.3.2 GPT-2 Training
We finetune GPT-2 with a training batch size of 1,
gradient accumulation step as 4, and 200 warm up
steps. Experiments were run with a single GeForce
RTX 2080 Ti GPU. Finetuning one GPT-2 model
took around 40 minutes for 5 epochs.

We have kept all the parameters of BERT and
GPT-2 trainable. All of our implementations uses
Huggingface’s transformer library (Wolf et al.,
2020).
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Abstract

Despite neural language models qualitatively
capturing many human linguistic behaviors, re-
cent work has demonstrated that they under-
estimate the true processing costs of ungram-
matical structures. We extend these more fine-
grained comparisons between humans and mod-
els by investigating the interaction between
Principle B and coreference processing. While
humans use Principle B to block certain struc-
tural positions from affecting their incremental
processing, we find that GPT-based language
models are influenced by ungrammatical posi-
tions. We conclude by relating the mismatch
between neural models and humans to prop-
erties of training data and suggest that certain
aspects of human processing behavior do not
directly follow from linguistic data.

1 Introduction

Neural models trained on text data alone have been
shown to qualitatively capture aspects of a large
variety of human linguistic behaviors (e.g., Gulor-
dava et al., 2018; Wilcox et al., 2019; Warstadt
et al., 2020; Hu et al., 2020; Jumelet et al., 2021).
Investigations have evaluated a range of levels of
linguistic knowledge, including: i) syntax (Marvin
and Linzen, 2018; Warstadt et al., 2019; Wilcox
et al., 2019, 2021a), ii) semantics (Pannitto and
Herbelot, 2020; Misra et al., 2020), and iii) dis-
course structure and pragmatics (Schuster et al.,
2020; Davis and van Schijndel, 2020).

Recent work has placed increased attention on
finer-grained comparisons between neural models
and humans (e.g., van Schijndel and Linzen, 2021;
Wilcox et al., 2021b; Paape and Vasishth, 2022).
The growing consensus is that neural models un-
derestimate the processing costs seen with humans,
while nonetheless capturing the broad patterns (see
Wilcox et al., 2021b). The present study adds to this
literature by comparing the incremental processing
of coreference in humans and neural models.

While coreference, more generally, is modulated
by discourse, pragmatics, and information struc-
ture (e.g., Arnold, 1998, 2001; Rohde et al., 2006;
Hartshorne, 2014; Rohde and Kehler, 2014), there
are sentential restrictions on coreference that have
immediate effects on human incremental process-
ing (e.g., Nicol, 1988; Clifton et al., 1997; Sturt,
2003; Chow et al., 2014). This study finds that, con-
trary to humans, autoregressive neural models do
not similarly restrict their behavior in coreference
processing.

In particular, the present study investigated the
interaction between the Binding Principles, articu-
lated in Chomsky (1981), and incremental process-
ing. Binding Principles account for the constrained
distribution of pronouns (and anaphora) and their
possible linguistic antecedents:

(1) Binding Principles
PRINCIPLE A An anaphor is bound in its

governing category
PRINCIPLE B A pronominal is free in its

governing category
PRINCIPLE C An R-expression is free

Roughly, Principle A excludes examples like John
thinks that Mike hates himself from meaning that
“John thinks that Mike hates John”. Conversely,
Principle B excludes examples like John thinks that
Mike hates him from meaning that “John thinks that
Mike hates Mike”. Finally, Principle C excludes
He hates John from meaning “John hates John”.
These principles are mediated by a structural rela-
tion, c-command, rather than linear order. While
the specific binding conditions have been refined
within syntactic theory (e.g., Reinhart and Reuland,
1993), we focused here on the empirical results
concerning Principle B and incremental processing,
putting aside explicit theoretical commitments.

(2) Bill told Clark that Robert had deceived
him.
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In (2), despite him agreeing in gender with Bill,
Clark, and Robert, only two of these are possible
antecedents of him: Bill and Clark. Principle B
blocks the structural location occupied by Robert
from serving as an antecedent of him. In human
incremental processing, this restriction has immedi-
ate effects, preventing the gender of this embedded
subject from influencing the processing of the pro-
noun (see Chow et al., 2014). Moreover, Principle
B can restrict the prediction of nouns following
certain cataphoric pronouns – pronouns that oc-
cur before their coreferring noun phrase (Kush and
Dillon, 2021). For example, in (3), him can only
corefer with Mark and not Michael. In human in-
cremental processing, the cataphoric pronoun him
has no effect on the processing of the subject (e.g.,
Michael).

(3) Before offering him a fancy pastry, Michael
politely asked Mark for help.

In what follows, we evaluate whether GPT-like
autoregressive neural models use Principle B to
restrict their incremental processing like humans.
Specifically, we investigated two broad effects of
Principle B: i) its interaction with “vanilla” pro-
nouns (as in (2)), and ii) its interaction with cat-
aphora (as in (3)).

While models appear to learn aspects of Princi-
ple B (treating apparent violations in unique ways),
we find that neural models, in contrast to humans,
do not categorically ignore structural positions
blocked by Principle B. Ultimately, the present
study suggests that, beyond underestimating the
processing costs seen in humans, models fail, at
least in some cases, to learn qualitatively similar
patterns to humans. This suggests, in turn, that
certain aspects of human parsing behavior are not
directly evidenced in linguistic data.

2 Background

In human coreference processing, a major question
is whether antecedent retrieval, triggered by the
presence of a pronoun, is restricted first by agree-
ment features (e.g., gender, number), returning pos-
sibly ungrammatical antecedents, or by structural
constraints, like Principle B, which serve as an ini-
tial filter. As an illustration consider the following
set of stimuli discussed in Chow et al. (2014):

(4) a. John thought that Bill liked him.
b. John thought that Mary liked him.

c. Jane thought that Bill liked him.
d. Jane thought that Mary liked him.

If Principle B immediately restricts the set of pos-
sible antecedents of him, then we would expect
the reading times at him to be the same for (4-a)
and (4-b), as in both cases the structurally licit an-
tecedent agrees in gender. If instead structurally
ungrammatical antecedents can influence the im-
mediate processing of him, then we would expect
that (4-a)–(4-c) would pattern together, to the ex-
clusion of (4-d), where no antecedent is given in
the linguistic context. Put another way, whether the
structurally ungrammatical antecedent influences
reading times at him is indicative of the status of
Principle B in human linguistic processing.

The bulk of work investigating these, and similar
constructions, has found that structural constraints
like Principle B do immediately influence human
incremental processing (e.g., Clifton et al., 1997;
Sturt, 2003; Chow et al., 2014; Kush and Phillips,
2014; Kush and Dillon, 2021). That is, finding that
(4-a) and (4-b) pattern together and (4-c) and (4-d)
pattern together.1

Within work in natural language processing, ex-
isting models have been claimed to capture as-
pects of Principle A (e.g., Warstadt et al., 2020;
Hu et al., 2020). Principle C has received less at-
tention, though see Mitchell et al. (2019) which
found that LSTM language models failed to obey
Principle C. Coreference, more broadly, has also
been explored, with results suggesting that mod-
els encode features of coreference resolution (e.g.,
Sorodoc et al., 2020) and the interaction of implicit
causality and pronouns (verb biases that influence
preferred antecedents for pronouns; Upadhye et al.,
2020; Davis and van Schijndel, 2021; Kementched-
jhieva et al., 2021).

The present study straightforwardly extends ex-
isting studies of neural models to Principle B.
While we cannot assess whether neural models
truly “interpret” the pronoun as coreferring with
certain antecedents (and thus fully verify whether
they have learned Principle B, or even Principle A),
we can compare the difference in model behavior
conditioned on minimally contrastive stimuli. In
fact, human online sentence comprehension stud-

1However, some other work has suggested that grammat-
ically illicit antecedents can in fact have measurable effects
(e.g., Badecker and Straub, 2002; Kennison, 2003). Such ef-
fects may be capturing later stages of processing (see Sturt,
2003). Nevertheless, the plurality of the evidence suggests
that Principle B has immediate effects on human processing.
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ies are similarly limited. Since we cannot directly
measure the content retrieved in reading a pronoun,
online reading times are taken as a proxy for the
consideration of certain antecedents.

3 Neural Models and Measures

We analyzed four autoregressive models with GPT-
like architectures: GPT-2 XL (1.5B parameters;
Radford et al., 2019), GPT-Neo (2.7B parameters;
Black et al., 2021), GPT-J (6B parameters; Wang
and Komatsuzaki, 2021), and GPT-3 (175B param-
eters; Brown et al., 2020). GPT-2 XL, GPT-Neo,
and GPT-J were accessed via HuggingFace (Wolf
et al., 2020), and GPT-3 by using OpenAI’s API.2

In evaluating model performance, we used sur-
prisal (Hale, 2001; Levy, 2008):

−log Prob(word|context) (1)

Surprisal has a linear relationship with human
reading times (Smith and Levy, 2013). We follow a
growing body of work in utilizing this relationship
to compare the behavior of neural models and hu-
mans (e.g., van Schijndel and Linzen, 2021; Wilcox
et al., 2021b).3

To aid the interpretation of the results, we calcu-
lated by-item gender mismatch effects (GMMEs).
GMMEs are used in human experiments to index
the increased cost in processing incurred when en-
countering a pronoun (or a postcedent, in the case
of cataphoric pronoun processing) that was not ex-
pected (e.g., van Gompel and Liversedge, 2003;
Reali et al., 2015; Kush and Dillon, 2021). Thus,
GMMEs are a means of measuring human predic-
tions by providing evidence for mismatches be-
tween expectations and reality. We calculated two
classes of GMMEs for neural models targeting gen-
der prediction for, i) “vanilla” pronouns, and ii)
subjects after reading cataphoric pronouns.

For predictions about upcoming pronouns, con-
sider:

(5) a. Fred thought Kathy hated him
b. Mike thought Kevin hated him

To calculate the GMME for (5), we took the dif-
ference between the surprisal for him in (5-a) and

2We used the version of GPT-3 called text-davinci-002.
All the stimuli, results, and scripts for recreating the statis-
tics and figures can be found at https://github.com/
forrestdavis/PrincipleB.

3For a more explicit comparison between human self-
paced reading times and neural models see Section 6.1.

the surprisal for him in (5-b). More generally, we
calculated a GMME by taking the difference in
the surprisal of the target (either a pronoun or the
subject noun) between minimal pairs. A positive
GMME would suggest that the model was more
surprised when the embedded subject mismatched
in gender with the pronoun; in other words, the
gender of the embedded subject influenced the sur-
prisal of the pronoun. In this case, comparing the
GMME for him and his is informative about the
status of Principle B in neural models. Humans
have been shown to exhibit no GMME dependent
on the embedded subject with him, because Princi-
ple B blocks co-indexation between these positions.
For his, however, co-indexation is possible, and a
GMME is obtained (see Chow et al., 2014).4

For predictions about upcoming antecedents af-
ter cataphoric pronouns, consider:

(6) a. While he was at work, Fred ate food.
b. While he was at work, Keisha ate food.

For (6) we calculated a GMME by taking the dif-
ference in surprisal of Keisha in (6-b) and the sur-
prisal of Fred in (6-a). A positive GMME would
indicate that the neural model was more surprised
when the subject mismatched with the gender of
the cataphoric subject pronoun.5

4 Principle B and Pronouns

Recall, humans restrict their incremental process-
ing of coreference to just those antecedents which
are grammatically licensed (e.g., Chow et al., 2014).
That is, in sentences like Fred thought Amy hated
him, him cannot be co-indexed with the structural
position that Amy occupies, and thus, the gender of
Amy does not hinder the processing of him. In this
section, we evaluated the ability of GPT-like autore-
gressive neural models to replicate this qualitative
effect across four experimental conditions.

4.1 Stimuli

In this section, we consider four experiments:

(7) Experiments

4Because the feminine pronoun her is ambiguous between
a possessive and an object pronoun when processing left to
right (e.g., Sue loves her and Sue loves her friend) only mas-
culine pronouns were evaluated in pronoun prediction.

5All subject nouns investigated were encoded by the neural
models as single tokens rather than being split into multiple
tokens as in Randolf mapping to ‘Rand’ + ‘olf’ in GPT-J.
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a. SIMPLE SUBJECT: Single clause with
simple subject

b. COMPLEX SUBJECT: Single clause
with complex subject containing a
prepositional phrase

c. 2NP: Clause with embedding and sim-
ple subjects

d. 3NP: Clause with embedding and sim-
ple subjects and an object

Examples of each are included below:

(8) Stimuli Examples
a. SIMPLE SUBJECT: The boy meets

him.
b. COMPLEX SUBJECT: The story about

Eric hurt him.
c. 2NP: Jason hadn’t expected that

Adam was investigating him.
d. 3NP: Liam advised the nephew that

Patrick can praise him.

We used the data generation scripts and vocabu-
lary provided with the BLiMP dataset to create our
stimuli (Warstadt et al., 2020). The sentences are
all grammatical and generally semantically felici-
tous (despite certain interpretations being blocked
by Principle B). The stimuli for COMPLEX SUB-
JECT always had a subject comprised of “the X
about. . . ”, where X ranged over inanimate nouns
like book or story.6

There were 1000 base sentences for each experi-
ment, with each sentence having exponents that var-
ied gender in all relevant positions (e.g., (8-c) has
four forms varying whether the matrix subject is Ja-
son or Amanda and whether the embedded subject
is Adam or Victoria).7 The applicability of Prin-
ciple B varied by experiment. For SIMPLE SUB-
JECT, Principle B blocks co-indexation between
the subject and the object pronoun. For COMPLEX

SUBJECT, Principle B does not block co-indexation
between the lower noun (e.g., Eric in (8-b)) and
the pronoun. Principle B, however, does block
the higher nouns (e.g., the story in (8-b)) from co-
indexing with the pronoun him.8 For 2NP and
3NP, Principle B blocks co-indexation between the

6The full set contained book, pamphlet, brochure, play,
movie, newspaper article, story, essay, report, documentary,
commentary, and show.

7No noun was repeated in a single sentence. That is, there
were no sentences like The man advised the nephew that the
man can praise him.

8Additionally, all higher nouns were inanimate, again
blocking the applicability of him.

Figure 1: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by two condi-
tions: i) SIMPLE SUBJECT, and ii) COMPLEX SUBJECT
(e.g., (Bill|The book about Bill) worried him). Error
bars are 95% confidence intervals.

embedded subject (e.g., Adam in (8-c) and Patrick
in (8-d)) and the pronoun, but not the matrix subject
(e.g., Jason in (8-c) and Liam in (8-d)) or matrix
object for 3NP (e.g., the nephew in (8-d)). If neural
models patterned like humans, then we should find
no GMME when Principle B blocks co-indexation,
and positive GMMEs elsewhere.

4.2 Simple Sentences and Pronoun Prediction

First, we investigated the influence on pronoun
prediction that subjects had in single clause con-
structions (the SIMPLE SUBJECT and COMPLEX

SUBJECT experiments; see (8-a) and (8-b) above
for the relevant contrasts).

Results grouped by model, condition, and pro-
noun are given in Figure 1. Statistical analyses
were conducted via linear-mixed effects models.9

Starting with the results for possessive pronouns,
we found that all models showed a positive GMME.
That is, models expected possessive pronouns to
agree in gender with the subject, both in simple
sentences (e.g., Fred worried his. . . ) and sentences
with complex subjects (e.g., The book about Fred
worried his. . . ).

For object pronouns, GMME differed by subject
type. For complex subjects, where co-indexation
between the object pronoun and the lower noun
(e.g., Fred in The book about Fred) is possible,

9We used lmer (version 1.1.30; Bates et al., 2015) and
lmerTest (version 3.1.3; Kuznetsova et al., 2017) in R. Models
were fit to predict the surprisal of the pronoun him or his with
a main effect of condition (i.e. whether the noun matched the
gender of the pronoun) with by-item random intercepts.

147



Figure 2: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by whether i)
the matrix subject, or ii) the embedded subject agrees in
gender (e.g., (Bill|Hannah) thinks that (Mark|Sue) hates
him). Error bars are 95% confidence intervals.

models again exhibited a positive GMME, suggest-
ing that agreement between the object pronoun and
the lower noun was expected. For simple subjects,
where co-indexation between the subject and the
pronoun is not possible (e.g., him cannot refer to
Fred in Fred worried him), a negative GMME was
obtained. That is, despite the subject not being
a possible coreferent for the object pronoun, the
gender of the subject (negatively) influenced the
surprisal of the object pronoun.

4.3 Multiple NPs

We found evidence that, in cases where co-
indexation is blocked by Principle B, models ex-
pected pronouns to mismatch with the gender of
the antecedent. While suggesting that models con-
sider antecedents that humans do not, it nonetheless
suggests models capture aspects of the ungrammat-
icality of violations of Principle B. In this section,
we evaluated models on more complex sentences
containing two or three noun phrase antecedents
(the 2NP and 3NP experiments; see examples (8-c)
and (8-d) in Section 4.1 for the relevant contrasts).

Results for the 2NP case are given in Figure 2
(with results for the 3NP case given in Figure 7 in
Appendix A). Statistical analyses were conducted
via linear-mixed effects models.10 Starting with

10Models were fit to predict the surprisal of the pronoun
him or his with an interaction between the matrix subject
gender (i.e. whether it matched with the pronoun) and the
embedded subject gender, in the two noun phrase case, or
the matrix subject gender, the matrix object gender, and the
embedded subject gender (e.g., Fred|Mary told Mark|Karen

the results for possessive pronouns, in both condi-
tions, all models exhibited a positive GMME in all
positions (e.g., matrix subject, embedded subject).
That is, models predicted that possessive pronouns
would agree with the antecedent nouns.

For object pronouns, we again found a mismatch
in the direction of the GMME conditioned on the
structural position of the relevant antecedent. When
co-indexation is grammatically licensed (e.g., him
can refer to Bill in Bill knows that Mary loves him),
a positive GMME was obtained for all models. In
cases where Principle B blocks co-indexation, all
models exhibited a negative GMME instead. As in
Section 4, this suggests that grammatically unavail-
able antecedents influenced the surprisal of object
pronouns contrary to the results obtained in human
incremental processing.

4.4 Interim Discussion
Broadly, the above experiments demonstrated that
neural models exhibited GMMEs when pronouns
mismatched in gender with preceding nouns. For
the possessive pronoun his, this amounted to pos-
itive GMMEs across-the-board. That is, mis-
matches in gender between his and any antecedent
increased the surprisal of his. For the object pro-
noun him, the GMME interacted with Principle
B. Positive GMMEs were obtained when gram-
matically licit antecedents mismatched in gender,
suggesting models predicted him to agree with
these antecedents. However, when Principle B
blocked the structural position from permitting co-
indexation between the antecedent and the object
pronoun, a negative GMME was obtained. That is,
models expected him to mismatch in gender with
grammatically unavailable antecedents.

As evidenced by the COMPLEX SUBJECT exper-
iment, this negative GMME is not merely a dispref-
erence for local agreement with object pronouns.
For sentences like The book about Fred surprised
him, the more recent noun in linear order agrees in
gender with him, but we found a positive GMME.
Rather, neural models appear to have learned, at
least some, aspects of Principle B (in so far as cer-
tain structural positions are marked). However, the
negative GMME was unexpected given the findings
in the literature surrounding incremental process-
ing of such constructions in English. Ultimately,
neural models appear to use information in predic-
tion that the human parser does not.

that Frank|Sue hated him), in the three noun phrase case, and
with by-item random intercepts.
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5 Principle B and Cataphora

The above section explored the role Principle B
plays in pronoun prediction for GPT-like neural
models, finding a qualitative mismatch between
the incremental processing of neural models and
humans. Recent work in psycholinguistics has also
demonstrated that Principle B can restrict the pre-
diction of subjects following cataphoric object pro-
nouns (Kush and Dillon, 2021).

(9) a. While baking him some cookies,
Nicholas chatted with Mark.

b. While an employee baked him some
cookies, Nicholas happily chatted with
Mark.

In (9), him is a cataphoric pronoun – the noun
phrase it corefers with comes later in the sentence.
While him can be co-indexed with Nicholas in
(9-b) (meaning Nicholas had some cookies baked
for him), him cannot be co-indexed with Nicholas
in (9-a).11 Principle B excludes this latter co-
indexation.12 Kush and Dillon (2021) found that
humans exhibited a GMME at the subject (e.g.,
Nicholas) only in cases where co-indexation be-
tween the catphoric him and the subject was pos-
sible (e.g., (9-b)). As with “vanilla” pronouns, it
seems, then, that Principle B immediately restricts
the human parser, such that grammatically unavail-
able structural positions are ignored.

In the following section, we evaluated whether
neural models patterned like humans in this re-
spect. That is, whether models exhibited a GMME
only in cases where Principle B did not block co-
indexation. First, we also verified that the neural
models could use cataphoric pronouns to restrict
the prediction of subjects more generally.

5.1 Stimuli

In this section, we consider two experiments:

(10) Experiments
a. SUBJECT CATAPHORA: Sentences

with a cataphoric subject pronoun
b. OBJECT CATAPHORA: Sentences

with a cataphoric object pronoun
11A natural interpretation of (9-a) is that Nicholas was bak-

ing cookies for Mark while chatting with Mark
12Obligatory control of the PRO in the adjunct is also im-

plicated by this construction. We abstract from the relevant
syntactic analysis here, and instead focus on the empirical find-
ings from human experiments (for full discussion see Kush
and Dillon, 2021, and references therein).

Figure 3: GMME for subject following a cataphoric
object pronoun (him) for each neural model by whether
Principle B applies (e.g., (While driving him|While
someone drove him), (Bill|Sue)). Stimuli adapted from
Kush and Dillon (2021). Error bars are 95% confidence
intervals.

Examples of each are included below.

(11) Stimuli Examples
a. SUBJECT CATAPHORA: When he

was off work, Richard. . .
b. OBJECT CATAPHORA: While driv-

ing him to school on Friday,
Thomas. . .

For SUBJECT CATAPHORA, we used the 32 stim-
uli from Experiment 1 in van Gompel and Liv-
ersedge (2003). The gender of the cataphoric pro-
noun and the matrix subject (e.g., he and Richard in
(11-a)) were manipulated resulting in male and fe-
male versions of each. Moreover, for each stimulus
in van Gompel and Liversedge (2003), we evalu-
ated models on ten unique subjects per gender.

For OBJECT CATAPHORA, we drew on the 24
stimuli from Experiment 2 in Kush and Dillon
(2021), which were already balanced for gender
(i.e. 12 with him). As with SUBJECT CATAPHORA,
the experiment manipulated the gender match be-
tween the cataphoric pronoun and the subject noun.
Additionally, Kush and Dillon (2021) manipulated
whether Principle B applied to the construction.
For instance, Principle B applies in (11-b), block-
ing him from co-indexing with Thomas. However,
a minimal different string, While a parent drove
him to School on Friday, Thomas. . . , does not im-
plicate Principle B. We again evaluated models on
ten unique subject nouns per sentence.

In this section, Principle B was only relevant for
Object Cataphora, with Subject Cataphora serving
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as a baseline to ensure that models can, in fact,
use cataphoric pronouns to predict the gender of
upcoming subjects.

5.2 Simple Subject Cataphora
We turn first to the ability of neural models to mod-
ulate their predictions of upcoming subjects by the
presence of cataphoric subject pronouns (see (11-a)
for a relevant example). Results are given in Fig-
ure 8 of Appendix A, and statistical analyses were
conducted via linear-mixed effects models.13 All
models exhibited a positive GMME, suggesting
that models use cataphoric pronouns to constrain
upcoming predictions about the gender of nouns.

5.3 Cataphora and Principle B
Given that neural models can use cataphoric pro-
nouns in prediction, we evaluated whether models
capture the interaction of cataphoric processing and
Principle B (see Section 5.1 for discussion of the
relevant contrast). Results are given by model and
experimental condition in Figure 3. Statistical sig-
nificance was determined via linear-mixed effects
models.14

Recall, that humans exhibit a GMME only in the
case that Principle B does not block coreference
between the cataphoric pronoun and the subject
(e.g., him cannot be co-indexed with Fred in While
driving him to the store, Fred. . . ). If neural models
capture this aspect of human incremental process-
ing, a GMME should be obtained only in cases
where Principle B is not active. We found, how-
ever, that not all models captured this distinction.

GPT-3 and GPT-J demonstrated no significant
GMME in cases where Principle B blocked coref-
erence, in line with humans. GPT-2 XL and GPT-
Neo, on the other hand, had a positive GMME
suggesting that models used the gender of the cat-
aphoric pronoun to predict the gender of the subject.
That is, the models predicted that the gender of the
subject would agree with the cataphoric pronoun,
despite co-indexation being ungrammatical for hu-
mans. When Principle B was not implicated, all
models showed a positive GMME suggesting that,

13Models were fit to predict the surprisal of the subject noun
with a main effect of contrast (whether the cataphoric pronoun
agreed with the subject) and by-item and by-gender (he or she)
random intercepts.

14Models were fit to predict the surprisal of the subject
noun with an interaction of the gender agreement of the cat-
aphoric pronoun (i.e. whether the pronoun and subject agreed
in gender) and the presence of Principle B (i.e. whether co-
indexation was possible between the cataphoric pronoun and
the subject) with by-item random intercepts.

Figure 4: Mean GMME for subject following a cat-
aphoric object pronoun (him) for humans (reported in
Experiment 2 of Kush and Dillon (2021)), GPT-Neo,
and GPT-J. Predicted reading times (in milliseconds) for
the neural models were obtained by fitting the self-paced
reading times for the fillers following the methodology
outlined in van Schijndel and Linzen (2021).

as with subject cataphora, object cataphora can re-
strict the prediction of subjects.

6 General Discussion

This study investigated whether autoregressive neu-
ral models displayed similar incremental corefer-
ence processing to humans. Specifically, we ex-
amined the interaction between Principle B and
coreference processing with two broad case stud-
ies: i) “vanilla” pronouns (where the antecedent
precedes the pronoun), and ii) cataphoric pronouns
(where the pronoun precedes its coreferring noun
phrase). For the first case study, we found that the
pronoun predictions of all models were influenced
by structural positions deemed ungrammatical by
Principle B, inconsistent with the incremental pro-
cessing behavior of humans. For the second case
study, we found that two of the four models (GPT-J
and GPT-3), displayed human-like processing be-
havior in predicting subjects after cataphoric object
pronouns (e.g., him), specifically with Principle
B blocking the influence of the pronoun on the
prediction of the later subject.

Three questions remain concerning the behavior
of neural models: 1) how closely do models pre-
dict the observed processing cost in human studies,
2) why do GPT-J and GPT-3, and not the other
models, pattern like humans in cataphoric process-
ing, and 3) why do models consider ungrammatical
antecedents in their incremental processing of pro-
nouns.
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Figure 5: Absolute value of the GMME by model size (in millions of paramters) across four experiments: i) SIMPLE
SUBJECTS (Section 4.2), ii) 2NP, iii) 3NP (Section 4.3), and iv) OBJECT CATAPHORA (Section 5.3).

6.1 Finer Comparison Between Model and
Human Behavior

Following the methodology outlined in van Schijn-
del and Linzen (2021), we can directly compare the
GMME observed in humans and in neural models.
In what follows, we report on comparisons between
the GMME observed for humans in Experiment
2 of Kush and Dillon (2021) and the predicted
GMME in milliseconds from GPT-Neo (which was
demonstrated to have non-human like behavior)
and GPT-J (which did have qualitatively similar
behavior to humans). To foreshadow the results,
we found that both models greatly underestimate
the processing cost observed in humans, even in
cases of qualitative overlap.

We fit a linear-mixed effects model with read-
ing times from the filler items in Kush and Dillon
(2021) as the dependent variable, and, as fixed ef-
fects, the surprisal of the current word, the surprisal
of each of the preceding three words, word length
(of the current word and preceding three words),
and frequency (of the current word and the preced-
ing three words). Additional, we included fixed
effects for the interaction between word length and
frequency and by-participant random intercepts.15

The predicted reading times (in milliseconds) at
the subject (i.e. where we expect a GMME) were
determined for GPT-Neo and GPT-J by applying
the significant coefficients for the surprisal terms
of their statistical model (as in van Schijndel and

15That is, we fit the model (excluding the entropy and en-
tropy reduction terms) given in Equation 1 of van Schijndel
and Linzen (2021).

Linzen (2021)). For both models, the surprisal of
the current word and the preceding two words were
significant.16

Figure 4 gives the GMME for humans and the
predicted GMME for the two neural models. As is
visually apparent, neural models greatly underesti-
mate the processing cost. For example, the GMME
reported for humans in the condition without an
interaction with Principle B was 63 milliseconds,
while GPT-Neo predicted an average of around 5.7
milliseconds and GPT-J an average of around 4.7
milliseconds. Similar results have been obtained
in prior work for non-pronominal constructions,
suggesting a broader inability for surprisal mea-
sures from neural models to capture the processing
cost of grammatical violations (van Schijndel and
Linzen, 2021; Wilcox et al., 2021b; Paape and Va-
sishth, 2022).

6.2 Model Behavior and Scale

With regards to the second remaining question,
GPT-J and GPT-3 differ from the other models in
one obvious way: they are the two largest models
we investigated. Scaling laws suggest that larger
models will outperform smaller models (e.g., Ka-
plan et al., 2020; Wei et al., 2022). Figure 5 plots
the absolute value of the GMMEs for four of the
experiments investigated in this paper, including
additional results from smaller versions of GPT-2

16In particular, for GPT-Neo, the coefficients were 1.857
ms/bit for the current word, 1.802 ms/bit for the preceding
word, and 1.987 ms/bit for the word two time steps in the past.
Similarly, for GPT-J, the coefficients were 1.929 ms/bit, 2.037
ms/bit, and 1.980 ms/bit.
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Figure 6: Proportion of each gender preceding pro-
nouns in three positions: i) when there is exactly one
antecedent, and when there is at leat two antecedents,
ii) the first antecedent, and iii) the last antecedent. Data
from the Pile (Gao et al., 2020) which is the training
data for GPT-J and GPT-Neo.

and GPT-Neo for a larger range of model sizes.
Generally, the GMME increases with model size
(though GPT-3 is at times an outlier). However, for
the experiment with cataphoric processing, we see
that the GMME decreases with scale, suggesting
that larger models learn to ignore ungrammatical
positions in cataphoric pronouns, while simultane-
ously considering ungrammatical positions more
strongly with “vanilla” pronouns.

6.3 Model Behavior and Training Data

Turning to the final remaining question (why mod-
els consider ungrammatical antecedents), the SIM-
PLE SUBJECT experiments are an instructive case
study. Sentences like Bill adores him are not
ungrammatical, only the interpretation that “Bill
adores Bill” is blocked. Suppose the world is such
the following two schema are produced at equal
rates:

(12) a. Bill adores [MALE NOUN]
b. Bill adores [FEMALE NOUN]

(12-a) has two possible pronominal exponents, Bill
adores him and Bill adores himself, while (12-b)
has just one, Bill adores her. Suppose further, that
the first exponent of (12-a) is twice as likely as the
second. The resultant set of productions will be
50% Bill adores her, 33% Bill adores him, and 17%
Bill adores himself.17 Models trained on data of

17That is, we are, for expository purposes, assuming the
world consists of only structures drawn from the set {Bill

this sort would presumably come to favor pronouns
that mismatch with the subject.

In fact, the training data for GPT-J and GPT-Neo
(which is publicly available) bears resemblance
to this. We took the Pile (Gao et al., 2020) and
extracted all sentences with pronouns. These sen-
tences were then parsed and chunked into noun
phrases using Spacy and gender was assigned by
checking for their inclusion in the male and female
nouns in the BLiMP vocabulary.18 The results are
compiled in Figure 6. As is visually apparent, the
data is highly indicative of a gender mismatch in
the case just discussed, and skewed, to a lesser de-
gree, towards a gender mismatch in more complex
cases implicated by Principle B (e.g., 3NP stimuli).

The Binding Principles, in other words, distort
the surface distribution of pronouns such that the
models ultimately favor mismatches in gender in
just those positions where co-indexation is impos-
sible. Moreover, we see in the scaling figure dis-
cussed above (Figure 5), that smaller models show
no, or weaker, GMMEs. Given the findings that
large models have a higher capacity to memorize
training data (e.g., Carlini et al., 2022; McCoy et al.,
2021), we may take the GMME in the SIMPLE

SUBJECT experiment to be a case of models over-
fiting their training data.

6.4 Conclusion

The present study argues that autoregressive mod-
els do not (uniformly) process pronouns like hu-
mans. We showed that models fail to capture the
qualitative patterns of human incremental coref-
erence processing, in addition to underestimating
processing costs in constructions already noted in
the literature (see van Schijndel and Linzen, 2021;
Wilcox et al., 2021b). Models appear to learn only
aspects of Principle B that have predictable reflexes
in training data.19 Therefore, models can mimic hu-
mans without a full human-like system. Ultimately,
this work provides evidence suggesting that certain
aspects of human parsing behavior do not directly
follow from linguistic data. We leave bridging the
gap to future work.

adores him, Bill adores her, Bill adores himself } with Bill
adores herself excluded. This is to highlight how Principle B
restricts the possible strings in such a way that mismatch is
more common.

18We used the small pretrained English model from Spacy.
19For a fuller discussion of mismatches between neural

models and humans, as well as what these results may mean
for a linguistic theory, see Davis (2022).
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Figure 7: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by whether
i) the matrix subject, ii) the matrix object, or iii) the
embedded subject agrees in gender (e.g., (Bill|Hannah)
told (Aaron|Amy) that (Mark|Sue) hates him). Error bars
are 95% confidence intervals.

A Appendix

Additional Figures
Results for the 3NP case are given in Figure 7. For
the possessive pronoun his, we found a positive
GMME for all positions, suggesting that models
expected his to match the gender of any of the pre-
ceding antecedents. For the object pronoun him,
a positive GMME was obtained when grammati-
cally available antecedents (i.e. those not blocked
by Principle B) mismatched in gender. A nega-
tive GMME was found for the grammatically un-
available antecedent (i.e. the embedded subject),
suggesting models expected him to mismatch with
antecedents in that structural position.

Results for subject cataphora are given in Fig-
ure 8. All models exhibited a positive GMME
when the subject mismatched in gender with the
cataphoric subject pronoun, suggesting that models
use cataphoric subject prnouns to constrain their
predictions of upcoming subjects.

Limitations
There are three main limitations: 1) whether mod-
els truly “interpret” the correct coreference rela-
tions, 2) our reliance on stereotypical gender, 3) we
only investigated English.

The first was noted in Section 2. It applies to any
investigation of coreference in neural models, in-
cluding existing investigations of Principle A (e.g.,
Warstadt et al., 2020). While probing has been used
to investigate model representations (e.g., Ettinger

Figure 8: GMME for subject following a cataphoric
subject pronoun, (e.g., he), for each neural model (e.g.,
While he was working, (Bill|Sue). . . ). Stimuli adapted
from van Gompel and Liversedge (2003). Error bars are
95% confidence intervals.

et al., 2016; Voita and Titov, 2020), which may be
suggestive of something like co-indexation, we do
not take models to be interpreting language, that
is comprehending the meaning of sentences in a
human-like fashion (see the discussion in Bender
and Koller, 2020). At present, techniques are lim-
ited, and thus, we set aside the issue of whether
models interpret pronouns in a human-like fashion,
and instead, focus on comparing model behavior to
humans, which has proved fruitful in other domains
(e.g., Linzen et al., 2016). Future work might con-
sider analyses of the attention mechanisms to dig
deeper into what information models are using.

The second limitation has been noted in related
literature (e.g., Warstadt et al., 2020). We rely
on stereotypical associations between nouns and
pronouns, which does not cleanly map on to the
real world (e.g., for example, we do not consider
singular they). In using the vocabulary items al-
ready actively manipulated in the literature, we
can, nonetheless, make meaningful comparisons to
existing work.

The final limitations is driven, primarily, by the
existing resources in the field. There exist many
pre-trained models for English, and less so for other
languages (for discussion of the broader English
bias in NLP, see Bender, 2009). Additional, the
bulk of psycholinguistic work is focused on En-
glish, making comparisons between neural models
and humans beyond English, challenging. Thus,
the generalizability of the present study is limited
to just those pronominal systems that are English-
like.
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Abstract

We introduce a constraint-based parser for Min-
imalist Grammars (MG), implemented as a
working computer program, that falls within the
long established “Parsing as Deduction” frame-
work. The parser takes as input an MG lexicon
and a (partially specified) pairing of sound with
meaning – i.e. a word sequence paired with a
semantic representation – and, using an axiom-
atized logic, declaratively deduces syntactic
derivations (i.e. parse trees) that comport with
the specified interface conditions. The parser
is built on the first axiomatization of MGs to
use Satisfiability Modulo Theories (SMT), en-
coding in a constraint-based way the princi-
ples of minimalist syntax. The parser operates
via a novel solution method: it assembles an
SMT model of an MG derivation, translates the
inputs into SMT formulae that constrain the
model, and then solves the model using the Z3
SMT-solver, a high-performance automatic the-
orem prover; as the SMT-model has finite size
(being bounded by the inputs), it is decidable
and thus solvable in finite time. The output
derivation is then recovered from the model so-
lution. To demonstrate this, we run the parser
on several representative inputs and examine
how the output derivations differ when the in-
puts are partially vs. fully specified. We con-
clude by discussing the parser’s extensibility
and how a linguist can use it to automatically
identify: (i) dependencies between input inter-
face conditions and principles of syntax, and
(ii) contradictions or redundancies between the
model axioms encoding principles of syntax.

1 Introduction

Minimalist theories of syntax consider the Human
Language Faculty (HLF) as a computational sys-
tem capable of deriving from a finite lexicon and a
single combinatorial operation, an unbounded set
of hierarchical syntactic structures, pairing sounds
(typically word sequences) with meaning repre-
sentations (Chomsky, 1995). (In more technical

language, the HLF pairs Phonological Forms [PF],
where a PF is an encoding of information relevant
to how a brain-internal structured expression gets
pronounced, signed, etc, with Logical Forms [LF],
where an LF is a structured semantic representation,
e.g. predicate-argument structure.) This study in-
troduces a novel computational model for the HLF,
implemented as a working computer program,1 that
takes the form of a constraint-based parser for Min-
imalist Grammars (MG), grounded in the (first)
axiomatization of minimalist syntax using Satisfi-
ability Modulo Theories (SMT).2 Working within
the “Parsing as Deduction” framework (Pereira
and Warren, 1983), the parser is a logic program
that uses an automatic theorem prover to answer
the question: can a given lexicon yield a syntactic
structure that encodes a given LF and/or PF?

More specifically, the parser takes as input an
MG lexicon and a (partial) specification of LF and
PF interface conditions (i.e. constraints over the
LF and PF encoded in a syntactic structure), and
it outputs the set of MG derivations (i.e. syntac-
tic structures) that the (input) lexicon can gener-
ate and that satisfy the (input) interface conditions.
The parser operates by first constructing an SMT
model of a lexicon and an SMT model of deriva-
tion, with the two models linked by shared free
variables to form an SMT model of a minimal-
ist parser. Next, the parser converts the inputs
into constraints, expressed as SMT-formulae, that
augment the SMT model and serve to constrain
the space of model solutions. Finally, the parser
obtains its output by using the Z3 SMT-solver,3

a (modern) high-performance automatic theorem

1The program’s source code is available at https://
github.com/indurks/mgsmt.

2SMT is a propositional logic that may be extended with
background theories – e.g. the theories of uninterpreted func-
tions, bit-vectors and arithmetic (Dutertre and de Moura, 2006;
Ranise and Tinelli, 2006; Nieuwenhuis and Oliveras, 2006;
Nieuwenhuis et al., 2006; Moura and Bjørner, 2009).

3See (Moura and Bjørner, 2008; Bjørner, 2011).
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prover, to check whether the SMT model is satis-
fiable – if it is, the SMT-solver enumerates valid
model-interpretations from which the parser recov-
ers the (output) set of minimalist derivations.

Notably, this model of HLF is declarative, and
so encompasses both semantic parsing and natural
language generation. E.g. one can use the parser to
generate language by: (i) inputting a lexicon and
LF constraints; (ii) ordering the parser to “solve for
syntax” and recover a derivation from the model-
solution; and (iii) obtaining the (output) generated
PF from the recovered derivation. (Here the inputs
are known quantities and the derivation is an un-
known quantity being solved for.) Moreover, our
model for HLF can be used to run experiments in
which the input interface conditions are partially
specified and the SMT-solver is instructed to iden-
tify dependencies between the principles of syntax
(encoded in the parser) and the features in the input
lexicon – in this way, one can determine whether
(and how) the syntactic principles and the lexicon
do not adequately constrain a derivation to compen-
sate for the absent (LF or PF) interface conditions.

The remainder of this study is organized as fol-
lows. First, §2 reviews key principles of minimalist
syntax and how they are modeled using MGs. Next,
§3 reviews related prior work within the Parsing
as Deduction framework, which this study seeks to
extend, and that motivates our approach. Then, §4,
§5 and §6 present the three key contributions of this
study: §4 details the deductive parsing procedure,
showing how the Z3 SMT-solver can be used to
identify satisfiable interpretations of an SMT model
of a minimalist parser; §5 details the SMT model
of the minimalist parser, its underlying axiomati-
zation of minimalist syntax, and how the model
is constrained by user specified inputs; §6 details
application of the parser to a representative set of
example inputs and analyzes the output derivations,
showing how the parser functions even when the in-
put interface conditions are only partially specified.
Finally, §7 discusses how: (i) the SMT model of the
parser may be extended, and (ii) the parser can help
linguists identify dependencies and contradictions
between the model axioms encoding principles of
syntax and the logical constraints derived from the
input interface conditions.

2 Background: Minimalist Grammars

We opted to model minimalist syntax using the
Minimalist Grammar (MG) formalism (Stabler,

Figure 1: The parser outputs an MG derivation of “What
has the man eaten?” that satisfies the LF & PF interface
conditions in I1 (of Table 2). The derivation was recov-
ered from the model interpretation in Table 3, and each
node is labeled with the index of a row in Table 3. The
depicted structure is a multi-dominance tree, with nodes
{1, 5, 12, 7, 17, 3, 4, 15, 18, 2, 13, 14, 6, 9, 22} making
up the derivation tree from which this multi-dominance
tree was derived. Lexical and derived nodes are de-
noted by regular and rounded rectangles respectively.
Constituents with the same head have the same color.
Dashed and dotted arrows indicate phrasal and head
movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the (raised)
lower structure being copied to the target position.

1996) because MGs have been extensively char-
acterized formally and appear to be sufficiently
expressive for modeling the syntactic structures
prescribed by contemporary theories of minimal-
ist syntax.4 The MG formalism (and minimalist
syntax more generally) centers on: (i) a lexicon con-
sisting of a finite set of lexical items (i.e. syntactic
atoms), each pairing a word with a finite sequence
of syntactic features, and (ii) Merge, a recursive, bi-
nary structure-building operation. Syntactic struc-
tures are derived from a multi-set of lexical items
via repeated application of Merge, which has two
(logically-disjoint) sub-cases, external merge (EM)
and internal merge (IM),5 that serve to model two
basic facts of natural language, combination and
displacement (respectively).6

4See (Michaelis, 1998; Michaelis et al., 2000; Michaelis,
2001; Graf, 2011, 2013; Kobele, 2011).

5EM merges two disjoint structures, whereas IM merges a
structure with one of its sub-structures.

6Combination forms syntactic structures by (recursively)
pairing separate structures; it is used to associate predicates
with their arguments (i.e. the assignment of thematic roles
like “Agent” and “Patient,” also known as θ-roles). Displace-
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To illustrate the MG formalism, let us see how
the MG derivation (i.e. syntactic structure) for the
sentence “What has the man eaten?”, shown in
Fig. 1, is built bottom-up using the lexical items
listed in Table 1. First, the lexical items for the
determiner “the” and the nominal “man” are com-
bined, via the application of external merge, to
form the determiner phrase “the man”; note that
this instance of constituent selection is allowed be-
cause the term “the” has a selector feature, =y,
that matches the selectee feature, ∼y, on the term

“man”.7 Then, the lexical items for the (lexical) verb
“eaten” is first (externally) merged with its comple-
ment, the (internal) argument “what” to form a
VP, which is then (externally) merged with a covert
light-verb, ϵ/v, with the resulting vP then merged
with the external argument,“the man”, to form a
(double) VP-shell structure in accordance with the
Hale-Keyser model of predicate-argument structure
(Hale and Keyser, 1993, 2002). Next, the VP-shell
structure is merged with a tense marker, the auxil-
iary verb “has”, to form a TP. After this, per the
VP Internal Subject Hypothesis (Radford, 2009),
the internal argument, “the man” is moved, via ap-
plication of internal merge, from its initial location
(within the VP-shell) to the subject-position of the
TP; note that this instance of movement is licensed
by the licensor feature, +q, on “has” matching
the licensee feature, −q, on “the man”. The TP
is then (externally) merged with a (covert) com-
plementizer, ϵ/C, to form a CP.8 Finally, the inter-
nal argument “what” is raised (via internal merge)
from the VP-shell to the specifier position of the
CP, at which point the derivation is complete.9

In summary, to parse a sentence, a multi-set of
lexical items is selected from the lexicon and (re-
cursively) merged together to yield a derivation in

ment, driven by syntactic movement, enables a phrase to be
interpreted at both its (final) surfaced position as well as other
positions within a syntactic structure – e.g., given the expres-
sion “You, I love.”, “You” is the object of “love” and normally
appears in Object position, but here it is displaced to the front
of the sentence (where it is pronounced).

7Selector, selectee, licensor and licensee features are des-
ignated by a prefixed =, ∼, +, and − respectively.

8The extended projection, C−T−v−V , forms the spine
of each clause (Grimshaw, 2005; Adger and Svenonius, 2011).

9N.b. head-movement – i.e. the incorporation of a lower
(lexical) head into the head it merges with – is applied when
the completed derivation is sent to the PF-interface for exter-
nalization. Head-movement occurs twice in this derivation:
(i) the V -to-v head-movement utilized in the Hale-Keyser
model of predicate-argument structure; (ii) the T -to-C head-
movement utilized in raising the auxiliary verb (as when form-
ing a polar-interrogative from a declarative).

which the terminal expression has only the special
feature C remaining (because all of the selectional
and licensing features have been consumed); if the
ordering of the phonological forms in the result-
ing structure aligns with the order of the words in
the sentence being parsed,10 then the structure is
considered to be a valid parse of the sentence.11

3 Related Work: Parsing as Deduction

We have developed an MG parser within the Pars-
ing as Deduction framework, which was first de-
scribed by Pereira and Warren (1983), who showed
how an axiomatization of a context-free grammar
could be combined with a logical deduction engine
to formulate a chart parser as a logic program. As
Pereira notes, key advantages of this framework
include: (i) a connection between the deductions
that yield a syntactic structure and the inferences
needed to extract a semantic interpretation from
said structure; (ii) the ability to handle filler-gap
dependencies without altering the basic design of
a chart parser. The Parsing as Deduction frame-
work has since been employed to construct parsers
for a variety of grammatical formalisms, including
lexicalized context-free grammars, tree adjoining
grammars, combinatory categorical grammars, and
dependency grammars.12 Notably, this framework
has been used to develop parsers that model Gov-
ernment and Binding (GB) theory (a predecessor
of minimalist syntax) by encoding principles of
syntax within a system of axioms that mirrors the
modular structure of GB theory (Chomsky, 1981;
Johnson, 1989; Fong, 1991).

Normally, these parsers employ Prolog, the de-
facto language for Constraint Logic Programming
(CLP).13 However, we leverage recent advances in
the performance of automated theorem provers for
SMT, which enhances CLP by enabling us to focus
entirely on formulating (declarative) model axioms
while the computer is free to decide how best to
deduce a model solution (De Moura and Bjørner,

10E.g. using Specifier-Head-Complement linearization to
model Subject-Verb-Object (SVO) ordering (Kayne, 1994).

11See Appendix-B for further commentary on MGs, includ-
ing a presentation of an algebraic formulation of MGs based
on (Stabler and Keenan, 2003).

12See (Shieber et al., 1995; Duchier, 1999; Tang and
Mooney, 2001; Debusmann et al., 2004; Estratat and
Henocque, 2004; Duchier et al., 2010; Lierler and Schüller,
2012; Schüller, 2013). See (Schabes and Waters, 1993; Joshi
and Schabes, 1997; Steedman and Baldridge, 2011) for details
of these grammatical formalisms.

13See (Jaffar and Lassez, 1987; Apt, 1990; Jaffar and Maher,
1994; Koller and Niehren, 2002).
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1. ϵ/CQues. :: <=x, +p, C 19. he :: ∼y, −q
2. has :: =x, +q, ∼x 20. resigned :: ∼x
3. the :: =y, ∼y, −q 21. known :: =y, ∼x
4. man :: ∼y 22. everyone :: ∼y, −q, −p
5. ϵ/v :: <=x, =y, ∼x 23. who :: =x, +p, ∼y
6. eaten :: =y, ∼x 24. loved :: =y, ∼x
7. what :: ∼y, −p 25. ϵ/CDecl. :: =x, C
8. ϵ/v :: <=x, ∼x 26. knows :: =y, ∼x
9. ϵ/CQues. :: <=x, C 27. john :: ∼y, −q
10. was :: =x, +q, ∼x 28. given :: =y, ∼x
11. she :: ∼y, −q 29. ϵ/T :: =x, +q, ∼x
12. given :: =y, =y, ∼x 30. money :: ∼y, −q, −p
13. money :: ∼y 31. that :: =x, +p, ∼y
14. will :: =x, +q, ∼x 32. stolen :: =y, ∼x
15. who :: ∼y, −q, −p 33. fears :: =y, ∼x
16. her :: ∼y 34. money :: ∼y, −q
17. tell :: =y, =y, ∼x 35. ϵ/CQues. :: =x, +p, C
18. that :: =x, ∼y 36. a :: =y, ∼y, −q

Table 1: An MG lexicon that the parser may take as
input. Each lexical item consists of: (i) a phonological
form that is either overt or covert (ϵ); (ii) (optional) a
categorical feature (e.g. entries 1 & 5); (iii) a sequence
of syntactic features. The lexicon includes entries for
auxiliary verbs (e.g. 2, 10 & 14), determiners (e.g. 3),
nominals (e.g. 4, 11, 22, 27 & 30), tense markers (e.g.
2, 14, & 29), complementizers (e.g. 1, 9, 18 & 25),
relative pronouns (e.g. 23), Wh-words (e.g. 7 & 15),
intransitive verbs (e.g. 20), transitive verbs (e.g. 6, 26
& 32), and ditransitive verbs (e.g. 12 & 17).

2011). Hence, we extend prior work within the
Parsing as Deduction framework by: (i) developing
a (declarative) constraint-based minimalist parser,
thereby advancing (linguistically) beyond earlier
GB-based parsers; (ii) formulating an MG parser
as a finite (and thus decidable) SMT-model that is
solved using an SMT-solver (instead of Prolog).14

4 The Parsing Procedure

This section details the parsing procedure and illus-
trates it with a worked out example.

INPUT. The procedure takes as input: (i) an MG
lexicon, L; (ii) a pairing of LF and PF interface con-
ditions, I , to be parsed; (iii) parameters, p, bound-
ing the size of the SMT model (to be built).

INITIALIZATION. The procedure initializes the
SMT-solver with an empty stack of constraints, S .

CONSTRUCTING THE SMT MODEL. The SMT
model of the parser is constructed as follows. First,
the procedure instantiates the SMT model of the
lexicon (detailed in §5) and constrains it with the
input lexicon – this is carried out by:
(a) initializing an SMT model of a lexicon, mL,

with size bound by p, and pushing mL onto S;
14See (Harkema, 2001; Niyogi and Berwick, 2005; Stanoje-

vić, 2016; Torr et al., 2019) for earlier MG (chart) parsers.

(b) constructing an SMT-formula, cl, that restricts
interpretations (i.e. model solutions) of mL to
align with L, and then pushing cl onto S;

Next, the procedure instantiates an SMT model of
a derivation (detailed in §5) and then constrains it
with the (input) interface conditions – this involves:
(a) initializing an SMT model of a derivation, md,

with size bound by p, and pushing md onto S;
(b) translating I into an SMT-formula, cI , that con-

strainsmd (detailed in §5) such that any deriva-
tion recovered from an interpretation of md

must respect I , and pushing cI onto S.
Finally, the procedure “connects” the SMT model
of the derivation to the SMT model of the lexicon –
this is achieved by first creating an SMT-formula,
mb, that connects md with ml by constraining in-
terpretations of the free variables that appear in
both md and ml, and then pushing mb onto the S .

CHECKING THE SMT MODEL. The procedure
uses the SMT-solver’s model-checking routine (i.e.
decision procedure) to determine whether there ex-
ists a satisfiable interpretation of the model (i.e. the
conjunction of the SMT-formulae in S) – if one ex-
ists, the procedure recovers it from the solver, and
then (automatically) reconstructs an MG derivation
from the (recovered) model interpretation. The
procedure then pushes onto S a constraint (i.e. an
SMT-formula) that prohibits the interpretation of
md from being equivalent to any previously re-
covered (satisfiable) model interpretations;15 this
model-checking process is then run again to try and
recover a (new) alternative MG derivation – this
process is repeated until the solver cannot identify
a (new) satisfiable model interpretation (because
all model-solutions have already been identified).

OUTPUT. The procedure outputs the set of MG
derivations that were reconstructed from the re-
covered (satisfiable) model interpretations – each
(output) derivation accords with the (input) inter-
face conditions, I , and can be generated from the
(input) lexicon, L.

Finally, we illustrate the parsing procedure with
a worked out example. Consider the procedure tak-
ing as input the lexicon in Table 1 and the interface
conditions (for the sentence “What has the man
eaten?”) listed in entry I1 of Table 2: after con-
structing the SMT model and constraining it with
the input lexicon and interface conditions (detailed

15This further constrains the SMT model so that the solver
cannot yield a model interpretation that encodes an MG deriva-
tion that the parser has already identified.
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in §5), the procedure invokes the SMT-solver’s
model-checking (i.e. decision) routine to obtain
the satisfiable model-interpretation presented in Ta-
ble 3 (see also Appendix-Table 4); the procedure
then recovers the output derivation shown in Fig. 1,
which accords with I1, from the satisfiable model-
interpretation.

5 Specification of the SMT Model

This section details the SMT models of the MG
derivation and MG lexicon - these models make up
the heart of the parser introduced in this study.16

These models consist of: (i) uninterpreted (i.e. free)
finite sorts that represent model-objects such as
words, syntactic features, categories, nodes in a
derivation tree, etc; (ii) uninterpreted (free) func-
tions that establish relationships between model-
objects by mapping members of one or more sorts
to another sort; (iii) model axioms – i.e. SMT-
formulae – that constrain the valuation an SMT-
solver may assign to each uninterpreted function.17

(See Fig. 2 for a summary of the sorts and functions
that make up the model.) Crucially, since the model
of the parser has finite size (being bounded by the
input parameter, p), we can explicitly quantify all
of the SMT formulae in the model, thereby yielding
a decidable model that is solvable in finite time.

We turn first to the SMT model of the lexicon.
When constructing this model, the parsing proce-
dure scans the input lexicon and instantiates several
finite sorts: Σ, that models the set of PFs; F, that
models the set of feature-labels (e.g. {x, y, p, q});
and the lexicon node sort, Ω, that models the syn-
tactic features appearing in the input lexicon.18 The
lexicon node sort is organized into disjoint subsets
referred to as lexicon node sequences, with each
subset corresponding to one of the distinct lexical
feature sequences appearing in the input lexicon.19

Among the uninterpreted functions in the lexicon
model, one plays an especially critical role: the

16A complete, formal definition of these SMT models, in-
cluding all model axioms, may be found in Ch. 2 of (In-
durkhya, 2021a); see Appendix A for notes on reproducibility.

17All model axioms are written using propositional logic
extended with (quantifier-free) theories of: (i) uninterpreted
functions, (ii) Pseudo-Boolean constraints, and (iii) arithmetic.

18N.b. the sorts modeling the (fixed) sets of syntactic cat-
egories (e.g. N or V ) and feature-types (e.g. + or =) are
pre-defined and do not depend on the input lexicon.

19E.g. the input lexicon in Table 1 has 29 distinct PFs, 4
distinct feature-labels, and 18 distinct lexical feature sequence,
with each sequence having at most 3 features; therefore, the
cardinality of the instantiated sorts Σ, F and Ω is 29, 4 and
18×3 = 54 (respectively).

successor function, ψ, which maps a ∈ Ω to b ∈ Ω,
where a corresponds to a node within a lexicon
node sequence, and b corresponds to the subse-
quent node in that same lexicon node sequence;20

the valuation of ψ is hard-coded by the parsing al-
gorithm after Ω has been divided into lexicon node
sequences.21 The binary (uninterpreted) predicate,
∆Ω, associates each lexical feature sequence with
one or more (overt or covert) PFs, and these associ-
ations are hard-coded by the parsing procedure.22

(E.g. Fig. 3 shows a lexicon node sequence and the
lexical feature sequence it models.)

Next we turn to the SMT model of the deriva-
tion, which is composed of a finite sort, N, that
models the nodes in the derivation. The derivation
takes the form of a multi-dominance tree23 that is
formed by augmenting the derivation tree with ad-
ditional edges corresponding to the movement of
phrases via internal merge (see Fig. 1). Members of
N are sub-divided into derivation node sequences,
with each sequence corresponding to the projection
of a lexical head within the derivation;24 an impor-
tant exception to this is a single member of N, ⊥,
that serves as a null-value target for uninterpreted
functions. The model’s uninterpretable functions
include:
(a) A unary function, p, that maps each node in a

derivation node sequence to its successor node
(in that sequence).

(b) A unary function, h, that maps each x ∈ N to
the head (i.e. beginning) of the derivation node
sequence to which x belongs; a derivation node
x ∈ N is a head if and only if h(h(x)) = h(x).

(c) A binary function, M, that models Merge:
given x, y ∈ N, M(x, y) is the product of

20If a lexicon node x ∈ Ω corresponds to the terminal node
in a lexicon node sequence, then ψ(x) = x.

21E.g. if, as in Fig. 3, L9, L14, L0, L5 ∈ Ω forms a lexicon
node sequence that models the lexical feature sequence for
entry 3 in Table 1, [the :: =y, ∼y, −q], then the following
constraint would be added to the SMT model of the lexicon:
(ψ(L9)=L14) ∧ (ψ(L14)=L0) ∧ (ψ(L0)=L5).

22Encoding the SMT model of the lexicon with a repre-
sentation that factors apart PFs and lexical feature sequences
reduces the size of the model because lexical feature sequences
are not duplicated, which in turn improves the performance of
the SMT-solver. (E.g. in Table 1, the PFs for entries 24 and
28 will both map to the same lexicon node sequence.)

23Multi-dominance and derived trees are closely related
(Kobele et al., 2007; Morawietz, 2008; Graf, 2013). Appendix-
C details, and Appendix-Fig. 6 shows, how the derivation node
sequences are organized so as to form a multi-dominance tree.

24Derivation node sequences are inspired by the closely
related notion of “slices” (of a derivation tree) employed in
Graf (2013). See Appendix-Fig. 6 for an illustration of how N
is organized into derivation node sequences.
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Figure 2: Arrangement of the uninterpreted functions and (finite) sorts that make up, and connect together, the SMT
model of a derivation and the SMT model of a lexicon.

Figure 3: Model diagram showing how uninterpreted
functions form commutative diagrams that connect the
SMT model of the derivation to the SMT model of the
lexicon – here they connect one of the derivation node
sequences (from Fig. 1) to one of the lexicon node se-
quences (for entries 3 & 36 in Table 1). N.b. the lexicon
node sequence maps to two PFs, and the derivation node
sequence corresponds to one of those two PFs.

merging x with y.25

(d) A unary function, P , that models the move-
ment of phrases by mapping a node in the
derivation tree to the location it is raised to.

(e) A unary function, H, that models head-
movement by mapping a lexical head to the
lexical head that it incorporates with.

(f) Two binary predicates, d and d⋆, that encode
the dominance relations making up the deriva-
tion (a multi-dominance tree), with d encoding
dominance as imposed by p, and d⋆ encoding
the dominance relations in the derived tree – i.e.
the tree produced after all syntactic movement
is completed (see Appendix-C for details).

25If x and y are not externally merged, then M(x, y) = ⊥;
this illustrates one of the ways in which ⊥ is utilized.

(g) A unary function, βN, that associates each term
in the derivation with a category (in C).

(h) A binary function, L, encoding (linear) prece-
dence (in accordance with the derived tree).

We restrict (satisfiable) interpretations of the SMT
model by constraining it with additional axioms
that encode various principles of minimalist syn-
tax,26 including axioms requiring:
(a) ∀x, y ∈ N,M(x, y) =M(y, x) (symmetry).
(b) no self-merging: ∀x ∈ N,M(x, x) = ⊥.
(c) no term is the target of multiple merges:
∀x, y, z ∈ N, z ̸= y →M(x, y) ̸=M(x, z).

(d) every non-lexical (i.e. non-leaf) node in the
derivation tree is in the range ofM.

(e) ∀x ∈ N, h(P(x)) = h(x).
(f) ∀x, y ∈ N, if x and y are lexical heads related

by head-movement (i.e. (h(x) = x)∧ (h(y) =
y)∧(H(x) = y)), then the maximal projection
of x is merged with y (via EM) - i.e. ∃z ∈ N s.t.
(h(z) = x)∧d(z, x)∧ (h(M(H(x), z)) = y).

(g) the root node of the derivation tree is a (maxi-
mal) projection of a complementizer head (C),
and the functional heads in a clause are orga-
nized as an extended projection of the form
C←T←v←V (Adger and Svenonius, 2011).

(h) if a phrase, x ∈ N, undergoes IM with a (lower)
phrase, y ∈ N, so that P(y) is the sister of x
(i.e. M(P(x), y) ̸= ⊥), thenM(x,P(y)) =
p(x) and h(M(x,P(y))) = h(x) ̸= h(y).

Notably, the expressive power of SMT, particularly
the composition of uninterpretable functions, al-
lows the model to consist of a few dozen axioms,
which we found to be manageable to reason about.

26E.g. the Theory of Bare-Phrase Structure (Chomsky,
1995), the Inclusivess Principle (Chomsky, 2001), the No
Tampering Condition (Chomsky, 2005, 2013), the Projection
Principle (Chomsky, 1986) and the Principle of Economy of
Derivation (Collins, 2001).
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Next the parsing procedure translates each of
the (input) interface conditions (ICs) into SMT-
formulae that constrain the SMT model of the
derivation. LF ICs stipulating (subject-predicate)
agreement and the assignment of θ-roles (i.e. se-
mantic roles) to arguments are translated into
model constraints (i.e. SMT-formulae) that require
specific local hierarchical relations be established
by Merge,27 and the sentence type (i.e. declara-
tive vs. interrogative) is translated into model con-
straints that dictate which type of complementizer,
Cques. or Cdecl., heads the sentence. PF ICs are
translated into constraints that require the Subject-
Verb-Object (SVO) ordering of the derived tree, in
which all phrasal-movement and head-movement
has taken place, match the linear order of words in
the input sentence.28 Notably, the SMT-formulae
encoding LF constraints are entirely separate from
the SMT-formulae encoding PF constraints.

Finally, the SMT models of the lexicon and the
derivation are connected by an uninterpreted func-
tion, µ, that maps each derivation node sequence to
a lexicon node sequence, subject to the constraints:
(i) µ ◦ p = ψ ◦µ, which lines up each projection in
the derivation with a lexical feature sequences (for
a lexical entry) in the lexicon; (ii) βΩ ◦ µ = βN,
which ensures that each lexical head in a derivation
has the same category as the lexical entry it orig-
inates from. (Fig. 3 depicts these constraints and
others as commutative diagrams.) There are also
model-axioms that further restrict µ by requiring
that pairs of nodes merged via EM or IM map to
selectional or licensing features (respectively).

6 Parsing with Partially Specified Inputs

We validated the parsing procedure, and in partic-
ular the SMT-models it constructs, by using it to
parse each pair of interface conditions in Table 2
using the lexicon in Table 1. Notably, this lexi-
con was designed so that, for each (LF, PF) pairing
of interface conditions in Table 2, the lexicon can
yield a derivation that satisfies the (input) interface

27Specifically, per the Uniformity of θ-Assignment Hypoth-
esis (Baker, 1988; Adger, 2003), internal (object or oblique)
arguments are assigned a θ-role by establishing a local rela-
tionship (via EM) with the projection of a lexical verb, while
external arguments are assigned a θ-role (e.g. AGENT) by
establishing a local relationship with the light-verb within a
VP-shell structure. Likewise, subject-predicate agreement
requires a local relationship (established via IM) between a
raised subject and the tense marker it agrees with.

28Following (Kayne, 1994), SVO ordering of the derived
tree is obtained by requiring that specifiers precede their head,
and that heads precede their complement.

Ii Interface Conditions

I1 PF: what has the man/N eaten/V?
LF: θeaten[s : the man, o : what], Ahas[s : the man]

I2 PF: was she/N given/V money/N?
LF: θgiven[o : money, i : she], Awas[s : she]

I3 PF: who will tell/V her/N that he/N has resigned/V?
LF: θtell[s : who, o : that he has resigned, i : her],

Awill[s : who], θresigned[s : he], Ahas[s : he]
I4 PF: she/N has known/V everyone/N who was loved/V.

LF: θknown[s : she, o : everyone who was loved],
Ahas[s : she], θloved[o : everyone], Awas[s : everyone]

I5 PF: she/N knows/V that john/N has given/V money/N.
LF: θknows[s : she, o : that john has given money],

θgiven[s : john, o : money], Ahas[s : john]
I6 PF: john/N has given/V money/N that was stolen/V.

LF: θgiven[s : john, o : money that was stolen], Ahas[s : john],
θstolen[o : money], Awas[s : money]

I7 PF: john/N fears/V everyone/N who knows/V her/N.
LF: θfears[s : john, o : everyone who knows her],

θknows[s : everyone, o : her]
I8 PF: john/N fears/V that money/N was stolen/V.

LF: θfears[s : john, o : that money was stolen],
θstolen[o : money], Awas[s : money]

Table 2: Corpus of Paired (LF and PF) Interface Con-
ditions (ICs). PF ICs provide surface order data, and
some words are associated with a specified category
(denoted by a slash followed by the category). LF ICs
include relations for agreement (A), predicate-argument
structure (θ), and sentence-type (either declarative or
interrogative as denoted by end-punctuation). N.b. LF
ICs only encode hierarchical/structural relations – i.e.
the values filling the slots consist of sets of tokens, not
sequences of tokens. A predicate associates with one
or more arguments: “s:” denotes an external argument,
and “o:” and “i:” denote an internal argument serving
as a direct or indirect object (respectively). Entries with
an embedded clause – e.g. I3 & I8 – can have (separate)
LF ICs stipulated for each clause.

conditions (ICs) and that matches the derivation
prescribed by contemporary theories of minimalist
syntax29 – among these are derivations (in both
active and passive voice) for declaratives, polar-
interrogatives, wh-questions, relative clauses, and
embedded sentences. Moreover, the (prescribed)
derivations involve covert complementizers (C),
tense-markers (T ), and light-verbs (v), as well as
various forms of movement including: wh-raising,
subject-raising, T -to-C head-movement, and V -to-
v head-movement (in VP-shells). The validation
process succeeded, demonstrating that the parser,
using the lexicon in Table 1, can yield (and in-
ternally model) the prescribed derivation for each
entry in Table 2. E.g. see Fig. 7 & 8 for derivations,
output by the parser, with an embedded sentence
(for I5) and a relative clause (for I7), respectively.

We also measured, for each IC in Table 2, the

29See (Adger, 2003; Hornstein et al., 2005; Hornstein and
Pietroski, 2009; Collins and Stabler, 2016; Radford, 2016).

163



Node βN h p P H µ (ψ ◦ µ) ∆N

D0 D0 D0 D0 D0 L5 L5

D1 D D1 D12 D19 D0 L37 L3 what
D2 T D2 D14 D0 D6 L32 L36 has
D3 D D3 D15 D0 D0 L9 L14 the
D4 N D4 D15 D0 D0 L8 L5 man
D5 V D5 D12 D0 D7 L6 L33 eaten
D6 Cques. D6 D9 D0 D0 L23 L7 ϵ
D7 v D7 D17 D0 D0 L17 L4 ϵ
D8 D0 D0 D0 D0 L5 L5

D9 Cques D6 D22 D0 D0 L7 L27

D10 D0 D0 D0 D0 L5 L5

D11 D0 D0 D0 D0 L5 L5

D12 V D5 D17 D0 D0 L33 L5

D13 T D2 D9 D0 D0 L24 L5

D14 T D2 D13 D0 D0 L36 L24

D15 D D3 D18 D21 D0 L14 L0

D16 D0 D0 D0 D0 L5 L5

D17 v D7 D18 D0 D0 L4 L35

D18 v D7 D14 D0 D0 L35 L5

D19 D D1 D22 D0 D0 L3 L5

D20 D0 D0 D0 D0 L5 L5

D21 D D3 D13 D0 D0 L0 L5

D22 Cques. D6 D0 D0 D0 L27 L5

Table 3: Model interpretation for the derivation in Fig. 1.
Each Di is a member of the derivation node sort, N.
Valuations, recovered from the model interpretation, are
listed for several of the uninterpreted functions (e.g.
h(D15)=D3 and p(D9)=D22) that make up: (i) the
derivation model – i.e. h (head), p (parent), P (phrasal
movement), H (head movement), ∆N, and βN; (ii) the
lexicon model – i.e. ψ (successor) and µ (bus). Not all
members of N are used in the derivation (e.g. D11); the
bottom nodes, D0∈N and L0∈Ω, serve as target nodes
reserved for uninterpreted functions to map unused Di

to – e.g. h(D11)=p(D11)=D0, and µ(D11)=L0.

runtime of the parser - i.e. the time the Z3 SMT-
solver takes to check (i.e. solve) the constructed
SMT model.30 We found that I1 and I2 each took
less than 12 seconds to parse, I3-I6 each took be-
tween 3 and 6 minutes to parse, and I7 and I8 took
31 and 41 minutes to parse (respectively). These
differences in runtime are not unexpected when we
observe that: (i) I1 and I2 have fewer tokens and no
embedding structure (as compared to I3-I8); (ii) I7
and I8 require more instances of head-movement,
empty categories and phrasal movement, so that the
checked model is (substantively) larger than those
of I1-I6. Moreover, we found in practice that there
is a tradeoff between: (i) writing succinct, compre-
hensible model-axioms that make extensive use of
compositions of uninterpretable functions, and (ii)
the runtime of the Z3 SMT-solver. We believe navi-
gating this tradeoff is an important avenue of future
work for this parser, and that it is worth exploring
the use of other higher-order theories supported
by Z3, such as the theory of algebraic datatypes

30See Table 5 in the appendix for detailed results.

(Bjørner and Nachmanson, 2020), for modeling
minimalist derivations and lexicons.

We next applied the parser to inputs in which
either the LF or PF interface conditions are spec-
ified (but not both). We did this for each entry in
Table 2, and present the analysis for I1 below.

If the input is limited to the PF ICs in I1, the
parser can output a derivation (see Fig. 4) in which

“the man” is the internal argument (as it merges
with “eaten”) and “what” is the external argument
(as it merges with the light-verb, v). This alter-
native derivation is possible because the external
and internal arguments are selected using the same
feature, =y, and swapping where the two argu-
ments merge into the VP-shell structure compels
the axiom encoding the Uniformity of θ-Assignment
Hypothesis to assign semantic roles (to the argu-
ments) that yield an incorrect reading of “What
has the man eaten?” One solution is to refine the
(selection) labels of nominal phrases (NP) to en-
code θ-roles; however, the model must be updated
to propagate NP-labels to determiners (and com-
plementizers and relative pronouns), or else the
lexicon will grow untenably by multiplying out the
determiners for each distinct selection label.

Conversely, if the input is instead limited to the
LF ICs in I1, then the parser can output a deriva-
tion (see Fig. 5) where the auxiliary verb “has” is
not raised because T -to-C head-movement is com-
pelled by PF ICs (and not by LF ICs); consequently,
the surfaced form, “What the man has eaten?”, is
ungrammatical. One solution is to add axioms that
model Economy Conditions (Collins, 2001), so that
T -to-C head-movement may be omitted if doing
so leaves the surfaced form unchanged.

7 Conclusion

We have introduced an MG parser that is a com-
putational model of HLF and is grounded in an
SMT-model encoding a novel axiomatization of
minimalist syntax. The parser uses the Z3 SMT-
solver, an automatic theorem prover, to answer the
question: can the input lexicon yield a derivation
that satisfies the input LF and PF interface con-
ditions? In this way, parsing is translated into an
(SMT) decision problem, with model solutions cor-
responding to the derivations output by the parser.

We demonstrated that the parser, implemented
within the Parsing as Deduction framework, can op-
erate on partially specified interface conditions.31

31More generally, we note that the flexibility of the parser’s
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Figure 4: A derivation yielded by the parser, using the
lexicon in Table 1, when only the PF interface condi-
tions in entry I1 (in Table 2) were input to the parser. In
contrast with the (prescribed) derivation shown in Fig. 1,
this derivation has the originating locations of the two
arguments of the (lexical) verb “eaten” swapped; hence,
although this derivation will be (correctly) externalized
as “What has the man eaten?”, the derivation encodes
an (incorrect) semantic interpretation in which the pred-
icate “eaten” takes “the man” as its internal (object)
argument, and “what” as its external (subject) argument
(akin to the expression “What has eaten the man?”).

This flexibility of the parser can be leveraged to
observe when: (i) output derivations do not accord
with the prescriptions of modern theories of min-
imalist syntax – inspecting these derivations can
yield clues about how interface conditions and lin-
guistic constraints cooperate to rule out derivations
prohibited by the theory; (ii) the parser fails to
output any derivation despite the theory prescrib-

design enables it to operate on partially specified inputs, with
the SMT-solver in effect solving for the unspecified inputs (in
addition to the derivation itself). E.g. if we specify the LF and
PF interface conditions, but not the lexicon, then the parser
will constrain the SMT model of the derivation using the in-
terface conditions, but will not constrain the SMT model of
the lexicon since no input lexicon was specified – then when
the SMT-solver obtains a satisfiable interpretation of the SMT
model of the parser, we can (automatically) recover from the
interpretation of the lexicon model an MG lexicon that yields
a derivation that satisfies the specified interface conditions.
Moreover, if we augment the parser by connecting multiple
SMT models of derivations, each constrained by a different
pairing of interface conditions, to a single SMT model of a
lexicon, then the composite SMT model can be used to infer
an MG that can, for each pair of interface conditions, yield a
derivation that satisfies that pairing – notably, this approach
aligns with earlier work that used logic grammars to infer a
lexicon (Rayner et al., 1988). See (Indurkhya, 2020) and (In-
durkhya, 2022) for detailed discussions of how augmenting the
parser in this manner can yield instantaneous and incremental
(respectively) computational models of language acquisition.

Figure 5: A derivation yielded by the parser, using the
lexicon in Table 1, when only the LF interface condi-
tions in entry I1 (in Table 2) were input to the parser. In
contrast with the (prescribed) derivation shown in Fig. 1,
this derivation does not raise the auxiliary verb, “has”,
via T-to-C head-movement; consequently, although this
derivation accords with the LF interface conditions stip-
ulated in I1 (as it uses entry 36 in Table 1, which codes
for an interrogative), it is externalized (i.e. surfaced)
as the (un-grammatical) expression “What the man has
eaten?”

ing a licit derivation – then the SMT-solver can
identify the minimal subset of model-axioms that
are mutually incompatible (Lynce and Silva, 2004;
Guthmann et al., 2016), thus identifying conflicts
between the axioms of minimalist syntax and the
constraints derived from the interface conditions.

Finally, a key advantage of this parser is that
it enables a division of labor: the SMT-solver is
tasked with carrying out the logical deductions
needed to find a model solution, leaving the lin-
guist free to: (i) extend the parser, with the modu-
lar design of the SMT-model enabling related sets
of axioms to be modified without impacting the
remainder of the model;32 (ii) investigate how prin-
ciples of syntax cooperate to constrain the space of
derivations, and identify redundant principles that
may be dropped to yield a simpler theory of syntax.
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A Reproducibility

We ran the computer programs detailed in this
study on a MacBook Pro (Retina, 15-inch, Late
2013) with a 2.3 GHz Intel Core i7 processor,
and 16GB of 1600MHz DDR3 RAM. We used
Python v3.7.9 and v4.8.6 of the Z3 SMT-solver.
The complete program source code for the parser,
including the (python) source code for the SMT
models, is available at https://github.com/
indurks/mgsmt.

B Minimalist Grammar

This section provides additional details about the
Minimalist Grammar formalism used in the present
study. Notably, MGs are mildly-context sensitive
(Michaelis, 1998) and are sufficiently expressive
for modeling natural language in so far as they
can model the syntactic constraints that appear
in contemporary syntax (e.g. they can produce
structures encoding cross-serial dependencies) –
specifically, the syntactic constraints underlying
HLF can be modeled by Monadic Second Order
(MSO) logic (Rogers and Nordlinger, 1998), and
MSO-expressible constraints over an MG deriva-
tion tree can be encoded within an MG lexicon
(Graf, 2013).33

We now turn to reviewing the algebraic formu-
lation of MGs presented in Stabler and Keenan
(2003) – we encourage the reader to consult Fig. 1
and Table 1 to ground this formal presentation.
A minimalist grammar, G, is defined by a tu-
ple, (Σ, Sel, Lic, Lex,M), and we will now de-
fine each member of this tuple in turn. First, Σ is
a finite, non-empty set of phonological forms – a
phonological form is either overt (i.e. a pronounced
word) or covert (i.e. unpronounced), and we let ϵ
denote a covert phonological form. Next, Sel and

33Notably, MGs are sufficiently expressive for modeling
syntactic derivations that are systematically related by struc-
tural transformations. E.g. a declarative is (structurally) re-
lated to its corresponding polar-interrogative by way of the
rule for aux-raising (i.e. T-to-C movement as modeled in
contemporary minimalist syntax) in which the top most (i.e.
root) complementizer triggers head-movement of the (hierar-
chically) closest tense-marker – we would thus expect that the
syntactic structure assigned (by an MG parser) to a declarative
could be transformed into a polar-interrogative by replacing
lexical item 25 with lexical item 9 (in Table 1), and would also
expect that running an MG parser on the polar-interrogative
would yield the same derivation as obtained by applying aux-
raising to the derivation of the declarative. This capability
of MGs and their parsers stands in contrast with state-of-the-
art UD parsers that have difficulty acquiring and encoding
knowledge of the aux-raising rule (Indurkhya and Berwick,
2021).

Lic are defined as non-empty (disjoint) finite sets
of feature labels for selection and licensing respec-
tively.34 We then define F , the set of syntactic
features, as the union of:

(i) the singleton set containing the special fea-
ture C, which marks the end of the derivation
process;

(ii) the set of selectional features, formed by pre-
fixing members of Sel with = or ∼ to indi-
cate if the feature is a selector or a selectee
(respectively); furthermore, a< or> prefixed
before a selector prefix – i.e. “<=” or “>=” –
indicates that the selector triggers left or right
head-movement respectively.35

(iii) the set of licensing features, formed by prefix-
ing members of Lic with + or − to indicate
if the feature is a licensor or a licensee (re-
spectively).

Turning to the lexicon, Lex, we first define the
set of chains as H = Σ∗ × Types × F ∗, where
the set Types = {::, :} designates whether a chain
is lexical or derived (from lexical chains) respec-
tively.36 We can then define Lex as a non-empty
finite set of lexical chains. Finally, the set of ex-
pressions, E = H+, may be recursively combined
together via the binary structure building operation
Merge, denoted by M, to produce another expres-
sion. Merge has two disjoint subcases:

(i) external merge (EM), which models combi-
nation, requires that both arguments of merge
are disjoint from one another;

(ii) internal merge (IM), which models displace-
ment, requires that one of the arguments is a
constituent of the other.

Both sub-cases of Merge are driven by feature-
checking, with M determining whether two ex-
pressions may be paired together based on their
features; note that the syntactic features are unin-
terpretable, and Merge deletes the pairs of features
that check one another.

Let us now formally detail the subcases of M .

34The feature system used here is based on checking theory
as detailed in Chomsky (1995).

35Instances of head-movement include: (i) the V-to-v head-
movement utilized in the Hale-Keyser model of predicate-
argument structure (Hale and Keyser, 1993, 2002); (ii) T-to-C
head-movement (Pesetsky and Torrego, 2001) that is utilized
in fronting an auxiliary verb (e.g. when forming a polar-
interrogative from a declarative).

36Lexical chains serve to track the sequence of movement
operations that the (maximal) projection (of a lexical head)
may undergo in the course of a derivation; in particular, they
track terms in the derivation that have not yet finished moving
(and thus need to be accessible to the Internal Merge operation.
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Let s, t ∈ Σ∗, f ∈ Sel, g ∈ Lic, γ ∈ F ∗ and
δ ∈ F+. Furthermore, let α1, ..., αk ∈ H for
0 ≤ k, and let ι1, ..., ιl ∈ H for 0 ≤ l. We then
define EM as the union of the following three (dis-
joint) functions, {EM1, EM2, EM3}, that involve
feature selection:

[s :: =f , γ] [t · ∼f ], ι1...ιl EM1[st : γ], ι1...ιl

[s : =f , γ], α1...αk [t · ∼f ], ι1...ιl EM2[ts : γ], α1...αk, ι1...ιl

[s ·=f , γ], α1...αk [t · ∼f , δ], ι1...ιl EM3[s : γ], α1...αk, [t : δ], ι1...ιl
The separation of the phonological form and the
syntactic features by the symbol · designates that
the chain could either be lexical or derived. IM is
defined as the union of the two disjoint functions,
{IM1, IM2}, that employ feature licensing:

[s : +g, γ], α1...αi−1, [t : −g], αi+1...αk IM1[ts : γ], α1...αi−1, αi+1...αk

[s : +g, γ], α1...αi−1, [t : −g, δ], αi+1...αk IM2[s : γ], α1...αi−1, [t : δ], αi+1...αk

Furthermore, IM1 and IM2 are restricted by the
Shortest Move Constraint (SMC): if a licensor, α,
binds to a licensee, β, it must be the case that β is
the only licensee to which α can bind. The SMC
ensures that the licensor will always select the (hi-
erarchically) nearest licensee, as at every step in the
derivation, there can only be one possible licensee
that can be licensed; this has the consequence of
making IM deterministic (with respect to which
licensee a licensor will license), so that a deriva-
tion can be determined entirely from knowledge of
the order in which the various lexical heads (and
projections thereof) are externally merged with one
another.

Finally, we define a derivation as a sequence of
expressions produced by recursively applying M to
a group of chains; a derivation is deemed to be com-
plete if there remains a single expression that has no
chains and that has one feature, C (which serves to
indicate the termination point of the derivation).37

37As defined here, an MG either can or cannot generate a
given derivation. However, we can compute a relative like-
lihood for a given derivation to be generated by an MG by
determining for each of the merge operations involving (con-
stituent) selection (i.e. the c-selection that drives external
merge), the degree to which the heads of the two merged
projections tend to associate with one another – this pair-
wise associativity between phonological forms (correspond-
ing to the two heads) can be computed by various methods,
e.g. using a similarity metric to compute distance between
the word embedding vectors for the two phonological forms,
or using model-based collaborative filtering may be used to
compute the associativity between predicates and arguments
(Indurkhya, 2021b).
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D8 · · · · · · · · · · · · · · · · · · · · · · ·
D9 · ⃝⃝⃝⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · · · · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · · ⊕⊕⊕ ·
D10 · · · · · · · · · · · · · · · · · · · · · · ·
D11 · · · · · · · · · · · · · · · · · · · · · · ·
D12 · ⃝⃝⃝ · · · ⊕⊕⊕ · · · · · · · · · · · · · · · · ·
D13 · ⃝⃝⃝⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · · ⊕⊕⊕ ·
D14 · ⃝⃝⃝⊕⊕⊕⃝⃝⃝⃝⃝⃝⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · ⃝⃝⃝ · ⊕⊕⊕⊕⊕⊕ · · · ·
D15 · · · ⊕⊕⊕⊕⊕⊕ · · · · · · · · · · · · · · · · · ·
D16 · · · · · · · · · · · · · · · · · · · · · · ·
D17 · ⃝⃝⃝ · · · ⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · · · · · · · · ·
D18 · ⃝⃝⃝ · ⃝⃝⃝⃝⃝⃝⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · ⃝⃝⃝ · ⊕⊕⊕ · · · · ·
D19 · +++ · · · · · · · · · · · · · · · · · · · · ·
D20 · · · · · · · · · · · · · · · · · · · · · · ·
D21 · · · ++++++ · · · · · · · · · · +++ · · · · · · ·
D22 · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ · · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ ·

Table 4: Model interpretation of two binary uninter-
preted functions, d and d⋆, for the derivation in Fig. 1.
Given an entry at row Di and column Dj : +++ indicates
that the node Di dominates the node Dj with respect to
the derived tree but not the derivation tree;⃝⃝⃝ indicates
that Di dominates Dj with respect to the derivation tree
but not the derived tree;⊕⊕⊕ indicates that Di dominates
Dj with respect to both the derivation tree and the de-
rived tree; and · indicates that Di does not dominate
Dj (with respect to either the derivation tree or the de-
rived tree). E.g. D18 dominates D15 with respect to the
derivation tree but not the derived tree: notice in Table 3
that while p(D15) = D18, there is no k ∈ [0, 22] such
that P(Dk) = D18. Conversely, D21 dominates D15

with respect to the derived tree but not the derivation
tree: notice in Table 3 that P(D15) = D21, but there is
no k ∈ [0, 22] such that p(Dk) = D21. The derivation’s
root node, D22, dominates each of the other nodes in
the derivation with respect to both the derivation tree
and the derived tree. Finally, D1, D2, . . . , D7, which
are leaf nodes (i.e. lexical heads) in the derivation, do
not dominate any other nodes in the derivation, and for
that reason rows D1 . . . D7 are not shown as they would
be entirely filled by · .

Assuming a Subject-Verb-Object word-ordering,
the surface form associated with a complete deriva-
tion may be read out by recursively applying (top-
down) a Specifier-Head-Complement linearization
of each projection.38

C Multi-dominance and Derived Trees

This section details how a minimalist derivation
takes the form of a multi-dominance tree – i.e. the
(bare) phrase structures that linguists are familiar

38In a projection of a lexical head, the complement is the
first term the lexical head merges with, and the specifier is
the subsequent term that the projection (of the head) merges
with – e.g. in XBar-theoretic terms, given the two rules:
XP → Spec,X ′, andX ′ → X,Comp, the projection of the
lexical head X will be linearized so that the surface ordering
is Spec,X,Comp.
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Figure 6: An illustration of how the members of the derivation node sort, N, are arranged into derivation node
sequences, with each sequence being associated with either an overt or covert phonological form. Each derivation
node sequence is depicted as a column, with the first node in the sequence at the bottom and the last node in the
sequence at the top. Note that the derivation node sequences shown here may be arranged so as to form the derivation
(tree) shown in Fig. 1. Nodes that actively play a role in the derivation are depicted as white boxes, and active nodes
that are in the same column have the same (lexical) head - e.g. the root node is D22, and since D22 has the same
head as D9 and D6, it is displayed here above the covert node-sequence associated with the (covert) phonological
form ϵCques.

. (Note that the root node is not a member of any derivation node sequence, and is treated as a special
case in the axioms.) Boxes with dashed boundaries correspond to inactive members of N that do not participate
in the derivation (i.e. they do not appear in the derivation in Fig. 1). Boxes with solid boundaries are projections,
whereas greyed out boxes are part of a lexical chain (i.e. the sequence of movement operations that a maximal
projection may participate in). Importantly, the derivation node sequences together form an index over N, and this
index enables us to write model axioms that can explicitly reference the members of a derivation node sequence –
i.e. the axioms that constrain uninterpreted functions operating over N can explicitly reference each individual step
in the projection (and potential subsequent chain) of the lexical head associated with a given phonological form.

with.39

A multi-dominance tree is a super-position of
the derivation tree – i.e. the tree made up of the
external and internal merge operations that work to-
gether to combine a multi-set of lexical items drawn
from the lexicon – and the derived tree, which is
the tree that remains after a minimalist derivation
has been generated and all movement operations
have been applied. Each MG derivation tree is as-
sociated with a multi-dominance tree, which can
be generated from the derivation tree by appending,
for each occurrence of IM in the derivation tree, a
node at the destination of the movement operation,
and then establishing a dominance relation (via d⋆)
between the destination node and the node at the
source of movement.40

39Relatedly, see Pgs. 12-24 of Graf (2013) for a discussion
of “augmented derivation trees.”

40This is closely related to the two-step approach that in-
volves first lifting information implicitly encoded within a
derivation tree (i.e. the information encoded in the structure
of the multi-dominance tree) so as to to make the information
explicit, and then reconstructing the (derived) phrase structure
tree that linguists are more familiar with. See Pgs. 35-50 of
Graf (2013) for a discussion of the two-step approach of (i)

We observe that, for both the derivation and
multi-dominance trees, each node is associated
with a (lexical) head; then, since two nodes that
are merged together cannot have the same head,
we can identify which of two merged constituents
projects by examining the head of the node that
corresponds to the product of merge.41

• The derivation tree can be recovered from the
multi-dominance tree by deleting each occur-
rence of movement (i.e. deleting the node at
the raised location).

• The derived tree may be recovered from the
multi-dominance tree by removing, for each
node x in the multi-dominance tree that serves
as a source of movement, the dominance rela-
tion (with respect to the derived tree) between

lifting an MG derivation to its associated the multi-dominance
tree and then (ii) reconstructing the ”derived tree”; see also
(Kobele et al., 2007). See Morawietz (2008) (Pgs. 131-182)
for a review of the two-step approach as applied to multiple
context-free grammars (MCFGs), and note that MGs may be
translated into MCFGs (Michaelis et al., 2000).

41N.b. the derivation and multi-dominance trees do not
explicitly encode (linear) precedence relations between the
lexical heads entering into the derivation.
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x and its parent – i.e.:

d⋆(p(x), x) = False

Importantly, the multi-dominance tree can be
viewed as a super-position of the derivation tree
and the derived tree, and it is the multi-dominance
tree associated with an MG derivation that serves
as the domain of discourse in the SMT model of
the derivation. Hence, whenever the present study
refers to a derivation tree or a derived tree, the
reader should understand that they are components
of a multi-dominance tree.

Each lexical item that appears in a derivation
has a (bottom-up) trajectory through the associated
multi-dominance tree:

(i) the lexical item, starting as a lexical head,
is first projected zero or more times – this
process is driven by either external merge via
(c-)selection or internal merge via licensing;

(ii) the (maximal) projection of the lexical item is
then either the terminal point of the derivation
(marked by the presence of the special symbol
C) or is selected by some other lexical head
(this is driven by the presence of a selectee
feature);

(iii) finally, the lexical item is raised, via inter-
nal merge, zero or more times to form a
movement-chain, with each movement op-
eration forming a link in the chain.

Importantly, there are two key points to take away
from this observation:
(a) Each node in the multi-dominance tree asso-

ciates with a lexical item in the derivation (i.e.
the lexical item that is the head of that node)
and the nodes associated with a lexical head
may be arranged as a sequence in the order
in which they appear in the multi-dominance
tree (starting from the bottom); for this reason,
we refer to such a sequence as a “derivation
node sequence” and observe that the multi-
dominance tree associated with an MG deriva-
tion is a structural arrangement of derivation
node sequences (Stabler, 2013).

(b) Given the multi-dominance tree that is associ-
ated with an MG derivation, we can recover
the multiset of lexical items from which the
multi-domimance tree is derived (except for
the labels of the syntactic features); this can be
seen by observing that each node in a deriva-
tion node sequence is associated with exactly
one type of syntactic feature – i.e. selector,

IC Trial 1 Trial 2 Trial 3 Median

I1 11.7 10.5 13.9 11.7
I2 3.2 3.3 4.0 3.3
I3 323.8 208.9 346.0 323.8
I4 267.1 296.2 281.1 281.1
I5 222.6 225.5 178.5 222.6
I6 261.8 312.0 261.4 261.8
I7 1213.3 2065.6 1857.2 1857.2
I8 2445.1 1851.7 3275.9 2445.1

Table 5: Runtime performance, measured in seconds,
of the parser (i.e. the time Z3 takes to check the con-
structed SMT-model of the parser).

selectee, licensor, licensee, or the special sym-
bol C – and noting that the feature-type of
a node can be determined by the position of
that node within the multi-domimance tree, so
that given a derivation node sequence associ-
ated with a lexical entry, the corresponding
sequence of syntactic feature-types (present in
that lexical entry) can be obtained the path that
the derivation node sequence takes through the
multi-dominance tree.

(See Fig. 6 for an illustration of the derivation node
sequences that are assembled to form the derivation
presented in Fig. 1.) Consequently, an SMT model
of a minimalist derivation can be constructed by:
(i) modeling the derivation node sequences that
form the associated multi-dominance tree, and (ii)
constraining the topology of the multi-domimance
tree by using the model axioms to restrict how
the derivation node sequences may be assembled
together.

D Limitations

This section briefly comments on two limitations
of the parser introduced in this study.

One limitation of the parser is that it has only
been tested on (Modern Standard) English, which
has Subject-Verb-Object (SVO) ordering; however,
we believe that the parser can be readily adapted to
languages with Subject-Object-Verb (SOV) order-
ing (e.g. French or Japanese) by replacing a small
number of the constraints (derived from PF inter-
face conditions) that encode SVO-ordering by ap-
plying Specifier-Head-Complement linearization to
the derived tree: namely, these constraints for SVO-
ordering could be replaced with constraints that
enforce SOV-ordering based on applying Specifier-
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Complement-Head linearization (see the relevant
footnote in §7). Moreover, it would be interest-
ing to investigate whether the SMT model of the
parser could be augmented with a (boolean) vari-
able that serves as a switch, controlling whether
the constraints for SVO or SOV are used; notably,
such a switch could either be hard-coded by the
user (to enforce which ordering the parser should
use), or left un-valued, in which case the parser
could use either (SVO or SOV) ordering, so long as
the surfaced word-sequence (yielded by the output
derivation) aligns with the input word-sequence (so
that the input PF interface conditions are satisfied).

Another limitation of the parser is that it is pri-
marily focused on modeling syntax, and does not
explicitly model morphological inflection. We be-
lieve that, in future work, this limitation could be
overcome (in part) by: (i) augmenting the SMT
model of the lexicon to store the root of each (overt)
phonological form and encoding morphological at-
tributes within the labels of the syntactic features;
(ii) updating the constraints (i.e. SMT-formulae)
derived from the PF interface conditions to inflect
each root form when comparing it against the rel-
evant surface form (i.e. the inflected word listed
in the input PF interface conditions) - this inflec-
tion would be realized by the constraints inspecting
the morphological attributes encoded in the feature
label associated with that root form.

We believe that both of these (current) limita-
tions point to productive avenues for further re-
search involving extending the parser presented in
this study.
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Figure 7: A derivation for the sentence: “She knows that John has given money.” This derivation was output by the
parser when it was applied to entry I5 in Table 2, using the lexicon in Table 1, and matches the derivation prescribed
by contemporary theories of minimalist syntax. This demonstrates the parser’s capacity to model an input with an
embedded sentence – i.e. “John has given money”.
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Figure 8: A derivation for the sentence: “John fears everyone who knows her.” This derivation was output by the
parser when it was applied to entry I7 in Table 2, using the lexicon in Table 1, and matches the derivation prescribed
by contemporary theories of minimalist syntax. This demonstrates the parser’s capacity to model an input with a
relative clause – i.e. “everyone who knows her”.
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Abstract
Language models are often trained on text
alone, without additional grounding. There is
debate as to how much of natural language se-
mantics can be inferred from such a procedure.
We prove that entailment judgments between
sentences can be extracted from an ideal lan-
guage model that has perfectly learned its target
distribution, assuming the training sentences
are generated by Gricean agents, i.e., agents
who follow fundamental principles of commu-
nication from the linguistic theory of pragmat-
ics. We also show entailment judgments can
be decoded from the predictions of a language
model trained on such Gricean data. Our results
reveal a pathway for understanding the seman-
tic information encoded in unlabeled linguistic
data and a potential framework for extracting
semantics from language models.

1 Introduction

Recent advances in building computational models
of language have been powered by distributional
semantics: the idea that a text span’s surrounding
context encodes its meaning (Firth, 1957). In par-
ticular, large pretrained language models (LMs;
Peters et al., 2018; Devlin et al., 2019; Brown et al.,
2020) have become an integral part of NLP sys-
tems: the representations that emerge from training
to predict missing words in a text are empirically
useful for natural language understanding tasks.

Despite this empirical progress, Bender and
Koller (2020) argue LMs cannot learn to under-
stand the semantics of sentences. This is because
of a mismatch between the LM training objective—
predicting missing words in text (“form”)—and
Bender and Koller’s conception of meaning as the
relation of a sentence to the external world. Thus
Bender and Koller claim “that the language model-
ing task, because it only uses form as training data,
cannot in principle lead to learning of meaning.”

In this paper, we argue meaning can be learned
from form because the communicative goals of hu-

man authors encode semantic information in unla-
beled text. We show how this semantic information
can be extracted to resolve semantic relations be-
tween sentences (e.g., whether one sentence entails
another): in this inferentialist sense, ideal LMs en-
code the meaning of sentences. This argument has
been raised speculatively by others (Michael, 2020;
Potts, 2020; Bommasani et al., 2021), but we will
rigorously justify it here with formal results.

To give the simplest (and least general) illustra-
tion of our argument, we first assume training data
is generated by overly idealized uniformly truthful
speakers: agents who decide what to say by picking
sentences they consider true uniformly at random.1

This very coarsely captures human authors’ goal of
being informative (rather than misleading) to their
listeners (Grice, 1975). In Theorem 1, we prove a
sentence x entails sentence y if and only if, after
uttering x, a uniformly truthful speaker is just as
likely to say y as to repeat x. Thus, entailment
semantics can be extracted from probabilistic lan-
guages generated by uniformly truthful speakers.

Uniformly truthful speakers are not a realistic
model of humans: while humans favor true sen-
tences to false ones (Grice, 1975), not all true sen-
tences are equally likely to be produced. It is a
common principle in linguistic theories of pragmat-
ics that human speakers choose their utterances in
order to balance two competing objectives: (a) con-
veying information to their listener and (b) brevity
(Levinson et al., 1983; Grice, 1975). We define a
class of Gricean speakers who optimize for these
objectives, and prove in Theorem 2 that x entails y
if and only if a simple equation holds in terms of
text probabilities produced by such speakers. Thus,
entailment semantics can be decoded from proba-
bilistic languages generated by Gricean speakers.

1Studying the ability of LMs to understand programming
language semantics, Merrill et al. (2021) make a similar as-
sumption that programmers are more likely to write true asser-
tion statements than false ones.
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The previous results assume access to a lan-
guage’s ideal likelihood function, but, in practice,
one only ever receives a corpus sampled from the
language. Moving to the corpus setting, we analyze
how much data allows approximately computing
our derived entailment test using probabilities esti-
mated from sentence frequencies in a corpus. We
find that the corpus size needed to guarantee the
entailment test holds approximately is inversely
related to the likelihood of the sentences. We es-
timate that approximating the entailment test be-
tween 4-word sentences using corpus frequencies
is possible with ∼ 1010 sentences, about the size
of the GPT-3 training data (Brown et al., 2020).
On the other hand, approximating the entailment
test for 10-word sentences should be possible with
∼ 1017 sentences, or ∼ 107 GPT-3 corpora. Thus,
extracting entailment judgments using corpus fre-
quencies requires an infeasible amount of data—
even by modern NLP standards.

To overcome this limitation, one might hope to
use probabilities estimated by LMs to extract en-
tailment judgments between longer sentences that
are rare even in a large corpus. With synthetic data
generated by Gricean speakers, we find that entail-
ment can be decoded from n-gram LM predictions
to some extent. However, we speculate that current
neural LMs may not score the probability of rare
text well enough to enable decoding entailment
judgments between natural language sentences.

In summary, our main contribution is to show a
correspondence between the semantics of text and
its likelihood, assuming the likelihood function
matches models of human text production from lin-
guistic theory. Determining whether a sentence in a
probabilistic language entails another sentence can
be reduced to modeling the probabilities of strings
in the language. In practice, entailment judgments
between very short sentences can be extracted from
corpus frequencies, but this becomes infeasible for
slightly longer sentences. LMs can in principle be
used to extrapolate the likelihood of longer strings,
but we hypothesize current LMs are not well-suited
for doing so well enough to enable extracting en-
tailment from natural language. Our theory demon-
strates a formal sense in which unlabeled text data
encodes linguistic meaning and makes quantitative
predictions for (a) how to extract semantics from
text corpora and (b) how much data this requires.

2 Definitions

2.1 Sentences and Worlds
Let X be a finite set of sentences, andW a count-
able2 set of possible world states. A sentence x is
a string whose denotation JxK is a proposition, i.e.,
a set of world states (⊆ W) where x is true. Fol-
lowing standard conventions in formal semantics
(cf. Heim and Kratzer, 1998), the set JxK can be
equivalently viewed as a function mapping a world
state w to {0, 1} that indicates whether x is true in
w, which we will write as JxK(w). We imagine w
to encode a partial description of the world, much
like the concept of a situation in formal semantics
(Kratzer, 2021). For simplicity, we assume an in-
dividual’s subjective belief state can be modeled
as the unique, maximal w that fully describes the
facts which they believe to be true.

Example x = John has at least two cats.
LetW = {w0, w1, w2, w3} be the set of possible
worlds, where wn denotes the state in which John
has n cats. Then JxK = {w2, w3}, because John
has at least two cats in these worlds. Furthermore,
it holds that JxK(w2) = 1, but JxK(w1) = 0.

2.2 Speakers and Texts
We refer to a sequence of sentences z ∈ X ∗ as a
text.3 The meaning of a text is the set of worlds
consistent with all its sentences, i.e.,

JzK =
|z|⋂

t=1

JztK.

We will imagine that a text z ∈ X ∗ is produced by
iteratively sampling zt ∈ X ∪ {$} from a speaker
model p(zt | z<t, w). p(zt | z<t, w) represents the
probability of saying sentence zt with belief state
w after having said z1 · · · zt−1. Let $ ̸∈ X be a
special end of sequence token satisfying J$K =W .
We refer to any text ending with $ as complete.
Given a world w, an incomplete text z ∈ X ∗ or
complete text z ∈ X ∗$ has conditional probability

p(z | w) =
|z|∏

t=1

p(zt | z<t, w).

The conditional probability of an incomplete text
represents the probability of observing z as the

2Our results extend to uncountable sets of world states if
entailment is relaxed to hold almost surely (cf. §B). Alterna-
tively, our results apply as-is if we assume a countable set of
equivalence classes over uncountably many worlds.

3Where X ∗ denotes the Kleene star closure of X .
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prefix of a text written by a human with beliefs
w. In contrast, the probability of a complete text
represents the probability that a speaker produces
z and no further text. The conditional distribution
p(z | w) cannot be observed directly by a LM,
since w is a latent variable missing from the train-
ing data. Rather, a LM has access to texts that have
been generated by speakers across many possible
belief states. Mathematically, this can be expressed
by saying a LM’s target distribution is a marginal
distribution over z ∈ X ∗ ∪X ∗$ according to some
prior distribution over worlds p(w):

p(z) = E
w∼p(w)

[p(z | w)]

= E
w∼p(w)

[ ∞∏

t=1

p(zt | z<t, w)
]
.

The prior p(w) represents the probability that a
speaker contributing to the corpus will have belief
state w—we make no assumptions about its form
besides that p(w) > 0 for all w ∈ W , and, for ev-
ery sentence, there is some world state that makes
that sentence true. In contrast to p(z), which corre-
sponds to the expected corpus frequency of z, we
denote by p(JzK) the probability that z is true.4

Example Let z be the 2-sentence text:5

z1 = We swung our swords.

z2 = That was ever so long ago.

Let p be the distribution of all possible English
web texts. The marginal probability p(z) can be de-
composed across many possible worlds. One such
world w1 might be the world where the speaker is
the semi-legendary Viking hero Ragnar Loðbrók
(in modern English translation); another world w2

might be the perspective of a Reddit user reviewing
a coffee maker. Each of these worlds corresponds
to one term in a sum over all worlds. We expect
p(z | w1) to be higher than p(z | w2) since it
is more likely for a medieval literary character to
utter z than a modern product reviewer. Finally,
p(z | w1) can be factored as

p(z1 | w1)p(z2 | z1, w1).

In contrast to p(z), which counts all contexts where
z is the beginning of a longer text, p(z$) measures
the frequency of z1z2 followed by nothing else.

4The notation explicitly represents the probability mass
assigned to the set of worlds where z is true.

5Text taken from the Wikipedia page for the skaldic poem
Krákumál, written in Ragnar’s voice.

2.3 Distributional and Semantic Relations
Distributional Relations A distributional rela-
tion d is a relation over sentences x and y defined
in terms of likelihood of different texts under some
distribution p. Let dp(x, y) be the value of the
distributional relation d between sentences x, y ac-
cording to distribution p. If we train an LM on
texts sampled from a target distribution p, the LM
estimates a predictive distribution p̂. Thus, any LM
parameterizes dp̂: an instantiation of the distribu-
tional relation d with respect to the probabilities
learned by the LM. If the LM perfectly approxi-
mates p(x) for all x, then dp̂ = dp by construction.

Example Define the distributional relation d
(with respect to some distribution p) such that
d>p (x, y) ⇐⇒ p(x) > p(y). d>p (x, y) says x
is more likely than y according to p. If p̂ represents
LM predictions trained on the target distribution
p, than d>p̂ (x, y) says whether the LM predicts a
sentence x is more likely than another sentence y.

Semantic Relations In contrast, a semantic rela-
tion between x and y is a relation defined in terms
of their denotations JxK and JyK. We will focus on
the key semantic relation of entailment:

Definition 1 For two sentences x, y ∈ X , x entails
y if and only if JxK ⊆ JyK.

It is not clear prima facie if LMs can represent
entailment relations. However, it could be that a
semantic relation s can somehow equivalently be
written as a distributional relation dp. If so, a LM
that perfectly approximates p could be understood
to encode s, since s can be extracted from p̂ via dp̂.

Formally, we can ask if a semantic relation can
be alternatively expressed as a distributional rela-
tion by analyzing if there exists an isomorphism
between a semantic relation s(JxK, JyK) and some
distributional relation dp(x, y):

Definition 2 (Isomorphism) A semantic relation
s is isomorphic to a distributional relation d under
speaker p if and only if, for all x, y ∈ X ,

s(JxK, JyK) ⇐⇒ dp(x, y).

If Definition 2 holds under a speaker model p,
then predicting whether s holds between two sen-
tences is reducible to perfectly modeling the prob-
abilities of texts generated by p. Our goal going
forward will be to derive distributional relations
isomorphic to entailment assuming p models the
goals of humans when they produce text.
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3 Uniformly Truthful Speakers

We start by illustrating our research question and
technical approach assuming an overly simple
model of humans as uniformly truthful speakers.
A uniformly truthful speaker chooses a sentence
to produce by selecting one of the true sentences
that holds in their belief state uniformly at ran-
dom. This very coarsely captures the property of
natural language pragmatics that subjectively true
sentences tend to be more likely than false ones,
although it does not account for many other factors
that influence human speech patterns in complex
ways (Grice, 1975).6 Let n(w) be the number of
sentences true in world w. We can formally define
a uniformly truthful speaker as follows:

Definition 3 A speaker p is uniformly truthful if,
for all sentences x ∈ X ∪ {$},

p(x | w) = JxK(w)∑
x′Jx′K(w)

=
JxK(w)
n(w)

.

In other words, p uniformly spreads probability
mass across all sentences that are true in world w.
We will show that, if the corpus consists of text
written by uniformly truthful speakers, entailment
can be decided by a distributional relation. The
following lemma will be a core technical tool in
our analysis. Informally, it is useful because it es-
tablishes a correspondence between relations over
sets of worlds and probabilities.

Lemma 1 Let 1S be the indicator function for set
S. For sets A,B such that A ⊆ B ⊆ W , and
c :W → R+, A = B if and only if

∑

w∈W
1A(w)c(w) =

∑

w∈W
1B(w)c(w).

Proof. We will prove that B ⊆ A by contradiction.
Assume there exists w ∈ B such that w ̸∈ A. Then
the right sum contains the positive term c(w), while
the left sum does not. Because all terms in the right
sum are positive, the left sum must contain at least
one term c(w′) that the right sum does not. Thus,
w′ ∈ A but w′ ̸∈ B. But this has violated our
assumption that A ⊆ B.

We now use Lemma 1 to derive a simple distri-
butional relation that is isomorphic to entailment.

6LMs sometimes generate objectively false statements (Lin
et al., 2022), presumably due to the occurrence of such facts in
their training data. This is actually consistent with a uniform
truthfulness assumption, which only requires that speakers
only produce sentences they believe are true, not sentences
that are actually true in some objective sense.

Theorem 1 If p is a uniformly truthful speaker,
then entailment is isomorphic to a distributional
relation. Specifically, for all sentences x, y ∈ X ,

JxK ⊆ JyK ⇐⇒ p(xy) = p(xx).

Proof. dp(x, y) holds if and only if

p(xy) = p(xx)

E
w

[JxK(w)JyK(w)
n(w)2

]
= E

w

[JxK(w)JxK(w)
n(w)2

]

E
w

[JxK(w)JyK(w)
n(w)2

]
= E

w

[JxK(w)
n(w)2

]
.

An expectation in a countable space is a sum
weighted by probability masses. So, by Lemma 1,
this holds iff JxK = JxyK = JxK∩JyK. We conclude
p(xy) = p(xx) if and only if JxK ⊆ JyK.

A similar proof suffices to show that the follow-
ing isomorphism also holds:

Corollary 1.1 If p is a uniformly truthful speaker,
the following isomorphism holds for all x, y ∈ X :

JxK ⊆ JyK ⇐⇒ p(xy) = p(x$).

3.1 Discussion

Uniformly truthful speakers resemble humans in
that they mimic the tendency of humans to tell the
truth about what they believe. However, they are
clearly too simple to account for human speech
patterns. Most crucially, humans generally aim to
produce informative speech, rather than sampling
true sentences at random. More fundamentally,
natural language has a countably infinite number
of possible sentences, so a uniform distribution
over all true sentences is not even mathematically
well-defined. These limitations motivate our more
involved analysis of Gricean speakers, which will
adapt the technical tools used in this section.

4 Gricean Speakers

In this section, we will define a new class of speak-
ers who pick sentences in order to be informative
to their listener, while also trying to be concise.
To do this, we will draw on information theory to
formalize what it means for a speaker to be infor-
mative. We will then derive a distributional relation
that is isomorphic to entailment for Gricean speak-
ers, which is a generalization of the relation for
uniformly truthful speakers from §3.
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4.1 Definition
Information The first step towards formalizing
Gricean speakers is to define a notion of the se-
mantic information contained in a sentence. We
formalize a listener ℓ(w | z) as the inverse of a
speaker: Given a text z ∈ X ∗, a listener produces
a distribution over possible world states. Then, in a
given world w we can define the information that a
text conveys to the listener as the reduction in the
number of bits needed to transmit w to ℓ after they
have read z compared to before they have read z.

Definition 4 The information content of a text z ∈
X ∗ ∪ X ∗$ to a listener ℓ(w | z) is7

Iℓ(z;w) = log ℓ(w | z)− log ℓ(w).

In other words, the information content of a text
is the reduction in ℓ’s code length for the world
after having read the text compared to beforehand.
We can naturally extend Definition 4 to measure
the conditional information conveyed by sentence
y given that x has already been produced:

Definition 5 The information content of y ∈ X ∗ ∪
X ∗$ given x ∈ X ∗ to a listener ℓ(w | z) is

Iℓ(y | x;w) = Iℓ(xy;w)− Iℓ(x;w)
= log ℓ(w | xy)− log ℓ(w | x).

Informative Speaker We now define a Gricean
speaker in terms of Iℓ. Our definition general-
izes the rational speech acts model (Goodman
and Frank, 2016), but makes weaker assumptions
about the listener and allows a dynamic semantics
where later sentences can condition on previous
ones (Lewis, 1979; Kamp, 1981; Heim, 1982). We
define an utterance’s utility as a convex combi-
nation of its information content and its cost to
produce, operationalizing the Gricean idea that
speakers pick utterances by weighing their in-
formativeness against their cost. The cost func-
tion c : X ∗ ∪ X ∗$ → R can be any measure
of sentence complexity (e.g., length) satisfying
c(xy) = c(x) + c(y) for x, y ∈ X ∗ ∪ X ∗$.8

Definition 6 A speaker p is Gricean if there exists
a listener ℓ(w | z), some α > 0, and a cost function
c such that, for all z ∈ X ∗ ∪ X ∗$:

p(z | w) ∝ exp (αIℓ(z;w)− c(z)) .
7For convenience, we let log 0 = −∞ and ∞−∞ = 0.
8This is satisfied when c(x) is the length of x, but also for

other options like the corpus frequency of x (Goodman and
Frank, 2016) or the depth of the syntactic tree of x.

Further, ℓmust satisfy the following for all x ∈ X ∗,
y ∈ X ∪ {$}, and w ∈ W ,

Iℓ(y | x;w) = 0 ⇐⇒ JxK(w)→ JyK(w).

In other words, the speaker must be trying to
convey information about the state of the world to
some listener who fully absorbs the semantic in-
formation in all sentences they have already heard:
clarifying already established information will not
benefit the listener. We can formalize this by deriv-
ing p(y | x,w) for x ∈ X ∗ and y ∈ X ∪ {$}:

p(y | x,w) = p(xy | w)
p(x | w)

∝ exp (αIℓ(y | x;w)− c(y)) .

Notably, the probability of y given x depends on the
conditional information of y given x, which means
only information conveyed by y that is nonredun-
dant with x will make y more likely.9

4.2 Results
Proofs are in §C. Under a Gricean speaker, the cost
of an utterance can be expressed:

Lemma 2 For any Gricean speaker p and x ∈ X ,

p(x$)

p(xx)
=

exp(c(x))

exp(c($))
.

Corollary 2.1 Under a Gricean speaker, for all
x ∈ X , c(x) = log p(x$)− log p(xx) + c($).

Corollary 2.1 says that a sentence is costly to
the extent that it is unlikely to be repeated twice,
giving an intuitive characterization of this quantity
in terms of text probabilities. Now, we will use this
characterization of cost to derive a distributional
relation that is isomorphic to entailment.

Theorem 2 Under any Gricean speaker p, en-
tailment is isomorphic to a distributional relation.
Specifically, for all sentences x, y ∈ X ,

JxK ⊆ JyK ⇐⇒ p(xy)

p(x$)
=
p(yy)

p(y$)
.

If we allow our decision rule to depend on the
cost function c in addition to probabilities, we can
simplify Theorem 2 as follows:

9From a technical perspective, the exp in Definition 6
is justified by the fact that probabilities decompose multi-
plicatively, i.e., p(xy | w) = p(x | w)p(y | x,w), but the
information content and cost of text should decompose ad-
ditively across different sentences. Applying basic exponent
rules shows that Definition 6 satisfies this desideratum.
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Corollary 2.1 Under any Gricean speaker p, for
all sentences x, y ∈ X , JxK ⊆ JyK if and only if

log p(x$)− log p(xy) = c(y)− c($).

If we imagine c(y)− c($) = 0 for a uniformly
truthful speaker, we see the equation in Theorem 2
is a generalization of the equation in Theorem 1.

4.3 Discussion

Gricean speakers are a general enough model of
humans speakers to capture the basic pragmatic
principles influencing speech production. Thus, it
is notable that Theorem 2 establishes a closed-form
distributional relation isomorphic to entailment.

One conceptual limitation of Gricean speakers
is that their simulated listener must fully consume
information, such that redundantly conveying the
same information twice will not lead to any infor-
mation gain the second time. This contrasts with
real speech, where potential interpretation errors by
the listener incentivize the speaker to be somewhat
redundant (Degen et al., 2019). Mathematically,
this would violate the axiom of Definition 6 that

Iℓ(y | x;w) = 0 ⇐⇒ JxK(w)→ JyK(w).

Extending Theorem 2 to speakers who use redun-
dancy to account for noise and interpretation errors
is an interesting direction for future work.

Another interesting extension would be formal-
izing speakers who aim to be informative regarding
some question under discussion, rather than be-
ing generally informative about w (cf. Goodman
and Lassiter, 2015). This could encompass both
“what” questions that aim to clarify some aspect of
the world, and “why” questions that aim to convey
explanations for established facts.

5 Decoding Entailment from Empirical
Text Frequencies

We have so far shown that entailment judgments
can be extracted from the sentence probabilities
in the ideal distribution p(z). What happens if,
more practically, we estimate the probability of a
sentence by its frequency in a large corpus sampled
from p(z)? We prove this method enables feasible
extraction of entailment judgments between very
short sentences, but the corpus size may become
intractably large for longer sentences.

Imagine we have a finite corpus of iid sentences
{Zi}ni=1, each sampled from p(z). Let p̂(z) be the

empirical frequency of a text z in the corpus, i.e., if
π(z, z′) returns whether text z is a prefix of text z′,

p̂(z) =
1

n

n∑

i=1

π(z, Zi).

Since p(z) encodes entailment via our extrac-
tion rules, p̂(z) will encode entailment between
sentences if p̂(z) is close to p(z). A naive notion
of closeness is to guarantee, for all ϵ, there exists
some number of texts n such that, with high prob-
ability, |p(z)− p̂(z)| < ϵ. But this notion is not
strict enough: if p(z) is small, this difference will
also be small, even if p̂(z) is not a good approxima-
tion of p(z) on a relative scale. Instead, we want to
guarantee that p̂(z)/p(z) converges to 1, or, equiv-
alently, that their difference as log probabilities
converges to 0. This ensures that convergence will
still be meaningful for low-probability sentences,
which most sentences are in natural language.

Under this standard, rarer sentences take more
samples to approximate. Define the sentence com-
plexity Kp(z) =

1
p(z) . We bound the approximation

error in terms of Kp(z).10

Lemma 3 For z ∈ X ∗ ∪ X ∗$ and δ > 0, it holds
with probability at least 1− δ − (1− p(z))n that

|log p(z)− log p̂(z)| ≤
√

Kp(z)

δn
.

To make this bound non-vacuous, n must be
large enough to counteract Kp(z) and bring (1 −
p(z))n close to 0. Thus, good approximation re-
quires fewer samples for more common sentences.
To get a more concrete view of the number of sam-
ples required to extract entailment judgments from
an LM, we analyze Kp(z) for Gricean speakers.11

Recall that we write c(z) for the cost that a
Gricean speaker assigns to producing a sentence z.
For Gricean speakers, Kp(z) is related to c(z) as
well as the probability z is true.
Theorem 3 Assume that p(z | w) is a Gricean
speaker with respect to listener ℓ and JzK(w) =

1 ⇐⇒ Iℓ(z;w) ≥ 0. Let gp(x, y) = log p(xy)
p(x$) −

log p(yy)
p(y$) . Let q = 1−min{p(xy), p(yy)}. Then,

for all x, y ∈ X such that JxyK(p) > 0, for all
δ > 0, it holds with probability at least 1− δ−4qn

that |gp(x, y)− gp̂(x, y)| is at most

8

√
exp(max{c(xy), c(yy)})

p(JxyK) · 1

δn
.

10Omitted proofs from §5 are in §D.
11§D also analyzes uniformly truthful speakers.
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Figure 1: Estimated number of training sentences for
guaranteeing gp̂ closely approximates gp, where p̂ is
estimated using empirical text frequencies.

Theorem 3 says we can use text frequencies to
decode entailment between sentences x, y from a
Gricean corpus, but the number of training sen-
tences to guarantee this grows exponentially with
the cost of x and y. Thus, we probably cannot
expect to extract entailment judgments from text
frequencies except between very short sentences.

We make this more quantitative in Figure 1,
where we estimate the number of training sentences
needed to ensure gp and gp̂ are close on sentences of
length≤ k as a function of k. The main assumption
behind this calculation is that a sentence’s proba-
bility vanishes exponentially in its length, where
the exponential base is the perplexity of the lan-
guage. §E documents the underlying assumptions
in more detail. Figure 1 predicts gp and gp̂ can be
made close for length-4 sentences using ∼ 1010

training sentences: about as much data as GPT-3
was trained on. In contrast, handling (still short)
sentences of length 10 can be done with ∼ 1017

training sentences, or ∼ 107 GPT-3 corpora. Thus,
relying solely on corpus frequencies is likely not
a feasible way to extract entailment relations from
text generated by Gricean speakers.

6 Decoding Entailment from LMs

We have just analyzed how many samples are nec-
essary to decode entailment relations from the text
frequencies in a finite corpus. As shown by Theo-
rem 3, this approach will require intractably many
samples for sentences of nontrivial length because
longer strings will appear infrequently (if at all)
in the corpus. In order to estimate the probability
of rare, longer, strings what if we use an LM to
estimate p̂(z) instead of text frequencies? Perhaps
a smoothed LM should allow us to extrapolate p̂(z)
well enough for long sentences to extract entail-

ment judgments between them. In this section, we
briefly discuss some limitations of this approach.

It is tempting to take low LM perplexity as evi-
dence that an LM estimates sentence probabilities
well enough to approximately satisfy the isomor-
phism in Theorem 2. After all, low test perplexity
implies that p̂(z) is, on average, a good approxima-
tion of p(z): if the perplexity is bounded below ϵ,
then the KL divergence KL(p, p̂) is bounded below
log ϵ. ϵ decreases with the amount of training data
n at a rate between Ω(1/

√
n) and Ω(1/n) (Wang

et al., 2013; Li and Liu, 2021). Thus, with enough
data, p̂(z) will closely approximate p(z) for an
average sentence z in the training distribution.

But low error on an average z does not establish
entailment can be decoded from p̂ because dp̂, as
derived in Theorem 2, depends on the text z = yy,
which is very unlikely in natural language.12 Poorly
estimating p(yy) has little impact on KL(p, p̂), so
LMs trained to minimize KL(p, p̂) have no reason
to estimate p(yy) well unless they are imbued with
strong inductive biases. Thus, we expect that LMs
trained with a standard cross-entropy loss may not
produce reliable entailment judgments because they
poorly estimate the probability of key valid (but un-
likely) texts.13 However, we find in the next section
that they do succeed in the easier setting of small
artificial languages and fully Gricean speakers.

7 Experiments: Extracting Semantics
from Simulated Gricean Corpora

We test empirically whether we can extract entail-
ment judgments from LMs trained on unlabelled
text.14 Natural language corpora are unlikely to ad-
here exactly to our idealized assumptions about the
speakers generating texts, so we generate the train-
ing corpora from a simulated Gricean speaker (see
§4). To make learning semantics more tractable
with limited computation, we set |W| = 3 and
restrict the vocabulary X to 7 utterances, each de-
noting one of the 7 non-empty subsets ofW . Each
sentence in the training corpus is generated by sam-
pling utterances from a Gricean speaker, condi-
tioned on a uniformly sampled world state and the

12yy is unlikely to be produced by a Gricean speaker be-
cause the second y conveys no information.

13Future work should more carefully analyze how much
data is required to extract complex entailment relations from
LM predictions (rather than corpus frequencies). This is be-
yond the scope of the current project.

14https://github.com/viking-sudo-rm/
formal-language-understanding
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previously generated utterance, until the tautologi-
cal utterance is generated. The semantic value of a
sentence is taken to be the conjunction over all of
its utterances. We set the rationality parameter α
and the cost function heuristically (details in §G).

We generate training sets varying in size from
2 texts to 10M texts, and train two types of mod-
els on each: a simple empirical text frequency as
described in Section 5, and a trigram model im-
plemented using NLTK (Bird, 2006). Then for
all sentence pairs (x, y), where x and y have 6 ut-
terances or fewer and each denotes a non-empty
proposition, we compute gp̂(x, y) from §5. The-
orem 2 shows that, under the true distribution p,
gp̂(x, y) = 0 if and only if x entails y.

The results are plotted in Figure 2. We arrive at
the following conclusions:

Entailment relations can be extracted with
greater-than-chance performance from LM pre-
dictions. The value of gp̂(x, y) is much closer to
0 on average for entailed pairs than for non-entailed
pairs. This is predicted by Theorem 2.

The size of the corpus needed to extract entail-
ment grows predictably with sentence length.
For entailed pairs, the average value of gp̂(x, y) for
shorter sentences approaches 0 more quickly with
a large training corpus. This is in line with the
predictions of Theorem 4.

Model inductive bias impacts the ease of extract-
ing entailment. Entailed and non-entailed pairs
are better distinguished by the trigram model than
the text frequency model. Specifically, gp̂(x, y) is
closer to 0 for the trigram model for a given amount
of data, and the trigram model’s predictions are less
sensitive to sentence length.

8 Generality of Extracting Semantics

Our main result that entailment judgments can be
extracted from an ideal LM assumes the corpus
was produced by Gricean speakers. While prag-
matic theory supports this assumption, real human
speakers are undoubtedly more complex. What if
we relax the assumption that speakers are Gricean?
In Theorem 6 in §F, we show that any semantic
relation is isomorphic to some distributional rela-
tion as long as, for any pair of possible semantics,
there is some text whose probability distinguishes
between the two candidate semantics.

We take it to be uncontroversial that semantics
influences speech production, so we interpret Theo-
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Figure 2: Plot of gp̂(x, y) = log p̂(xy)
p̂(x$) − log p̂(yy)

p̂(y$) as
a function of the number of sentences in the training
corpus and the length |xy|. Given the true distribution
p, gp(x, y) = 0 iff x entails y. We exclude pairs x, y
where both xy and yy are absent from the training data.

rem 6 to say all semantic relations are fully encoded
in ideal LMs. In contrast to Theorem 2, however,
this result is nonconstructive, so we do not know
which algorithm to use to decide entailment be-
tween two sentences, even though one exists. Fur-
ther, without further assumptions about the speaker,
we cannot guarantee the extraction relation is effi-
ciently computable or even computable at all.

9 Conclusion

Given a general, linguistically motivated model of
human text production, we proved that entailment
judgments can be decoded from the likelihood func-
tion for texts because of semantic artifacts created
by human authors. We also showed empirically that
entailment could be extracted n-gram LMs trained
on simple formal languages. Thus, we have given
one explanation for why distributional information
encodes semantic information (Firth, 1957) and
how semantic relations are, in principle, extractable
from LMs. It is an open question whether entail-
ment judgments might be extractable from current
large LMs, but we hypothesize that the complexity
of natural language makes this substantially more
challenging than with our synthetic experiments,
and that the loss function and inductive biases of
current neural LMs are not well suited for doing so
without an infeasible amount of data.
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A natural next step for future work is to test
this hypothesis empirically by measuring whether
entailment judgments can be extracted from large
LMs using our theory. Similarly, it would be inter-
esting to think about how LMs could be modified
so that they can better pick up on the semantic
information encoded in their training distribution.
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A Limitations

We derived a recipe for computing entailment in terms of text probabilities, hinting that entailment
judgments may be decodable from LM predictions. Yet two key concerns qualify this conclusion.

Learnability We reduce entailment classification to computing probabilities in the target distribution of
an LM, not probabilities predicted by an LM. In §6, we argue that the loss function of current LMs is not
well suited to producing models from which entailment can be extracted.

Speaker Assumptions Gricean speakers capture important factors influencing speech production in
pragmatic theory, but human speakers are undoubtedly more complex. Based on §8, we expect a similar
isomorphism to hold under any reasonable speaker model, but the mathematical form may change and it
may become harder to compute.

B Uncountable World Spaces

In this section, we assumeW is an uncountably infinite set with a a probability density function p(w).
We then define “almost sure” entailment as follows:

Definition 7 For x, y ∈ X , we say x almost surely entails y (i.e., JxK ⊑ JyK) if and only if

p(JxK \ JyK) = 0.

Note that ifW is countable, then A ⊑ B reduces to A ⊆ B. We can generalize Lemma 1 as follows,
which shows that all our results go through for almost sure entailment whenW is uncountable.

Lemma 4 Let 1S be the indicator function for set S. Let f : W → R be some function such that
infw∈W f(w) > 0. For any sets A,B such that A ⊆ B ⊆ W , then p(B \ A) = 0 if and only if

E
w∼p(w)

[1A(w)f(w)] = E
w∼p(w)

[1B(w)f(w)] .

Proof. If p(B \ A) = 0, then the condition follows by construction. We thus only need to show that the
condition follows from p(B \ A) = 0. Let q = p(B \ A). By linearity of expectation, we rewrite the
premise condition as

0 = E
w∼p(w)

[(1A(w)− 1B(w)) f(w)]

= E
w∼p(w)

[(1A(w)− 1B(w)) f(w) | w ∈ B \ A] q

+ E
w∼p(w)

[(1A(w)− 1B(w)) f(w) | w ̸∈ B \ A] (1− q)

≥ E
w∼p(w)

[f(w) | w ∈ B \ A] q.

Letting f∗ = infw∈W f(w) > 0, we get 0 ≥ f∗q. Since f∗ > 0 and q ≥ 0, q = p(B \ A) = 0.

C Gricean Speaker Proofs

Lemma 2 For any Gricean speaker p and x ∈ X ,

p(x$)

p(xx)
=

exp(c(x))

exp(c($))
.

Proof. Starting with the definition of an Gricean speaker, for any x ∈ X ∗ and y ∈ X ∪ {$},

p(xy) = E
w
[p(x | w)p(y | x,w)] .

Now, letting g(x,w) ≜ p(x | w)/
(∑

y′ exp (αIℓ(y
′ | x;w)− c(y′))

)
,

p(xy) = exp(−c(y))E
w
[exp(αIℓ(y | x;w))g(x,w)] .
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We apply this identity to both sides of the fraction in the lemma statement:

p(x$)

p(xx)
=

exp(−c($))Ew [exp(αIℓ($ | x;w))g(x,w)]
exp(−c(x))Ew [exp(αIℓ(x | x;w))g(x,w)]

=
exp(c(x))

exp(c($))
· Ew [exp(αIℓ($ | x;w))g(x,w)]
Ew [exp(αIℓ(x | x;w))g(x,w)]

.

Since JxK ⊆ J$K and JxK ⊆ JxK, we know that the conditional information of both $ and x given x is 0,
and, thus,

p(x$)

p(xx)
=

exp(c(x))

exp(c($))
· Ew [exp(0)g(x,w)]

Ew [exp(0)g(x,w)]
=

exp(c(x))

exp(c($))
.

Theorem 2 Under any Gricean speaker p, entailment is isomorphic to a distributional relation. Specifi-
cally, for all sentences x, y ∈ X ,

JxK ⊆ JyK ⇐⇒ p(xy)

p(x$)
=
p(yy)

p(y$)
.

Proof. Recall from the proof of Lemma 2 that there exists a function g(x,w) such that, for all x ∈ X ∗

and y ∈ X ∪ {$},
p(xy) ∝ exp(−c(y))E

w
[exp(αIℓ(y | x;w))g(x,w)] .

Thus, by Lemma 2, the proposed distributional relation can be expanded as

dp(x, y) ⇐⇒
p(xy)

p(x$)
=
p(yy)

p(y$)

⇐⇒ p(xy) · p(y$)
p(yy)

= p(x$) · p(xx)
p(xx)

⇐⇒ p(xy)
exp(c(y))

exp(c($))
= p(xx)

exp(c(x))

exp(c($))

⇐⇒ p(xy) exp(c(y)) = p(xx) exp(c(x))

⇐⇒ E
w
[exp(αIℓ(y | x;w))g(x,w)] = E

w
[exp(αIℓ(x | x;w))g(x,w)] .

By Lemma 1, this holds if and only if, for all w,

exp(αIℓ(y | x;w)) = exp(αIℓ(x | x;w))
Iℓ(y | x;w) = Iℓ(x | x;w)
Iℓ(y | x;w) = 0

JxK(w)→ JyK(w) = 1.

We conclude the distributional relation holds if and only if JxK ⊆ JyK.

D Proofs for Learning Bounds

Lemma 3 For z ∈ X ∗ ∪ X ∗$ and δ > 0, it holds with probability at least 1− δ − (1− p(z))n that

|log p(z)− log p̂(z)| ≤
√

Kp(z)

δn
.

Proof. Without loss of generality, assume p(z) > 0. With probabiliy 1− (1− p(z))n over the draw of
our sample, the random variable log p̂(z) has finite variance defined by

Var [log p̂] =
1

n
· 1− p(z)

p(z)
≤ Kp(z)

n
.
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With finite variance, we can apply Chebyshev’s inequality to conclude that

Pr [|log p(z)− log p̂(z)| ≥ ϵ] ≤ Var [log p̂]

ϵ2
≤ Kp(z)

nϵ2
.

Solving for δ ≤ Pr [|log p(z)− log p̂(z)|], we get

δ ≤ Kp(z)

nϵ2

∴ ϵ ≤
√

Kp(z)

δn
.

We conclude that that with probability 1− δ − (1− p(z))n,

|log p(z)− log p̂(z)| ≤
√

Kp(z)

δn
.

We now characterize the complexity factor Kp(z) for uniformly truthful speakers.

Lemma 5 For all z ∈ X ∗ ∪ X ∗$ such that JzK(p) > 0, it holds that

Kp(z) ≤
|X |
p(JzK) .

Proof. We start by deriving a lower bound on p(z).

p(z) =
∑

w

JzK(w)∑
z′Jz′K(w)

p(w)

≥
∑

w

JzK(w)
|X | p(w)

=
JzK(p)
|X | .

Applying this inequality to the definition of Kp(z), we conclude that

Kp(z) ≤
|X |

JzK(p) .

Lemma 5 lets us to derive the following guarantee for estimating entailment scores using a corpus
produced by uniformly truthful speakers:

Theorem 4 For a uniformly truthful speaker p, let up(x, y) = log p(x$)− log p(xy). For x, y ∈ X such
that JxyK(p) > 0 and δ > 0, it holds with probability at least 1− δ − 2(1− p(xy))n that

|up(x, y)− up̂(x, y)| ≤ 2

√
|X |

p(JxyK) ·
2

δn
.

Proof. We expand the difference in scores as follows:

|up(x, y)− up̂(x, y)| ≤ |log p(x)− log p̂(x$)|+ |log p(xy)− log p̂(xy)|.
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We then apply Lemma 3 with δ
2 . Since p(x$) ≥ p(xy), this implies that with probability 1− δ − 2(1−

p(xy))n,

|up(x, y)− up̂(x, y)| ≤
√

2Kp(x$)

δn
+

√
2Kp(xy)

δn

≤ 2

√
2max{Kp(x$),Kp(xy)}

δn
.

Finally, we apply Lemma 5 to conclude that

|up(x, y)− up̂(x, y)| ≤ 2

√
|X |

min{Jx$K(p), JxyK(p)} ·
2

δn

= 2

√
|X |

JxyK(p) ·
2

δn
.

We now characterize the complexity factor for Gricean speakers.

Lemma 6 Assume that p(z | w) is a Gricean speaker with respect to listener ℓ and JzK(w) = 1 ⇐⇒
Iℓ(z;w) ≥ 0. Then, for all z ∈ X ∗ ∪ X ∗$,

Kp(z) ≤
exp(c(z))

p(JzK) .

Proof. We start by writing out the form of p(z):

p(z) =

∑
w exp(αIℓ(z;w))p(w)

exp(c(z))
.

Because z ∈ X ∗ ∪ X ∗$, all terms where JzK(w) = 1 contribute at least 0 information; other terms
contribute negative information. Thus, we bound the information content of the “true” terms above 0, and
ignore the other terms to get the lower bound

p(z) ≥
∑

wJzK(w) exp(0)p(w)
exp(c(z))

=

∑
wJzK(w)p(w)
exp(c(z))

=
JzK(p)

exp(c(z))
.

Plugging this into Kp(z), we conclude that

Kp(z) ≤
exp(c(z))

JzK(p) .

Theorem 3 Assume that p(z | w) is a Gricean speaker with respect to listener ℓ and JzK(w) = 1 ⇐⇒
Iℓ(z;w) ≥ 0. Let gp(x, y) = log p(xy)

p(x$) − log p(yy)
p(y$) . Let q = 1 − min{p(xy), p(yy)}. Then, for all

x, y ∈ X such that JxyK(p) > 0, for all δ > 0, it holds with probability at least 1 − δ − 4qn that
|gp(x, y)− gp̂(x, y)| is at most

8

√
exp(max{c(xy), c(yy)})

p(JxyK) · 1

δn
.
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Proof. We start by expanding gp(x, y):

gp(x, y) = log
p(xy)

p(x$)
− log

p(yy)

p(y$)

= log p(xy)− log p(x$)− log p(yy) + log p(y$).

Thus, following Theorem 4, we can bound

|gp(x, y)− gp̂(x, y)| ≤ |log p(xy)− log p̂(xy)|+ |log p(x$)− log p̂(x$)|
+ |log p(yy)− log p̂(yy)|+ |log p(y$)− log p̂(y$)|.

We apply Lemma 3 to each term with δ
4 . Since p(yy) ≤ p(y$) and p(xy) ≤ p(x$), we get that with

probability at least 1− δ − 4qn,

|gp(x, y)− gp̂(x, y)| ≤ 4

√
4max{Kp(xy),Kp(x$),Kp(yy),Kp(y$)}

δn

= 8

√
max{Kp(xy),Kp(x$),Kp(yy),Kp(y$)}

δn
.

Finally, we apply Lemma 6 to conclude that, with probability at least 1− δ − 4qn,

|gp(x, y)− gp̂(x, y)| ≤ 8

√
max

{
exp(c(xy))

JxyK(p) ,
exp(c(x$))

Jx$K(p) ,
exp(c(yy))

JyyK(p) ,
exp(c(y$))

Jy$K(p)

}
· 1

δn

≤ 8

√
exp(max{c(xy), c(yy)})

JxyK(p) · 1

δn
.

We can use Corollary 2.1 to derive a tighter version of Theorem 3 by removing the dependence on the
uncommon string yy:

Theorem 5 Let sp(x, y) = log p(x$)
p(xy) − c(y) + c($) . Then, for all x, y ∈ X such that JxyK(p) > 0, for

all δ > 0, the following holds with probability 1− δ − 2(1− p(xy))n,

|sp(x, y)− sp̂(x, y)| ≤ 2

√
exp(c(xy))

p(JxyK) · 2

δn
.

The proof follows analogously to Theorem 3. The main improvement of Theorem 5 compared to
Theorem 3 is that the probability the bound holds no longer depends on the unlikely probability p(yy).
We also get the benefit that the cost complexity factor has been reduced to only depend on c(xy) and
obtain better constants (2

√
2 instead of 8), although these changes are likely less important than removing

the dependence on p(yy). Of course, the drawback is that we are assuming access to the cost function
c(y). If we have such access, though, the improvements in the bound suggest we may be able to extract
entailment from a finite corpus of Gricean text with better sample complexity than if we did not.

E Sample Complexity Estimation Details

Assuming the approximation error in Theorem 3 is ≤ ϵ, we aim to solve the following inequality for n:

ϵ ≤ 8

√
exp(max{c(xy), c(yy)})

p(JxyK) · 1

δn
.
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Sentence Length We make the simplifying assumption that max{c(xy), c(yy)} = 2w(ℓ+ 1), where ℓ
is a variable representing sentence length.15 Let Σ be the word-level vocabulary of English. We estimate
the value w by assuming q(z) = exp(−w(|z|+ 1)) is a valid prior over Σ∗ and solving for the unique
value of w to satisfy this condition:

∑

z∈Σ∗
exp(−w(|z|+ 1)) = 1

∞∑

ℓ=0

|Σ|ℓ
exp(w(ℓ+ 1))

= 1

exp(−w)
∞∑

ℓ=0

( |Σ|
exp(w)

)ℓ
= 1

∴ w = log(|Σ|+ 1).

This reveals that w should be set ≥ 1, but the question remains how to set |Σ|. In practice, we assume the
speaker prior is defined over the support of all syntactically valid or likely strings in English, not over all
possible strings as derived above. Letting S be the word-level perplexity of English, we set w according to

w ≈ log(S + 1).

We set S to the value estimated by GPT-3: ∼ 20 nats/word (Brown et al., 2020). Simplifying the numerator
in the bound yields

exp(log(21)(ℓ+ 1)) = 21ℓ+1.

Making the prior less strong, i.e., increasing |Σ| to be greater than this perplexity estimate, would only
increase the number of samples needed to extract entailment judgments.

Truth Probability We conservatively assume p(JxyK) = 1
2 , although in practice it may be smaller for

more informative sentences. Reducing it would lead to higher sample complexity estimates.

Final Form Putting together our estimates for sentence length and truth probability yields

ϵ ≤ 8

√
2 · 21ℓ+1

δn

∴ n ≤ 128 · 21ℓ+1

δϵ2
.

The final form captures the intuition that the likelihood of a string vanishes exponentially with its length,
and that the base of this decay is roughly inversely proportional to the perplexity of the language. In
practice, we set δ = 0.1 and ϵ = 1.0. Changing the value of ϵ (the desired approximation accuracy) would
shift the curve.

F General Relations and Speakers

So far, we have characterized concrete distributional relations that are isomorphic to entailment for
different classes of speaker models. In this section, we analyze the conditions under which a distribution
relation isomorphic to a semantic relation exists, given no assumptions about the speaker. Informally, we
prove in Theorem 6 that a distributional isomorphism exists if and only if the speaker model depends
on semantics “at all”. This is a very weak condition, and should be satisfied by any reasonable model
of natural speakers. Thus, we take this as evidence that any speaker model—not just the ones we have
considered, admits a distributional relation isomorphic to entailment.

15We write ℓ+ 1 instead of ℓ here for technical reasons: we want to guarantee that q(z) can be a valid probability distribution.
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We now turn to the formal presentation of this result. Let M be the function that takes a set of worlds
W and returns all semantic evaluation functions µ : X 7→ 2W overW . For a semantic evaluation function
µ = λx.JxK, let pµ be a speaker model parameterized by semantics µ.

Say two semantic evaluation functions µ, µ′ are isomorphic with respect to s if and only if, for all x, y,

S(µ(x), µ(y)) ⇐⇒ S(µ′(x), µ′(y)).

Theorem 6 The following are equivalent for any speaker p and semantic relation s:

1. There exists a distribution relation d such that, for allW , for all µ ∈M(W), s is isomorphic to dpµ .

2. For all W,W ′, for all µ ∈ M(W) and µ′ ∈ M(W ′) such that µ, µ′ are not isomorphic w.r.t. s,
there exists z ∈ X ∗ such that pµ(z) ̸= pµ′(z).

Proof. We will show that equivalence holds in both directions.

Forward Direction: We assume the second statement does not hold by way of modus tollens. Thus,
there existsW,W ′ with µ ∈M(W) and µ′ ∈M(W ′) with µ, µ′ not isomorphic such that, for all z ∈ X ∗,
pµ(z) = pµ′(z). Thus, for all d and sentences x, y,

dpµ(x, y) ⇐⇒ dpµ′ (x, y).

But µ and µ′ are not isomorphic, so there exist x, y such that S(µ(x), µ(y)) ⇍⇒ S(µ′(x), µ′(y)). Thus,
we can conclude that one of the following must hold:

dpµ(x, y) ⇍⇒ S(µ(x), µ(y))

dpµ′ (x, y) ⇍⇒ S(µ′(x), µ′(y)).

We conclude by modus tollens that the first statement implies the second.

Backward Direction: Assume the second statement holds. The function f(µ) = pµ is invertible up to
isomorphism to s. In other words, there exists g(pµ) = µ∗ such that, for all x, y,

S(µ∗(x), µ∗(y)) ⇐⇒ S(µ(x), µ(y)).

Then we define d according to

dpµ(x, y) ⇐⇒ S(g(pµ)(x), g(pµ)(y))

⇐⇒ S(µ∗(x), µ∗(y))

⇐⇒ S(µ(x), µ(y)).

Thus, the second statement implies the first.

G Experimental Details

G.1 Language Description

We set the vocabulary X = {100, 010, 001, 110, 011, 111} and define W = {1, 2, 3}. We refer to
each three-digit binary string as an utterance, and define the evaluation function for an utterance x as
JxK(w) = 1 ⇐⇒ xw = 1. Thus, 100 is true only in world 1, while 111 is true in all worlds (i.e., is
tautological). We identify 111 with the end of sequence $.

In line with our formal definitions, we define a text z as a concatenation of utterances z1 · · · zn ending
with $. Recall that we define the evaluation function over a text as the intersection of the evaluation
functions of the utterances it contains. For our language, this reduces to JzK(w) = 1 ⇐⇒ ∀i (zi = 1).
Thus, 011 101 111 is true only in w3, and 011 101 110 111 is true in no worlds (i.e., contradictory).
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Figure 3: Properties of the data generated by the speaker in our experiments, with α = 5 and c(x) = 0.1 · |x|.

G.2 Speaker Model Parameters
We model the listener of the informative speaker as a literal listener (Goodman and Frank, 2016), which
means our informative speaker is a rational speaker of depth 1 in the language of rational speech acts.

We set c(x) = 0.1 · |x|, where |x| is the length of the string x. We set the rationality parameter
α = 5. These choices were made heuristically, by inspecting the the properties of the speaker’s output,
as summarized in Figure 3. These parameters led to a relatively uniform distribution over utterances
(except for the stop token 111 which is present in all texts), and a variety of text lengths without excessive
redundancy. We found that larger values of α or of the coefficient for the cost function produced short
texts, biasing maximally informative utterances (i.e., 100, 010, or 001); while smaller values produced
long, repetitive utterances or sometimes empty utterances.

G.3 Training and Evaluation
We sample a dataset from a speaker by independently sampling n texts from the speaker model. We
generate datasets of varying size from each speaker, with the number of texts n decreasing by factors of 2
from 107 texts down to just 2 texts.

We train models of two kinds: a text frequency model, and a trigram model. The text frequency model
simply assigns a probability to a text proportional to its frequency in the training data, assigning a small
ϵ = 10−20 probability to an unknown sequence. The trigram model is trained using NLTK’s (Bird, 2006)
MLE implementation, i.e., the probabilities are unsmoothed. We do not need to use smoothing due to the
small number of possible trigrams in the language.

For evaluation data, we generate pairs of texts labeled for entailments. We include all pairs where each
text is 6 utterances or shorter, except for utterances that are contradictory or consist only of the end of
sequence token. The total number of test pairs is about 1.1M.
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Abstract

We present a methodology that explores how
sentence structure is reflected in neural repre-
sentations of machine translation systems. We
demonstrate our model-agnostic approach with
the Transformer English-German translation
model. We analyze neuron-level correlation
of activations between paraphrases while dis-
cussing the methodology challenges and the
need for confound analysis to isolate the ef-
fects of shallow cues. We find that similarity
between activation patterns can be mostly ac-
counted for by similarity in word choice and
sentence length. Following that, we manipu-
late neuron activations to control the syntactic
form of the output. We show this interven-
tion to be somewhat successful, indicating that
deep models capture sentence-structure distinc-
tions, despite finding no such indication at the
neuron level. To conduct our experiments, we
develop a semi-automatic method to generate
meaning-preserving minimal pair paraphrases
(active-passive voice and adverbial clause-noun
phrase) and compile a corpus of such pairs.1

1 Introduction

Understanding the roles neurons play is important
for the interpretability of neural machine transla-
tion (NMT) models. Finding neurons that are either
invariant or sensitive to particular structural distinc-
tions may explain how such structures are encoded,
and validates the robustness of translation systems,
which is a challenging but important problem (He
et al., 2020; Freitag et al., 2020). Furthermore,
understating how these encodings are used by the
network may potentially enable controlling the out-
put by direct manipulation of neurons.

Previous work analyzing what aspects of sen-
tence structure are encoded in network representa-
tions mostly took a probing approach or focused

1The dataset is provided with paraphrase gener-
ation code: https://github.com/galpatel/
minimal-paraphrases

on syntactic agreements. Works that compared ac-
tivations did so either across models with identical
input (Dalvi et al., 2019; Bau et al., 2019; Wu et al.,
2020) or by representation words, not sentences
(Antverg and Belinkov, 2021). Our novelty lies
in using the same model with paraphrased input
pairs, to analyze sentence structure encoding, with-
out probing (c.f. §7). We derive inspiration from
Computer Vision works that analyze model behav-
ior under non-semantic changes to the input (Lenc
and Vedaldi, 2015; Goodfellow et al., 2009).

For our proposed approach, we provide a dataset
of minimal paraphrases (along with a code to ex-
tend it). We take two phenomena as test cases:
active to passive voice and an adverbial clause to a
noun phrase (see Table 1 and section §2).

To compare the activation patterns of sentences
that may be comprised of a different number of
tokens, we aggregate tokens representations. We
then measure the correlation of neuron activations
between paraphrases and provide a confound anal-
ysis. We find that the main contributors to strong
correlation are similar positional encodings and
bag-of-words overlap, suggesting strong correla-
tion is derived from similar input encoding and not
high-level abstractions learned by the model. The
identification of these confounds may be beneficial
to future work on network analysis (see §4).

Our findings suggest that these paraphrase dis-
tinctions are nonetheless encoded and used, as evi-
dent by our experiments of manipulating neurons
(§5). We control the structure of the translation
output (e.g., active/passive) by translating neuron
activations in a fixed direction. We show that this
manipulation generates outputs that are more simi-
lar to the desired form with an in-depth evaluation,
using BLEU, dependency parsing, and manual anal-
ysis. We provide ablation studies that show that the
results are not simply random artifacts of manipu-
lation, with a non-local effect. Lastly, we compare
different methods for selecting subsets of neurons
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Source Paraphrased

Active Voice→ Passive Voice She took the book The book was taken by her
Adverbial Clause→ Noun Phrase The party died down before she arrived The party died down before her arrival

Table 1: Examples produced by our paraphrasing engine

to be manipulated (§6) with counter-intuitive re-
sults, attributed to neurons of general importance
and multiple roles per neuron.

Overall, the similarity between neuron activation
over paraphrases is mostly explained by shallow
input features: the positional and token embed-
dings. Therefore, some neurons represent input
features, but sentence-level information is not lo-
calized, even in higher layers. Moreover, we show
that sentence phrasing can be naïvely controlled,
with a manipulation of a large number of neurons.
This suggests that the distinction between different
sentence structures is encoded in the model, prob-
ably in a distributed manner. Lastly, the neurons
most effective for such manipulations are the ones
most correlated across paraphrases, not necessarily
those that vary the most.

2 Dataset: Minimal Paraphrase Pairs

We curate datasets that isolate specific sentence
structure distinctions. To achieve that, we require
sentence pairs with the following attributes:

• Similar Meaning, to have invariant semantics.
• Minimal Change, to facilitate the experimental

setup and the interpretation of the results.
• Controlled Change, where paraphrasing is con-

sistent and well-defined. As opposed to lexi-
cal paraphrases that tend to be idiosyncratic, the
same distinction is applied to all instances.

• Reference Translation, since we examine trans-
lation models.

Existing paraphrasing tools and datasets fail to
satisfy these criteria (see §7). Therefore, we de-
velop our own paraphrasing method, with which
we compile two parallel sets: active voice to pas-
sive voice and an adverbial clause to a noun phrase.
Sentence examples can be found in Table 1.

The proposed process is automatic, following
predefined syntactic rules while utilizing several
NLP models. First, we identify sentences that
match some source patterns (active voice, adver-
bial clause) according to a Dependency Parsing
and POS tags model (Honnibal et al., 2020) and
a Semantic Role Labeling model (Gardner et al.,

2018). Then, we rephrase the sentence to the de-
sired structure. We complement missing preposi-
tions by choosing the one with the highest probabil-
ity as predicted by BERT (Devlin et al., 2019). For
example, the adverbial clause sentence “She felt ac-
complished when she met the investor” requires the
preposition "with" in the noun phrase form “She
felt accomplished during her meeting with the in-
vestor”, and the temporal preposition when is re-
placed with during. In ambiguous instances, we
choose whether or not to insert a preposition by
opting for the sentence with the higher probabil-
ity according to GPT2 Language Model (Radford
et al., 2019). When replacing a verb with a noun
(e.g., arrival is replaced with arrive), we look for
the most suitable conversion in existing lexicons,
including Nomlex (Macleod et al., 1998), AMR’s
and Verb Forms. See Appendix A for details and
examples.2

Paraphrased Valid

Adverbial Clause to Noun Phrase 376 114
Active Voice to Passive Voice 3107 1169

Table 2: Minimal Paraphrase pairs count, as derived
from WMT19 English-German dev set, before (left) and
after (right) filtering.

We apply our paraphrasing engine to the
WMT19 English-German development set (Bar-
rault et al., 2019). Some results are disfluent. For
example, the sentence “He took his time” is con-
verted to “His time was taken by him”, which is
syntactically well-formed, but anomalous. There-
fore, we manually filter the data. For more details
and other failed filtering approaches, see Appendix
A.3. The number of pairs is given in Table 2.

3 Technical Setup

Model. We demonstrate our model-agnostic
methodology with the Transformer model for Ma-
chine Translation (Vaswani et al., 2017). We use
the fairseq implementation (Ott et al., 2019), which

2The dataset is provided with paraphrase gener-
ation code: https://github.com/galpatel/
minimal-paraphrases
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was trained on the WMT19 English-German train
set (Barrault et al., 2019). The embedding dimen-
sion is 1024 with sinusoidal positional encoding.

Dataset. Minimal paraphrases (see §2). Due to
space considerations, we present results on the ac-
tive/passive set in the main paper. Clause/noun
phrase results are in appendices §B.3 and §C.

Notations. We refer to trained models with a dif-
ferent random seed as m1,m2. We denote the set
of source sentences S = {s1, ..., sn}, and its cor-
responding paraphrased set with P = {p1, ..., pn}
(e.g., si is an active voice sentence and pi is its
passive counterpart). We follow Liu et al. (2019);
Wu et al. (2020) and take into account only the last
sub-word token for each word (results with all sub-
word tokens were similar). We consider as neurons
the 1024 activation values in the output embedding
of the 6 encoder layer blocks (following Wu et al.,
2020)3. This leads to the following definition: the
activation of some neuron l in model m, on sen-
tence si is xm,lS [i], while xm,lS is a vector of size n
(with n being the number of sentences in set S, i.e.
one activation value per sentence, see §4.1).

4 Detecting Correlation Patterns

To detect activation patterns under experimental
conditions, we measure Pearson correlation4 be-
tween neural activations. While correlation anal-
ysis has been previously used to analyze neuron-
level behavior (Bau et al., 2019; Dalvi et al., 2019;
Wu et al., 2020; Meftah et al., 2021), our novelty
lies with the independent variable being a property
of the input (i.e., paraphrases) and not the model
(e.g., architecture, initialization).

4.1 Sample Alignment Challenge

For every neuron, we measure its activation values
while feeding a model with either the set of source
sentences as input (e.g., active voice) or the para-
phrased set (e.g., passive voice). Since the number
of words may differ between paired sentences, so
will the total number of tokens in these sentence
sets. Consequently, the neural activation sample
size will vary, which poses a challenge for testing
correlation. Previous works did not face this diffi-
culty, as they compared activation values given the
same input corpus.

3Experiments on activations internal to each layer block
have similar but weaker effects (Appendix B.2).

4Results with Spearman correlation were similar.

We overcome this with intra-sentence aggrega-
tion. Instead of having an activation value per word
in the input corpus, we consider a single value per
sentence, by pooling activations of words within
a sentence. Ideally, this will allow for a sentence-
level analysis of semantics and structure. Mean
pooling was previously considered in several in-
stances. Ethayarajh (2019) compared sentences by
averaging their word vectors and Antverg and Be-
linkov (2021) aggregated words with specified at-
tributes by averaging their representation, element-
wise. The main results of this paper use mean
pooling. In Appendix B.1 we also report results
with min/max pooling, that show similar trends.

It is possible to consider other straightforward
approaches, which we find less suitable. One op-
tion is a position-wise alignment of words (discard-
ing the last words of the longer sentence). The
difficulty here is that words of different semantics
and syntactic roles are compared. For example,
the third words of the active/passive sentence in
Table 1 would be the and was, the former is a de-
terminer of a direct object while the latter is an aux-
iliary of the root verb. Another option is functional
correspondence alignment, where we measure cor-
relation only between the functional tokens that
indicate the structure change (e.g. took vs. taken
and arrived vs. arrival from the examples in Ta-
ble 1). That would result in an analysis based on
similar single words with the same context words
but in different syntactic forms. This could be prob-
lematic as it would capture a local syntactic change
but not necessarily a sentence-level phrasing.

4.2 Baseline Experiments

We capture correlation across paraphrases, denoted
with ParaCorr. Given the same model, we look at
activations over a set of sentences and their corre-
lation to the activations over the paraphrased set:

ParaCorr(l, l′) = ρ(xm1,l
S , xm1,l′

P ) (1)

ParaCorr should examine how neural networks
represent differences in sentence structure (or simi-
larities in semantics). We follow by comparing it
to ModelCorr - the correlation between any pair of
neurons across models, when given the same input:

ModelCorr(l, l′) = ρ(xm1,l
S , xm2,l′

S ) (2)

ModelCorr is based on Bau et al. (2019) who de-
tected generally important neurons in this way.

Figures 1a and 1b show ParaCorr and ModelCorr
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correlation maps.5 Some of ParaCorr’s observed
effect also appears in ModelCorr, suggesting the
observed correlations might be unrelated to the
examined variable, i.e. paraphrases. Moreover,
ModelCorr indicates a strong correlation between
neurons of the same location in different models,
but we had expected a different pattern as highly
correlated neurons should be distributed differently
for randomly initialized models.

4.3 Controlling for Confounds

In this section, we show that strong activation cor-
relations between paraphrases are a product of low-
level cues. Namely, we inspect how the propaga-
tion of token identity and positional information
greatly influences the correlation. This is a rele-
vant confound to note for previous work adapting
correlation analysis on neurons (Bau et al., 2019;
Wu et al., 2020; Meftah et al., 2021). The posi-
tional encoding in our setting is sinusoidal, there-
fore the same positions are encoded exactly the
same across models. Paraphrases present a minor
change in sentence length: 2.0± 0.4 or 0.8± 0.8
token difference when paraphrasing active to pas-
sive or clause to noun phrase, respectively. The
positional encodings are therefore similar. As for
tokens, paraphrases have a large unigram overlap.

We define PosCorr as activation correlation be-
tween sentences with identical positional encoding
but different token embeddings. Formally:

PosCorr(l, l′) = ρ(xm1,l
S , xm1,l′

Ŝ
) (3)

Where Ŝ is a set of random token sequences, uni-
formly sampled from the dictionary, with the same
sequence lengths as S. PosCorr isolates the strong
correlation effect observed both in ModelCorr and
ParaCorr (Figure 1c). Repetition through the layers
is probably due to the residual connections, which
propagate the positional encoding. Indeed, when
we looked at correlations of neurons inside the
layer block – before the first residual connection
– the effect seen in PosCorr was missing (see Ap-
pendix B.2). The implication is that input represen-
tation, and not higher-level learned representation,
is likely the cause of strong correlations.

TokenCorr accounts for token embeddings. We
strip an input set S from its positional encoding,

5We feature only the first layer due to resolution con-
straints. Any effect shown is present in all layer block pairs
but weakens when moving away from the main diagonal (i.e.
correlation across layers) or when the layers are higher.

denoted by S̃, and measure correlation:

TokenCorr(l, l′) = ρ(xm1,l
S , xm1,l′

S̃
) (4)

TokenCorr (Figure 1d) captures the diagonals phe-
nomenon of ParaCorr, explained by paraphrases
having a large bag-of-words overlap (the effect
is not present in ModelCorr since token embed-
dings are different across models). This implies
that individual token identities, and not necessarily
sentence-level semantics, contribute to strong corre-
lations. This distinction is made apparent when we
consider how word order may affect meaning. For
example, "Rose likes Josh" has a different meaning
than "Josh likes Rose", although the sentences have
the same bag of words. Even if word meaning is
sufficient for a lot of cases, grammatical cues are
still essential (Mahowald et al., 2022).

We further dissect the observed correlation for
possible confounds. First, we compare activations
of sentence pairs that share only the relevant syn-
tactic structure (e.g., two random active voice sen-
tences). No strong correlation is observed (between
-0.17 to 0.20). This suggests that the effect observed
in the TokenCorr experiment, where the same to-
kens are fed to the model (Figure 1d, Eq. 4) is not
explained by a similar structure cue (i.e., active
voice). In another experiment, we combine both
PosCorr and TokenCorr: we strip the original sen-
tence from its positional embedding and replace the
tokens with random ones – i.e., nothing is shared
between the compared conditions. As little corre-
lation is detected (between -0.27 to 0.31), we rule
out the possibility of neurons with constant values.

Overall, our confound analysis implies the fol-
lowing: (1) strong activation correlation is greatly
due to low-level components and not high-level
learned knowledge, (2) strong correlation detected
across paraphrases may not be exclusive to sen-
tences with similar meaning but different structures,
and (3) sentence structure is not localized to a spe-
cific set of neurons in our analysis.

5 Manipulation of Neurons

Manipulation of neurons allows us to control the
output translation (without additional training) and
adds a causative explanation to the role neurons
play. We look into changing the activation val-
ues to force the output to have a desired syntactic
structural feature (e.g., active or passive voice). Al-
though we did not observe individual neurons that
have a strong positive/negative correlation across
paraphrases in §4, these sentence-structure distinc-
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(a) ParaCorr (b) ModelCorr (c) PosCorr (d) TokenCorr

Figure 1: Activation correlation of neurons in the encoder, using the active-passive dataset.

tions could still be encoded in a decentralized man-
ner in the model, and therefore susceptible to ma-
nipulation. We address three main questions:

1. Can we effectively control the output struc-
tural properties by changing neuron values?

2. Does the exact activation value matter or only
the identity of the modified neurons?

3. How to choose a set of neurons to manipulate?

5.1 Setup
We denote with x̄c[i] the average activation of neu-
ron i given a set of input sentences with property
c, e.g., the property of passive voice. For a model
with a total of n neurons (in the encoder), we have
a vector of average behavior x̄c ∈ Rn. An inter-
vention on neuron i with a current value of x[i]
from property c1 towards property c2 is a linear
translation between their averages:

x̂[i] = x[i]− β(x̄c1 − x̄c2)[i] (5)

So far, the formulation is based on previous work
(Bau et al., 2019). Our preliminary experiments
showed it is essential that the scaling factor β in-
cludes a normalization term because comparing the
effects of different manipulations (i.e. different tar-
get properties c2) can be confounded by activation
magnitude. Therefore, β = α

∥ ¯xc1− ¯xc2∥
. This leaves

us with various parameters to experiment with: the
properties c1, c2 we wish to manipulate, the subset
of neurons we intervene with, and the scaling factor
α. We explore the former two in §5.2 and the latter
in Appendix C.5, having α = 1 as default.

We evaluate whether manipulation increases the
similarity of the output to a reference with the tar-
get form (c2), relative to the similarity with the
source form (c1). We measure BLEU scores be-
tween our model’s translation and Google transla-
tions, which (in the absence of manual references)
we consider as references to both the source and
target forms. This is a reasonable assumption given
the performance gap between the models we use

and Google Translate. Later we discuss evaluation
by additional methods to complement BLEU (see
§5.3).

5.2 Experiments

We present experiments on manipulating passive
voice inputs toward active voice translations. The
reverse manipulation (active input to passive trans-
lation) and the results on the clause/noun-phrase
set can be found in Appendix C.

Baseline Manipulation. We modify an increas-
ing amount of neurons, first selecting the neurons
most correlated across paraphrases (i.e., we rank by
ParaCorr(l, l) with the higher values first). The
motivation to use the correlation as a rank is based
on Bau et al. (2019), who used it as an indicator of
important neurons. We manipulate passive voice
inputs toward active voice translations. Outputs
become more similar to active voice than passive
voice (Figure 2a), suggesting that sentence struc-
ture is indeed encoded in the model, even if we
did not detect the distinction at the neuron-level
in §4. Moreover, the information is used by the
model when generating translations and it can be
controlled.

Direction of Manipulation. We explore the im-
portance of the manipulation direction, i.e. the
value we shift towards. A random manipulation,
with a random vector yr ∈ Rn, is defined by:

x̂[i] = x[i]− β(x̄c1 − yr)[i] (6)

Repeating 100 different random vectors (Figure
2b), we find it to be substantially worse. This im-
plies that success is tied to the specific values we
manipulate, not an artifact of any modification.

Selection of Manipulation. We test whether
there is a preferable subset of neurons to manipu-
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(a) Controlled baseline (b) Random direction comparison (c) Random selection comparison

Figure 2: Manipulating the outputted translation to be of active voice when feeding passive voice input. Lines
present BLEU change with active and passive references, as a function of the amount of neurons manipulated
(x-axis). For random experiments (b) and (c) we report the average of the measured BLEU and its standard deviation.

late by randomly selecting a subset of neurons.6

Results (Figure 2c) do not indicate that a controlled
selection of neurons (according to ParaCorr rank-
ing) is better than random. Overall, it seems that a
large subset of neurons has to be modified to obtain
the desired outcome, which agrees with our corre-
lation results, where the active-passive feature was
not localized. Notwithstanding, we study subset
choice even further in §6.

5.3 Beyond BLEU
BLEU score captures translation quality on the
surface and not necessarily how good (or bad) it is
at capturing form (active vs. passive). Therefore,
we employ additional evaluation measures.

Passive Score. Specifically for the active-passive
dataset, we use a dependency parser and a POS
tagger to detect passive form7. The scorer is not
intended to be perfect in capturing all passive in-
stances8, but it could serve as a complementary
measure to indicate trends. We observe a decrease
of detected passive voice when we manipulate the
passive input towards active translation (see Figure
3b), solidifying the BLEU results.

Qualitative Analysis. A native German speaker
examined a sample of output translations and found
successful manipulations (see Appendix D). She
discussed failed outputs – where the translation
changed (i.e. unequal strings) but did not result in

6We also experimented with choosing random neurons
under the constraint they have the same distribution among the
6 encoder layers as the controlled case, with similar results.

7Using Spacy (Honnibal et al., 2020), we consider a sen-
tence to be in passive voice if the root lemmatization is "wer-
den" and it has a child of dependency "oc" (i.e., clausal object)
with a tag indicating a participle form.

8Limited recall: baseline translation of passive sentences
(without manipulation) gets a score of 37.38%

the desired form. They did not degrade the trans-
lation. In some cases, sentences changed between
stative passive and dynamic passive, rather than be-
tween passive and active (the distinction between
these passive types is more evident in German).
In other cases, the manipulation was not applica-
ble. For instance, some verbs could not be in an
adverbial form in German, which demands them
either to appear as a noun phrase or to be replaced
with a synonym verb (an example is in Appendix
D). These suggest that the manipulation has suc-
cessfully modified the desired attributes in the sen-
tence, even when not automatically detected as
such. Moreover, it may be limited by the nature
of the target language and the model’s capabilities
to generalize to synonyms while controlling the
sentence structure.

Held-out Test Set. We repeated the manipulation
experiment on a held-out test set: 552 active voice
sentences from the WMT19 test set. This allows us
to examine if the successful manipulation effect ex-
tends to a setting where the manipulated sentences
do not contribute to the measure of average activa-
tion of the source form. As can be seen in C.2, the
manipulation still results in the desired change in
passive form detection.

Linearity Caveat. As Ravfogel et al. (2021)
noted, positive results can indicate a causal ef-
fect, while negative results should be interpreted
carefully since we have a linear manipulation in
a non-linear setting. We leave the exploration of
non-linear techniques for future work.

6 Specific Neuron Set Selection

Although finding a subset of neurons that carries a
specific functionality is a difficult problem (Sajjad
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(a) BLEU (b) Passive Score

Figure 3: Top ParaCorr neurons are better for manipula-
tion. Manipulating the output translation to be in active
voice when feeding passive voice as input. Compar-
ing the choice of neurons to manipulate when starting
from the top or bottom according to the rank given by
ParaCorr. (1) Measuring by BLEU against active voice
references and (2) measuring passive score that auto-
matically detects passive voice.

Figure 4: Top ranked neurons have a stronger impact on
the translation quality of a test set, measured in BLEU.
Erasure of neurons from the top or bottom of the rank
given by the value of correlation between paraphrases.

et al., 2021), we look for subsets that are relatively
better for manipulation. In our baseline (§5.2) we
chose which neurons to manipulate according to
the rank given by ParaCorr (i.e., sorting neurons
by ParaCorr(l, l), high to low). Under an intu-
itive interpretation, neurons that positively corre-
late when a systematic change is made to the input
are those invariant to that change. Neurons with
a negative correlation are specific to the change
in sentence structure. Following these, we expect
bottom-ranked neurons to be better for manipula-
tion than top-ranked neurons. Contrarily, we ob-
serve the opposite phenomenon (Figure 3). The
following tests may explain it.

Model Performance. Top-ranked neurons are
important for overall performance. We follow Bau
et al. (2019) who identified important neurons by
deleting them (i.e., setting activations to zero) and
examining the impact on the model performance.
We delete an increasing amount of neurons, ac-
cording to ParaCorr rank. We measure BLEU on a

held-out set of 552 active voice sentences, and their
references, extracted from the WMT19 test set. Re-
sults (Figure 4) show that top-ranked neurons have
a stronger impact on the translation quality than
bottom-ranked do, suggesting that ParaCorr par-
tially ranks neurons by their general importance.

Role Overlap. Some of the top ParaCorr neurons
account for lexical identity and positional informa-
tion. This fact explains why they have the most im-
pact when manipulating sentence structure. Word
order is essential for active-passive paraphrasing,
where the subject and direct object exchange places.
Notably, when we tested non-paired active-passive
sentences the phenomena did not repeat itself, see
Appendix C.6. Word tokens are the building blocks
for the semantic meaning of a sentence (which is
the same across paraphrases), even when a bag-
of-word is not exclusive to a single meaning. The
first evidence to support this claim is seen in §4,
where most of the strong correlations in ParaCorr
are explained by similarity in the tokens and the
positional embeddings between the inputs (i.e., To-
kenCorr and PosCorr, respectively). In an addi-
tional test, we check how many of the top ParaCorr
neurons are also in the top PosCorr and TokenCorr
neurons. Figure 5 shows that for any count x, the
set of top x ParaCorr neurons have an intersection
with the sets of top x PosCorr or TokenCorr neu-
rons.

Figure 5: Top ParaCorr neurons intersect with neurons
most related to token embeddings and positional encod-
ing. The x-axis represents the amount of top ParaCorr
neurons as a percentage of all the neurons in the encoder.
The y-axis shows how many of these x top ParaCorr
neurons are also in the set of top x TokenCorr neurons
and/or top x PosCorr neurons. The y-axis scale is a
percentage out of x. Measured on the active-passive set.

7 Related Work

Understanding NLP Neural Networks. Various
approaches were previously proposed (Belinkov

200



and Glass, 2019), each with a methodology that dif-
fers from ours. Probing tasks investigate whether
linguistic properties of the input text can be effec-
tively predicted from model representations (Jawa-
har et al., 2019; Tenney et al., 2019; Slobodkin
et al., 2021). They shed light on what information
is kept within a model, but not necessarily what is
used, or how (Antverg and Belinkov, 2021). Oth-
ers employ mediation analysis theory: Vig et al.
(2020); Finlayson et al. (2021) study semantic be-
havior and syntactic agreement, respectively. Some
works analyze attention heads (Voita et al., 2019) or
follow attention flow (Abnar and Zuidema, 2020).
Visualization tools interpret activations, but with
some exceptions (e.g., Lenc and Vedaldi, 2015),
they are mostly limited to qualitative examples.
Durrani et al. (2020) interpreted individual neurons
with probing-like methods for fine-grained anal-
ysis. Challenge sets (Choshen and Abend, 2019;
Warstadt et al., 2020) and adversarial examples
(Alzantot et al., 2018), expose challenging cases
by analyzing the NMT system’s behavior, rather
than representation. Elazar et al. (2021) analyzes
semantically equivalent inputs by clustering their
embeddings. They improve prediction by contin-
ual training, while we manipulate translation post-
training.

Interpretation in other domains. Some Com-
puter Vision work inspired our approach. Lenc
and Vedaldi (2015) study the interaction between
input transformation and its representation through
the layers, while Goodfellow et al. (2009) exam-
ine invariant neurons, those that are selective to
high-level features but robust given semantically
identical transformations. Their methodologies
do not fit the NLP domain since they rely on a
mathematically well-defined input transformation
(e.g., rotation). We propose an alternative with our
paraphrases in §2. Linguistic encoding in the hu-
man brain has been studied in neuroscience works.
Friederici (2011) analyzed the correlation of neu-
roimaging where subjects are presented with sen-
tences with subtle syntactic variations or violations,
and found that well-correlated regions are consid-
ered to process syntax. Fedorenko et al. (2016) pre-
sented human subjects with various inputs, which
are analogous to our correlation experiments: word
lists (TokenCorr), meaningless grammatical sen-
tences (PosCorr), non-words lists (combination of
TokenCorr and PosCorr), and regular sentences
(ParaCorr).

Individual neurons analysis with correlation.
Bau et al. (2019) detected neurons that correlate
across LSTM models while showing these are the
most important for performance. They manipu-
lated individual neurons to control single words in
the output (e.g., gender, tense), with their linguis-
tic role identified by probing with a GMM classi-
fier. The technique to identify neurons that behave
similarly in different models was previously sug-
gested by Dalvi et al. (2019), who found neurons
in LSTM models to have role polysemy, aligning
with our discussion in §6. Later, Wu et al. (2020)
employed correlation to examine similarities of
different Transformer architectures. Meftah et al.
(2021) adapted correlations to quantify the impact
of fine-tuning by measuring activations of neurons
before and after domain adaptation.

Controlling active-passive voice in translation.
Yamagishi et al. (2016) controlled voice (ac-
tive/passive) in RNN-based machine translation,
from Japanese to English, when an indicator was
given as input. Their method required additional
model training, unlike ours.

Paraphrases. Existing paraphrasing tools vary
by how localized their edits are. Some alter the lex-
ical level (Ribeiro et al., 2018), other alter whole
phrases (Ganitkevitch, 2013; Bhagat et al., 2009),
some are sentence-level paraphrases (Dolan et al.,
2004), while some split source sentences into sub-
sentences (e.g., Dornescu et al., 2014; Lee and
Don, 2017). Other than paraphrasing tools, existing
datasets include the PPDB database (Pavlick et al.,
2015) that contains sentence paraphrases that are
lexical, phrasal, or syntactic. Zhang et al. (2019);
Dolan and Brockett (2005) include paraphrase and
non-paraphrase pairs, the former with high lexical
overlap, while (Hu et al., 2019) contains multi-
ple paraphrases of lexical diversity. None of these
match our criteria for paraphrases (§2).

8 Conclusion

With our curated dataset, we introduced a model-
agnostic methodology to detect activation patterns
across paraphrases. By a meticulous confound
analysis, we found that activation similarity is
likely due to shallow features of sequence length or
word identity, which are not exclusive to meaning-
preserving variations. We emphasize how these
confounds must be taken into account when at-
tempting to detect local correlation under any ex-
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perimental setup. We controlled syntactic struc-
tures of generated output, which provides evidence
of the ability of models to capture them. While we
found the modification technique to be important
for manipulation success, the selection of a sub-
set of neurons was more challenging. Future work
should test additional architectures and language
pairs or examine the representation significance of
our paraphrase pairs in other NLP tasks.

Limitations

Our work has some limitations. First, we com-
pile the minimal paraphrases dataset to analyze
representations of an isolated difference. Even so,
human language is complex and any input transfor-
mation could not be mathematically well-defined.
Our paraphrases may have other differences than
the ones we indicate, which may introduce noise
to our analysis. For example, we don’t know the
effect specific verbs (e.g., more common/rare ones)
have when they appear in noun form, or what possi-
ble bias ’by’ introduces when we add it for passive
voice.

Secondly, we demonstrate our model-agnostic
methodology in a specific setting with a trans-
former model for en-de translation. Our insights
of what is captured (or isn’t) may change when
experimenting on other architectures or language
pairs.

We aggregate token representations to sentence
representation, discussing our choice and other pos-
sible approaches in §4.1. We do this to overcome
potential differences in the number of tokens the
paraphrases contain. However, the aggregation
may lose encoded information along the way. We
find some evidence of that when examining other
pooling techniques (min/max) in Appendix B.1.

Our manipulation shows that many neurons have
to be modified for a successful outcome (at least
50%). Still, when manipulating more and more
neurons, the effect is not always monotone in every
setting (see Figure 9, Figure 12 and Figure 13). We
conducted our qualitative analysis on the output
with all of the encoder neurons modified and see
positive results, with a discussion of how to choose
neurons relatively better (§6).

In the following Appendix sections we also ad-
dress: the filtering required for the automatically
generated paraphrases (§A.3), analysis on neurons
internal to the layer block (§B.2), possible alterna-
tive explanation for the observed results for top vs.

bottom ranked neurons (§C.6), unsuccessful manip-
ulation cases (§C.4) and manipulation magnitude
(§C.5).
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A Compilation of Minimal Paraphrase
Pairs

A.1 Tools and Techniques

We explain, in greater detail, the main tools we use
when we paraphrase, as briefly discussed in section
§2.

Pattern Detection. Making sure we change form
but not semantics, we rely on syntax-based patterns,
not word-based. We use dependency parsing (in-
cluding Part of Speech tagging) and Semantic Role
Labeling combined (by Honnibal et al. (2020) and
Gardner et al. (2018), respectively) to detect active
form and adverbial clauses by type (see Table 3).

Sentence Probability Used for choosing be-
tween two sentence options (with or without a cer-
tain preposition). We use gpt2 model Radford et al.
(2019) by huggingface Wolf et al. (2020) to get
sentence probability for each option and opt for the
higher.

Word Insertion.
Input: a sentence X = x1, x2, ..., xn , a posi-
tion i, and a set of possible words
W = {w1, ..., wm}

1: Define
X ′ = x1, . . . , xi−1, [MASK], xi, . . . , xn

2: SendX ′ into a trained BERT masked language
model Devlin et al. (2019) by Wolf et al. (2020)
and get y ∈ Rd, a probability vector for each
word in the vocabulary (d is the size of the
vocabulary of the BERT model)

3: Define wk ∈ W s.t. wk = maxi=1,...m y[wi]
to be a new word at position i of sentence X
(the word with the highest probability, accord-
ing to BERT, out of the given set W ).

Output: a sentence
(x1, x2, . . . , xi−1, wk, xi, . . . , xn)

We can make this an Optional Word Insertion by
returning either the input or output sentence, using
Sentence Probability.

Noun Derivation.
Input: a verb (lemma form)
We prioritize choosing the noun form from AMR
morph verbalization 9. If we don’t find it there,
we choose between Nomlex form (Macleod et al.,
1998) and present participle form according to
Verb Form Dictionaries10 (if exists), deciding
according to Word Insertion.
Output: either a noun or None

Preposition Sets. Using Word Insertion requires
a set of options as input. In our paraphrasing
process, we use the following predefined sets
to insert prepositions. Temporal prepositions:
’as’, ’aboard’,’along’, ’around’, ’at’, ’during’,
’upon’, ’with’, ’without’. General prepositions:
’as’, ’aboard’, ’about’, ’above’, ’across’, ’after’,
’against’, ’along’, ’around’, ’at’, ’before’, ’behind’,
’below’, ’beneath’, ’beside’, ’between’, ’beyond’,
’but’, ’by’, ’down’, ’during’, ’except’, ’following’,
’for’, ’from’, ’in’, ’inside’, ’into’, ’like’, ’minus’,
’minus’, ’near’, ’next’, ’of’, ’off’, ’on’, ’onto’,
’onto’, ’opposite’, ’out’, ’outside’, ’over’, ’past’,
’plus’, ’round’, ’since’, ’since’, ’than’, ’through’,
’to’, ’toward’, ’under’, ’underneath’, ’unlike’, ’un-
til’, ’up’, ’upon’, ’with’, ’without’.

9https://amr.isi.edu/download.html
10https://github.com/monolithpl/verb.

forms.dictionary
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A.2 Active Voice to Passive Voice

The active-to-passive paraphrasing process is done
on sentences that include a nominal subject and a
direct object. We discard any sentence of question
and coordination, possible passive form (root verb
is in past participle), and those where the root verb
has a "to" auxiliary.

1: If the subject is a proper noun, convert it to
object form

2: If the direct object is a proper noun, convert it
to subject form

3: Switch the subtree spans of subject and object
4: Add "by" just before the span of the new object

5: If an auxiliary verb is one of "can", "may",
"shall", convert it to "could", "might", "should"
respectively.

6: If root verb is a gerund or present participle,
replace it with "being". Otherwise, remove it
altogether.

7: Add suitable auxiliary according to the new
subject form of singular/plural, and the tense.

8: If the sentence includes a negation word, re-
move it and add "not" before the auxiliary.

9: Replace the root verb to its past participle form
(using the Verb Forms Dictionary11).

10: If the sentence includes a particle, move it after
the root verb.

11: If the sentence includes a dative, try to replace
it using Optional Word Insertion.

We’ll go over an example:

Active to Passive: example
Input: He can’t take the book.

1: ”He”← ”Him”
2: NA
3: Switch "him" with "The book"
4: ”him”← ”by him”
5: ”can”← ”could”
6: NA
7: Add "be"
8: ”′t”← ”not”
9: ”take”← ”taken”

10: NA
11: NA

Output: The book could not be taken by him.

The complete process of paraphrasing a sentence
with an adverbial clause to one with a noun phrase

11https://github.com/monolithpl/verb.
forms.dictionary

substituting it is detailed in Table 3. We’ll demon-
strate a few examples. 12

Purpose clause
Input: She sat under the sun to enjoy the
warmth.

1: Extract "to enjoy the warmth"
2: Found matching participle "to"
3: NA
4: ”enjoy”← ”enjoyment”
5: NA
6: ”to”← ”for”
7: ”thewarmth”← ”ofthewarmth”

Output: She sat under the sun for enjoyment of
the warmth.

Cause/Reason clause, possessive form
Input: She was at the library for a long time
because she had an unresolved problem.

1: Extract "because she had an unresolved prob-
lem"

2: Found matching root "had" and a marker "be-
cause"

3: Remove "had"
4: Remove "an"
5: ”she”← ”her”
6: ”because”← ”because of”
7: NA
Output: She was at the library for a long time
because of her unresolved problem.

Cause/Reason clause, non-possessive form
Input: This robot is very advanced because it
flies itself.

1: Extract "because it flies itself"
2: Found matching root "flies" and a marker "be-

cause"
3: NA
4: ”flies”← ”flight”
5: ”it”← ”its”
6: ”because”← ”because of”
7: ”flight”← ”self flight”

Output: This robot is very advanced because of
its self flight.

A.3 Filtering Results

As mentioned in §2, some sentences generated by
our paraphrasing process are disfluent. Therefore,

12The flow of purpose clause conversion could arguably
lack optional determiner addition before the new noun phrase.
It could be easily added to the generation code for any future
use.
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Extract Adverbial Clause
1. Extract

detect type by Semantic Role Labeling (Gardner et al., 2018)

Cause/Reason Temporal Purpose
Possessive Non-Possessive

marker "as"/"before"/
2. Match root "have" and root isn’t: "have"/ "after"/"until"/"while" participle "to"

pattern marker "because" "be"/"do"/"can" or adverbial modifier
"when"

3. aux remove root’s auxiliaries

remove
direct object’s4. det/Noun
determinants

Noun Derivation A.1

5. Possession Nominal subject to possessive form

replace "because" If "as"/"while"/ Replace "to"
with "because of" "when", replace by with "for"6. Preposition

Word Insertion A.1a

If negation, If there is a direct objectb
7. Additions

add "lack of" Optional Word Insertion A.1c

a Using temporal prepositions set.
b If there is a direct object of the form "<xxx>self" in the non-possessive cause/reason case, we

instead add "self" before the derived noun and remove this object.
c Using general prepositions set.

Table 3: The paraphrasing process from an adverbial clause sentence to a noun phrase.

we manually filtered the data. Two in-house an-
notators made binary predictions as to whether
the generated paraphrases are fluent, with 75% ob-
served agreement and 0.6 Cohen’s kappa. We also
tried using Direct Assessment (Graham et al., 2017)
and eliciting fluency scores through crowdsourcing,
as well as attempting to threshold the probability
given by GPT2 or SLOR (Kann et al., 2018). Nei-
ther of these approaches worked in a satisfactory
manner.

B Detecting Correlation Patterns

B.1 Pooling Techniques

In section 4 we measure the correlation of activa-
tions over paraphrases. Since paraphrases vary in
their sequence length, the subsequent random vari-
ables representing the activations for each sentence
structure (i.e. activations over active voice versus
activations over passive voice), vary as well. While
previous works (Bau et al., 2019; Dalvi et al., 2019;
Wu et al., 2020; Meftah et al., 2021) compared
activations over all input words, our settings neces-

sitate pooling. In §4 we presented the results where
we used mean activation per sentence. In Figure
6 we compare the heatmaps of different poolings.
As is evident, the major confounds (diagonals and
concentrated neuron groups of strong correlation)
are present across the techniques.

B.2 Inside the Layer Block

In section 4 we measure the correlation of activa-
tions only at the output of the encoder layer block,
following previous work (Wu et al., 2020). We
also take a look at intermediate activations, see
Figure 7. This strengthens our hypothesis that the
strong correlation seen in PosCorr (Figure 1c) is
due to the sinusoidal positional encodings, as they
are propagated through the network with residual
connections. The PosCorr effect appears only after
the first residual connection, weakens through the
fully-connected layers, and strengthens again after
additional residual connection.
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(a) Mean (b) Min (c) Max

Figure 6: Activation correlation between paraphrases (ParaCorr), using the active-passive dataset. The correlation is
done sentence-wise, while the pooling technique of token activation varies. The major confounds are present across
all techniques.

(a) Post Attention (b) Residual + Norm (c) Linear Layers (d) Residual + Norm

Figure 7: Activation correlation between paraphrases (ParaCorr), using the active-passive dataset. A view inside
the first encoder layer block, step-by-step: (a) attention heads, (b) adding residual connections and applying
normalization, (c) fully connected layer, followed by ReLU and another fully connected layer, (d) adding residual
connections and applying normalization - the output of the layer block.

B.3 Adverbial Clause versus Noun Phrase

Here we present the same correlation methods de-
tailed in section 4 but measured on the adverbial
clause versus noun phrase sets. See Figure 8.

C Manipulation of Neurons

C.1 Active to Passive

To complete all variations of the manipulation ex-
periment, we first showcase the shift from active
voice input to passive voice translation (the op-
posite direction of what we showed in the main
paper). We see that the translation is more similar
to the target form (passive voice) than the input
form (active voice). The positive change in BLEU
is more subtle in this manipulation, and again get-
ting maximal change requires many neurons to be
modified (at least 50%), see Figure 9a. With the
random experiments of direction (Figure 9b) and
neurons selection (Figure 9c), we get similar results
- our controlled direction is better while choosing
an optimal subset of neurons is not easy.

C.2 Manipulation on a Test Set

We repeat the manipulation on a held-out test set:
552 sentences that we automatically detect as active
voice sentences from the WMT19 test set. While
our experiments on the dev set are valid, as we
manipulate from one set (e.g. passive voice) by
measuring another (e.g. active voice), one might
argue that we can’t know the effect of the shared
semantic meaning (on the set level) has on the suc-
cess rate. To cover all bases, we manipulate the test
set according to average activations measured on
the dev set. Here we do not have a passive voice
counterpart, so we manipulate active voice inputs
to passive voice translations. The passive voice
detection score (see §5.3) shows a monotonous
increase (up to 0.6% more) as we modify more
neurons (see Figure 10). The trend matches our
expectations. Moreover, we see again that manipu-
lating top-ranked neurons (rank given by ParaCorr)
has a greater effect than bottom-ranked ones. This
is again consistent with what we saw with the de-
velopment set and BLEU score in section 6.
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(a) ModelCorr (b) ParaCorr (c) PosCorr (d) TokenCorr

Figure 8: Activation correlation of first layer neurons in the Transformer encoder, using the clause/noun-phrase
dataset.

(a) Baseline (b) Random direction comparison (c) Random selection comparison

Figure 9: Manipulating output translation to be in passive voice when feeding active voice as input. Lines present
BLEU change with active and passive references according to the amount of neurons manipulated (x).

Figure 10: Manipulating neurons to get passive voice
translation given an active voice input from the test set.
Comparing the effect of manipulating first top versus
bottom neurons, according to ParaCorr. We measure
passive form detection

C.3 Noun Phrase to Adverbial Clause

Manipulating from a noun phrase to an adverbial
clause is consistent with the results we saw for
passive to active manipulation, see Figure 12 We
repeat the same succession of experiments on the
adverbial clause versus noun phrase dataset.

C.4 Adverbial Clause to Noun Phrase

Manipulating neurons to convert input with an ad-
verbial clause to output translation with a noun
phrase is not outright successful (see Figure 13).

(a) Passive to Active (b) Active to Passive

Figure 11: Comparing various magnitudes α for ma-
nipulation step α

∥ ¯xc1
− ¯xc2

∥ (x̄c1 − x̄c2). BLEU score
measured against reference of target form, when ma-
nipulating increasingly more neurons according to top
rank of ParaCorr.

In the controlled case (where we employ direction
by our records of average activation of each para-
phrase form and select an increasing set of neurons
to manipulate according to the top or bottom Para-
Corr rank), we are still closer to the clause form
than the noun phrase. We propose several possible
explanations:

1. The clause versus noun phrase dataset is sub-
stantially smaller than the active versus pas-
sive one (114 examples compared to 1,169
instances). A small dataset may include more
noise or simply make the target syntactic form
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(a) Baseline (b) Random direction comparison (c) Random selection comparison

Figure 12: Manipulating output translation to be with an adverbial clause when feeding a sentence with a noun
phrase as input. Lines present BLEU change with active and passive references according to the amount of neurons
manipulated (x).

harder to capture.

2. Adverbial clause form may be more common
in the train set so the model regularizes to the
statistically more acceptable option. We see
hints for that when we compare the manipu-
lation towards active form as more successful
than passive form (§5 and Figure 9).

3. Noun phrase form may not be distinctive
enough to be encoded in the model.

4. The target form may not be natural in the tar-
get language. As we discuss in our qualitative
analysis in section 5.3, fail cases revealed in-
stances where the target form was either not
possible for a native German speaker, or re-
quired a replacement of the verb to a synonym.
This replacement demands another level of
manipulation from the model, one that it may
not even know to generalize.

C.5 Manipulation Magnitude

As defined in section 5, manipulation from sen-
tence feature c1 to c2 is a subtraction of the term

α
∥ ¯xc1− ¯xc2∥

(x̄c1 − x̄c2) (applied to chosen neurons).
We experimented with a small grid search for possi-
ble values for the scaling factor α, without an appar-
ent option being better than the baseline (α = 1).
See Figure 11 for results13. There is no definitive
conclusion of what magnitude would be consis-
tently better in every manipulation. Similar trends
were found in the clause dataset: α = 2 was best

13We experimented with even greater values (α ∈
{5, 10, 100, 1000}), each with a more drastic BLEU drop,
therefore we discard their inclusion in the figure to allow the
y-axis range to capture the subtle trends of the variables pre-
sented.

when manipulating from paraphrased form noun
phrase back to the original form of the adverbial
clause, and worse the other way around. This could
be tied to the general effect we discuss in §C.4
where one direction of manipulation is more effec-
tive: changing from paraphrased form to original
form. This should be further investigated in future
work.

C.6 Unparalleled Sentences Manipulation

As seen in §6, top ParaCorr neurons were better
for manipulation than those from the bottom of the
rank. One possible explanation we introduced was
the fact that many of those top ParaCorr neurons are
also top PosCorr and TokenCorr neurons. There-
fore, the effectiveness might be derived from the
role polysemy of these neurons, especially when
the paraphrasing calls for a change of word or-
der (e.g. active-passive requires subject and object
swap) or token identity (e.g. clause to noun phrase
requires a transformation between verb and noun).
This is true for cases where the paraphrases are
parallel pairs, therefore they share those shallow
features (tokens and word order).

Here we present an experiment of manipulation
where there are no parallel pairs of paraphrases.
We randomly split the sentence pairs into two sets.
From one we take only the active sentences, and
from the other we take only the passive sentences,
resulting in an active set and passive set of unre-
lated sentences. We repeat the manipulation exper-
iment as detailed in §5.2 but use those unparalleled
sets for measuring the averaging activation of neu-
rons under the active voice feature and under the
passive voice feature (i.e., for measuring x̄c1 and
x̄c2). We do so for 100 different splits of the data.
Measuring the mean and standard deviation of the
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(a) Baseline (b) Random direction comparison (c) Random selection comparison

Figure 13: Manipulating output translation to be with a noun phrase when feeding a sentence with an adverbial
clause as input. Lines present BLEU change with active and passive references according to the amount of neurons
manipulated (x).

(a) Passive to Active (b) Active to Passive

Figure 14: Comparing the impact of manipulating top
ParaCorr neurons versus bottom ones, where the modi-
fication value of neurons is determined by average acti-
vation under unparalleled sets of sentences, i.e. x̄c1 and
x̄c2 are measured by active and passive non-pairs. The
lines represent the mean and standard deviation over
100 different unparalleled sets.

BLEU against the objective reference, the results
are presented in Figure 14. Notably, the standard
deviation of the experiment is reported, not the
standard error of the mean. The results may match
the intuition where the least correlated neurons be-
tween paraphrases are those most sensitive to the
active-passive feature, but since nothing is shared
across those sentences, the expected noise level is
high, and any measure is hard to explain.

When we measured the correlation of such un-
paralleled sentences, we got an average correlation
(per neuron over 100 different splits of the dataset
into unparalleled sets) ranging from −0.04 to 0.04,
with a standard deviation between 0.03 to 0.06.

D Qualitative Analysis of Manipulation

Sentence examples of successful manipulation
from passive voice input to active voice transla-
tion, as examined by a native German speaker, can
be found in Table 4.

As we discuss in §5.3, sometimes a manipula-
tion is not applicable in the target language. For

example, the adverbial clause sentence from our
dataset "In Lyman’s case, she reported the alleged
rape to military police less than an hour after it
occurred.", is translated into a noun phrase sen-
tence regardless of input form (i.e. if we insert
either this as input or its noun phrase paraphrase)
or manipulation (i.e. with or without manipula-
tion). "it occurred" is immediately translated into
the German parallel of "its occurrence" when trans-
lating the clause version, and it is translated into
a wrong noun phrase when translating the noun
phrase version (the German parallel of "appear-
ance" rather than "occurrence" in this context, i.e.
"Auftreten" and "Vorfall", respectively). A native
German speaker suggested we opt to replace "oc-
curred" with "happened", otherwise it could not
be translated into a clause form. Even the human
reference (of WMT) is with the "its occurrence"
noun phrase. See Table 5.
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Table 4: Example of successfully manipulated sentences, from passive voice input to active voice translation.
Manipulation is done by shifting the values of all the neurons in the encoder toward their average activation on
active voice sentences. Correctness of sentence voice and fluency was verified by a native German speaker.

Input sentence:
passive voice

Baseline translation:
passive voice

Manipulated translation:
active voice

The scene was described by
police as very gruesome.

Der Tatort wurde von der Polizei
als sehr grauenvoll beschrieben.

Die Polizei beschrieb den
Tatort als sehr grauenvoll.

During the excavations, the
remains of a total of five creatures
were collected by them.

Bei den Ausgrabungen wurden von
ihnen die Überreste von insgesamt
fünf Lebewesen gefunden.

Bei den Ausgrabungen
fanden sie die Überreste von
insgesamt fünf Lebewesen.

From "dream" to "megalomania":
the Bit Galerie is discussed by
TV readers

Vom "Traum" zum "Größenwahn":
Die Bit-Galerie wird von TV-Lesern
diskutiert

Vom "Traum" zum
"Größenwahn": TV-Leser
diskutieren über die Bit-Galerie

Table 5: Example of an adverbial clause and a noun phrase translations, showcasing the limitations of BLEU
comparison to Google Translate references and the challenge of translating an output in adverbial clause form. Either
manipulation here did not have any effect (e.g. manipulation from clausal input resulted in translation identical to
the one without manipulation)

English

Adverbial Clause
In Lyman’s case, she reported the alleged
rape to military police less than an hour
after it occurred.

Noun Phrase
In Lyman’s case, she reported the alleged
rape to military police less than an hour
after its occurrence.

Human
Reference

In Lymans Fall meldete sie die mutmas̈sliche
Vergewaltigung der Militärpolizei weniger als
eine Stunde nach dem überfall.

Google
Translate

In Lymans Fall meldete sie die mutmas̈sliche
Vergewaltigung weniger als eine Stunde nach
ihrem Auftreten der Militärpolizei.

In Lymans Fall wurde die mutmas̈sliche
Vergewaltigung von ihr weniger als eine
Stunde nach ihrem Auftreten der Militärpolizei
gemeldet.

Our
Translation

In Lymans Fall meldete sie die angebliche
Vergewaltigung weniger als eine Stunde nach
dem Vorfall der Militärpolizei.

In Lymans Fall meldete sie die angebliche
Vergewaltigung weniger als eine Stunde nach
ihrem Auftreten der Militärpolizei.
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Abstract

The mechanisms underlying human commu-
nication have been under investigation for
decades, but the answer to how understanding
between locutors emerges remains incomplete.
Interaction theories suggest the development
of a structural alignment between the speak-
ers, allowing for the construction of a shared
knowledge base (common ground). In this pa-
per, we propose to apply metrics derived from
information theory to quantify the amount of
information exchanged between participants,
the dynamics of information exchanges, to pro-
vide an objective way to measure the common
ground instantiation. We focus on a corpus
of free conversations augmented with prosodic
segmentation and an expert annotation of the-
matic episodes. We show that during free con-
versations, the amount of information remains
globally constant at the scale of the conver-
sation, but varies depending on the thematic
structuring, underlining the role of the speaker
introducing the theme. We propose an original
methodology applied to uncontrolled material.

1 Introduction

Theories of interaction explain how participants
elaborate their discourse in the perspective of ex-
changing information, executing a task, establish-
ing a joint action, etc. These theories stipulate in
particular that such activity is correlated with the
building of a shared knowledge between partici-
pant, also called common ground (Pickering and
Garrod, 2004, 2021). In these frameworks, the
quality of an interaction depends on the capacity of
building such mutual knowledge, which to its turn
depends on the alignment of linguistic representa-
tions between participants. These mechanisms are
based on different levels of convergence between
the participants, that can occur at any level: lexical,
syntactic, prosodic, as well as gestures, behaviors,
etc. One hypothesis is that this phenomenon is also
visible at the semantic level, showing a coordina-

tion between participants in terms of information
exchange that can be uncovered by studying the
amount of such information and its dynamics dur-
ing a conversation.

The goal of this work is therefore to eval-
uate these questions by means of information-
theoretical measures (Shannon, 1948): sharing
information relies on the use of simple symbols
which can be combined, concatenated to transfer
increasingly complex knowledge. Moreover, it is
possible to analyze the dynamics of this process,
whether the amount of transfer vary during a con-
versation, at what position, and whether an align-
ment between participants can also be observed
at this level. An estimation of the quantity of in-
formation exchanged between participants and its
dynamics could therefore constitute an objective
way to measure the common ground instantiation.

Several works have been done in this direction,
based on lexical information measured by entropy,
and showing a convergence between participants.
Inspired by Xu and Reitter (2016), we study the dy-
namics of information transfer at three levels: first
globally, at the scale of an entire conversation, by
taking into account productions from both speakers
into a same system. Doing that, we propose to iden-
tify whether some specific phenomena (e.g. peaks)
appear in the amount of exchanged information and
that could be related with discourse-level structures
(e.g. topic shift). Second, we will study the global
evolution of entropy for each speaker, trying to
exhibit some convergence patterns (e.g. phase syn-
chronization). Third, we propose to apply the same
type of analysis at the scale of a topic, by study-
ing the dynamics of information exchange within
a topic (e.g. decrease of entropy) as well as the
complementary patterns between speakers. Last,
but not least, this is the first work in this domain
applied to unrestricted natural conversations.

This paper presents several contributions, corre-
sponding to important differences with the litera-
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ture. First, we propose to explore this question ap-
plied to free conversations instead of task-oriented
or controlled ones. Second, in difference with ex-
isting works, we evaluate the dynamics of the ex-
change based on well-defined inter-pausal units
instead of sentences (a not adequate notion for spo-
ken languages). Finally, we base our analysis on
thematic annotation made by an expert (human lin-
guist) instead of an automatic topic segmentation.

The paper is organised as follows. In Section 2,
we review the different approaches to these ques-
tions in the litterature. In Section 3, we describe
our conversational dataset and the methodology we
apply. Our experiments and a discussion of the
results are presented in Section 4.

2 Related Works

Several studies have proposed to use information-
theoretic measures to study language processing.
The general idea is to approach an evaluation of the
cognitive load through quantitative estimation. In a
seminal work, Hale (2001) introduced the notion of
surprisal, defined as the negative log-probability of
a word given the preceding context, to measure pro-
cessing difficulty. This approach has been picked
up by many studies in psycholinguistic, showing in
particular a correlation between reading times and
surprisal (Monsalve et al., 2012; Frank et al., 2015).
In the same vein, based on grammatical probability
distributions, entropy reduction has been proposed
to evaluate the informational contributions of each
word as a complexity processing measure (Hale,
2016). At the lexical level, without any additional
syntactic information than what is understood by
the linguistic model, entropy has been proposed to
estimate sentence information content in discourse.
We offer in this section an overview of the main
works done in this direction by first presenting the
main approaches to measure information content
and second the methods for studying variations of
such measures at the discourse level.

2.1 Measuring Information Content

In discourse, each lexical choice can be described
as a random variable Xi that is constrained by a
number of influences, both short range (sentence
structure, local topic) and long range (global con-
text). As the relevant context builds up, the next
word prediction is assumed to become easier and
easier as more contextual cues are available to the
discussion. The information density of this random

variable is estimated as the entropy H(Xi) defined
by Shannon (1948). We especially follow Xu and
Reitter 2018; Giulianelli et al. 2021 in modeling
the information content.

The influence of the local context on the word
choice is typically modelled at utterance or sen-
tence level with conditional probabilities; sentence
entropy is taken as the average entropy of the words
comprising that sentence. Therefore, for a given
sentence S comprising of a sequence of n words
w1, w2, ...wn

H(w1...wn) = −
1

n

∑

wi∈S
logP (wi|w1...wi−1)

(1)
Keller (2004) and Genzel and Charniak (2003)

exposing a correlation between sentence length and
entropy values, we also compute a normalized ver-
sion of our entropy metric to remove dependence
to sentence length, by dividing the previously com-
puted metric by the average obtained on all sen-
tences of the same length:

H ′(S) =
H(S)

∑
W∈L(n)H(W )

#{L(n)}

(2)

where L(n) is the set of sentences of length n, ie
sentences of the same length as our sentence S.

The initial studies use n-gram language models
to estimate word probabilities, which fail to take
more long range dependencies into account. The
natural reaction is to question the effect of context,
which is the approach taken by Giulianelli et al.
(2021). They introduce the distinction between
decontextualised entropy, that only uses the local
sentence S as context, and contextualised entropy,
which utilises the global context C, i.e. all previ-
ously mentioned sentences up to the current word,
as context. The contextualised entropy of a word
is therefore computed as the conditional entropy
of a word depending on both the local and global
context.

The difference between the amounts of informa-
tion at the local and global contexts if carried by
the mutual information term MI(S|C):

H(S|C) = H(S)−MI(S|C) (3)

2.2 Entropy variations in language processing

Genzel and Charniak (2002) proposed the entropy
rate constancy principle stipulating that the rate
of transmitted information remains approximately
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constant. Initially enunciated for written texts, this
principle has been applied to natural conversation,
albeit with some adaptations.

Following the entropy rate constancy principle,
the conditional entropy remains constant through
the dialogue. As a consequence, local entropy and
mutual information have to vary in the same pro-
portions. At the scale of a dialogue, it has been
shown that the two arguments of this equation reg-
ularly increase in the same way (Genzel and Char-
niak, 2002). But at the same time, even though
the entropy should remain constant throughout the
dialogue, local variations are possible. This as-
pect has been explored by studying the entropy at
specific positions, taking into account the role of
the participants in the conversation (Xu and Reit-
ter, 2016, 2018; Giulianelli and Fernández, 2021).
These studies are based on a segmentation of the
discourse in a sequence of separate topics, with the
idea that this succession of thematic episodes could
be associated with a variation in the entropy. In this
perspective, Qian and Jaeger (2011) has shown a
correlation between entropy decrease and potential
topic shift in written text: topic shift corresponds
to the drop of the mutual information term. More
recently, Xu and Reitter (2016) exhibited a sym-
metry in the entropy fluctuations within a topic
depending on the speakers’ roles. A new topic cor-
responds to introducing new information into the
context, which means high entropy at the begin-
ning of a topic for the speaker who introduces it
(topic initiator). Reciprocally, their partner (called
in these studies responders) progressively update
the context, which means that for them, entropy
starts low and progressively increases until the next
topic. As a consequence, these fluctuations show a
convergence pattern between interlocutors within a
topic.

3 Datasets and Models

3.1 Datasets

Previous work on information density focusing
mostly on task-related conversational datasets such
as MapTask (Anderson et al., 1991), we explore
whether conclusions drawn on such specific data
further generalise to natural conversation by apply-
ing the same methods on the Paco-Cheese corpus
(Priego-Valverde et al., 2020; Amoyal et al., 2020).
Indeed, since vocabulary is not as controlled in nat-
ural conversations as it is in tasks, the conversation
might drift onto less predictable topics that rely

more on common knowledge.

Paco-Cheese (PC) (Priego-Valverde et al., 2020)
is a multimodal corpus containing audio and video
recordings of 26 interactions between dyads of par-
ticipants. Conversations are in French and lasting
15 to 20 minutes. Participants were given a short
prompt to read to elicit conversation but were oth-
erwise free to talk about the topics of their choice.
About half (16) of the conversations happened be-
tween participants that were not acquainted. Man-
ual transcription was obtained, then automatically
aligned to the audio signal and segmented using
SPPAS (Bigi, 2012). Consequently, the speech
segments we consider here are inter-pausal units
(IPUs) - segments boundaries are defined by pauses
longer than 200ms of silence - which commonly
are shorter than sentences. The corpus is also en-
riched with annotations for noise, laugh, pauses,
feedbacks, head nods and smiles (Amoyal, 2018;
Amoyal and Priego-Valverde, 2019). Expert the-
matic annotation has been added to 16 of the dia-
logues. Excerpts from the corpus can be found in
Appendix A.

Relying on these annotations, we compute infor-
mation content values for the dialogues and con-
sider its evolution at two levels: global evolution
throughout the conversation, and local evolution in
a given conversational theme.

3.2 Language Models

We estimate information content throughout the
dialogue by computing per-word entropy for each
sentence, using language models trained on differ-
ent corpora and finetuned on the dataset of interest.

Previous works relied both on n-gram models
(Xu and Reitter, 2018) and Transformer models
(Giulianelli et al., 2021). Models were then not
straightly compared however the latter method pro-
vides with two advantages: first, Transformers al-
low for the possibility to take larger amounts of
contextual information into account; second, de-
fault Tokenizers in the pipeline are trained using a
Byte-Pair Encoding, which allows them to properly
deal with out-of-vocabulary (OOV) tokens. Those
rarer words would be especially important in pre-
dicting surprise and information content in the con-
versation.

After experimenting with n-gram models, RNNs
and the GPT-2 language model (Radford et al.,
2019) - we disregard more recent models using
masking-based learning in order to focus on more
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Table 1: Perplexity for the models used compared to
that of GPT-2 pretrained models

model lang. pretraining finetuning perplexity OOV
SRILM FR decoda x 132,32 0.5%
RNN FR wikipedia x 83,16 -
GPT-2 FR wikipedia 125,39 -
GPT-2 FR wikipedia x 32,51 -

cognitive-plausible models - we chose to focus
on the latter as GPT-2 demonstrates both lower
perplexity and has been shown to better correlate
with human surprisal in language understanding
(Michaelov et al., 2021). We rely on Hugging-
Face’s implementation of the model1, using default
tokenizers and parameters (Wolf et al., 2020). Fine-
tuning is required to adapt the language model from
written input to the specificities of natural conver-
sation. We therefore finetune the models on a 70%
split of each target corpus. As shown in Table
1, finetuning yields a substantial reduction in the
model’s perplexity.

The information content of an utterance is com-
puted sequentially, using log-probabilities pre-
dicted by the model for each token in the sentence.
Several lengths of context are considered (current
utterance only H(S); several utterances; every pre-
ceding utterance H(S|C)) and Mutual Information
is computed from the difference betweenH(S) and
H(S|C).

More information on models parameters and
finetuning can be found in Appendix B.

3.3 Statistical Models

With our experiments, we study the dynamics of
information transfers at two levels: i) globally, at
the level of the entire conversation; ii) locally, at
the level of topic episodes. We fit linear models
on information content estimated by the language
models on those two conditions. In those models,
the logarithm of the information content is the re-
sponse variable (H(S|C) or H(S)) and the logarithm
of turn position (whether global, logp, or rela-
tive to the local theme, logt) is the fixed effect.
Dialogues are considered a random effect in this
analysis.

We also include in our analysis a comparison
between utterance lengths to validate that using
IPUs does not affect the conclusions we draw from
the data.

1https://huggingface.co/gpt2, using weights
from dbddv01/gpt2-french-small for the french
model

Figure 1: Evolution of normalised contextualised en-
tropy on one example dialogue. The two speakers are
plotted in different colors. Dashed lines indicate the
start of new themes in the manual annotation (top) and
automated annotation (bottom).

3.4 Peak identification and correlation to
thematic annotation

Topic Segmentation Information content evo-
lution is typically studied at the dialogue level
(global context), but also locally, at the level of
topic episodes. Annotations for this partitioning
can be derived automatically using tools such as
TextTiling (Hearst, 1997). This algorithm relies
on lexical co-occurrences patterns to compute a
similarity score between sentences and segment a
text into subtopic shifts.

To complement the manual annotation of themes
in Paco-Cheese, we obtain automatic extraction of
theme changes using NLTK’s implementation2 of
the TextTiling algorithm. This step furthermore al-
lows to compare human sensitivity to topic change
to lexical changes (see Figure 1), an analysis which
has not been done on the corpus yet.

Entropy Peak Detection and Analysis Investi-
gating the location of information exchanges, we
consider peaks of entropy as potential locations
for the introduction of new data to the conversa-
tion. Assimilating those values to outliers, two
unsupervised methods are used to detect those val-
ues. Entropy series are detrended and scaled before

2https://www.nltk.org/api/nltk.
tokenize.html#module-nltk.tokenize.
texttiling
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Table 2: Estimates and significance for the effect of
position on information content for the linear mixed-
effect models on Paco-Cheese

interaction theme
global log position 0.027 ***

log position -0.032 ***
initiator log position -0.021 **
follower log position -0.015

further computations. The first method of outlier
detection involves local detection of unusual val-
ues; we rely on scikit-learn (Pedregosa et al.,
2011) implementation of Local Outlier Factor for
this. The second method (hereafter NormOutlier)
involves globally comparing the values and select-
ing the highest two percent. For both methods,
parameters were chosen as optimal values on a
subset of the data based on accuracy, precision
and recall metrics. We finally compare the perfor-
mances of those methods in predicting thematic
episodes boundaries, to basic classifiers from the
scikit-learn dummy module.

We also leverage Part-of-Speech tagging and
Feedback annotations from the dataset to explore
which words are most unexpected for the model.

4 Experiments

In this section we present the results of our exper-
iments with the Paco-Cheese dataset. Taking the
values of H(S) (i.e., the information content of
a sentence) and H(S|C) (i.e., the contextualised
entropy) estimated by the language model, we also
compute the difference between contextualised and
decontextualised entropy (MI). We extend results
obtained by previous works with this new corpora
containing free conversations. We then explore
those results using qualitative and quantitative anal-
ysis of locations with high information content.

4.1 Speakers behavior in natural conversation

Global evolution We find a positive effect of
turn position on information content when taking
the entire Paco-Cheese dialogues as the context
unit (see Table 2). This effect can however be
entirely attributed to the structure of the corpus as
conversation usually start with a few sentences of
explanation of the experiment and two one-sided
readings of the jokes. Indeed when focusing only
on the free conversation, we find that this positive
effect disappears (see Figure 2 for the difference of
entropy evolution between the two conditions).

Local evolution: themes We do however ob-
serve an effect of turn position on information con-
tent at the level of themes (β = -0.032, p < 0.001)
(see Figure 3), which seems to be entirely driven by
the behavior of the topic initiator (β = -0.021, p <
0.001). We observe no effect of turn position on in-
formation content for the other locutor responding
to the topic initiation.

We attribute the lack of overall effect of posi-
tion to the structure of the conversation, as in a
natural paradigm speakers will naturally shift from
one topic to the next, without necessarily relying
on previously mentioned context to move the con-
versation forward. Themes, however, make up
smaller, coherent units of a conversation. The neg-
ative effect of turn position on information con-
tent in themes would seem to be going against the
principle of Uniform Information Density (Jaeger
and Levy, 2006) and its applications to dialogue
which indicate that information content should be
increasing; it is however in line with Xu and Reit-
ter (2018)’s findings that the information content
will be either constant or slightly decreasing the
more the topic progresses. We postulate that the
reason why we do not observe an effect of posi-
tion is because the responder is active in helping
constructing the theme and does not simply fall
back into a passive role at the introduction of a new
topic.

The full results of the statistical analysis and
accuracy of theme change detection can be found
in Appendix C.3

4.2 Units of sense in a conversation: IPUs vs.
sentences?

Unlike other works that compute entropy at the
level of a "sentence" (which is not valid when
studying spoken language), the input to our models
are inter-pausal units (speech separated by 200ms
pauses). IPUs being shorter than sentences or turns
and potentially made of fewer words, they offer the
possibility of a finer granularity, more in line with
linguistic characteristics of dialogues.

One might expect this change of scale to affect
the patterns displayed in information content, as
longer interventions would bring in more informa-
tion at once. Differences between topic initiator
and responder might appear more strongly with a
more frequent use of short utterances and feedback.

3Codes and statistical analysis are available at https:
//github.com/ejmaes/multimodal-itmodels
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Figure 2: Average evolution of the entropy throughout the conversation for the Paco-Cheese corpus. Left: starting at
file start; Right: removing introductions and prompt reading to start analysis at the beginning of the free conversation.
In red, the approximate duration of conversation starters (varies between dialogues)

Figure 3: Average information content in the utterances
surrounding the start of a new theme, for both speakers.

To test this hypothesis, we aggregated IPUs by
a given speaker that were separated by silences
shorter than 1 second and were not interupted by
the other speaker. The obtained utterances are akin
to sentences in terms of length and semantic con-
tent. For the comparison to be more accurate, we
remove the IPUs of the first part of the dialogs,
which correspond to the reading of jokes and not to
actual conversation. We then fed this new data into
the language model. Results (see Table 3) mostly
appear robust to the aggregation, with a main effect
of position on entropy at the level of themes and
for the speaker initiating the theme.

Table 3: Comparison between IPUs and sentences -
Estimates and significance for the effect of position on
information content

IPUs sentence - 1s
global both speakers 0.015 -0.22 **

both speakers -0.030 *** -0.029 ***
theme initiator -0.024 ** -0.033 **

follower -0.014 -0.017

4.3 Distribution of entropy peaks against
themes

The distribution of information in the conversation,
despite being stable on a global level, is not smooth
on a local scale, as the even flow of entropy is some-
times intersected with peaks of local uncertainty.
We ponder whether those peaks only correlate to
endemic features of the conversation, such as the
introduction of new information to the discussion,
or whether they inform on model shortcomings that
need to be addressed to better understand the char-
acteristics of information transmission and com-
mon ground instantiation in conversation.

4.3.1 Theme change in conversation: smooth
or abrupt behavior?

Inspired by the behavior observed in entropy val-
ues around theme breaks (see Figure 3) and the
decrease in entropy for the initiator throughout the
theme they introduced, we wonder whether it is
possible to predict theme breaks from entropy val-
ues and more specifically entropy peaks.

We first start by exploring how similar automatic
and manual annotations actually are. A first quan-
titative approach reveals that TextTiling system-
atically overestimates the number of themes by
conversation in our dataset (Figure 4), predicting
565 thematic episodes whereas the dataset only has
268 (see Table 4). This might be an indicator of the
existence of subtopics in the conversations; how-
ever, locations indicated by TextTiling as the start
of new themes only weakly correlate with expertly
annotated locations. A first hypothesis as to explain
those results involves the existence of transitions
phases in-between two thematic episodes. Transi-
tions are frequently annotated in the corpus, with
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Table 4: Average number of themes per dialogue in each
dataset, as annotated vs estimated by TextTiling

Annotations TextTiling
PACO-CHEESE 16.4 (± 2.8) 34.5 (± 7.0)

Figure 4: Average number of themes discussed in the
conversation as a function of IPU index, according
to manual annotation (blue) and automatic annotation
(orange). Some conversations are shorter than others,
which might cause the average number of themes to
drop around some indexes.

13.6± 3.3 transitions per conversation, slightly less
than the number of themes per dialogue. Indeed, if
transitions are annotated, then boundaries between
themes must be considered to be flexible enough.
We then consider that a prediction falling within
a small window of a boundary will be an accurate
one; this yields better results, despite prediction ac-
curacy remaining quite low (80 common locations
out of 288 annotated theme changes, see Table 5).

Manual and automatic annotation therefore ap-
pear to consider different features and rules to estab-
lish thematic boundaries. But if automatic annota-
tion is more sensitive to new vocabulary introduced
in the conversation to label thematic changes, we
hypothesize might also correlate more with entropy
values. For this reason we compare the location
of information content peaks to the distribution of
topics both manually and automatically predicted.

Peak location does not accurately predict theme
changes or TextTiling results, though correlat-
ing peaks to TextTiling yields slightly better re-
sults than manual annotation. For manual anno-
tation, Local Outlier detection allows for the de-
tection of the largest number the theme changes
(precision = 0.172 / recall = 0.65 within a 5
IPUs window), predicting a larger number of loca-
tions of interest than annotated. Peak detection fur-

ther correlates with automated annotation of theme
changes, which further support the hypothesis of
entropy peaks appearing around locations where
new content is introduced. This method for pre-
dicting thematic boundaries however does not fare
better than a baseline classifier trained directly on
entropy values and sentence length to detect topic
boundaries.

4.3.2 Language models and natural
conversation

To further analyze model and participants behavior
throughout the conversation, we shift our focus to
per-word entropy. We focus on two aspects: words
with high entropy on the one hand, and the way the
model deals with conversational feedback on the
other.

From peak locations, a set of vocabulary with
the highest entropy values is extracted. We cross
this list with part-of-speech tagging and feedback
annotation available in the corpus before going fur-
ther. We note that most of those words are nouns,
with the stronger occurrences being proper nouns,
which is expected since those words wouldn’t be
known to the model - or, in the case of locations,
logical in the conversation - prior to encountering
them. Some of those unexpected words would how-
ever not be evaluated by the speakers as this sig-
nificant, since they are already part as their shared
knowledge (nearby locations, daily life abbrevia-
tions, names of known individuals...). Thus most
of these words may simply be unexpected in this
context or too unusual for the model, and do not
provide any new information to the topic at hand.
However, a small percentage of words do; and in
the case of words reappearing later in the conver-
sation, a slight decrease in entropy is observed. A
list of unusual words with high entropy causing the
appearance of peaks is provided in Appendix D.1.

We finally turn our attention to backchannels, a
discourse-specific occurrence through which a lis-
tener can interact with the speaker and notify them
on their thought process without requiring taking
the floor. Backchannels typically include move-
ments (head nods, smiles or facial expressions),
small words (yes, okay, no, sure...) or short utter-
ances that do not disrupt the conversation flow. A
qualitative analysis of peak locations had revealed
the presence of feedbacks among the utterances
of interest; further inspection actually reveals this
is not an issue in modeling. Indeed, most feed-
backs generate lower than average entropy. But
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Table 5: Comparison of manually annotated theme changes locations to peak locations and theme breaks according
to automated annotation. A baseline classifier (DumStrat) trained to predict theme breaks is added for reference.

features target best result True Positive precision recall
TextTiling text window=5 80 0.136 0.299
LocalOutlier entropy manual annotation window=5 173 0.172 0.646
NormOutlier entropy window=5 23 0.174 0.086
DumStrat entropy + text features - 261 0.268 0.113
LocalOutlier entropy TextTiling window=5 381 0.278 0.674

sometimes longer feedbacks conveying meaning
a bit more specific generate uncertainty, same as
other utterances in the dialogue, with the difference
than those productions from the listener are more
concise than utterances from the speaker. It is espe-
cially the fact for unexpected, negative input, but
makes perfect sense on a cognitive standpoint.

A more detailed view into feedbacks types, fre-
quencies and related entropy is available in Ap-
pendix D.2.

5 Conclusion

The results presented in this paper represent a new
contribution for the study of information exchange
during conversation. First, this work only relies
on free natural conversations, without adding more
controlled corpora. In particular, in difference with
other works in the literature, we do not add any
task-oriented dialogue (such as MapTask) nor tele-
phone conversation (such as Switchboard), that
have known specific impacts on turn taking and
topic shift. In terms of methodology, we decided
to use a prosodic segmentation of the input (pauses
longer than 200ms) generating identify inter-pausal
units usually used in studies on spoken language.
IPUs are discourse segments with a certain coher-
ence only identified on the basis of the acoustic
signal. These segments offer a finer-grained view
of the input in comparison with the segmentation
into sentences that are usually used in the litera-
ture. This notion of sentence is not only problem-
atic when applied to spoken language (the existing
works do not precisely explain to what they corre-
spond), but may also introduce a bias when study-
ing topic shift, these two segments being possibly
the same. Finally, we are using with this analysis a
thematic segmentation that was done manually by
experts, rather than relying on automatic segmenta-
tion as previous works might have done. TextTiling
identifies topics based on semantic similarity; here
annotations are based on higher-level information,
bringing together all different linguistic and non-
verbal information, providing a much more reliable

segmentation.
Our results first confirm that at the scale of a

conversation, entropy remains stable, as it has been
observed in other works. At a local level, when seg-
menting the discourse in themes, we also observe
a specific behavior, showing a decrease in the en-
tropy of the speaker introducing the theme, which
is expected. However, no significant pattern can
be observed for the responder, for who the entropy
remains approximately stable. To be more precise,
we did not observe any increase in the entropy. As
a consequence, we cannot say that a convergence
in the entropy rate between the different speak-
ers can be observed at the scale of a theme. This
result is important in the study of conversational
interactions. It means that convergence between
speakers, which is necessary during a conversation,
is a complex phenomenon that cannot be observed
only on the basis of quantity measures. At the same
time, the analysis of entropy constitutes a robust
cue for evaluating how much and when informa-
tion is transferred between speakers in a natural
setup; however it must be complemented with data
from other sources to assist the model in isolating
truly important sections of the dialogue, from noise
(rarer words that are logical in the context).

This work opens the door to further study.
For starters, as previously mentioned, enriching
the models with information, coming from other
modalities would most likely refine the analysis.
Among the modalities of interest are audio (speech
rate is known to be modulated according to the diffi-
culty of the information), video (gaze), and cerebral
activity. Indeed, we think that the dynamics of the
entropy is correlated with information exchange
and more generally with the building of the com-
mon ground. It becomes therefore possible to start
studying the brain basis of mutual understanding
by looking specifically at the brain signal associ-
ated with entropy peaks. Our hypothesis is that this
entropy-based indicator could offer the possibility
to analyze the brain signal in a time-locked event
paradigm (evoked-related potentials) as well as the
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time-frequency level (frequency bands).
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A Corpus Excerpt

Table 6 shows an excerpt of a Paco-Cheese dia-
logue, annotated with utterance position in the dia-
logue, current discussion theme, speaker identifiers
and information content estimates (contextualised,
decontextualised, and difference between the two).

B Language Models Training and
comparison

B.1 Transformers

We experiment with GPT-2 (Radford et al., 2019),
an autoregressive Transformer-based (Vaswani
et al., 2017) language model, relying on Hugging-
Face’s implementation, pretrained models4 and de-
fault tokenizers.

Considering the corpora peculiarity (dialogue)
which differs from most of the training data, we
finetune the models on 70% of the target corpora.
The finetuned models yield significantly lower per-
plexity on the portion of the dataset reserved for
testing. One epoch with a training loss of 5e-05
(default) and batches of size 8 leads to significant
improvement on the English corpus. The French
model is finetuned for 20 epochs with a learning
rate of 1e-05 and batches of size 16.

For inference, the model’s maximum sequence
length is used (1024) so as to maximize the model’s
ability to extract context from the discourse.

To match the SRILM execution output as well as
to give context to the prediction of the first sentence
token, we include a sentence beginning token at
the start of the sentence for the prediction, but this
token’s information content is not computed.

B.2 Other language models

RNN models Data in input of the RNN mod-
els is parsed using the same Tokenizers as GPT
in order to facilitate comparison between models;
the models are trained on the same fraction of the
corpus. After a first pass on a set of wikipedia
data, the model are finetuned for 2 epochs on
the target dataset. The model’s architecture is as
follows: one embeddings layer, one GRU layer
(hidden_size=128). The RNN cell output is
then fed to a Linear layer through a Dropout layer.

SRILM Language Models Unlike neural net-
work models which training relied on tokenizers
which virtually removed the problem of out of vo-
cabulary (OOV) tokens, SRILM Language Models
can only rely on the vocabulary encountered during
training for inference of probabilities. Choosing
the model therefore involves balancing perplexity
and number of OOV tokens matched during infer-
ence. The fraction of OOV in the held-out data

4Pretrained model used for English corpora was the
default gpt2 weights; for French corpora, weights from
dbddv01/gpt2-french-small were used.
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Table 6: 20 lines from the Paco-Cheese corpora, excerpt of the conversation between AA and OR.

index theme speaker text H(S|C) H(S) MI
120 exams OR ça venait de la psycho de l’anthropo enfin de plein de euh domaines 1.18 1.30 0.13
121 exams AA ouais ouais 0.31 0.43 0.12
122 exams OR je pense c’était juste simplement euh ça 1.04 1.01 -0.04
123 exams AA ben ouais mais moi le truc c’est que genre la veille ben du coup je 0.76 0.77 0.01

l’avais revu et tout
124 exams OR et 0.40 0.62 0.21
125 exams AA genre les j’ai vu mes deux résumés je les ai regardés j’ai fait euh 0.95 0.91 -0.03
126 exams AA pouah c’est bon ça tombera non non j’ai fait non c’est bon ça 0.76 0.74 -0.01

tombera pas sur ça
127 exams OR la flemme 1.38 1.03 -0.35
128 exams OR ouais 0.37 0.65 0.28
129 exams AA genre du coup je les ai lu vite fait en diagonale 1.51 1.55 0.04
130 exams AA et 0.51 0.62 0.11
131 exams AA après j’ai eu la première question du partiel j’ai fait 0.80 0.85 0.06
132 exams AA ah 0.74 0.79 0.05
133 exams OR ouais voilà 0.65 0.65 -0.00
134 exams AA ah bon 1.41 1.12 -0.29
135 exams OR et moi je m’étais même pas rendue compte que c’était là-dedans 0.80 0.88 0.08

c’est après cristèle elle m’a dit mais tu vois que c’est tu as
exactement ton résumé genre

136 exams AA j’aurais dû 0.78 0.75 -0.03
137 exams OR alors qu’en plus le résumé quand elle a corrigé il m’a dit très bon 1.11 1.16 0.06

résumé
138 exams AA ouais moi aussi 0.72 0.76 0.04
139 exams AA du coup j’étais un petit peu deg quoi 1.77 1.57 -0.20

was between 1 and 5% with non-finetuned models,
lower with finetuned models. Following Xu and
Reitter (2017) who train their language model on a
different corpus, we compare different data sources
for the language model. We find that pretraining
the model on a larger dialogue corpus (we use DE-
CODA, (Bechet et al., 2012)) then finetuning it on a
fraction of the target corpus yields the best balance
in terms of perplexity and number of OOV tokens.
Indeed perplexity will be lower with large corpus
that are closer in structure to the target data; thus
training on dialogue data will be better than train-
ing on written corpus such as wikipedia, especially
considering that the larger the original corpus, the
smaller the effect of finetuning.

B.3 Building up contextual information

One interrogation that came with using models
with context was how context buildup allowed for
better expectations of the upcoming words. The
mind is capable of selecting relevant information
from an utterance and reusing it long distance, al-
beit with limits, as the memory span is not infinite.
How much pull would long distance information
have in the predictions? The biggest information
input happens with the addition of the previous sen-
tence to the context (see Figure 5); further additions
to the context have a more limited impact. Thus
computed values of entropy for each sentence can

Figure 5: Correlation between entropy values given by
the model, depending on the length of the contextual
information, in IPUs

mostly be explained by language understanding
and local structure of the sentence, with previous
utterances and long distance information selection
refining the predictions.

C Experimental Results

C.1 Linear Models results
Table 7 summarise the results of our statistical anal-
ysis. The same four linear models are fitted on in-
formation content estimated on different sets of the
data: the utterance column refers to the length of
the context, the IPU being the main condition, and
concat 1s referring to paradigms where IPUs
from one speaker are aggregated as long as they
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Table 7: Results of linear mixed-effect models on the Paco-Cheese dataset

whole dialogues free conversation only
estimate p sig estimate p sig

model utterance test_label var
H(S|C) IPU Position in INTERACTION (Intercept) -0.269 0.000 *** -0.009 0.863

logp 0.027 0.000 *** -0.015 0.111
Position in THEME (Intercept) -0.023 0.174 -0.010 0.577

logt -0.032 0.000 *** -0.030 0.000 ***
Position in THEME - initiator (Intercept) -0.056 0.017 * -0.010 0.668

logt -0.021 0.002 ** -0.024 0.001 ***
Position in THEME - responder (Intercept) -0.082 0.032 * -0.087 0.023 *

logt -0.015 0.114 -0.014 0.153
concat 1s Position in INTERACTION (Intercept) -0.004 0.924

logp -0.022 0.005 **
Position in THEME (Intercept) -0.016 0.570

logt -0.029 0.000 ***
Position in THEME - initiator (Intercept) 0.003 0.891

logt -0.033 0.002 **
Position in THEME - responder (Intercept) -0.082 0.059 .

logt -0.017 0.123
H(S) IPU Position in INTERACTION (Intercept) -0.112 0.000 ***

logp 0.010 0.004 **
Position in THEME (Intercept) -0.011 0.344

logt -0.015 0.000 ***
Position in THEME - initiator (Intercept) -0.018 0.213

logt -0.012 0.015 *
Position in THEME - responder (Intercept) -0.053 0.028 *

logt -0.004 0.534

are not interrupted by pauses longer than 1 sec-
ond and are not interrupted by the other speaker.
Whole dialogue and free conversation only refer to
whether the dialogue data is considered as a whole
or whether the start of the dialogue (introductions,
reading of jokes to kickstart conversation) is re-
moved only to keep the free flowing conversation.
In those models, the logarithm of the information
content is the response variable (H(S|C) or H(S))
and the logarithm of turn position (whether global,
logp, or relative to the local theme, logt) is the
fixed effect. Dialogues are considered a random
effect in this analysis.

All models yield similar results in terms of es-
timates and p-value for the 4 conditions, with the
exception of the effect of position in interaction that
disappears in the free conversations only condition.

C.2 Peaks and Theme Change Locations

Manual annotation is compared to automated anno-
tation based on lexical similarity using the TextTil-
ing algorithm (Hearst, 1997). Figure 6 shows the
distribution of annotated themes throughout two
example conversations, with dashed lines indicated
the start of new themes as annotated manually and
automatically. TextTiling shows a higher sensitiv-
ity than human annotation to lexical changes in the
conversation, resulting in a number of annotated

themes twice as large on average.

Peak detection is run using two methods. The
first method (LocalOutlier in the table) relies on
the implementation of Local Outlier Factor by
scikit-learn (Pedregosa et al., 2011), which
allows for comparison of a value to its neighbors
(n=5) to detect locally unusual values. The second
method (NormOutlier) relies on a global, where
only the top 2% values are considered outliers (see
Figure 7). Both methods are applied to series of
contextualised entropy H(S|C) as well as mutual
information (MI) as both would be expected to be
sensitive to the introduction of new information to
the conversation. Neighbors number and percent-
age threshold value were chosen as optimal values
based on accuracy, precision and recall, on a subset
of the data.

Table 8 summarises how peak location and Text-
Tiling theme break prediction fare in predicting
the location of manually annotated theme changes.
There is a total of 268 of theme changes in the
dataset (excluding moments annotated as transi-
tions between two themes). We consider that the
location of a theme change might not be an accu-
rate consideration since it depends on the annotator
sensitivity and consider the prediction might match
a location within a small window of IPUs centered
around it. Windows of size 2 and 5 were consid-
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Figure 6: Evolution of normalised contextualised entropy on two dialogues. The two speakers are plotted in different
colors. Bold points indicate outliers detected by the NormOutlier method. Dashed lines indicate the start of new
themes - left: manual annotation; right: predicted by TextTiling

Figure 7: Probability distribution function of entropy (normalised and scaled) observed individually for the various
speakers in the corpora (left) and cumulative (right), with ticks at 90, 95 and 99% density.

ered (larger windows were discarded as themes can
change frequently). Table 9 compares the location
of peaks and that of lexical changes as annotated by
the TextTiling algorithm. In both tables, precision
and recall refer to commonly used metrics count-
ing the number of exact prediction (True Positives)
compared to the number of peaks that weren’t lo-
cated at theme breaks (False Positives) and theme
breaks which did not result in entropy peaks (False
Negatives).

LocalOutlier systematically yields a larger num-
ber of locations identified as peaks whereas Nor-
mOutlier is more sparse - which was expected by
design of NormOutlier. Focusing LocalOutlier on
outliers that increase entropy does not improve pre-

diction. Both algorithms detect a smaller number of
locations of interest when only taking into account
evolution of the contextualised entropy (H(S|C))
over the dialogue rather than mutual information.
TextTiling is not more accurate than peak detec-
tion to detect manually annotated theme change
locations, but a larger number of peaks matched
theme change predicted by TextTiling. However
none of those methods perform better than a base-
line classifier (stratified Dummy Classifier from
the scikit-learn library) trained to predict
boundaries of thematic episodes based on values
for H(S|C), MI and utterance length.

Increasing the window size reliably increases
the number of theme breaks matched, substanti-
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ating the hypothesis that theme changes involves
adding new information to the conversation, which
is detectable using entropy metrics.

D In-depth per-word entropy analysis

D.1 Choice of words and peaks of entropy in a
discussion

We select the sentences which have been labelled
as peaks of entropy and analyse entropy word by
word, how each word contributes to the sentence,
and what category those words fall into. Examples
of these words are given in Table 10. What we
find is that most words with high entropy are sim-
ply rare enough that they are deemed improbable;
most of them are either nouns (48%), adjectives
(20%) or verbs. Some peaks however are caused
by words falling into one of the following cate-
gories (disregarding words from the transcription
that still contain typos): Proper Nouns (Arthur, Jas,
Danemark, Luminy...), contractions or abreviations
(FLE, QCM), technical words that might be taken
from other languages (slides, rift...) which would
be highly unusual for the model, but part of the
shared knowledge for the two interlocutors.

The more an unexpected word is linked to a
theme, the more we would expect it to reappear,
and if it had caused a peak of entropy at first, we
would expect that surprise being smoothed over
time. Indeed, on a conversational level, the more a
word occurs in conversation, it becomes part of the
shared knowledge and is expected to be reused by
any locutor. As a consequence, reused references
are subject to compression throughout a dialogue
(Giulianelli and Fernández, 2021) as they are ex-
pected to be understood without much cognitive
load the more they appear. Context (previous words
mentioned in the conversation) being available to
our models they should equally be able to not be
surprised by the reappearance. In our case, most
words causing peaks are not reoccurring (68%),
but those that do indeed become slightly more pre-
dictable (generating slightly less entropy, p < 0.1)

D.2 The role of backchannels

Backchannels are words or movements (nods,
smiles) that a listener will spontaneously produce
to signal the speaker of their attention, encourage
them to continue with their story or on the contrary
signal their lack of understanding or disagreement.
Several kinds of feedbacks are annotated in Paco-
Cheese, based on speech production, nods, smiles

and context: generic (hm, yes, ok, sure...) and
specific (context-dependant productions, whether
positive or negative).

Considering that some feedback productions
seemed to appear in the list of peaks, we analyzed
in more details how well the models - which were
initially designed for written language, devoid of
backchannels - adjust to such phenomena after fine-
tuning. A supposition was that feedbacks might
appear as "disruptive" in the written flow of con-
versation, since productions are often partial or
context-dependent.

We expected generic feedbacks to be well
adapted to; specific feedbacks however would be
contextual and generate slightly more entropy. In-
deed, productions labelled as generic feedback are
associated with per-sentence entropy values that
are lower (p < 0.01) that those of productions that
do not contain feedbacks. Specific feedbacks are
associated with higher entropy values than generic
feedbacks, but in the majority of cases (negative-
unexpected feedbacks excepted) associated with
lower entropy values than the productions not con-
taining any feedback (p < 0.05) (see Table 11).
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Table 8: Comparing TextTiling theme change locations and information content peaks to manually annotated theme
changes. Baseline classifier (DumStrat) is added for consideration. TP indicates the number of elements, that either
directly match a manual annotation or fall within a small window of that point.

exact prediction window=2 window=5
TP precision recall TP precision recall TP precision recall

input data algorithm nb elements
text TextTiling 565 28 0.050 0.104 28 0.060 0.108 80 0.136 0.299
MI LocalOutlier 2137 71 0.033 0.265 118 0.066 0.440 193 0.154 0.720

NormOutlier 70 3 0.043 0.011 3 0.086 0.011 8 0.129 0.030
H(S|C) LocalOutlier 1602 59 0.037 0.220 101 0.072 0.377 173 0.172 0.646

NormOutlier 138 6 0.043 0.022 9 0.101 0.034 23 0.174 0.086
DumStrat 261 15 0.057 0.027 28 0.115 0.050 64 0.268 0.113

Table 9: Comparing information content peaks to the locations of TextTiling theme changes. TP indicates the
number of elements, that either directly match a manual annotation or fall within a small window of that point.

exact prediction window=2 window=5
input number of TP precision recall TP precision recall TP precision recall
data algorithm elements
H(S|C) LocalOutlier 1602 112 0.070 0.198 162 0.125 0.287 318 0.280 0.563

NormOutlier 138 15 0.109 0.027 14 0.159 0.025 31 0.225 0.055
MI LocalOutlier 2137 122 0.057 0.216 203 0.117 0.359 381 0.278 0.674

NormOutlier 70 1 0.014 0.002 2 0.071 0.004 14 0.200 0.025

Table 10: Words with the highest entropy that appear in utterances labelled as peaks

’arthur’, ’improbable’, ’rift’, ’interagir’, ’mesuré’, ’aram’, ’anthropologie’, ’jugé’, ’jas’, ’autes’, ’deg’,
’opposés’, ’ent’, ’moinl’, ’laide’, ’pas’, ’identifie’, ’quarantaine’, ’danemark’, ’audience’, ’ets’, ’saint’,
’conte’, ’sû’, ’comparent’, ’qcm’, ’coup’, ’implicite’, ’anonyme’, ’explicite’, ’dis’, ’calédonie’, ’didons’,
’tain’, ’maléfique’, ’géologie’, ’dirigés’, ’exemp’, ’londres’, ’craintes’, ’médhia’, ’incompréhension’,
’montrer’, ’décennie’, ’ydis’, ’dit’, ’tien’, ’règles’, ’temps’, ’cont’, ’pt’, ’dénonce’, ’allée’, ’devoirs’,
’discours’, ’là’, ’fle’, ’vêtement’, ’cing’, ’lie’, ’occupé’, ’anova’, ’emmener’, ’énorme’, ’suppose’,
’bianca’, ’trois’, ’humoristique’, ’obliger’, ’professeur’, ’particuliers’, ’sociale’, ’oculus’,
’totallement’, ’alcooliques’, ’la’, ’bas’, ’intro’, ’teint’, ’techniquement’, ’régression’, ’suisse’,
’interêt’, ’luminy’, ’clés’, ’quantité’, ’perspective’, ’morphologie’, ’vive’, ’istres’, ’smaines’, ’cognitive’,
’contraignant’, ’stricto sensu’, ’afrique’, ’occupe’, ’pénal’, ’voyage’, ’apprécies’, ’psychologue’

Table 11: Number of feedbacks of each category in the corpus and length compared to that of productions that don’t
contain feedbacks

Production type # occurrences average length average entropy comparison (t.test) of entropy: pvalue
less than ’no-feedback’ more than ’generic’

no-feedback 8.2 1.084 ± 0.51 <0.001
generic 799 2.0 0.651 ± 0.41 <0.001
négative-expected 339 4.4 0.920 ± 0.54 <0.001 <0.001
négative-unexpected 303 4.2 1.055 ± 0.55 0.32 <0.001
positive-expected 110 4.7 1.010 ± 0.60 0.01 <0.001
positive-unexpected 75 3.7 0.983 ± 0.55 <0.001 <0.001
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Abstract

The lack of wide coverage datasets anno-
tated with everyday metaphorical expressions
for languages other than English is striking.
This means that most research on supervised
metaphor detection has been published only
for that language. In order to address this
issue, this work presents the first corpus an-
notated with naturally occurring metaphors in
Spanish large enough to develop systems to
perform metaphor detection. The presented
dataset, CoMeta, includes texts from various
domains, namely, news, political discourse,
Wikipedia and reviews. In order to label
CoMeta, we apply the MIPVU method, the
guidelines most commonly used to systemati-
cally annotate metaphor on real data. We use
our newly created dataset to provide competi-
tive baselines by fine-tuning several multilin-
gual and monolingual state-of-the-art large lan-
guage models. Furthermore, by leveraging
the existing VUAM English data in addition
to CoMeta, we present the, to the best of our
knowledge, first cross-lingual experiments on
supervised metaphor detection. Finally, we per-
form a detailed error analysis that explores the
seemingly high transfer of everyday metaphor
across these two languages and datasets.

1 Introduction

Metaphor can broadly be defined as the interpre-
tation of a concept belonging to one domain in
terms of another concept from a different domain
(Lakoff and Johnson, 1980). Metaphorical expres-
sions are recurrent in natural language as a mech-
anism to convey abstract ideas through specific
experiences related to the real, physical world or
to send a stronger message in a discourse. There
is a large body of work from various fields such as
linguistics, psychology or philosophy that tried to
provide a theoretical characterization of metaphor.
Some approaches are based on the semantic similar-
ity shared between the domains involved (Gentner,

1983; Kirby, 1997), while others explain metaphor-
ical uses of language in terms of violation of se-
lectional preferences (Wilks, 1975, 1978). Other
perspectives focus on the communicative impact
of using a metaphorical expression in contrast to
its literal counterpart (Searle, 1979; Black, 1962).
Following previous work on metaphor detection in
Natural Language Processing (NLP) (Steen et al.,
2010; Leong et al., 2018), our approach is based
on the Conceptual Metaphor Theory of Lakoff and
Johnson (1980). They do not conceive metaphors
just as a cognitive-linguistic phenomenon com-
monly used in our everyday utterances. Instead,
metaphors are understood as a conceptual mapping
that typically reshapes an entire abstract domain of
experience (target) in terms of a different concrete
domain (source).

The high frequency of metaphors in everyday
language has increased the popularity of research
for this type of figurative language in the NLP
field. One of the reasons behind is the fact that
the automatic processing of metaphors is essential
to achieve a successful interaction between humans
and machines. In this sense, it is considered that
other NLP tasks performance could benefit from
metaphor processing, such as Machine Translation
(Mao et al., 2018), Sentiment Analysis (Zhang,
2010; Rentoumi et al., 2009), Textual Entailment
(Agerri, 2008; Liu et al., 2022) or Hate Speech
Detection (van Aken et al., 2018; Lemmens et al.,
2021), among others.

However, the large majority of research on
metaphor detection has been done for English, for
which the public release of the VUAM dataset
within the FigLang shared tasks from 2018 and
2020 marked a major milestone (Leong et al.,
2018, 2020). In this paper we would like to con-
tribute to research in multilingual and cross-lingual
metaphor detection by presenting a new wide cov-
erage dataset in Spanish with annotations for every-
day metaphorical expressions.
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In this context, the contributions of this work are
the following: (i) A new publicly available dataset
for metaphor detection in Spanish from a variety
of domains, CoMeta; (ii) an in-depth discussion
of problematic cases and of adapting the MIPVU
method to annotate metaphor in Spanish; (iii) a
quantitative and qualitative analysis of the resulting
CoMeta corpus; (iv) competitive baselines using 18
large monolingual and multilingual language mod-
els in monolingual and cross-lingual evaluation
settings, showing that modern language models
such as DeBERTa (He et al., 2021) perform sim-
ilarly to models specifically trained for metaphor
processing like MelBERT (Choi et al., 2021); (v)
error analysis shows that, for these languages and
datasets, cross-lingual metaphor transfer is very
high, mostly due to the presence of metaphorical
usage of commonly used verbs; (vi) the CoMeta
dataset, code and fine-tuned models are publicly
available 1 to encourage research in multilingual
and cross-lingual metaphor detection and to facili-
tate reproducibility of results.

2 Previous Work

Metaphorical expressions can be conveyed through
multiple linguistic structures and can be classified
according to different criteria (Rai and Chakraverty,
2020). A common distinction is that of conven-
tional metaphors (as in Example (1)), highly ex-
tended among speakers and lexicalized, and novel
metaphors (Example (2)), which are less frequent
in everyday utterances (examples taken from Rai
and Chakraverty (2020)).

(1) Sweet love.

(2) Snow debuts on Twitter.

Lakoff and Johnson (1980) argue that metaphors
express a mapping across a source and targe do-
main which constitute a conceptual metaphor.
Conceptual metaphors can be expressed through
language resulting in linguistic metaphors. These
in turn can be classified as lexical metaphors (as
in (1), (2) and (3)) multi-word metaphors (5),
and extended metaphors, which cover longer frag-
ments of speech. With respect to the grammatical
category to which they belong, we can find ver-
bal (2), adjectival (1), nominal (3) or adverbial
metaphors (4).

(3) My lawyer is an old shark
1https://ixa-ehu.github.io/cometa/

(4) Ram speaks fluidly.

(5) If you use that strategy, he’ll wipe you out.
(Lakoff and Johnson, 1980)

Automatic processing of metaphor is gener-
ally divided into three different tasks: detection
of metaphorical expressions, their interpretation,
namely, the identification of the literal meaning
expressed by the linguistic metaphor, and the gen-
eration of new metaphorical expressions. From
here on, we will center our attention on metaphor
detection.

Most work on metaphor detection has focused
on English texts. The VU Amsterdam Metaphor
Corpus (VUAMC or VUAM) (Steen et al., 2010) is
the most extensive dataset with annotations for the
characterization of linguistic metaphor. It consists
of English texts labeled with several typologies of
metaphor following the the VU Metaphor Identifi-
cation Procedure (MIPVU), discussed in Section
3.2.1. It was subsequently adapted to other lan-
guages (Nacey et al., 2019). However, Spanish
was not included and, for the languages that were,
this adaptation did not include the development of
annotated corpora.

First attempts to tackle metaphor detection in
English were corpus-based (Charteris-Black, 2004;
Skorczynska and Deignan, 2006; Semino, 2017).
Most recent approaches address the task as se-
quence labeling usually based on deep learning,
neural networks and word embeddings (Wu et al.,
2018; Bizzoni and Ghanimifard, 2018). In addi-
tion, syntactic and semantic features (WordNet,
FrameNet, VerbNet, dependency analysis, mor-
phology, etc.) are exploited in order to boost the
performance of such models. The celebration of
the 2018 and 2020 shared tasks (Leong et al., 2018,
2020) around the detection of metaphors using the
VUAM dataset contributed to a huge jump in de-
velopment and performance, although top results
were achieved by classifying mostly conventional
metaphors (Tong et al., 2021; Neidlein et al., 2020).

Others combine metaphor theories as features in
addition to annotated data to feed pre-trained mod-
els based on the Transformers architecture (De-
vlin et al., 2019). For instance, the state-of-the-
art system MelBERT (Choi et al., 2021) uses the
Metaphor Identification Procedure (MIP) (Praggle-
jaz, 2007) and selectional preferences (Wilks, 1975,
1978; Percy, 1958). These theories argue that terms
with matching semantic features tend to appear in
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the same context, and metaphors usually do not
comply with this hypothesis. Furthermore, the re-
cently published model of MIss RoBERTa WiLDe
(Babieno et al., 2022) benefits from dictionary defi-
nitions as an additional feature to train their model
based on the architecture of MelBERT.

Due to the lack of labeled data to train super-
vised models, previous work addressing Spanish
metaphor processing has mainly been based on un-
supervised approaches. However, as it is often the
case for many other NLP tasks, unsupervised ap-
proaches obtain far lower results than supervised
methods (Tsvetkov et al., 2014; Shutova et al.,
2017). Other issues are that most work in Spanish
has focused either on a very specific type of con-
ceptual metaphor (Williams Camus et al., 2016), or
on the characterization of metaphor in very domain-
specific data (Martínez Santiago et al., 2014). The
development of CoMeta aims to compensate this
lack of resources for the Spanish language. To the
best of our knowledge, it constitutes the largest
dataset of general domain texts with metaphorical
annotations in Spanish that, despite not reaching
the size of the VUAMC corpus, can be used as a
starting point, suitable to be extended and improved
in the future, to further advance multilingual and
cross-lingual methods for metaphor detection.

3 Dataset Development

In the following subsections we detail the creation
process of our dataset CoMeta, including the data
collection and annotation.

3.1 Data Collection
In order to compile a general domain dataset with
natural language utterances and everyday language
metaphors, we gathered samples from existing
datasets of Spanish texts with linguistic annotations.
As a result, CoMeta consists of 3633 sentences with
metaphor annotations at token level from texts of
multiple genres, such as blog, Wikipedia, news,
fiction, reviews and political discourse, extracted
from the following two sources.
Universal Dependencies (UD): We used the two
largest Spanish treebanks annotated within the UD
framework, which include linguistic information,
such as Part Of Speech (POS), lemmas or depen-
dencies: AnCora2 and GSD3. UD Spanish An-

2https://universaldependencies.org/treebanks/
es_ancora/index.html

3https://universaldependencies.org/treebanks/
es_gsd/index.html

Cora is a UD formatted version of the original An-
cora Corpus (Taulé et al., 2008). It contains 17680
sentences from the news domain, from which we
randomly extracted 2000 sentences. The GSD tree-
bank is an automatic compilation of texts from
miscellaneous domains, such as Wikipedia, blogs
and reviews. We selected also randomly a subset of
1000 sentences out of 16013. After preprocessing
and filtering to remove duplicates, a total number
of 2862 instances were finally included in CoMeta
(1925 from Ancora, 937 from GSD and 771 from
PD).
Political Discourse (PD): In addition to UD texts,
we manually collected political discourse tran-
scripts from the Spanish 4 and the Basque Govern-
ment (Escribano et al., 2022), five from each source.
We chose this domain due to the higher frequency
of appearance of metaphorical expressions, which
are often used in order to convey a more powerful
message (Prabhakaran et al., 2021; Díaz-Peralta,
2018). From this source, we collected 771 sen-
tences with automatic linguistic information added
with UDPipe (Straka and Straková, 2016).

3.2 Annotation Process

The labelling of CoMeta was mostly carried out
by a single annotator, a Spanish native speaker and
expert linguist over 3 months as part-time job. All
annotations were revised up to a total of 6 times.
Initial rounds consisted in annotating all kind of
metaphorical expressions. Subsequent four rounds
were dedicated to identify metaphorical expres-
sions of each POS. Last two rounds were employed
to revise annotations and resolve borderline cases.
In order to evaluate the consistency of the annota-
tions and inter-annotator agreement, 6 more Span-
ish linguists were also involved in the annotation of
a subsample of the corpus. This procedure will be
further described in next Subsection 3.2.4. We de-
cided to use binary labels following the approach
of the VUAM versions used in the shared tasks
recently mentioned.

3.2.1 Annotation Guidelines

The task of metaphor annotation is inherently sub-
jective, since it is sometimes based on personal
experience and cultural knowledge. The Metaphor
Identification Procedure (MIP) (Pragglejaz, 2007)
constituted an attempt to provide a systematic

4https://www.lamoncloa.gob.es/
consejodeministros/ruedas/Paginas/index.aspx
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guideline that facilitates the process. It was later ex-
tended to MIPVU (Steen et al., 2010), to cover am-
biguous cases and address more thoroughly com-
plex issues such as Multiword Expressions (MWE)
or polysemy. The development of MIPVU resulted
in the VUAM corpus (Steen et al., 2010). This
procedure was subsequently adapted to other lan-
guages in (Nacey et al., 2019), although no wide
coverage annotated corpus resulted from that adap-
tation. We followed the MIPVU guidelines to label
CoMeta. In broad terms, it consists of the following
steps:

1. Read the entire text–discourse to establish a
general understanding of the meaning.

2. Determine the lexical units in the
text–discourse.

3. (a) For each lexical unit in the text, establish
its meaning in context, that is, how it ap-
plies to an entity, relation, or attribute in
the situation evoked by the text (contex-
tual meaning). Take into account what
comes before and after the lexical unit.

(b) For each lexical unit, determine if it has
a more basic contemporary meaning in
other contexts than the one in the given
context. For our purposes, basic mean-
ings tend to be:

• More concrete; what they evoke is
easier to imagine, see, hear, feel,
smell, and taste.

• Related to bodily action.
• More precise (as opposed to vague).
• Historically older. Basic meanings

are not necessarily the most frequent
meanings of the lexical unit.

(c) If the lexical unit has a more basic
current–contemporary meaning in other
contexts than the given context, decide
whether the contextual meaning contrasts
with the basic meaning but can be under-
stood in comparison with it.

4. If yes, mark the lexical unit as metaphorical.

3.2.2 Scope of Annotations
The definition of “word” provokes continuous and
unsolved debates in the linguistics field. In MIPVU
they use the more general term “lexical unit”, un-
derstood as the basic piece that bears meaning, ei-
ther a segment with its own POS or MWE. We

followed this criterion as well in CoMeta. With
regard to the POS, we decided to label only seman-
tically significant classes: nouns, verbs, adjectives
and adverbs, since most metaphors belong to one
of these types. Details about the resulting dataset
are reported in Table 1.

In this work, we focus on metaphorical expres-
sions constrained to lexical units in the context
of sentences. Thus, extended metaphors, where
the figurative meanings are recurrent along larger
pieces of texts, are not taken into account.

3.2.3 Borderline Features
Other Forms of Figurative Language: The
boundaries between metaphor and other types of
figurative language are not always clearly dis-
cernible. Specially in the case of metonymic ex-
pressions.

In this work, we do not annotate metonymy,
since we regard them as two different and distin-
guishable cognitive phenomena. In the case of
metonymy, a concept is substituted by another from
the same domain through a relationship of conti-
guity, e.g. beber una botella de ginebra (lit. “to
drink a bottle of gin”). In this example, the con-
tainer is used to refer to the beverage but both terms
belong to the domain of drink consumption. On
the other hand, metaphorical expressions associate
two different concepts from two distinct domains.
With respect to similes, we treat them as a form
of metaphor with a linguistic cue that makes the
association of concepts explicit, e.g. “like". Thus,
similes are annotated in the same way as metaphors,
marking the lexical units with figurative meaning.
Polysemy: MIPVU’s guidelines establish a com-
parison between the contextual meaning of a lex-
ical unit and a more basic one in order to spot
metaphors. However, some cases are ambiguous,
due to polysemy, and can lead to confusion in the
annotation process. For instance, in the example
(7) from CoMeta, the adjective claro (lit. “clear”)
presents various basic meanings in Diccionario de
la Real Academia Española (DRAE) (RAE): “Que
tiene abundante luz” (lit. “Having abundant light”)
and “Dicho de un color o de un tono: Que tiende
al blanco, o se le acerca más que otro de su misma
clase.” (lit. “Said about a colour or tone: with a ten-
dency to white or closer to it than any other of the
same class”). These basic meanings are straightfor-
ward and match this contextual sense.

(6) Los otros nombres de modelos tenían un sig-
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CoMeta UD PD
Met No_met Met No_met Met No_met

VERB 873 9803 570 7560 303 2243
NOUN + PROPN 847 + 1 20118 + 8418 507+0 15790+7010 340+1 4328+1408

ADJ 396 6922 313 5413 83 1509
ADV 28 3836 15 2779 13 1057
Total 2145 49097 1405 38552 740 10545

Table 1: Number of metaphorical and non-metaphorical tokens by POS in overall CoMeta and in the separate
domains from Universal Dependencies (UD) and Political Discourse (PD).

nificado claro (lit. “The names of other mod-
els had a clear meaning”).

(7) La reina Sofía vestía un abrigo verde claro (lit.
“Queen Sofía was wearing a light green coat”).

However, in (6) it is harder to distinguish which
is the contextual meaning according to the nuanced
definitions provided in DRAE (RAE): “Inteligible,
fácil de comprender” (lit. “Intelligible, easy to un-
derstand”), “Que se percibe o distingue bien” (lit.
“Properly perceivable or distinguishable”), “Expre-
sado sin reservas, francamente” (lit. “Expressed
without reservations”). Regardless the ambiguity
of the contextual meaning, all these senses are op-
posed to the basic sense and belong to different
domains: claro in (6) alludes to LANGUAGE or
COMMUNICATION, while the basic meaning is
from the LIGHT or COLOR domain. Thus, we
labeled the adjective as a metaphor in despite of
not being able to determine exactly the contextual
meaning.
Pronominal Verbs: Some verbs in Spanish present
a pronominal form, which consists of a verb and
a pronoun, either prepended and graphically sepa-
rated from the verb form or as a clitic: se arrepi-
enten (lit. “they repent”) or as a clitic: no pueden
arrepentirse (lit. “they cannot repent”). This pro-
noun can have multiple functions depending on its
context of appearance, namely, reflexive, recipro-
cal. . . Thus, it is important for annotators to be
able to discern each use case. In our dataset pro-
nouns are not within the scope of annotations but
verbs are. This kind of lexical units is represented
in CoMeta by three different tokens: a) verb and
clitic pronoun: verb+se, e.g. olvidarse (lit. “to
forget”); b) the verb form, e.g. olvidar ; c) the
pronoun. In order to capture verbal metaphors and
its semantic information, we tagged options a) and
b) in case of metaphorical expressions materialized
through this structure. For instance, in example (8),

the presence of the clitic implies a difference in
meaning. The pronominal variant of enganchar (lit.
“to hook") in this context is used metaphorically,
where the football player returns back to the league,
so we tagged tokens engancharse and enganchar.

(8) Garrido tendrá hoy un partido especial, so-
bre todo por si puede engancharse a la Eu-
ropa League (lit. “Garrido will have a special
match today, mainly if he is able to rejoin the
European League”).

Multiword Expressions: Multiword expressions,
generally speaking, can be understood as the result
of two or more words that co-occur with high fre-
quency and act as a single lexical unit. MIPVU
(Steen et al., 2010) prompts to annotate the con-
textual meaning of a MWE as a whole. However,
in the actual annotation process, doubts arise as
to whether some expressions can be considered a
MWE or not.

MIPVU used a list from the British National
Corpus with MWEs as aid for their identification.
In Spanish, there is no such resource, so we utilised
the DRAE (RAE). If an expression is registered in
the dictionary with an individual entry, we treated
it as a single lexical unit.

MWEs included in dictionaries are often id-
iomatic, with non-compositional nor transparent
meaning. Since the overall meaning of an idiomatic
expression rarely has anything to do with the sum
of its constituents, they behave as a black box. In
practice, corriente in example (9) is part of the id-
iom collected in DRAE estar al corriente, which
means “to be aware or know about something”.
Therefore it is not considered a lexical unit but a
piece of a larger MWE which, in this case, is not
metaphorical. On the contrary, corriente (lit. “cur-
rent”) in (10) can be treated as a single lexical unit
with a contextual meaning of “trend” or a group of
people that share similar principles that opposes to
its most basic sense that alludes to the movement
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of some fluids, corriente de aire (lit. “airflow”), it
is annotated as a metaphor.

(9) Estaba al corriente de sus secretos. (lit. “They
were aware of their secrets”).

(10) Una corriente cristiana que se originó en el
siglo I. (lit. “A christian current that was orig-
inated in the I century”).

3.2.4 Annotation Evaluation
To analyse quantitatively the consistency of
CoMeta annotations, we randomly selected the
10% of sentences to be labeled by other annota-
tors over the whole corpus. In other words, these
sentences could belong either to train or test par-
titions. From this subset, 80% of the sentences
contained at least one metaphorical expression la-
beled as such by the main annotator of CoMeta.
The purpose is to examine the consensus in the
metaphorical annotations.

A total of 6 annotators participated in the evalua-
tion and all of them were also Spanish native speak-
ers with linguistic background knowledge. Each
one reviewed 60 sentences randomly distributed
and non-overlapping. As an aid for the task, we
presented them the MIPVU guidelines and illustra-
tive examples in advance. For each sentence, we
extracted randomly 4 lexical units. We added a
check-box next to each of these potential metaphor-
ical expressions. Annotators must check those they
deemed were holding metaphorical meaning in the
context of that sentence. We included two addi-
tional options: one check-box to be marked in case
there were no metaphorical expressions; and an-
other one for annotators to write spotted metaphors
that were not among the 4 candidates presented.
We computed inter-annotator agreement by means
of Cohen’s Kappa and obtained an average score
of 0.631, which gives an account of the hardship
and subjectivity of the task but also indicates a
substantial consistency in the annotations.

3.3 Data Analysis
The most frequent metaphors arise from verbs, fol-
lowed by nouns, adjectives and adverbs. Neverthe-
less, in political discourse texts, noun metaphors
are more numerous than verbs, as shown in Table
1. Verbal metaphors usually involve verbs denoting
motion or change of state, e.g. abrir/cerrar (lit.
“to open/close”), salir/entrar (lit. “to go in/out”),
ascender/descender (lit. “to ascend/descend”),

frenar/acelerar (lit. “to accelerate/brake”), par-
tir/llegar (lit. “to leave/arrive”), and many others.
Personifications are frequent as well (11), through
verbs that denote actions typically executed by an
animate agent attributed to an inanimate entity (ex-
amples from CoMeta).

(11) Les atrapó la miseria humana. (lit. “Human
misery caught them”).

Adjectival metaphors arise in many cases
through synesthesia and adjectives denoting physi-
cal dimensions applied to abstract or uncountable
concepts (12, 13).

(12) Tozudo oleaje. (lit. “Stubborn waves”).

(13) Foto rancia. (lit. “Rancid photograph”).

Regarding the domains of the conceptual map-
pings, we have observed several instances of
metaphorical expressions that depict politics in
terms of the construction field (14, 15), and a virus
or a disease as war (16, 17).

(14) Es imposible construir un proyecto de Estado.
(lit. “It is impossible to build a State project”).

(15) La candidatura de Osaka es muy sólida (lit.
“Osaka’s candidacy is very solid”).

(16) Unidos conseguiremos de nuevo vencer al
virus (lit. “Together we will defeat the virus
again”).

(17) El único arma terapéutica que tenemos en
este momento para luchar contra el coron-
avirus (lit. “The only therapeutic weapon
available at this time to fight against coron-
avirus”).

4 Evaluation

In this section we present the experiments on
metaphor detection in Spanish and English. Fur-
thermore, we also report the results of the first
supervised cross-lingual experiments for metaphor
detection. The main objective of the cross-lingual
evaluation setting was to examine which kind of
metaphors carried more often across languages.
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VUAM CoMeta
Train Dev Test Train Test

Metaphor 8668 2372 3982 1713 432
No_Metaphor 135896 34297 54347 91628 23342

Total 144564 36669 58329 93341 23774

Table 2: Number of metaphorical and non-metaphorical tokens in VUA and CoMeta datasets.

Dataset Model Prec Rec F1
ixabertes_v1 71.99 59.49 65.15

CoMeta mdeberta-v3-base 78.70 59.03 67.46
xlm-roberta-large 75.57 60.88 67.44
deberta-large 79.95 68.50 73.79

VUAM deberta-base 73.06 73.07 73.07
xlm-roberta-large 77.99 68.00 72.65

VUAM SOTA MelBERT 76.4 68.6 72.3

Table 3: Monolingual results for Spanish and English.

4.1 Datasets

The two datasets used for experimentation are the
VUAM dataset (Steen et al., 2010) in English, and
CoMeta in Spanish. With respect to the VUAM
dataset (Steen et al., 2010), we employed the origi-
nal train and test splits provided in the shared task
(Leong et al., 2020). We also extracted a devel-
opment set by splitting the training set (0.8-0.2).
Using the original train and test partitions will al-
low us to compare with previous results. In the
case of CoMeta, and due to its smaller size, we
did not create a development split. Table 2 pro-
vides the stats for each corpus. It should be noted
that both datasets are imbalanced. In the case of
CoMeta we decided not to alter this distribution
since it represents the frequency of metaphor in
natural language texts.

4.2 Experimental Setup

We perform experiments in two evaluation settings:
monolingual and cross-lingual. For the monolin-
gual setting, we evaluate on the English and Span-
ish datasets using the most commonly used large
language models for each of the languages. In the
cross-lingual setting we evaluate the best perform-
ing multilingual language model for each language
in a zero-shot scenario, namely, fine-tuning in a
source language and making the predictions in an-
other language, not seen during fine-tuning.
Monolingual Experiments: The experiments per-
formed in this setting aimed to establish a baseline
with respect to the state-of-the-art in metaphor de-

tection for English using the VUAM corpus, cur-
rently represented by MelBERT (Choi et al., 2021).
This baseline will also help us to judge the per-
formance on the CoMeta dataset. We picked the
9 most commonly used large language models for
each language, both in their base and large versions
(DeBERTa also includes mDeBERTa, a multilin-
gual base model pre-trained for 100 languages).
For English we experimented with BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), DeBERTa
(He et al., 2021) and XLM-RoBERTa (Conneau
et al., 2020).

With respect to Spanish, we used BETO (Cañete
et al., 2020), ixabertes_v1 and ixabertes_v25, ix-
ambert (Otegi et al., 2020), RoBERTa-BNE mod-
els (Gutiérrez-Fandiño et al., 2022) and the multi-
lingual models mDeBERTa and XLM-RoBERTa
(base and large). Every model was fine-tuned via
the Huggingface Transformers library (Wolf et al.,
2020).

We performed hyperparameter tuning for batch
size (8, 16, 36), linear decay (0.1, 0.01), learning
rate (in the [1e-5-5e-5] interval) and epochs from
4 to 10. We keep a fixed seed of 42 for experimen-
tal reproducibility and a sequence length of 128.
A warm-up of 6% is specified. The results of the
hyperparameter tuning showed that after 4 epochs
development loss started to increase, so every result
reported here is obtained by performing 4 epochs
only. Furthermore, the results of the best models
are chosen according to their performance on the

5Avalaible in http://www.deeptext.eus/es/node/2
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Train Dataset Test Dataset Model Prec Rec F1
CoMeta VUAM mdeberta-v3-base 76.28 58.8 66.41
VUAM CoMeta xlm-roberta-large 73.95 70.36 72.11

Table 4: Results from cross-lingual experiments after 4 epochs.

development for each language. Finally, due to pre-
sentation reasons, we decided to include only the
best three models: the best base and large models
for each language, the best Spanish monolingual
and the best multilingual for English. These are the
results included in Table 3. Results of all models
are gathered in Appendix A, Table 6.
Cross-lingual Experiments: The aim of this
experiments is to explore: a) whether a model
trained with metaphorical annotations from one
language can achieve good results when evaluating
metaphors in another language and, b) to what ex-
tent metaphors are shared between these languages.
Thus, in this setting we picked the best perform-
ing multilingual model for each of the two mono-
lingual evaluations and apply them in a zero-shot
cross-lingual manner, namely, by fine-tuning the
language model on the English dataset and evalu-
ating it with the Spanish one, and viceversa, using
the best hyperparameter configuration obtained in
the monolingual setting.

4.3 Results

The first interesting result of our experiments is
that the general purpose DeBERTa-large language
model performs slightly better than the metaphor-
specific MelBERT, with the base version not far
behind. With respect to Spanish, the results are not
as high in general as those obtained for English.
In particular, the performance of XLM-RoBERTa-
large for Spanish is substantially lower than for
English. Apart from many other factors that may
be involved, we attribute these lower results to
the smaller size of the Spanish training set. It is
also interesting to note that a base multilingual
model, mDeBERTa, is the best performing model
for Spanish, obtaining very similar results to XLM-
RoBERTa-large. Still, the low results of the state-
of-the-art models show that this remains a highly
difficult task.

For the cross-lingual results, we picked the
best multilingual model for each of the monolin-
gual settings, mDeBERTa for Spanish and XLM-
RoBERTa-large for English. The results reported
in Table 4 show that the zero-shot performance

is remarkably high, which is quite surprising, es-
pecially if we consider the performance of XLM-
RoBERTa-large for Spanish. In fact, these results
show that XLM-RoBERTa obtains better results for
Spanish when fine-tuned in English. Next section
will provide some analysis to attempt to explain
this phenomenon. In any case, the results obtained
for Spanish are promising and encourage us to con-
tinue improving the annotated resources for this
language.

4.4 Error Analysis

In Table 5 we enumerated the most frequent predic-
tions which are potentially interesting for error anal-
ysis. These predictions correspond to the model
with best performance, DeBERTa-large in the case
of VUAM and mDeBERTa for CoMeta. False pos-
itives (FP) represent lexical units that were labeled
wrongly as metaphorical. False negatives (FN) in-
clude metaphorical expressions that were not de-
tected as such by the model, whereas true positives
(TP) gather which metaphorical expressions were
accurately identified.

The FP and FN from the monolingual setup of
VUAM show mostly verbs that tend to form collo-
cations, like go or get, or highly lexicalised terms,
such as little, away, subject or back. The high oc-
currence of these lexical units both with metaphori-
cal and literal meaning and the high degree of pol-
ysemy difficult the possibility to learn patterns. In
the case of CoMeta, FP and FN comprise terms that
scarcely appear in our dataset with metaphorical
meaning or in similar proportions with metaphori-
cal and literal tags.

With respect to TP, in VUAM predictions, we
can find again terms that occur in the dataset very
frequently conforming collocations and phrasal
verbs, which are commonly tagged as metaphors.
Right predictions in CoMeta present lexical units
that only appear with metaphorical meaning, such
as ola (lit. “wave”) in relation to the virus do-
main, which does not occur in CoMeta with a literal
sense.

Results from cross-lingual experiments show an
outcome which resembles that of the monolingual

235



Monolingual Cross-lingual Monolingual Cross-lingual

VUAMC

FP

get 33
got 22

little 16
go 16

get 21
got 20
go 14

bloody 12

FP

crecimiento 3
paso 3

espacio 3
repaso 2

contempla 4
crecimiento 3

espacio 3
repaso 2

FN

got 13
away 12
back 12

subject 10

back 14
got 12

plant 12
get 11

CoMeta FN

estabilidad 6
gran 4

ocupa 4
dimensión 4

estabilidad 6
ocupa 4

dimensión 4
seguimiento 3

TP

make 50
take 33
way 32
got 26

make 48
take 34
way 33
got 27

TP

marco 8
ola 6

abrir 4
escenario 4

marco 8
ola 6

abrir 4
escenario 4

Table 5: Top-4 terms of false positive (FP), true positive (TP) and false negative (FN) predictions from experiments
performed with VUAM and CoMeta in monolingual and cross-lingual scenarios.

setup. This similarity between both setups was no-
ticeable from the scores of the evaluation metrics
in Tables 3 and 4. This suggests that, due to its
current size, training on CoMeta obtains worse re-
sults than training in English. We hypothesize that,
in addition to the size, the high frequency of com-
monly used verbal lexical units that are labelled
as metaphors in both datasets help to obtain such
good results in the cross-lingual setting.

5 Conclusions and Future Work

In this work we have created CoMeta, which to
the best of our knowledge is the largest dataset
with metaphor annotations in Spanish composed of
texts from various domains to be publicly available.
We also discussed in detail the main issues that
emerged during the annotation process for Spanish.
In order to evaluate the quality of CoMeta’s anno-
tations we carried out a series of experiments in
both monolingual and cross-lingual environments,
using the largest dataset with metaphor annotations
in English, the VUAM corpus, as reference point..
Moreover, we set a new state of the art on the task
of metaphor detection in English and set a strong
baseline for the task in Spanish, which hopefully
will encourage researchers to continue with this
line of work.

The aim of this work is to lay the foundations
for future development on metaphor detection in
Spanish and cross-lingually. Regarding the dataset,
a future line of work would introduce more fine-
grained tags that represent the different kinds of
metaphorical expressions. This task should be per-
formed by multiple annotators, in order to explore

agreement over the whole dataset, as well as to
observe if doubtful cases share any feature that
could be leveraged for their identification. The
presence of more fine-grained tags would also en-
able a deeper statistical analysis of CoMeta that
could be exploited to study how metaphor mani-
fests in Spanish and whether there are similarities
with the usage of metaphor in other languages.

Results obtained from our experiments encour-
age future research to continue with cross-lingual
approaches. We hypothesize that these results may
be due to the difference in size of the training data
in both languages or the application of MIPVU
guidelines to Spanish, which is not the language it
was originally designed for. Future experimental
work is needed to test these interpretations, which
could benefit from the extension of the annotations
in CoMeta we just mentioned.
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Limitations

The presented dataset is limited in size compared to
its English counterpart, the VUAM corpus. There-
fore, a second version of CoMeta augmented with
more texts of domains where metaphors are more
abundant should be a priority of future work. This
would be important both for monolingual and cross-
lingual results, especially to analyze the cross-
lingual transfer behaviour of the multilingual mod-
els. Furthermore, the process of metaphor labelling
is inherently subjective and annotator-dependent,
since personal experience and socio-cultural fea-
tures may influence the identification of metaphors,
as well as the domain of collected texts. Thus,
the incorporation of a variety of annotators would
alleviate this issue. In any case, we believe that
CoMeta represents a worthy first contribution to-
wards multilingual and cross-lingual metaphor de-
tection and that the results obtained in this paper
can be improved by further developing CoMeta to
be a dataset of size similar to VUAM. Finally, even
if we reported state-of-the-art results, the overall
low performance means that further work on this
task is required.
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A Appendix

In Table 6 we gather the performance of all models
used in monolingual experiments over the test set.
For each model, we only included the version that
achieved the highest F1 score with the specified
parameters after 4 epochs. Bold results correspond
to the model that obtained top performance, while
underscored results correspond to the second best
score.

239

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Dataset Model Batch Size Weight Decay Learning Rate F1

CoMeta

Monolingual
bertin 8 0.01 0.00003 61.56
beto 8 0.01 0.00005 64.28
electricidad 8 0.1 0.00005 61.18
ixabertes_v1 8 0.01 0.00005 65.15
ixabertes_v2 8 0.01 0.00005 64.79
ixambert 8 0.1 0.00005 62.04
roberta-large-bne 16 0.1 0.00001 62.02
roberta-base-bne 8 0.1 0.00005 63.07

Multilingual
mbert 8 0.01 0.00005 61.78
mdeberta-v3-base 8 0.01 0.00005 67.46
xlm-roberta-base 8 0.1 0.00005 63.82
xlm-roberta-large 8 0.01 0.00002 67.44

VUAM

Monolingual
bert-base 16 0.01 0.00005 69.99
bert-large 32 0.01 0.00005 71.67
deberta-base 32 0.1 0.00005 73.07
deberta-large 8 0.01 0.00002 73.79
roberta-base 8 0.01 0.00005 70.11
roberta-large 32 0.1 0.00005 72.69

Multilingual
mdeberta-v3-base 16 0.01 0.00005 70.40
xlm-roberta-base 8 0.1 0.00002 66.59
xlm-roberta-large 32 0.1 0.00003 72.11

Table 6: Results from monolingual experiments with all models, trained over 4 epochs, for English and Spanish.
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Abstract

Text Simplification (TS) is the task of convert-
ing a text into a form that is easier to read while
maintaining the meaning of the original text.
A sub-task of TS is Cognitive Simplification
(CS), converting text to a form that is readily
understood by people with cognitive disabili-
ties without rendering it childish or simplistic.
This sub-task has yet to be explored with neu-
ral methods in NLP, and resources for it are
scarcely available. In this paper, we present a
method for incorporating knowledge from the
cognitive accessibility domain into a TS model,
by introducing an inductive bias regarding what
simplification operations to use. We show that
by adding this inductive bias to a TS-trained
model, it is able to adapt better to CS without
ever seeing CS data, and outperform a baseline
model on a traditional TS benchmark. In ad-
dition, we provide a novel test dataset for CS,
and analyze the differences between CS cor-
pora and existing TS corpora, in terms of how
simplification operations are applied.

1 Introduction

Text Simplification (TS) is the task of converting
text into a form that is easier to understand by
modifying its syntax and/or the words used in
it, while maintaining the original text’s meaning
(Alva-Manchego et al., 2020b).

TS is a very diverse task that can include sim-
plifications aimed at different target audiences. TS
is often operationalized in NLP using a number
of particular corpora to train and evaluate neural
models (see §3), whose target audiences are mostly
second language learners, primary school students
or adults with learning disabilities. For brevity, this
paper will refer by TS to this concrete formulation
of the simplification task, rather than the abstract,
general notion of the task of simplifying text.

Cognitive Simplification (CS) is the task of con-
verting text to a form that is clear, simple, and read-
ily understood by people with cognitive disabilities

(Yalon-Chamovitz, 2009; Yalon-Chamovitz et al.,
2016; Yalon-Chamovitz and Avidan-Ziv, 2016).1

The procedure includes structural and lexical mod-
ifications that reduce the text’s complexity, while
preserving as much of the meaning and informa-
tion content as possible, and without rendering it
childish or simplistic. See Figure 1.

The following example illustrates the differences
and similarities between CS and TS. The sentence
“Some indigenous groups living in palm-rich areas
use palms to make many of their necessary items
and food.” from the ASSET (Alva-Manchego et al.,
2020a) validation set was simplified by one of the
annotators as “Groups who live in palm-rich areas
use palms to make basic items and food.”. A CS,
in this case, could be “People who live in areas
with a lot of palm trees use the trees for many
things. People can eat the dates that grow on palm
trees. People can make many things from palm
trees, for example, baskets and plates.”.2 This is
an example of the common need in CS to explicitly
state assumed prior knowledge, and the need to
make the text “closer” to the reader (“people” vs.
“groups”). See §5.1.

CS and TS appear to be similar tasks, as similar
modifications can be applied in both. CS could
even be considered a sub-task of TS, with a tar-
get audience of people with cognitive disabilities.
However, there are two main differences between
the two, that we believe motivate further investiga-
tion into CS as an independent task. First, CS is a
well-defined procedure with manuals in multiple
languages (PLAIN, 2011a; Uziel-Karl et al., 2011),
while TS has general guidelines and, to the best
of our knowledge, no common standards. Second,
the goal of CS is to simplify texts to provide cog-
nitive accessibility (Yalon-Chamovitz et al., 2016).

1People with developmental disabilities, head trauma pa-
tients, people with dementia or Alzheimer’s Disease, etc. Not
including people with learning disabilities such as dyslexia.

2Simplified by the authors with guidance from a profes-
sional cognitive simplifier.
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Original Source: Now, normally during Disability Pride Month, we’re showcasing our disability pride through
various parades and events throughout the country.

Original Target: Most years, during Disability Pride Month we have parades and events all over the
United States to show how proud we are.

Operations: <REPHRASE> <DEL> <REORDER>

Modified Source T5: <mask_1> Now, normally during Disability Pride Month, we’re showcasing our disability pride
through various parades and events throughout the country.

Modified Target T5: <mask_1> <REPHRASE> <DEL> <REORDER> <mask_2> Most years, during Disability Pride
Month we have parades and events all over the United States to show how proud we are.

Modified Source BART: <mask> Now, normally during Disability Pride Month, we’re showcasing our disability pride
through various parades and events throughout the country.

Modified Target BART: <REPHRASE> <DEL> <REORDER> Most years, during Disability Pride Month we have
parades and events all over the United States to show how proud we are.

Figure 1: Illustration of our approach on an example sentence from the CS dataset FestAbility Transcripts. The modified
sources and targets for each model architecture include special operation tokens (see §5.2) added in the method appropriate for
the model. For demonstration purposes in the original source and target, we boldface and color match areas that <REPHRASE>
was applied to, we italicize areas that <DEL> was applied to, and underline areas that <REORDER> was applied to.

This goal of CS can also be at odds with TS’s more
general goal of improving comprehension, such as
when simplifying an article for school students vs.
for adults with cognitive disabilities at a similar
language proficiency.

As a first step, we explore CS and TS in English,
and leave exploration of other languages and intra-
language comparisons for future work.

There are very few NLP works that tackle CS.
As such, scarce data is available for training po-
tential CS models. We propose a methodology to
address this gap, by introducing an inductive bias
to a model trained on TS, in the form of simplifica-
tion operations. We propose a set of simplification
operations based on CS manuals, and show that
adding inductive bias regarding their use improves
performance on the ASSET test set, compared to a
strong baseline model.

In addition, we present an English parallel cor-
pus aimed at CS, which we use as a test set.3 We
show that when fine-tuning models on TS data, our
method improves the models’ SARI score on the
CS dataset, allowing better task adaptation from TS
to CS. Finally, we compare how the operations are
used in the new CS dataset and existing TS corpora,
and show that CS differs from TS not only in goal,
but also in data statistics.

2 Cognitive Simplification

The field of cognitive accessibility (Yalon-
Chamovitz, 2009) is derived from defining accessi-

3This dataset, together with all our code, is publicly avail-
able under CC BY-NC-SA 4.0 on GitHub and huggingface
datasets.

bility to include the ability to use services, receive
information, and participate in activities, in addi-
tion to the more commonly accepted physical abil-
ity to reach, navigate, and move in a place. This
definition codified the accessibility measure of sim-
plifying textual information to address the need
of people with cognitive disabilities to understand
textual information, i.e., Cognitive Simplification.
Subsequent operationalizations of this notion were
carried out by Uziel-Karl et al. (2011) and Yalon-
Chamovitz et al. (2016). In particular, they empha-
size the need to preserve as much of the meaning
of the original text as possible, without rendering it
childish or simplistic, while using the same written
language as the original text. Although cognitively
simplified texts can be easier to read for people
with learning disabilities (such as dyslexia), people
with learning disabilities are not the main target
audience for them.

NLP research into TS for people with cognitive
disabilities is relatively scarce. Most works focus
on measuring the effect of cognitively simplified
text on the comprehension of people with cognitive
disabilities (Chen et al., 2017; Rochford, 2021) and
without them (Djamasbi et al., 2016b,a). A differ-
ent line of work explored how people with different
cognition react to texts at different simplification
levels (Yaneva et al., 2016).

Several works (Feng, 2009; Yaneva et al., 2016)
detail parallel corpora of regular and EasyRead
documents, documents that are created via the pro-
cess of CS. Although these works provide details
regarding linguistic phenomena in their corpora,
we were not able to find any of the corpora detailed
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therein to run evaluations on. In addition, we were
not able to find any recent works that report results
on these corpora, using neural techniques for TS.

Although some preliminary works reference the
use of contemporary NLP methods for CS to gener-
ate simplification examples (e.g., Rochford, 2021),
to the best of our knowledge none provide details
regarding the model used, model hyperparameter
choices, and evaluation methodology. As such, we
consider our work to be one of the first to tackle
CS as a rigorous, distinct NLP task.4

Two other tasks that are related to CS, and use
contemporary NLP methods, are text2picto (Sev-
ens et al., 2017; Vandeghinste et al., 2017) and
picto2text (Sevens et al., 2015). These are the tasks
of converting text to the Sclera5 and Beta6 pic-
togram languages, designed for people with IDD
(intellectual or developmental disabilities), and vise
versa. While the output of both tasks can improve
access to information for people with cognitive dis-
abilities, we believe this task to be distinct from CS
and especially TS, that focus on written and spoken
language.

3 Other Related Work

We would like to highlight key points from Alva-
Manchego et al. (2020b) relevant to our work that
relate to training and evaluation datasets and evalu-
ation metrics.

The main datasets used to train and evaluate TS
models are WikiLarge (Zhang and Lapata, 2017)
and Newsela (Xu et al., 2015). Both corpora
contain matching complex-simple document pairs,
whose sentences are automatically or manually
aligned to create the datasets. In WikiLarge, the
matching document pairs are taken from English
Wikipedia7 and Simple English Wikipedia,8 that
aims to be more accessible to people with lower En-
glish skills, mainly language learners. In Newsela,9

the matching document pairs are articles written
professionally at four different reading levels, and
are originally intended to be used to teach language
skills at different school grade levels.

The latest training datasets, and the current de
facto standard for TS training, are WikiAuto and

4Contemporaneous work by Rennes (2022) also addresses
TS for people with cognitive disabilities in Swedish.

5http://www.sclera.be/
6https://www.betasymbols.com/
7https://en.wikipedia.org/
8https://simple.wikipedia.org/
9https://newsela.com/data/

NewselaAuto, created by Jiang et al. (2020) by us-
ing a neural CRF sentence alignment model. Both
are split into training and validation sets. To train
their neural CRF aligner, Jiang et al. (2020) also
compiled two manually aligned datasets, WikiMan-
ual and NewselaManual, split into development,
train, and test sets.

The two main datasets used for validation and
evaluation of TS models are Turkcorpus (Xu et al.,
2016) and ASSET (Alva-Manchego et al., 2020a).
Both contain multiple references for each source
sentence (8 and 10 respectively). They are crowd-
sourced and validated professionally.

The main metric used for evaluating TS models
is SARI (Xu et al., 2016), which is computed based
on three token-level operations: ADD, KEEP, and
DELETE. For the full calculation, see Appendix D.

Many previous works in TS also report BLEU
(Papineni et al., 2002). However, several works
(Sulem et al., 2018; Xu et al., 2016), have shown
that BLEU scores are not suitable for the evaluation
of TS models. Nevertheless, BLEU is still reported,
and so we also report it for completeness.

A contemporaneous work (Alva-Manchego
et al., 2021) argued for the value of manual evalua-
tion in TS rather than automatic metrics. We defer
this exploration for CS for future work.

Recent works have proposed methods to con-
trol TS outputs by prepending special tokens to
the input of a TS model, in a similar manner to
the one explored in this work. Such control allows
adjusting the model’s outputs to different target
audiences, and to control what aspects of the sim-
plification process are applied. ACCESS (Martin
et al., 2020a), and MUSS (Martin et al., 2020b)
both use four structural features of the input-output
pairs to define what tokens to prepend during train-
ing, and at inference they predefine which tokens
to use for all inputs. Sheang and Saggion (2021)
add a fifth token to this methodology. Scarton and
Specia (2018) use a combination of tokens to spec-
ify the type of simplification to perform and the
grade level to which to simplify to. Similarly to
these works, we also define special tokens to add
to the input at training, while at inference we take
a different approach (see §6).

Other recent work on TS focuses on particu-
lar simplification operations (Zhong et al., 2020;
Srikanth and Li, 2021), or on combining different
operation modules in a joint model (Maddela et al.,
2021). Srikanth and Li (2021) define Elaborative

243

http://www.sclera.be/
https://www.betasymbols.com/
https://en.wikipedia.org/
https://simple.wikipedia.org/
https://newsela.com/data/


Simplification as simplification by adding informa-
tion to the source text, rather than just removing
redundant information. This aligns with some of
our proposed simplification operations (Adding In-
formation and Explicitation, see §5.1). Similarly,
Zhong et al. (2020) focus on whole sentence dele-
tion, which aligns with some operations from our
proposed list (Deleting information, and Opera-
tions on Sentences). Maddela et al. (2021) combine
a module for sentence deletion and splitting with
a paraphrasing module to generate final simplifica-
tions. We discuss all three operations in §5.1.

4 Our Approach

To learn how to simplify a text, a model needs to
learn what types of modifications to apply to the
input and how to apply each one. These modifi-
cations can be categorized into operations. More-
over, since TS has multiple large-scale datasets
commonly used for training, while there are hardly
any such datasets for CS, incorporation of some
form of CS-focused inductive bias into a TS-trained
model would be useful to allow it to adapt to the
CS task. The inductive bias could also be useful
for improving TS on its own, given the similarities
between the two tasks (see §7 and §8).

As such, our hypothesis is that a TS-trained
model that was trained to be aware of the use of
CS simplification operations, will perform better at
TS and adapt better to CS than a model that was
trained end-to-end. We will now turn to testing this
hypothesis empirically.

5 Simplification Operations

We adapt existing CS manuals (PLAIN, 2011a,b;
U.S. OPM, 2011a,b; U.S. Dep. HHS, 2020; Uziel-
Karl et al., 2011) into a list of eight main types
of simplification operations. Seven of these apply
to the simplification instance (SI) level, and the
final main type applies to a whole document. An
SI is a set of one or more sentences in regular lan-
guage (source) aligned to one or more sentences
in simplified language (target).10 Each main type
of operation has multiple sub-operations. For full
details, see Appendix A.

Previous work define different lists of simpli-
fication operations (Caseli et al., 2009; Bott and
Saggion, 2011) or focus on word-level opera-
tions (KEEP, ADD, DELETE and sometimes also
MOVE (Dong et al., 2019)). Our list is based on

10See Alva-Manchego et al. (2020b), section 2.1.1.

independent sources (the CS manuals) and focus on
intra- and inter-sentence operations applied mainly
to a SI. §5.1 provides theoretical definitions for
each operation. §5.2 describes how we integrate
operations into a TS model.

5.1 Definitions
Below is the list of definitions for the main types
of simplification operations.

1. Proximation: Reduces ambiguity in the
source by making references in the text
“closer” to the reader, such as converting a
3rd person point of view to 1st person’s.

2. Rephrasing: Modifying the words used in the
source such that simpler words and phrases
are used in the target instead of complex, am-
biguous, and hard to understand ones.

3. Deleting Information: Removing words and
information from the source via summariza-
tion or deletion, to reduce the overall informa-
tion load on the reader.

4. Adding Information: Adding information to
the target of a SI, that did not appear implicitly
or explicitly in the source, mainly through
generating relevant examples.

5. Explicitation: Explicitly stating or explaining
implied knowledge and information from the
source11, and explicitly resolving pronouns
and co-references in the target.

6. Intra-Sentence Rearrangement: Reorder
the information content and words of a sen-
tence into a logical and easily followed order.

7. Operations on Sentences: Operations that
apply to a whole sentence, including Sentence
Splitting and Sentence Reordering.

8. Document-Level Operations: Operations
that are applied to a document level, including
paragraph reordering, and whole paragraph
addition/deletion.

In this paper we focus on the first seven operations.
All the operations described above make texts

easier to understand for any reader (PLAIN, 2011a;
Uziel-Karl et al., 2011). They are especially impor-
tant for people with cognitive disabilities, as each in
their own way reduces the “mental load” required
from a reader to understand a given text. For exam-
ple, “Adding Information” by providing examples
makes general or abstract concepts more concrete
to a reader; “Explicitation” by clearly stating im-

11Explicitation is different from Adding Information since
the information that appears “new” in the target is actually
implied to be understood by all readers in the source.
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Task Train Model SARI ADD KEEP DELETE BLEU % Ident.

TS

GEM T5Base 30.35 3.11 62.24 25.7 0.898 40.66%
GEM BART-Base 32.16 3.11 62.17 31.21 0.888 38.16%

A
ut

o

T5Large 32.92 2.92 61.70 34.12 0.901 39.28%
T5Large+Classifier♠,♠ 36.90 4.73 61.10 44.87 0.855 23.68%
T5Base∗ 32.01 3.04 61.96 31.05 0.903 35.93%
T5Base+Classifier♠,♠ 38.13 4.55 61.20 48.65 0.860 23.68%
BART-Large♠ 36.05 4.61 61.82 41.71 0.857 19.22%
BART-Large+Classifier†,♠ 38.76 4.73 60.78 50.78 0.845 11.70%
BART-Base 32.43 3.24 61.91 32.13 0.885 33.70%
BART-Base+Classifier♠,♠ 37.22 3.87 61.93 45.86 0.874 25.91%

CS

GEM T5Base 19.09 1.45 41.64 14.18 0.234 70.71%
GEM BART-Base 21.77 2.43 42.63 20.24 0.238 64.17%

A
ut

o

T5Large 20.02 1.67 41.38 17.01 0.231 68.54%
T5Large+Classifier∗,∗ 21.71 2.74 41.81 20.58 0.229 57.94%
T5Base 20.66 2.04 41.86 18.07 0.237 68.22%
T5Base+Classifier♠,♠ 26.40 3.02 42.19 34.01 0.222 46.11%
BART-Large♠ 25.12 2.97 42.91 29.46 0.231 48.91%
BART-Large+Classifier ,♠ 27.13 2.45 42.88 36.05 0.221 44.55%
BART-Base∗ 23.19 2.69 42.81 24.06 0.237 58.26%
BART-Base+Classifier ,† 24.54 2.13 42.92 28.58 0.226 55.14%

Table 1: Results for all models trained on WikiAuto (Jiang et al., 2020) and the GEM baseline models (Gehrmann
et al., 2021). Metrics include SARI and the percentage of identical generations (% Ident.). We also report BLEU for
completeness (see text). The highest SARI scores for each fine-tuning setting are boldfaced. We tested significance
for the overall SARI scores using Wilcoxon Signed-Rank tests (Wilcoxon, 1945) in two settings. First, for each
model type and size, we compared the vanilla model and the matching +Classifier model. Second, compared each
GEM baseline model with other models of matching types (T5 and BART). We did so for both TS and CS. Scores
with ρ < 0.00001, ρ < 0.001, and ρ < 0.01 are marked with ♠, †, and ∗ respectively. We mark each +Classifier
model with two symbols, respectively for each significance test setting. E.g., in CS, BART-Base+Classifier is not
significantly better than BART-Base, but has ρ < 0.001 when testing against GEM BART-Base.

plied prior knowledge eliminates the need to query
that knowledge from memory; and “Proximation”
by changing passive voice to active voice makes a
sentence easier to follow, since “Active voice makes
it clear who is supposed to do what.”.12

5.2 Special Tokens for Operations
This section describes a method for introducing
inductive bias regarding the use of operations to a
TS model. For each operation, we create a special
token that is added to an SI such that the model
would learn to predict the token at inference. See
Figure 1 for an example. For each operation, we
formulate simple rules that can be applied automat-
ically to determine whether it took place in a given
SI. These rules depend on the source and target
together, and cannot be discerned deterministically
based on the source. To prevent overlap between
operations that share similar indicators, such as
Adding Information and Explicitation (when stat-
ing implied prior knowledge), we map the first
seven operations into 9 unique tokens: Proximation

12Federal Plain Language Guide, Section III.a.1., (PLAIN,
2011b)

to <PROX>; Rephrasing to <REPHRASE>; Delet-
ing Information to <DEL>; Adding Information to
<ADD> and <EXAMPLE>; Explicitation to <ADD>,
<EXPLAIN>, and <EXPLICIT>; Intra-sentence Re-
arrangement to <REORDER>; and Operations on
Sentences to <REORDER> and <SPLIT>. For a full
description on the rules used to identify each token,
see Appendix B.

While the use of simple rules to assign opera-
tion tokens to SIs is noisy, we see its quality as
sufficient for testing our main hypothesis, namely
about the value of the inductive bias implied by the
operations. We do not stipulate that our operation
classification is optimal, and leave the exploration
of more sophisticated methods for future work.

To validate our automatic operation token assign-
ment, we asked an in-house human annotator to
manually assign operation tokens to 50 random SIs
from the WikiAuto training set according to their
definition in §5.1. Using these labels as ground
truth, our automatic identification rules achieve a
micro precision, recall, and F1 scores of 60.3%,
90.1%, and 72.2% respectively. The main fall in
F-score is the accuracy of the <ADD> operation,
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which is assigned by an admittedly over-simplistic
rule. The two other most frequent operations have
F-scores of around 90%. For further details, see
Appendix F.

We further validated the reliability of the anno-
tation by assigning a co-author of this paper to
independently complete the same manual anno-
tation task. This resulted in a remarkably high
inter-annotator agreement. Indeed, measured by
Cohen’s κ, we get an agreement of κ = 0.84 for
the <REPHRASE> operation, and perfect agreement
for other operations. Taken together, these scores
indicate the reliability of the automatic token as-
signment we employ, at least at the aggregate level.

6 Simplification Experiments

We use the huggingface13 API to fine-tune pre-
trained language models. We select T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020) model
architectures of two sizes each, Base and Large,
to align with the recently published GEM bench-
mark’s (Gehrmann et al., 2021) official baseline
for TS that uses these two model architectures. In
addition, we wanted to test if results are consistent
across model architectures.

6.1 Training Setting

The main dataset we use for fine-tuning is Wiki-
Auto (Jiang et al., 2020), the automatic align-
ment of WikiLarge (Zhang and Lapata, 2017).
This dataset contains 483802/20000 SIs for train-
ing/validation respectively, and is the standard
dataset used in recent works for TS training. This
is also the training set used in the GEM benchmark.

We also experiment with a non-standard train-
ing setting, using the manually aligned datasets
WikiManual and NewselaManual from Jiang et al.
(2020), who used these datasets to train their re-
spective automatic alignment models for the Wiki-
Large and Newsela corpora. We experiment with
this setting since both datasets as well as our new
CS dataset are manually aligned, and manual align-
ments can potentially capture more complex simpli-
fication phenomena. This dataset has 11728/1418
SIs in training/validation sets.

Models. For each model architecture and size,
and each dataset, we fine-tune the model on two
different settings: baseline and +Classifier. In the
baseline setting, the model receives as input the

13https://huggingface.co/

source text, and the target output is the correct sim-
plified sentence. This is the standard methodology
used to train TS models. In the +Classifier setting,
our goal is to force the model to predict simplifica-
tion operations while simplifying the source sen-
tence. For each model architecture this is achieved
differently. For T5, since you can bind particular
masking tokens to particular spans of the input, we
format the input and target for the model such that a
mask is bound to the operation tokens and the target
remains the simplification. For BART, since masks
cannot be bound to particular spans, we prepend a
masking token to the source and prepend the sim-
plification operations to the target. We illustrate
both methods in Figure 1.

All models are fine-tuned on a single 24GB
RAM GPU for 3 epochs, using a constant learning
rate of 10−4 and the Adafactor optimizer (Shazeer
and Stern, 2018). At inference, we use beam search
with 4 beams and early stopping. We do not per-
form hyperparameter tuning. Due to computational
limitations, we train one model of each (architec-
ture, size, type, training data) combination.

We also compare each model architecture
against the respective GEM baseline using a note-
book provided by the original authors.

6.2 Evaluation Datasets

All models are evaluated on the ASSET (Alva-
Manchego et al., 2020a) test set, which contains
359 SIs. This is the standard dataset for evaluating
TS models, since it provides multiple reference sim-
plifications for each source sentence. The way we
decided whether a particular operation is applied to
a source sentence in ASSET is by majority of the
ten references, meaning, we consider an operation
taking place only if more than 50% of annotators
in ASSET used it in their simplifications of that
source. In Appendix H we provide more details on
the counts of actions in each dataset.

In addition, we evaluate each model on a new
Cognitive Simplification test set, called FestAbil-
ity Transcripts. This dataset contains aligned tran-
scripts of the virtual accessibility conference Fes-
tAbility14 held in 2020 during the COVID-19 pan-
demic. The conference was simplified live accord-
ing to the Yalon Method15, and the transcripts were
manually aligned by the authors to create 321 SIs.
We use this dataset to test each model’s perfor-

14https://www.festability.org/
15https://www.yalonmethod.com/
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mance in adapting from a TS setting to a CS one.
Table 2 provides some details into the content of
this dataset.

Metric Value
Unique Tokens – source 1452
Unique Tokens – target 996

Shared Tokens 798
TER 0.92

Token Length Ratio 0.95
Nbchars Ratio 1.14

Levinstein Similarity 46.29
Wordrank Ratio 0.83

Deptree Depth Ratio 1.11
Table 2: Details for the new FestAbility Dataset. Us-
ing a SentencePiece tokenizer, we report the number of
unique tokens in the source sentences and the target sim-
plifications, and the number of shared tokens between
them. We also report the four metrics from Martin et al.
(2020a,b) for future comparisons between FestAbility
and other datasets.

We report SARI16 (Xu et al., 2016) for each
model on each test set, and we also report sep-
arately the scores for each token-level operation
(ADD, KEEP, DELETE) that are averaged together
to compute SARI. For completeness, we report
BLEU scores for each model as well. However, we
should note that according to Sulem et al. (2018)
and Alva-Manchego et al. (2021), BLEU is not a
suitable metric for evaluating text simplification
models. We also report what percentage of test
outputs are identical to the source for each model.

7 Results

Our main results are presented in Table 1. Re-
sults on TS show that when trained on the stan-
dard WikiAuto dataset, the +Classifier variant of
a model outperforms the baseline’s SARI score in
all cases, with 3.98 points for T5Large, 6.12 points
for T5Base, 2.71 points for BART-Large, and 4.79
points for BART-Base. These are substantial im-
provements, considerably larger than differences
in SARI scores between model sizes of the same
variant, except for the BART baseline models. The
difference between the T5 baseline models is 0.91
points, T5+Classifier models is 1.23, the BART
baseline is 3.62 points, and the BART+Classifier
models is 1.54 points.

16Using the EASSE (Alva-Manchego et al., 2019) imple-
mentation of the metric.

Focusing on CS performance, we find that the
+Classifier variants achieved superior results for all
model architectures and sizes. The improvement
differs by architecture and size, with the largest
difference being of 5.74 SARI point for the T5Base
models trained on WikiAuto. The best performance
is again obtained by the BART-Large+Classifier
model, and is at least 2.01 SARI points higher than
the score obtained by any baseline variant.

With respect to the Manual dataset training set-
ting, we see similar trends. In particular, the
+Classifier models outperform baseline models,
and the best performing model is still BART-
Large+Classifier. Due to space limitations, we
discuss the results on this dataset in Appendix C.

Taken together, our results demonstrate the ef-
fectiveness of incorporating inductive bias using
simplification operations for both TS and CS.

In order to ensure that the experimental setup we
use is comparable in performance with the standard
practice in the field of TS, we experiment with the
original GEM baseline code-base, and our hyperpa-
rameter settings were chosen according to it. The
results of models trained according to this code-
base are indeed comparable to models of matching
sizes of the baseline variants.

We further validated our results with significance
tests, following the guidelines of Dror et al. (2018).
We used the Wilcoxon Signed-Ranked (Wilcoxon,
1945) test as our main significance test. We com-
pared each vanilla and +Classifier model pair, and
also each model of a particular type (T5 and BART)
to their respective GEM baselines. The results are
shown in Table 1. Almost all tests, with only six
exceptions, are significant with at least ρ < 0.01
and most with ρ < 0.00001. These results further
support the validity of our analysis.

We attribute the improved performance of all
+Classifier models to improvements in the token-
level operations scores for ADD and DELETE.
In the standard training setting on WikiAuto, all
+Classifier models achieve substantially higher
ADD and DELETE scores than their same-sized
baseline counterparts, while all models achieve sim-
ilar KEEP scores. Interestingly, for the BART mod-
els, the difference in ADD scores is less substantial
than for the T5 models.

8 Simplification Dataset Comparison

We compare simplification datasets with respect to
how the simplification operations are used in each.
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(a) JSD distances between distributions (b) ℓ2 distances between correlation matrices

Figure 2: Heatmaps of the distances between dataset sub-sets. We shorten dataset names as follows: FA=FestAbility,
NewM=NewselaManual, WikiM/A=WikiManual/Auto. The final two letters signify ts=test, vl=valid, dv=dev, and
tr=train sets. For each sub-set pair, we report the numerical distance in the matching cell.

We show that simplification operations can also be
used to better characterize such datasets.

We analyze all available sub-sets (development,
train, validation, and test) of all datasets, to provide
a fine-grained analysis. We consider test sub-sets
of datasets, to better understand the results of §7.
This analysis was done after-the-fact, and did not
influence the development of the models.17

The results presented in this section show that
CS is different from TS in how the operations are
applied. They also surface the known relationships
between the datasets, validating our analysis. We
believe that this type of aggregate analysis can be
confidently performed given the validation at the
end of §5.2, but acknowledge that the token assign-
ment is noisy.

To understand how each simplification operation
is applied individually, we compute the frequency
with which each operation is applied in a given
sub-set. These frequencies can be viewed as defin-
ing random variables XS

o , stating the probability
that each simplification operation o is used in a
particular SI in sub-set S. As such, to understand
the distance between sub-sets with respect to the
individual application of each operation, we can
compute the mean Jensen-Shannon distance (Lin,
1991; Fuglede and Topsoe, 2004) (which we mark
JSD) between matching random variables in dif-
ferent sub-sets. For further details on the action
distributions for each dataset, see Appendix H.

As can be seen in Figure 2a, all sub-sets have

17We analyze the test sets also because the CS dataset only
contains a test set at this point, due to their small size.

JSD < 0.1 from one another, which is not a large
distance. However, we are still able to see dis-
tinct clusters for each dataset, with subsets having
JSD < 0.04 within clusters and JSD > 0.04
to other sub-sets.18 Interestingly, WikiAuto-test
is closer to the WikiManual cluster than it is to
WikiAuto-valid, which could be explained by the
fact that WikiAuto was created based on the match-
ing of complex-simple sentences presented in Wiki-
Manual. In addition, WikiAuto-valid and ASSET-
valid appear to be identical, which could be ex-
plained by the fact that the source for ASSET-valid
was taken from WikiAuto-valid. Regarding the
CS dataset FestAbility, it is JSD > 0.07 from
all other sub-sets, and is the farthest sub-set from
WikiAuto, ASSET, and WikiManual clusters, and
the second or third farthest from sub-sets in the
NewselaManual cluster.

To understand how simplification operation are
applied together, we computed the Pearson corre-
lations of the co-occurrence of each operation pair
in a given subset S, to create a correlation matrix
MS . We then computed the pair-wise ℓ2-distance
between matrices. Results are in Figure 2b.

As can be seen in Figure 2b, the clusters of clos-
est sub-sets are maintained for NewselaManual,
and for ASSET and WikiAuto-val , while the sub-
sets of WikiManual are no longer closest to one
another. Also, WikiAuto-train is similarly distant
from both WikiAuto-val and the WikiManual sub-
sets, unlike when comparing with JSD. In this

18For reference, if p = (0.557, 0.443) and q = (0.5, 0.5),
then JSD(p, q) = 0.0403.
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setting, the FestAbility dataset is the most distant
sub-set from all other sub-sets, with dℓ2 > 0.88
from all of them. All other sub-sets are dℓ2 < 0.75
from one another, except NewselaManual-test from
WikiAuto-train and WikiManual-test with dℓ2 =
0.85 and dℓ2 = 0.88 respectively.

Taken together, these results show that while
each individual operation is applied with similar
probability in every dataset, the operations are ap-
plied together differently. In CS in particular, they
are applied in a more distinct fashion than in TS.

The difference in operation application could be
attributed to the different domains from which each
dataset pulls its sentences. In our CS dataset, all
sentences are transcripts of human speech, taken
from a formal conference. Thus, they may contain
more informal language than a Wikipedia article.
Given our datasets, we therefore cannot differen-
tiate between domain difference and task differ-
ence. However, we are currently compiling a larger
dataset for CS that contains more formal language,
that will enable such analysis.

The analysis here can provide additional insight
as to the performance patterns of the different mod-
els (§7). Since each operation is applied individu-
ally under a similar distribution in TS and CS, the
+Classifier models could have potentially learned
indicators of when to apply each action individu-
ally when training on TS. This could have been
useful when adapting to CS, especially given that
the operations co-occur differently in TS and CS.

9 Conclusion and Future Work

We formulated the task of Cognitive Simplification
as an NLP task, and discussed its similarities and
dissimilarities from the well-researched task of TS.
The two tasks are similar in the types of simplifica-
tion operations that are applied in each, and differ-
ent in the distribution in which the operations are
applied. They also differ in their target audience,
at least when using standard datasets. We further
release with this paper a readily available dataset
directed at CS, providing a test set to evaluate CS
models on.

Attempting to overcome the absence of training
data for CS, we showed that by introducing to a
TS-trained model inductive bias as to the simplifi-
cation operations that need to be performed on the
input, the model is able to better adapt to CS. We
also showed that TS-trained models that are trained
to predict simplification operations perform better

than their baseline counterparts on TS.
We believe that comparing how simplification

operations are applied in different languages can
provide valuable insights into understanding the
task of Text Simplification better. Future work will
further explore the relation between the distribution
of operations and the ability of the model to gen-
eralize to different domains and task formulations.
Such an inquiry may reveal that simplification op-
erations provide not only inductive bias, but also an
analytical tool for comparing datasets and variants
of TS. There are TS datasets in many languages,
including Swedish (Rennes and Jönsson, 2015),
Spanish (Saggion et al., 2015), German (Säuberli
et al., 2020; Battisti et al., 2020), Danish (Klerke
and Søgaard, 2012), Portuguese (Leal et al., 2018),
and Russian (Dmitrieva and Tiedemann, 2021). We
plan to compare these datasets in terms of their
distribution of operations, so as to empirically char-
acterize whether the notion of text simplification
implicit in these datasets is similar or not.

We hope that our findings will spark interest
in CS, as there is much more to solve in creating
automatic simplification systems for people with
cognitive disabilities. As stated above, we are cur-
rently working on compiling a larger and more
robust CS dataset, that will enable improvements
in CS technology, and allow to tease apart domain
effects in the differences between TS and CS from
more fundamental differences between the tasks.

Ethical Considerations

Use of existing datasets. The WikiAuto, Wiki-
Manual (Jiang et al., 2020), and ASSET (Alva-
Manchego et al., 2020a) datasets are publicly avail-
able. We took the WikiAuto and ASSET from
the huggingface dataset hub,19 and WikiManual
from the authors’ GitHub.20 We used and received
access to Newsela with accordance to Newsela’s
terms of service.

The released FestAbility dataset. The FestAbil-
ity conference is available for viewing online, and
we received approval to redistribute the simplifi-
cations and transcripts from the organization that
simplified the conference.21 The text in these tran-
scripts deals with the following subjects: rights of
people with cognitive disabilities, arts and perform-
ing arts in particular, accessibility, and personal

19https://huggingface.co/docs/datasets/
20https://github.com/chaojiang06/wiki-auto
21https://www.yalonmethod.com/
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stories. None of the text is offensive or discrimina-
tory in any way. Free public access to this dataset is
available for future research under CC BY-NC-SA
4.0 on GitHub at https:/github.com/eytan-c/
CognitiveSimplification and as a huggingface
dataset at https://huggingface.co/datasets/
eytanc/FestAbilityTranscripts.

Ethical risks. We do not see any immediate ad-
verse effects that our methodology and dataset can
lead to. On the contrary, further research into CS
from an NLP context can only provide benefits to
people with cognitive disabilities.

Other Considerations Gooding (2022) recently
presented multiple different ethical considerations
for text simplification research. These include stat-
ing explicitly the target audience for TS, using ap-
propriate datasets, and evaluating using appropriate
measures, among others. While contemporane-
ous, our paper aligns with the claims that Gooding
(2022) present with how we define the task of CS.
Furthermore, the methodology presented in §8 can
be used to empirically measure some of the risks
presented in Section 3 of Gooding (2022).

Limitations

Computational limitations. Each model trained
in §6 requires a long time to train on the largest
GPU available to the authors, with the largest mod-
els taking several days to complete the training. See
Appendix E for details. These resources therefore
prohibit experimentation with larger models.

Comparison to other TS systems. The TS liter-
ature contains many TS systems, using many dif-
ferent techniques (such as Martin et al. (2020a,b);
Sheang and Saggion (2021); Scarton and Specia
(2018); Zhong et al. (2020); Maddela et al. (2021);
Zhao et al. (2018); Zhang and Lapata (2017)). Any
one of these systems could be used as well for CS,
and such a comparison is warranted. The goal of
this paper however is to highlight the need and
possibilities of further research into CS, and pro-
vide initial benchmarks and tools to do so. We do
not presume that our methodology of adding sim-
plification operations is the best methodology for
CS. We leave investigating the answer to this ques-
tion for future research. The authors are currently
working on answering this question, in particular
in conjunction with releasing additional CS data.

Using additional datasets. Although we did
get permission to use NewselaAuto as a training
dataset, we did not train models with that dataset
to report results on. The reasoning behind this de-
cision that we wanted the main results of this paper
to be easily reproducible, and while WikiAuto is
readily available for use by all, access to Newsela
is provided under a restrictive license.

Adding simplification operations. The method-
ology proposed in the paper to add simplification
operations to SI uses simplistic rules to do so.
Some of the operations can be quite difficult to
identify, even for humans. We believe that there
probably is a better methodology for identifying
the simplification operations, and leave identifying
such a methodology for future research.
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A Simplification Operation Definitions

In this section we describe in more detail the differ-
ent simplification operations, providing full details
for each, including sub-operations.

This list is based on cognitive simplification man-
uals, and includes 2 levels of operations, as many
particular operations share similar goals. We de-
scribe the similar goals as “Main Operations”, and
this is the list provided in the main paper. In here,
we describe in detail all sub-operations as well.

As explained in the main paper, we focus mainly
on the operations that are performed on simplifica-
tion instances (SIs). We do so both to align with
existing research of TS, and to conform with how
the simplification manuals describe the process of
CS. In addition, we also describe “Document Level”
operations. These “Document Level” operations
are not distinct to CS, but have an important role
in that task.

For each operation, we also describe what type
of modification to the source of a SI is this op-
eration aimed at: a modification of its syntactic
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structure or the modification of its lexical content
(i.e., the words used in the SI). We deem the former
a structural modification, and the latter a lexical
modification. Some operations perform both, but
in such cases we chose to assign the type of modi-
fication that subsumes the other. For example, Sen-
tence Splitting is a structural modification, since
it aims to modify the structure of the original text
by splitting a sentence into two or more sentences
in the simplification. This structural change might
require changing words used in the target (i.e., a
lexical modification) but those changes are part of
the structural modification.

1. Proximation: Proximation is the process of
making references in the text closer to the
reader, meaning explicit and more relatable.
This can be by changing the point of view of
the sentence from 3rd to 2nd and/or 1st per-
son, by changing the tenses of verbs to easier
to understand tenses22, or by converting Pas-
sive voiced sentences to Active voiced ones23.
This reduces the potential ambiguity in the
source and makes the target more personal,
and thus more easily understood to people
with cognitive disabilities.

Proximation, and all of its sub operations, are
structural modifications, since their goal is to
transform the syntax of the sentence (tense,
voice, etc.).

2. Rephrasing: Modifying the words used in the
source such that simpler words and phrases
are used in the target instead of complex, am-
biguous, and hard to understand ones. Sim-
pler words and simpler phrases makes the text
easier to understand for people with lower
language comprehension skills, such as those
with cognitive disabilities. A rephrasing can
be finding a simple synonym to a complex
word, but also converting words to phrases

22For example, Present Tenses are generally easier to com-
prehend than Future Tenses. Another example: in English,
Perfect Tenses harder to understand and should usually be
converted to other tenses.

23Multiple CS manuals state that sentences with an active
voice are easier to understand than sentences in passive voice
(PLAIN, 2011b; Uziel-Karl et al., 2011). From the Federal
Plain Language Guide, Section III.a.1.i, page 20: “Active
voice makes it clear who is supposed to do what. It eliminates
ambiguity about responsibilities. Not “It must be done.”, but

“You must do it.”. Passive voice obscures who is responsible
for what ...”. Uziel-Karl et al. (2011) even explicitly state that
every passive voiced sentence needs to be converted to active
voice.

and vise-versa. Since Rephrasing changes the
words used in a sentence, it is a lexical modi-
fication.

3. Deleting Information: A main part of sim-
plifying a text is deciding which information
is irrelevant or surplus to a reader’s compre-
hension, and removing it from the text. By
lowering the information load on the reader,
his or her ability to comprehend the text in-
creases. Deleting Information comes in two
main types, Removal and Summarization. We
chose to assign both into Deleting Informa-
tion, since in both some of the information
content24 of the source is lost in the target,
either directly (Removal) or indirectly (Sum-
marization).

Deleting Information is a lexical modification.

4. Adding Information: This operation in-
cludes adding information to the simplifica-
tion that never appeared in the source. It in-
cludes only one sub-operation, Example Gen-
eration, since this is the only type of novel
information that can appear in the target of
an SI. Any other apparent “new information”
is usually implicit information that is part of
the source, and requires Explicitation in the
target.

However, finding precise distinctions between
new information in the target that is 100%
new and new information in the target that
is implicit information from the source is a
difficult task. As such, we chose to have a
general “Adding Information” operation for
exactly the type of new information in the tar-
get that cannot be precisely associated either
as an Explicitation or Example Generation.

Adding information is a lexical modification.

5. Explicitation: Many of the texts we read con-
tain implicit information that the writer as-
sumes the reader has prior knowledge of. Dur-
ing simplification, this implicit information
will need an explanation or elaboration upon,
so that the reader can understand the text.

This could be achieved by Explanation Gen-
eration: explaining the meaning of particular
terms and phrases, or explicitly stating the

24See subsection A.1 for a discussion on this topic
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logic and reasoning behind a particular pas-
sage in the text. These explanations are crucial
for people with cognitive disabilities to under-
stand texts, since they sometimes lack prior
common knowledge in many domains.

We consider both Explanation Generation and
Example Generation (from the previous main
operation) to be forms of Elaborative Simpli-
fication (Srikanth and Li, 2021). We create
a distinction between the two to differentiate
between “new information” in the simplifica-
tion that is from the implicit information of
the source and “new information” from the
potentially relevant information of the source.
See subsection A.1.

In addition, the source might contain pronouns
that the writer assumes their co-references can
be resolved easily from the text. However, in
most cases, people with cognitive disabilities
would not necessarily be able to resolve pro-
noun co-references. As such, most pronouns
should be converted in the target to their ex-
plicit references. This is Pronoun Explicita-
tion.

Both types of Explicitation are lexical modifi-
cations.

6. Intra-Sentence Rearrangement: At times,
the clauses of a sentence can be ordered in
such a way that make it harder to comprehend
due to its clauses being out of the “correct”
logical order. In addition, for many reasons,
the ordering of the subject, verb, and object
can be out of the “correct” order. When in-
formation is presented out of order, it makes
the text harder to comprehend, especially for
people with cognitive disabilities. Semantic
Rearrangement is presenting the information
content of a sentence in the source of an SI in
a logical and easily followed order, and is a
structural modification. 25

7. Operations on Sentences: There are often
simplification operations that are applied on a
whole sentence that is part of a SI, rather than
applying to an internal part of a sentence. This
includes Sentence Splitting, and also Sentence
Reordering.

25This passage is written on purpose in a convoluted order,
to demonstrate to the reader the importance of order to text
comprehension.

Splitting long sentences into shorter ones
makes texts easier to comprehend by reducing
the information load of each sentence. Rear-
ranging the sentences of a paragraph into a
correct logical/temporal order also makes a
text easier to comprehend, for the same rea-
sons explained above in Intra-Sentence Rear-
rangement.

Sentence Operations are structural modifica-
tions.

8. Document Level Operations26: In some
cases, when simplifying long texts organized
as documents and/or documents with subsec-
tions, more overarching operations need to be
applied. These are almost always modifica-
tion of structure, since information needs to
be ordered correctly, as explained in the previ-
ous two Main Action types. This can include
full chapter/sub-document reordering and full
paragraph reordering, but can also cross para-
graph reordering of sentences and paragraph
splitting.

In addition, there are lexical modifications that
we consider a Document Level Operations.
These are Adding Paragraphs and Adding
Chapters that didn’t exist in the original docu-
ment, and Deleting Paragraphs and Deleting
Chapters from the original document. The
additions of paragraphs or chapters usually
explain particular concepts or ideas crucial to
comprehending the document, while deleting
paragraphs or chapters in their entirety is usu-
ally because the information they provide is
not crucial for comprehending the main idea
of the document.

A.1 Modifying the Information Content of
Simplification Instances

We would like to propose a clear definition of how
the information content of a text is modified during
the process of simplification. For this, we define
the explicit information content of a text as being
the information that is encoded by the exact words
of the text. Each text, in addition to the information
explicitly stated by words used in the text, also en-
codes implicit information about those words and
the subjects they describe. This includes assumed

26As stated in the main paper, we focus mainly on the SI
operations, and less on the document level operations. We still
state them here to present a complete picture.
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(a) Source (b) Target

Figure 3: Diagrams showing the transformation of Information Content between the Source and Target in a
simplification instance.

prior knowledge related to the subject of the text
or the use of phrases in it, references to other parts
of the text, understanding the logic and reasoning
behind the information described in the text, and
more. The potentially relevant information can be
defined as all the potential utterances that describe
information and knowledge that can be relevant to
a particular text. This information is not explicitly
stated in the source or needs to be implied to under-
stand it, and if the information appears in the target,
the decision to include the particular utterance can’t
be uniquely predicted given the source. In essence,
potentially relevant is net new information that can
appear in the target. For CS, this happens mainly
in the form of Example Generations, and the par-
ticular example chosen for a given simplification
could easily be switched with other examples.

Using these three types of information content,
we can better define the process of CS, and the dis-
tinctions between the simplification operations of
Adding Information, Explicitation, and Deleting
Information.

We can formulate the process of CS as minimiz-
ing the distance between the explicit and implicit
information content of a text as much as possible,
while removing redundant or surplus information
and adding relevant novel examples, all in the goal
of making the text more comprehensible to people
with cognitive disabilities. This is juxtaposed with
TS, in which the distance between explicit and im-
plicit information content is minimized, but not to
the maximal degree.

B Special Token Identification

Each of the operations described in Appendix A
can be potentially identified using multiple differ-
ent methods. In this appendix we describe how
we identified each operation and sub-operation in
order to prepend the relevant special token as seen
in Figure 1.

For the scope of this work, we chose to use de-
terministic heuristics that can be applied automat-
ically. Although they create noisy classifications,
we chose the heuristics such that hey have an em-
phasis on Precision rather than Recall, and so we
find them sufficient for our work.

Most of the operations below are analyzed in the
context of simplification instances, and we describe
in input as the “source” and simplification as the
“target”. These will be mathematically noted as S
and T respectively when relevant.

The full code that we used to identify these op-
erations is available on GitHub.

1. Proximation: All of these operations are
tested on a word by word basis using the Uni-
versal Dependency parse trees of the source
and the target.

(a) Change of person point of view: We
check if there was a change in person
POV from 3rd to 2nd, 3rd to 1st, or 2nd
to 1st.

(b) Modify verb tense: We check if the verbs
in the target are in a different tense than
the matching verbs in the source.

(c) Passive-Active Substitution: We check if
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there exist any passive verbs in the source
that share meaning with active verbs in
the target.

Any SI that has a Proximation operations was
prepended with the token <PROX>.

2. Rephrasing: A rephrasing operation will fol-
low the format of replacing one or more words
from the source with one or more words with
similar meaning in the target. Thus, to iden-
tify a rephrasing, we tested every word in
the source sentence that did not appear in
the target against known paraphrase databases
for the relevant language (such as SPPDB
(Pavlick and Callison-Burch, 2016) for En-
glish) to see if one of their relevant para-
phrases appears in the target.

Phrasing this mathematically, for every word
w ∈ S \ T , we check if pp(w) ⊂ T , where
pp(w) is the result of applying a rule from a
paraphrase database on w.

(a) Simple synonym: These operations are
defined when one word is paraphrased to
another single word.

(b) Paraphrasing
i. Word-to-Phrase: Similar to simple

synonym, only a single word is para-
phrased into a series of words.

ii. Phrase-to-Word: A phrase is con-
verted to a single word. This is
discovered by checking all possible
combinations of consecutive words
in the source that did not appear in
the target for possible paraphrases.

iii. Phrase-to-Phrase: Similar to Phrase-
to-Word, when the paraphrase rule is
to another phrase instead of a single
word.

Any SI that has a Rephrasing operation was
prepended with the token <REPHRASE>.

3. Deleting Information: Any words in the
source that doesn’t appear in the target des-
ignate a Deleting Information operation. We
discern between Removal and Summarization
mainly according to the alignment type. Pre-
cisely discerning between the two operations
for other alignments types is a more compli-
cated task that cannot be resolved by a simple
heuristic, and as such we leave it for future

research. For our analysis’ purpose, whenever
the token length ratio (Martin et al., 2020a) be-
tween source and target was greater 1.2 than
(|S|/|T | >= 1.2), or that the percentage of
deleted words from the source (i.e., that were
removed in the target and were not part of
another operation such as Rephrasing) was
higher than 30% and the token length ratio
was > 1, we classified it as a Deleting Infor-
mation operation.

(a) Removal: If the sentence alignment type
of the SI is M -to-0, we count the opera-
tion as Removal.

(b) Summarization: If the sentence align-
ment type is M -to-1, we count the op-
eration as Summarization.

Any SI that has a Deleting Information opera-
tion was prepended with the token <DEL>.

4. Adding Information: To discover if an action
was of Adding Information, we check if there
are new words in the target, that aren’t part of
another modification (such as Rephrasing or
Passive-Active Substitution) or are function
words. Once such words exists, we assume
that there is additional explicit information in
the target that did not appear in the source.
We then test if it is Example Generation or
Explanation Generation (see below), and if it
is neither, similar to the general classification
in Deleting information, if the token length ra-
tions between source and target is < 1 (target
is longer), we classify as Adding Information.

(a) Example Generation: If the new words
are part of a clause that starts with in-
dicative phrases for providing examples
(such as “e.g.”, “for example”, “such as”,
and more) we classify this operation as
Example Generation. This is the only
case where we would prepend the SI with
the token <EXAMPLE>.

Any SI that satisfied the token length ratio <
1 was prepended with the token <ADD>.

5. Explicitation: From a modeling perspective,
we grouped Pronoun Explicitation and Expla-
nation Generation together, since their pur-
pose is similar – reducing ambiguity in the
source that is related to the implicit informa-
tion and assumptions. However, from a classi-

257



Task Train Model SARI ADD KEEP DELETE BLEU % Ident.

TS

M
an

ua
l

T5Large 33.03 2.41 61.78 34.91 0.916 48.75%
T5Large+Classifier 31.78 2.34 61.27 31.71 0.909 57.66%
T5Base 30.41 1.77 62.03 27.42 0.920 56.55%
T5Base+Classifier 30.48 1.87 62.35 27.21 0.920 62.12%
BART-Large 32.27 2.85 61.27 32.69 0.888 55.43%
BART-Large+Classifier 37.66 3.87 59.93 49.19 0.842 31.75%
BART-Base 31.97 1.76 61.83 32.31 0.914 55.15%
BART-Base+Classifier 32.65 2.45 61.63 33.87 0.876 54.31%

CS

M
an

ua
l

T5Large 21.10 1.43 41.98 19.91 0.234 69.16%
T5Large+Classifier 22.43 1.21 42.78 23.30 0.235 72.27%
T5Base 20.14 1.69 42.35 16.38 0.243 72.90%
T5Base+Classifier 20.21 0.89 42.26 17.47 0.239 78.82%
BART-Large 21.42 1.61 42.28 20.39 0.238 75.08%
BART-Large+Classifier 26.47 2.34 42.13 34.94 0.219 60.12%
BART-Base 23.48 2.27 42.88 25.29 0.24 72.27%
BART-Base+Classifier 24.22 2.26 43.52 26.87 0.242 73.52%

Table 3: Results for all models fine-tuned on the Manual dataset (see Appendix C). Metrics include SARI, the
percentage of identical generations (% Identical). We also report BLEU for completeness (see text). Highest SARI
scores for each fine-tuning setting are boldfaced.

fication perspective, each is discovered differ-
ently.

(a) Pronoun Explicitation: We use a
co-reference resolution (CRR) model
(Coreferee from Spacy27), applied to the
concatenated source and target. If the
CRR model finds explicit references in
the target to pronouns in the source, we
classify as Pronoun Explicitation. This
is the only case where we would prepend
the SI with the token <EXPLICIT>.

(b) Explanation Generation: We identify
this operation together with Adding In-
formation, since heuristically they can
appear very similar. If new words in the
target aren’t tied to an example, or are
tied to a noun phrase in the source that
is part of one or more sentences in the
target, we assume that this is a form of
Explanation. Discerning between the dif-
ferent types of explanation generations
is a task for future research, but we list
them here for indexing purposes.

i. For term/phrase
ii. For logic/reasoning

iii. For background information

Any SI that was identified containing Ex-
planation Generation <EXPLAIN>.

6. Intra-Sentence Rearrangement: This opera-
tion is identified when the information order

27https://spacy.io/universe/project/coreferee

in a text is changed. We use the Universal De-
pendency parse trees of the source and target
to discover rearrangements.

(a) Clause Reordering: If the clauses in the
target appear in a different order than in
the source, then this is a Clause Reorder-
ing operation.

(b) SVO Reordering: For each sentence in
the source, we check if the order of sub-
ject, verb, and object are maintained in
the target. If not, then this is an SVO
Reordering.

Any SI that has an Intra-Sentence Rearrange-
ment operation was prepended with the token
<REORDER>.

7. Operations on Sentences: These operations
are checked on a sub-document level, as com-
pared to a simplification instance level.

(a) Sentence Splitting: This operation is
assumed to appear by default in SIs
with sentence alignment type of 1-to-
N . Any such SI was prepended with
the <SPLIT> token.

(b) Sentence Rearrangement: Part of the
manual alignment process, the origi-
nal ordering of sentences in the source
sub-document and be compared to
the order of the original sentences
according to their alignment to the
target sub-document. So, if the
source sub-document consists of sen-
tence [s1, s2, s3, ..., sn] and their align-

258

https://spacy.io/universe/project/coreferee


ment to the target sub-document sen-
tences is some permutation of their
indexes I , such that the source sen-
tences ordered by the target’s order is
[si1 , si2 , ..., sin ], we look for the longest
increase sub-sequence in this permuta-
tion L ⊂ I . Any sentence indexed by
ij /∈ L is a Sentence Rearrangement.
From an SI perspective, a similar analy-
sis was done for Clause Reordering, in
order to discover to which SIs to prepend
the <REORDER> token.

8. Document Level Operations: We list here
the Document Level Operations, but for
our analysis we only focused on identify-
ing Adding/Deleting Paragraphs and Sub-
documents, which were respectively classi-
fied as Adding/Deleting Information. In ad-
dition, as part of our reordering analysis, we
were able to discover Cross-Paragraph Sen-
tence Reordering if they occurred in the same
Sub-Document.

(a) Paragraph Splitting
(b) Cross-Paragraph Sentence Reordering
(c) Paragraph Rearrangement
(d) Sub-Document Rearrangement
(e) Adding Paragraphs
(f) Adding Sub-Documents
(g) Deleting Paragraphs
(h) Deleting Sub-Documents

C Experiment and Results on the
Manually-aligned Dataset

In this section, we describe the experimental setting
and results for training TS models on a manually
aligned dataset. We do so for completeness, since
manually aligned datasets can potentially capture
more complex relationships between source and
target sentences than automatic alignments can,
and the test dataset in CS is manually aligned. We
report results for this series of experiments in an
appendix, since no prior work used these datasets
to train TS models.

The Manual dataset is created by combining
WikiManual and Newsela Manual from Jiang et al.
(2020). Jiang et al. (2020) used WikiManual and
NewselaManual to train their NeuralCRF sentence
alignment models for the WikiLarge and Newsela
corpora, respectively. In addition, we use these

datasets as other comparison points between TS
and CS data presented in §8.

With respect to SI counts, for the Manual
dataset we use 1522/280 SIs from WikiMan-
ual and 11728/1418 SIs from NewselaManual to
create combined training and validation sets of
11728/1418 SIs respectively. Although both Wiki-
Manual and NewselaManual contain tests sets that
Jiang et al. (2020) used to test their CRF models,
we use other datasets as the tests sets for our exper-
iments (see §6.2).

We should note, that there are more SIs in the
original datasets than the number of SIs we used for
fine-tuning. This difference is because the missing
SIs are either complete deletions (sentences from
the source that are removed in the simplification)
or complete additions (sentences in the simplifica-
tion with no source). See Table 6 in Appendix I
for additional details regarding SI counts in each
corpus.

Results. When trained in this setting, which uses
a considerably smaller albeit cleaner dataset, we no-
tice two phenomena when compared to the results
in §7 when tested on TS. First, for all models except
T5Large, the +Classifier variant still outperforms
the baseline model, though by a smaller margin
than in the classic training setting. Second, model
size now has a consistent trend, with larger models
outperforming their matching smaller counterparts.
Further work is required to ascertain this different
pattern of performance on this setting. In general,
the best TS performance on SARI is achieved by
the BART-Large+Classifier variant in this training
setting, repeating the performance in §7.

Examining the performance on CS, we find that
the +Classifier variants achieved superior results
for all model architectures and sizes in this train-
ing setting as well. Unlike the results presented
in §7, here the difference in SARI scores is more
pronounced for larger models, with differences of
more than 1.3 SARI points for both large model ar-
chitectures, while the differences in the base-sized
models is under 0.8 SARI points. The model with
the highest performance difference in this training
setting is BART-Large+Classifier, with a difference
of 5.05 SARI points on CS data, while in §7 this
was the T5Base+Classifier model.

In both evaluation settings, the best performing
model is still BART-Large+Classifier, similar to
the results in §7.

259



Discussion. The results shown here further
demonstrates the potential benefit of adding induc-
tive bias towards simplification operations to a TS
trained model. Potential future research could also
look into performances of different models when
trained on datasets of different sizes and quality,
since many language lack resources for automatic
text simplification, let alone cognitive simplifica-
tion.

D SARI Calculation

The main metric used for evaluating TS models is
SARI (Xu et al., 2016), which is computed based
on three token-level operations: ADD, KEEP, and
DELETE. Precision and Recall are computed for
each with respect to n-grams for n = 1 . . . 4, and
averaged together to yield overall Precision and
Recall scores per operation. SARI is defined as:

SARI =
F1ADD + F1KEEP + PDELETE

3
(1)

E Model Training times

Train Dataset Model Size Train Time

WikiAuto

T5-Large 7 days
T5-Base 4 days

BART-Large 5 days
BART-Base 2 days

Manual

T5-Large 1 day
T5-Base 12 hours

BART-Large 20 hours
BART-Base 11 hours

Table 4: Approximate training times on a single GPU
for our models trained in §6 and Appendix C.

F Comparing automatic identification of
simplification operation to human
annotations

We asked a human annotator to manually assign
simplification operations to 50 random SI from the
WikiAuto training set. Below are the particular
Precision, Recall, and F1 scores for each opera-
tion on that subset, using the human annotations as
ground-truth.

G Simplification Instance Counts

Table 6 contains the details regarding the counts of
SIs in each dataset, as used to fine-tune our models

Operation P. R. F1 #
<PROX> 0 0 0 0

<REPHRASE> 80.43 97.37 88.1 38
<DEL> 80 84.21 82.05 19
<ADD> 12.5 50 20 2

<EXAMPLE> 0 0 0 0
<EXPLAIN> 0 0 0 0
<EXPLICIT> 42.86 42.86 42.86 7
<REORDER> 32.43 1 48.98 12
<SPLIT> 1 1 1 13

Table 5: Precision, Recall, and F1 scores for each opera-
tion token, when comparing our automatic identification
rules to a human annotator. We also describe the num-
ber of SI with each operation in the random sample
analyzed, and the expected number SI.

in §6, and the full dataset, including deletions of
complete sentences from the source and additions
complete sentences to the target.

Dataset Fine-Tuning Full Corpus

FA - / - / 321 - / - / 380

NewM 11.7K / 1.4K / 3.6K 17.8K / 2.6K / 5.1K
WikiM 1.5K / 280 / 531 29.9K / 4.4K / 7.9K

ASSET - / 2K / 359 - / 2K / 359
WikiA 483K / 20K / - 483K / 20K / -

Table 6: Number of SIs used for fine-tuning our models
in §7 and Appendix C as compared to the number of
SIs in the respective full corpus. The differences are
because in the fine-tuning setting we ignored complete
deletions of sentences from the source and complete
additions of sentences to the target. For each dataset
and each setting, the number of SIs are for the train /
valid / test sets respectively. We shorten dataset names
as follows: FA=FestAbility, NewM=NewselaManual,
WikiM/A=WikiManual/Auto.

H Simplification Operations per Dataset

In this appendix, we present the results of 3 key
point of information regarding the use of simplifi-
cation operations in the TS and CS datasets. First,
we show the distribution of each simplification op-
erations per dataset (Figure 5). Then, we show the
histograms of the number of simplification opera-
tions used in each SI (Figure 6). Finally, we present
the correlation matrices for each dataset used in our
analysis in §8 (Figure 7).

I Full Corpora Analysis

In the main paper §8, we analyzed simplification
operations in the datasets as they were used to train
our models. However, each dataset also has SIs
that are complete deletions (whole sentences in
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(a) JSD distances between distributions (b) ℓ2 distances between correlation matrices

Figure 4: Heatmaps of the distances between dataset sub-sets. We abbreviate sub-set names such that FA=FestAbility,
NewM=NewselaManual, WikiM/A=WikiManual/Auto. The final two letters signify ts=test, vl=valid, dv=dev, and
tr=train sets. For each sub-set pair, we report the numerical distance in the matching cell.

the source that don’t have matching sentence(s) in
the target) or complete additions (sentences in the
target with no matching source sentence(s)). In
figure Figure 4 we present the results of the same
analysis but for the full dataset.

When analyzing the full datasets, similar pat-
terns to §8 emerge. Sub-sets of the same dataset are
still clustered together, although now the in-cluster
distance is JSD < 0.06 and between clusters dis-
tance is JSD > 0.09. Moreover, if considering
clusters to have JSD < 0.04 like in the main pa-
per, then the similar relationships between sub-sets
described in the main paper emerge – FestAbil-
ity is clustered with itself, ASSET and WikiAuto
validation are clustered, and WikiManual is also
clustered, and WikiAuto train is separated from
the ASSET and WikiAuto validation cluster and
the WikiManual cluster. However, there are some
differences – NewselaManual development is not
clustered with the other NewselaManual sub-sets
if considering clusters to have JSD < 0.04, and
WikiAuto train is not closer to the WikiManual
cluster than to the ASSET and WikiAuto validation
cluster.

These results strengthen our findings from the
main paper that the simplification operations are
used similarly in CS and TS. They also empha-
size the differences between the Newsela corpus
and the WikiLarge corpus, as highlighted by Xu
et al. (2015). The difference between WikiManual
and all the other datasets is the prevalence for “full
deletions” in WikiManual, which shows that the
relationship between English Wikipedia and Sim-

ple English Wikipedia contains many more cases
of Information Deletion than other corpora.

In addition, the distances between the operation
correlation matrices show that the difference in
joint application of simplification operations be-
tween CS and TS is similar when considering the
full datasets, as the distances between FestAbility
and the other sub-sets are maintained (changing by
at most ±0.26, while the other distances outside of
clusters increase more).

J Example Simplifications

Shown in Table 7 and Table 8 below.

261



Figure 5: Probabilities each simplification operation is used in every dataset sub-set
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Figure 6: Histograms of the number of simplification operations used in each SI for each dataset sub-set.
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Figure 7: The simplification operations correlations matrices for each dataset subset presented as heatmaps.
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Source: Jeddah is the principal gateway to Mecca, Islam’s holiest city, which
able-bodied Muslims are required to visit at least once in their lifetime.

Simplification: Jeddah is the main gateway to Mecca, Islam’s holiest city.

Source: However, the BZ differs a bit in comparison to the Freedom Party, as
is in favor of a referendum about the Lisbon Treaty but against an EU-
Withdrawal.

Simplification: However, the BZ differs a bit from the Freedom Party. The BZ is in favor
of a referendum about the Lisbon Treaty but against an EU-Withdrawal.

Source: Many species had vanished by the end of the nineteenth century, with
European settlement.

Simplification: Many species had disappeared by the end of the nineteenth century.

Source: Fearing that Drek will destroy the galaxy, Clank asks Ratchet to help
him find the famous superhero Captain Qwark, in an effort to stop Drek.

Simplification: Clank fears that Drek will destroy the galaxy. He asks Ratchet to help
him find the famous superhero Captain Qwark.

Table 7: Example Simplifications from ASSET of the T5-Base Classifier model fine-tuned on the WikiAuto dataset.
Differences between the source and Simplification are bolded and italicized per example.

Source: Know that there are absentee ballot options available, and there may be
other options available depending on what situation we find ourselves in.

Simplification: There are many options for absentee ballots.

Reference: You should know if you could vote from home. You should check if there
are other ways of voting this year because of covid-19.

Source: Zazel O’Garra, founder and artistic director of ZCO Dance Project, is a
force to be reckoned with.

Simplification: Zazel O’Garra is the founder and artistic director of ZCO Dance Project.

Reference: Zazel O’Garra is the founder and artistic director of ZCO Dance Project.
She is a very strong and important woman.

Source: I was diagnosed at the age of five and completely stopped walking when I
was 12 years old.

Simplification: I stopped walking when I was 12 years old.

Reference: It started when I was five years old. I stopped walking when I was 12
years old.

Source: And in trying to get towards where I really wanted to be in life, I really
thought about giving back and being of service to someone else.

Simplification: I really thought about giving back and being of service to someone else.

Reference: I thought about what I really wanted to do. I wanted to help other people.

Table 8: Example simplifications from FestAbility Transcripts of the T5-Base Classifier model fine-tuned on the
WikiAuto dataset. Differences between the source and simplification are bold-faced and italicized, per example. We
add the CS reference for each example as well to highlight where the model succeeds and fails in the task.
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Tanja Samardžić1 Ximena Gutierrez-Vasques1 Rob van der Goot2

Max Müller-Eberstein2 Olga Pelloni1

1 Text Group, URPP Language and Space, University of Zurich, Switzerland
2 Department of Computer Science, IT University of Copenhagen, Denmark
3 Center for Information and Language Processing, LMU Munich, Germany

{tanja.samardzic, ximena.gutierrezvasques, olga.pelloni}@uzh.ch
{robv, mamy}@itu.dk

b.plank@lmu.de

Barbara Plank2,3

Abstract

Cross-lingual transfer of parsing models has
been shown to work well for several closely-
related languages, but predicting the success in
other cases remains hard. Our study is a com-
prehensive analysis of the impact of linguistic
distance on the transfer of Universal Dependen-
cies (UD) parsers. As an alternative to syntactic
typological distances extracted from URIEL,
we propose three text-based feature spaces and
show that they can be more precise predictors,
especially on a more local scale, when only
shorter distances are taken into account. Our
analysis also reveals that the good coverage in
typological databases is not among the factors
that explain good transfer.1

1 Introduction

The goal of cross-lingual parsing is to process a
target language as well as possible by exploiting
training data available from (an)other language(s).
While we know that parsing models can be trans-
ferred well across some well-known closely related
languages (de Lhoneux et al., 2018), the success
of cross-lingual transfer in all other cases remains
hard to predict. Surprising cases of syntactic trans-
fer between unrelated languages such as Irish and
Indonesian (Lynn et al., 2014) illustrate well this
unpredictability.

A possible explanation for such cases is that
genealogically unrelated languages can still be sim-
ilar enough to allow transfer. But what is the rele-
vant measure of language similarity in such cases?
One possible solution is to rely on language fea-
tures stored in typological databases such as WALS
(Dryer and Haspelmath, 2013; Comrie et al., 2013)
or Glottolog (Hammarström et al., 2018). Taking
these features as vector representations, languages

1The analysis notebooks are available at https://
github.com/MorphDiv/transfer-lang.

can be embedded and compared regardless of their
genealogical relations. A popular library URIEL
(Littell et al., 2017) has facilitated the use of ty-
pological features to measure similarity between
languages at different levels (phonology, syntax, ge-
ographical distribution). The problem with this so-
lution is that the information in linguistic databases
is often incomplete and unevenly distributed. Some
languages are fully described, while only a few fea-
ture values are known for others (Ponti et al., 2019).
Nevertheless, a study by Lauscher et al. (2020) on
transferring models from English to several other
languages suggests that the URIEL language sim-
ilarity score is a good predictor of cross-lingual
transfer for parsing Universal Dependencies (UD).

Our study brings a comprehensive analysis of the
relationship between language similarity and the
cross-lingual transfer in UD parsing. It extends pre-
vious work in two directions: first, we cover many
more languages than any previous study (which
are typically limited to a small set); second, we
compare the URIEL representation with three text-
based alternatives. These extensions allow us to
ask new questions such as: What should we do
for languages that do not have close relatives? Do
measures of language similarity predict the transfer
at any scale (for close and for distant languages)?
Are there good alternatives to linguistic databases
for measuring language similarity? We perform
correlation tests between linguistic distances and
parsing scores on various samples of UD treebanks
designed to neutralize two kinds of biases. First, we
balance the samples at the level of language, genus,
and family,2 reducing gradually the known bias of
the UD towards Indo-European languages. Second,

2Genus and family are two levels of language genealogy
commonly used to group languages of the world. A list of fam-
ilies and genera can be found at https://wals.info/
languoid/genealogy.
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we investigate the impact of the scale by comparing
global correlations (considering a whole language
space) with local correlations (considering smaller
partitions of a language space).

We show that typological distances extracted
from URIEL are reasonably good global predictors,
while text-based distances are better local predic-
tors. A surprising outcome of our analysis concerns
the uneven coverage of languages in typological
databases: most of the UD languages with many
missing features are Indo-European. On the other
hand, good database coverage does not guarantee
good predictability of transfer for the languages
outside of the Indo-European family.

2 Related Work

Thanks to evident structural alignments between
languages the possibility of transferring syntactic
parsing models across languages was investigated
even before the wide-spread adoption of pre-trained
language models in NLP (McDonald et al., 2006;
Zeman and Resnik, 2008). However, this task
proved non-trivial because such clear alignments
tend to be found in similar languages, but are much
rarer overall (Seeker and Kuhn, 2013; Goldberg
and Elhadad, 2013).

The idea of using data from another language or
a set of languages to improve syntactic parsing on
any given language is tempting because annotated
data is not available for the majority of the world’s
languages. Early work typically focused on sev-
eral languages selected according to the availability
of training data. In the meantime, the Universal
Dependencies (UD) treebanks have become avail-
able for many different languages (Zeman et al.,
2021)3 opening the question of what language pairs
are most suitable for model transfer. Most of the
time, polyglot4 models are trained on multiple lan-
guages, but preserving the identity of the languages
(by adding the language ID to the text representa-
tion) turns out useful (Ammar et al., 2016). Smith
et al. (2018) cluster languages according to similar-
ity before training polyglot models. Cross-lingual
parameter sharing is found to improve the perfor-
mance overall, but especially for closely-related
languages, which can share parameters in different
layers of neural representation (de Lhoneux et al.,
2018; van der Goot and de Lhoneux, 2021).

3http://universaldependencies.org
4We here used the term polyglot model (Mulcaire et al.,

2019) most often also referred to as multilingual model.

Cross-lingual transfer started being explored in
other tasks too after the introduction of large pre-
trained models (Pires et al., 2019), making the ques-
tion of linguistic similarity relevant to a more gen-
eral scope of NLP research. Lin et al. (2019) pro-
pose a range of measures that can be used in order
to choose the best transfer language, which they
divide into data-dependent (data size, token over-
lap, TTR) and data independent (various distance
measures extracted from the URIEL database).
Lauscher et al. (2020) study how well different
similarity scores predict the success of the transfer
on different tasks (with mBERT and XLM-R as
pretrained models) and find that syntactic features
extracted from URIEL correlate strongly with the
zero-shot cross-lingual UD parsing performance.
Interestingly, these features are better predictors
than genealogical relatedness, but data-dependent
measures, such as the size of the training data, seem
to predict better the cross-lingual zero-shot perfor-
mance on other tasks such as XQuAD (Artetxe
et al., 2020; Rajpurkar et al., 2016) or XNLI (Con-
neau et al., 2018; Bowman et al., 2015; Williams
et al., 2018). While English turns out to be a good
transfer language for many tasks due to the size of
the training data, Turc et al. (2021) show that Ger-
man is a better transfer language than English for
quite a few, even less-related, languages. The fact
that English is not the best transfer language on the
task of part-of-speech (POS) tagging is confirmed
by the most wide-scope study of cross-lingual trans-
fer up to now (de Vries et al., 2022). Similarly to
Lauscher et al. (2020), this study too finds that a
surface string similarity measure (LDND distance,
Wichmann et al. (2010)) is a better predictor of the
transfer than genealogical relatedness. Somewhat
contrary to this, Kudugunta et al. (2019) find an
interesting genealogical clustering in the represen-
tations created by machine translation models.

Having counted mentions of successful cross-
lingual transfer on many different tasks in the pre-
vious works (Ruder et al., 2021; Turc et al., 2021;
Vázquez et al., 2021; Hu et al., 2020; Lauscher
et al., 2020; Lin et al., 2019; Paul et al., 2013), we
notice that English is most frequently mentioned
as the best transfer language overall, but these men-
tions are almost entirely related to European target
languages. For targets located outside of Europe,
the best transfer languages are different and hard
to predict. For instance, Greek is a good transfer
language for Thai and Hindi, while Russian works
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well for these two languages and Arabic.
Our study shares the wide cross-lingual scope

with de Vries et al. (2022). In contrast to their work,
we focus on syntactic parsing models, rather than
POS tagging. We follow some other previous stud-
ies in working with both typological and text-based
language similarity measures, but our text-based
measures can be regarded as generic rather than
data-dependent and can be used as an alternative to
URIEL in many cases.

3 Language Spaces and Similarity:
Genealogy, Typology, Text

The most widely accepted method for comparing
languages relies on genealogical classification: we
consider languages located in the same region of a
phylogenetic tree to be similar. This method cur-
rently prevails in NLP. Practitioners often discuss
language similarity in terms of language family
(Ponti et al., 2019; Tan et al., 2019; Shaffer, 2021).
However, language families can be too broad for
a meaningful comparison as they include typo-
logically very different languages. For instance,
English and Armenian belong to the same family
(Indo-European), but are very different in terms of
phoneme inventories, morphology, and word order.
On the other hand, languages can be rather similar
even if they are genealogically unrelated. For ex-
ample, Bulgarian is closely related to other Slavic
languages, but its morphology, word order and the
use of the definite article makes it more similar to
English than to other Slavic languages.

Typological features and geographical placement
of languages can be regarded as potentially more
objective and fine-grained alternatives to genealog-
ical similarity. In other words, genealogically unre-
lated languages can turn out to be close in a typolog-
ical vector space or in the geographical (physical)
space. It is less common to have an intuitive per-
ception of languages that are close in such spaces
as similar, but typological proximity seems to be
more useful as a predictor of cross-lingual transfer
than genealogical relatedness (see Section 2).

The URIEL database and its associated Python
library lang2vec (Littell et al., 2017) are
very convenient resources for measuring the dis-
tance between languages in all of these spaces.
URIEL combines features from several linguistic
databases: Ethnologue (Lewis et al., 2015), Glot-
tolog, PHOIBLE (Moran et al., 2014), SSWL5 and

5Syntactic Structures of the World’s Languages by Chris

WALS. It describes over 4,000 languages, but the
available information strongly depends on the types
of features. For example, geographic and genealog-
ical feature values are known for all languages,
while syntactic feature values, which are relevant
to our study, are often missing.

When assessing linguistic similarity with
lang2vec, one can use various subsets of fea-
tures and the knn prediction option to fill in the
missing features, which is what is typically used in
previous research. With this option, all feature slots
are filled with some predicted value. If a value is
missing for some feature, the corresponding value
from the most similar language (nearest neighbor)
is returned. We work with the union of syntactic
features (WALS + SSWL) completed with the knn
prediction, but we also analyze the coverage of the
UD languages in the URIEL sources by extracting
the values before the knn prediction.

Text-based features can be regarded as a poten-
tial alternative to the features extracted from ty-
pological databases. Type-token ratio (TTR), for
instance, is higher in morphologically rich than in
morphologically poor languages and can be used
for language comparison when the data size is con-
trolled (Biber, 1988; Tweedie and Baayen, 1998;
Bentz et al., 2017). Other text statistics, such as the
mean word length (MWL) are also characteristic
of languages (words are longer in morphologically
rich languages), while being even less dependent
on the data. In the work on cross-lingual transfer,
it is common to consider all text-based measures
to be data-dependent as opposed to typological
measures, which are data-independent (Lin et al.,
2019).6 We assume that text-based features can
reach various levels of data-independence, while
providing a means for measuring language similar-
ity at a more fine-grained level.

In the remainder of this section, we describe two
text-based measures that we propose for compar-
ing languages at two structural levels, morphology
and syntax. Our morphological measure is more
generic than the syntactic measure, which is more
data-dependent.

Collins and Richard Kayne
6In NLP, data-dependent measures require access to text

samples of the languages to estimate similarity statistics,
which are viewed as specific to the samples (not easily gen-
eralized). In contrast to this, data-independent measures are
often derived from data or linguistic observations yet the text
sample is not required at estimation time.
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3.1 The Language Space of BPE Subword
Productivity

Capturing morphological phenomena, this measure
departs from the observation that subword tokeniza-
tion with BPE compresses the text vocabulary in
a way that depends on typological properties of
languages. Analyzing subword tokens formed in
the first few hundred merges (Gutierrez-Vasques
et al., 2021), we can distinguish between languages
that have productive morphology (e.g. Hungarian),
from languages that form words in a more idiosyn-
cratic fashion (e.g. Chinese).

Following this intuition, we describe each lan-
guage in terms of three features calculated over the
tokens formed in the first 200 BPE merges. The
first feature, subword productivity is the number
of word types in which a subword appears. The
second feature, subword frequency is the cumula-
tive frequency of all word types in which a given
subword appears. The third feature, subword id-
iosyncrasy is the ratio between the subword fre-
quency and the subword productivity. A single vec-
tor representation for each language is constructed
by averaging the values of all subword tokens. The
resulting three-dimensional vectors are centered
around zero and scaled with respect to the standard
deviation. In this way, we construct a new space for
comparing languages distinguishing between mor-
phological types such as analytic, synthetic, and
polysynthetic languages.

It is noteworthy that this approach does not de-
pend on access to the information extracted from
grammars and stored in typological databases. It
also does not require any annotation: the scores
are extracted directly from a relatively small sam-
ple of raw text (e.g. 50,000 words, fixed for our
UD samples) in an unsupervised fashion. It thus
provides a good alternative to hand-crafted descrip-
tions which are hard to obtain. The drawback of
this method is that it captures morphological fea-
tures, which, despite the known universal trade-offs
between syntax and morphology (Sinnemäki, 2010;
Ehret and Szmrecsanyi, 2016; Futrell et al., 2015),
might not be the most useful features for predicting
the transfer of syntax.

3.2 The Language Space of Dependency
Probes

To obtain text-based features capturing more pre-
cisely syntactic phenomena, we make use of syn-
tactic probes, minimal models that can perform the

dependency parsing task at hand. In constructing a
language space with dependency probes, we build
on the DepProbe approach of Müller-Eberstein et al.
(2022) and the intuition that linear subspaces cap-
ture syntactic information while being much easier
to interpret than the parameters of full parsers. Mea-
suring the similarity of these linear subspaces using
subspace angles (Knyazev and Argentati, 2002), we
can further compare whether dependency structures
and relations are represented similarly or dissim-
ilarly across languages — even across unrelated
languages not covered by manual typological anno-
tations — which is crucial for cross-lingual trans-
ferability.

Conceptually, each probe contains the informa-
tion on how pre-trained embeddings map to depen-
dency structures. Therefore, similar mappings are
expected to indicate similar languages. Compar-
ing these subspaces for the purpose of transferabil-
ity estimation has shown to be highly predictive
(Müller-Eberstein et al., 2022). We rely on the
same intuition, but use the probes for a different
purpose: instead of predicting the performance of
a full parser, which was the main goal for Müller-
Eberstein et al. (2022), we see the probes as a sort
of language embeddings for comparing different
languages. This leads us to extend this initial study
to the full set of languages in UD, and to analyze
how these data-driven measures relate to linguisti-
cally motivated typological information.

There has been debate regarding what constitutes
an appropriately parametrized probe (Hewitt and
Liang, 2019; Voita and Titov, 2020). We follow
the most common linear probing paradigm for de-
pendency parsing by Hewitt and Manning (2019).
It can be seen as learning a linear subspace within
the existing, pre-trained latent space in which de-
pendency information is particularly salient. For
DepProbe specifically, these are the dependency
structural subspace A and the dependency rela-
tional subspace L, which are respectively learned
using the mean square error and cross-entropy loss
to the target dependency tree. This approach is
intermediary to training a full parser, which is com-
putationally expensive, and manual features such
as those from URIEL, which may lack coverage of
the specific language variant used in any particular
treebank. However, this measure requires at least
some syntactically annotated data.
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Figure 1: URIEL embeddings (reduced to 2 dimensions using PCA) for 62 UD languages that appear as target
languages in our experiments. The color indicates the percentage of missing features in the URIEL sources.
Languages with most missing features are located in the densely populated regions.

URIEL Squared Euclidean distance in the
URIEL space using WALS+SSWL
syntax features and KNN prediction

probe-A The distance between dependency
probes trained on our UD samples to
predict the dependency link (attach-
ment)

probe-L The distance between dependency
probes trained on our UD samples to
predict the dependency label

BPE Squared Euclidean distance in the BPE
productivity space constructed from
the raw text extracted from our UD
samples

MWL The difference between mean word
lengths, estimated on the raw text ex-
tracted from our UD samples as the av-
erage number of characters per word
token in a treebank

MSL The difference between mean sentence
lengths, estimated on the raw text ex-
tracted from our UD samples as the
average number of word tokens per
sentence in a treebank

Table 1: Linguistic distances and baselines as experi-
mental settings. Note: the MWL and MSL differences
are, in fact, distances in a monodimensional space.

4 Data and Methods

From the linguistic spaces and measures described
in Section 3, we create distance matrices. We then
calculate multiple correlation scores between each
of the linguistic distance matrices on one side and
the scores obtained while testing parsers on a set of
languages on the other. For each pair transfer-target
language, we have one labeled attachment score
(LAS), which we name xLAS in our experiments
to underline the fact that these scores are obtained
via cross-lingual transfer.7 We expect higher xLAS
scores when linguistic distances are smaller, thus a
negative correlation.

In this section, we describe the details of the
experimental design and the analyses.

4.1 Data

We carry out all our experiments on the Uni-
versal Dependencies V2.9 data (Zeman et al.,
2021), and the additional unofficial set of tree-
banks used in van der Goot et al. (2021). In
total our data has 116 languages in 223 tree-
banks. We removed all multi-word tokens with
ud-conversion-tools.8

7We exclude all self-tranfer cases.
8Code-switched pairs are considered a new language as

specified by the treebank-creators. Arabic-NYUAD and
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Since data size has been identified as a factor that
has an impact on cross-lingual transfer, controlling
for the data size is necessary in order to isolate
potential effects of linguistic distances, which are
of interest for our study. We fix the training data
size to 50,000 tokens for each transfer language.
This size is determined as a good balance between
the size of the data needed to achieve a reasonable
parsing performance and the availability of the data
for different languages. We thus use only treebanks
with more than 50,000 tokens for training and cap
them to the fixed size. This leaves us with 78 tree-
banks in 47 languages for training. Because we
are not attempting to improve the state-of-the-art in
this work and we do not tune the parser, we report
our scores on the development data. To cover as
many language varieties as possible in our analysis,
we decided to use the test data set if there is no
development set available for a treebank. On the
target side, we have 116 treebanks in 62 languages.

4.2 Parser

To investigate how well linguistic distances defined
by the three different language spaces (Section 3)
predict the cross-lingual transfer of UD models, we
perform zero-shot cross-lingual transfer from each
of the 78 transfer treebanks to each of the 116 target
treebanks (in a one-to-one setting). For this, we use
MaChAmp, an NLP toolkit for training and test-
ing models in a transfer-learning framework. This
toolkit uses a transformer based language model as
encoder, and can employ multiple decoder heads
for multiple tasks. In our setup, we use the default
UD model, but remove the morphological tagging
and lemmatization task, as not all treebanks have
annotation for these tasks. We use MaChAmp v0.3
beta (van der Goot et al., 2021) with default settings
and mBERT embeddings (Devlin et al., 2019).

We train a single parser for each of the transfer
treebanks, and evaluate on all of the target tree-
banks using the official CoNLL2018 evaluation
script (Zeman et al., 2018). We disable early stop-
ping in all experiments, and take the model after
the whole training procedure (20 epochs) to avoid
overfitting on the development data. Thus, for each
target treebank, we test 78 parsers fine-tuned on
transfer treebanks, one parser per transfer treebank.
This results in a matrix of 78 × 116 labeled accu-
racy scores (xLAS). From these scores, we create
various samples on which we then calculate cor-

Japanese-BCCWJ are excluded as they are not freely available.

relation scores. For the 78 datasets, we checked
the amount of unknown subwords assigned by the
tokenizer of mBERT, which were on average only
0.4%. Outliers are Ancient Greek (~6%) and Old
East Slavic (~14%). So, the scripts are mostly
covered, and altough some languages might be un-
derrepresented (Rust et al., 2021), at least almost
all subwords are represented in the vocabulary.

4.3 Stratified sampling: language, genus,
family

Recall that the UD data set is biased towards Indo-
European languages in two ways. First, it contains
many more treebanks in Indo-European languages
than in language from any other family (Nivre et al.,
2020). Second, for some languages (and those are
usually Indo-European), there are multiple tree-
banks in the data set, while only single treebanks
are available for other languages. To deal with
the representation biases in the UD data set, we
create stratified samples at three levels. Stratified
sampling at the level of language means that we
select one treebank per language; at the level of
genus one treebank per genus; at the level of fam-
ily, one treebank per family. The representatives
of the three categories are selected randomly, but
we repeat the tests 30 times to account for the vari-
ance in random sampling. We always report mean
correlation scores of 30 random selections. The
only level that neutralizes the bias towards Indo-
European languages is the level of family, but we
perform analyses at all the three levels to see how
the scores change between them. Also, the analysis
of the scales of the linguistic distances (Section
4.4) is performed only at the level of language.

4.4 Scales: global vs. local
When analyzing the effects of linguistic distances
on the cross-lingual parsing scores, we distinguish
between two scales. In the first case, which we
call the global scale, we consider the whole spaces,
that is all the data points sampled at the level of lan-
guage regardless of where they are located in a lin-
guistic space. The global scale thus includes both
short and long distances. In the second case, called
the local scale, we partition the linguistic spaces
into smaller regions and consider the correlation
scores within each region separately. To make the
comparison between different spaces more straight-
forward, we consider only one partition created
with the URIEL space and map all the other lin-
guistic measures to this partition. The local scale
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Figure 2: K-means clustering over URIEL embeddings (reduced to 2 dimensions using PCA) for 62 UD languages
that appear as target languages in our experiments.

setting thus includes only short distances.
This analysis is motivated by some previous

work on the interaction between linguistic variation
and geographical phenomena, which has identified
potential scale-related limitations. For instance,
Jeszenszky et al. (2017) find that traveling times
correlate with linguistic distances between Swiss
dialects, but the correlation is stronger at shorter
distances suggesting a non-linear relationship be-
tween the two measures. In other words, traveling
times predict linguistic diversity well at short dis-
tances, but not so well at longer distances. On the
other hand, if a correlation only holds on the global
scale, then the observed effect might be driven by
(or limited to) a subset of data points, while the rest
of the data remains largely unexplained, as pointed
out by Moran et al. (2012). Ideally, the correlation
scores should not vary depending on the scale and
this analysis is expected to show potential limita-
tions of the observed effects.

4.5 Correlation settings

In all our correlation tests, the xLAS scores con-
stitute the predicted variable and the linguistic dis-
tances are predictors. When calculating global cor-
relations, we distinguish between three xLAS set-
tings, depending on the sampling level: language,
genus, family. Local correlations are only calcu-
lated in one setting, language, because other levels

Correlation with xLAS
Linguistic Language Genus Family
distance level level level
URIEL -0.48 -0.39 -0.35
probe-A -0.66 -0.53 -0.50
probe-L -0.57 -0.38 -0.32

BPE -0.39 -0.26 -0.10
MWL -0.38 -0.36 -0.34
MSL -0.12 -0.14 -0.16

Table 2: Global Spearman rank correlation between lin-
guistic distance and xLAS scores. The reported values
are the means of 30 random selections.

would give extremely sparse observations. How-
ever, we comment on the phenomena related to
linguistic diversity in presenting the results.

Table 1 summarizes the settings regarding the
linguistic distances. Each of the spaces described
in Section 3 is one predictor. In addition to these
distances, we perform tests with two kinds of data
statistics. We choose MWL as a good representa-
tive of text statistics that can be data-independent
(see Section 3) and MSL as a representative of
data-dependent text statistics.
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5 Results

5.1 UD languages in URIEL
Having checked the coverage of the UD languages,
we find that more than half of the feature values
are missing. We note that missing features are
not equally distributed across languages: some lan-
guages are well described with over 100 feature
values, while for some no syntactic feature val-
ues are known. The full list of languages with the
counts of missing features is in Appendix A.

To see how the UD languages are distributed
in the URIEL space, we create a two-dimensional
transformation of the original space with principle
component analysis (PCA) and plot in Figure 1 all
the languages tested as targets of UD transfer in
our experiments (N=62). We color each data point
according to the percentage of missing features.

The first thing that can be observed in the plot is
a considerable asymmetry in the space density: the
most populated area (in the left lower corner) hosts
mostly European languages, showing the known
bias of the UD data sets. We can also see a consider-
able covariance between typological, genealogical
and geographical factors, which holds only at a
very coarse level: Asian languages tend to occupy
the right-hand side of the plot, African the upper-
left corner. When we zoom in, we see quite a few
mismatches between genealogical and syntactic (ty-
pological) proximity, especially in the areas outside
of the the European corner. For instance, Hungar-
ian and Chinese are rather close in URIEL but they
are very far apart in the phylogenetic tree. Inter-
estingly, one such case is the pair Irish-Indonesian
mentioned before. Indonesian is an Austronesian
language, but it is closer to Irish (which is an Indo-
European language) than any other Indo-European
language outside of the Celtic group.

Regarding the missing feature values, we notice
that all the languages for which more than 50% of
feature values are missing are European and their
placement with the knn prediction is globally cor-
rect. At a more fine-grained level, we see some
mismatches with what would be expected knowing
the properties of languages. For example, Croatian
and Serbian are placed rather far apart although
they are syntactically identical, genealogically the
same language and geographically adjacent. Also,
the six languages in the rightmost cluster (Marathi,
Korean, Tamil, Telugu, Japanese, Uyghur) come
from five different languages families (genealogi-
cally distant).

We conclude that the URIEL space represents
rather well the knowledge about language similar-
ity globally, but it is rather imprecise at a more
fine-grained level.

5.2 Global correlation

Table 2 shows the results of one-to-one correla-
tion tests (one for each predictor). We report the
Spearman rank correlation score, which is a non-
parametric test best suited for our data. In this
setting, we ask how well different linguistic dis-
tances predict xLAS scores generally, taking into
account the whole spaces. First of all, we can see
that the mean sentence (MSL) is the worst predic-
tor despite the fact that its values vary considerably
across treebanks. MWL, on the other hand, ap-
proaches some of the more elaborated linguistic
distances. The values for these two statistics are
listed in Appendix B.

The best predictor with solid scores turns out
to be probe-A, the probe that encodes most of
the structural information. This is not very sur-
prising given the fact that the probes are trained
to perform lightweight UD parsing. However, it
is interesting to see that probe-A is a much bet-
ter predictor than probe-L and more consistent
across the samples. This means that the representa-
tions obtained for a structural task can be regarded
as more relevant linguistic features than the repre-
sentations obtained in a labeling task. The URIEL
language space is a reasonably good predictor with
moderate scores.9 The BPE productivity space is
close to MWL and sometimes even below it. A
reason for this could be the fact that this space
captures morphological properties which are not
informative enough for predicting xLAS.

All the scores with linguistic distances and MWL
decrease with higher sampling levels, which means
that the scores at the level of language and genus
might still be driven by representation biases in
the data. While confirming the expected trends,
our results provide a general sense of how big the
change is.

5.3 Local correlations

To investigate the impact of the scale on the cor-
relation between linguistic distances and xLAS,

9The scores that we observe are considerably lower than
what was observed in previous work (Lauscher et al., 2020).
This could be due to many reasons since our settings are very
different, but it is most likely due to the different sampling
approaches.
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Linguistic Correlation with xLAS
distance Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
URIEL -0.35 -0.14 -0.11 -0.42 -0.54 0.03 0.11
probe-A -0.86 -0.82 -0.63 -0.83 -0.79 -0.11 -0.34
probe-L -0.71 -0.51 -0.55 0.80 -0.59 -0.08 -0.35

BPE -0.55 0.11 -0.30 -0.38 -0.55 -0.01 -0.30
MWL -0.55 -0.09 -0.45 -0.33 -0.18 -0.11 -0.39
MSL -0.80 -0.21 -0.44 0.06 -0.30 0.14 0.31

Table 3: Local Spearman rank correlation between linguistic distance and xLAS scores. Cluster obtained from the
URIEL space with k-means.

we measure local correlations within smaller ar-
eas. Figure 2 shows the partition of the URIEL
space obtained by k-means clustering. The local
correlation scores are given in Table 3. Depen-
dency probes are still the best predictors within this
scope, but the URIEL space is often below BPE
and MWL. An important finding of this analysis
is the difference in the correlations between the
clusters: the correlations are stronger in clusters
1, 4, and 5, while they are very low in the other
clusters (except for MWL in the cluster no. 7). An
extreme case is the cluster no. 6, where no measure
provides any explanation for the xLAS scores. We
note that languages in this cluster come from many
different families (6 languages from 5 families).
The exceptional linguistic diversity is likely to be
the reason for this result, but the exact explanation
is still to be found. One possible explanation might
be that these languages might be wrongly grouped
together due to insufficient or inadequate linguistic
descriptions in the linguistic databases. This might
lead to overestimating their linguistic proximity,
while cross-linguistic parser are struggling with
real differences. Overall, predicting xLAS scores
seems much more straightforward if the languages
in a given sample come from the same language
family.

6 Conclusion

In this paper, we have shown that various linguistic
features can be good predictors of cross-linguistic
transfer of UD parsing models. As an alternative
to the typological syntactic features extracted from
the URIEL database, we propose several text-based
features and show that they are often better pre-
dictors. Those that encode syntactic structural in-
formation by design (dependency probes) are the
strongest predictors, while those that capture mor-
phology (BPE, MWL) are comparable to syntactic

features extracted from URIEL, especially on a
more local scale. In addition to the distance scales,
all the scores are impacted by the genealogical com-
position of the language samples. Explanations for
these findings remain an open question for future
work.

Limitations

Focusing on the linguistic distances in this paper,
we have not addressed the variation in xLAS scores,
that is whether it is easier to predict higher than
lower scores. Investigating different cases, we no-
ticed that moderate scores seem to be associated
with more noise in the correlation analysis, but this
effect would need to be quantified and established
in a separate study.

Another limitation of our work concerns poten-
tial interaction between the predictors that we stud-
ied. It might turn out that a combination of two or
more of our predictors in a linear model would pro-
vide a better explanation for the xLAS scores than
any individual predictor. Since we have introduced
two novel measures, our principal goal in this paper
was to test them in isolation. We leave the question
of potential interactions for future work.
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Ivan Vulić, Roi Reichart, Thierry Poibeau, Ekate-
rina Shutova, and Anna Korhonen. 2019. Modeling
language variation and universals: A survey on ty-
pological linguistics for natural language processing.
Computational Linguistics, 45(3):559–601.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392,
Austin, Texas. Association for Computational Lin-
guistics.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Sid-
dhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie
Hu, Dan Garrette, Graham Neubig, and Melvin John-
son. 2021. XTREME-R: Towards more challenging

276

https://doi.org/10.1137/S1064827500377332
https://doi.org/10.1137/S1064827500377332
https://doi.org/10.1137/S1064827500377332
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/D19-1167
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://doi.org/10.3115/v1/W14-4606
https://doi.org/10.3115/v1/W14-4606
https://doi.org/10.3115/v1/W14-4606
https://aclanthology.org/W06-2932
https://aclanthology.org/W06-2932
http://www.jstor.org/stable/23357556
http://www.jstor.org/stable/23357556
https://phoible.org/
https://doi.org/10.18653/v1/N19-1392
https://doi.org/10.18653/v1/N19-1392
https://doi.org/10.18653/v1/2022.acl-long.532
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.emnlp-main.802


and nuanced multilingual evaluation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10215–10245,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian
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A Missing Syntax Features in URIEL

ISO-3 Count ISO-3 Count
Lang feats Lang feats
code no value code no value
afr 66 lat 70
grc 70 lav 24
arb 37 lit 29
eus 18 mlt 97
bel 70 mar 37
bul 17 pcm 103
cat 47 nno 103
zho 1 chu 103
cop 36 fro 70
hrv 91 pes 18
ces 30 pol 29
dan 29 por 26
nld 32 ron 29
eng 0 rus 13
est 23 gla 28
fao 70 srp 68
fin 5 slk 103
fra 6 slv 43
glg 70 spa 2
deu 16 swe 23
got 71 swl 103
ell 17 tam 33
heb 16 tel 42
hin 21 tur 14
hun 12 ukr 26
isl 28 urd 40
ind 3 uig 45
gle 27 vie 10
ita 26 cym 22
jpn 13 hye 26
kor 15 wol 22

Table 4: The counts of missing syntactic features in
URIEL for languages included in UD. The table con-
tains some languages that were not included in our ex-
periments (due to sampling), but are listed as available
in UD.
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B Data Statistics

Treebank MSL MWL
UD_Afrikaans-AfriBooms 25.76 4.98
UD_Ancient_Greek-PROIEL 12.46 5.06
UD_Ancient_Greek-Perseus 13.93 4.59
UD_Arabic-PADT 31.58 4.52
UD_Armenian-ArmTDP 21.18 5.0
UD_Basque-BDT 13.52 5.6
UD_Belarusian-HSE 11.95 5.31
UD_Bulgarian-BTB 13.96 4.63
UD_Catalan-AnCora 31.75 4.29
UD_Chinese-GSD 24.67 1.58
UD_Chinese-GSDSimp 24.67 1.58
UD_Classical_Chinese-Kyoto 4.84 1.04
UD_Coptic-Scriptorium 11.89 5.4
UD_Croatian-SET 22.11 5.0
UD_Czech-CAC 20.09 5.06
UD_Czech-CLTT 32.27 5.45
UD_Czech-FicTree 13.1 4.01
UD_Czech-PDT 17.1 4.84
UD_Danish-DDT 18.34 4.41
UD_Dutch-Alpino 15.14 4.7
UD_Dutch-LassySmall 12.98 4.83
UD_English-Atis 11.38 4.71
UD_English-ESL 19.04 3.87
UD_English-EWT 16.1 4.11
UD_English-GUM 18.05 4.18
UD_English-GUMReddit 18.45 3.94
UD_English-LinES 18.06 3.98
UD_English-ParTUT 24.41 4.53
UD_English-Tweebank2 15.1 4.08
UD_Estonian-EDT 13.99 5.55
UD_Estonian-EWT 12.05 4.7
UD_Faroese-FarPaHC 22.64 3.58
UD_Finnish-FTB 8.5 5.95
UD_Finnish-TDT 13.31 6.49
UD_French-FTB 29.96 4.33
UD_French-GSD 23.86 4.41
UD_French-ParTUT 29.04 4.64
UD_French-Rhapsodie 14.67 3.5
UD_French-Sequoia 22.03 4.57
UD_Galician-CTG 31.66 4.86
UD_German-GSD 18.76 5.27
UD_German-HDT 17.99 5.67
UD_German-tweeDE 9.25 4.74
UD_Gothic-PROIEL 10.34 5.21
UD_Greek-GDT 24.8 5.11
UD_Hebrew-HTB 18.76 4.03
UD_Hindi-HDTB 21.13 3.83
UD_Hindi_English-HIENCS 13.95 3.75
UD_Hungarian-Szeged 22.16 5.46
UD_Icelandic-IcePaHC 20.72 4.04
UD_Icelandic-Modern 23.04 4.43
UD_Indonesian-GSD 21.39 5.25
UD_Irish-IDT 23.94 4.52

Treebank MSL MWL
UD_Italian-ISDT 19.63 4.65
UD_Italian-ParTUT 25.53 4.93
UD_Italian-PoSTWITA 17.77 4.72
UD_Italian-TWITTIRO 19.91 4.56
UD_Italian-VIT 25.22 4.75
UD_Japanese-GSD 23.88 1.65
UD_Japanese-GSDLUW 18.48 2.13
UD_Korean-GSD 12.88 2.84
UD_Korean-Kaist 12.88 2.84
UD_Latin-ITTB 17.16 5.06
UD_Latin-LLCT 26.64 4.91
UD_Latin-PROIEL 10.81 5.38
UD_Latin-UDante 32.76 4.9
UD_Latvian-LVTB 16.92 5.1
UD_Lithuanian-ALKSNIS 20.35 5.58
UD_Lithuanian-HSE 20.98 5.1
UD_Maltese-MUDT 20.37 4.56
UD_Marathi-UFAL 7.32 4.03
UD_Naija-NSC 15.37 2.97
UD_Norwegian-Bokmaal 15.54 4.47
UD_Norwegian-Nynorsk 17.31 4.51
UD_Norwegian-NynorskLIA 10.32 3.15
UD_Old_Church_Slavonic-PROIEL 9.08 4.5
UD_Old_East_Slavic-TOROT 8.9 4.5
UD_Old_French-SRCMF 11.21 3.5
UD_Persian-PerDT 17.01 3.82
UD_Persian-Seraji 25.0 3.78
UD_Polish-LFG 7.6 4.64
UD_Polish-PDB 15.78 5.07
UD_Portuguese-Bosque 22.65 4.42
UD_Portuguese-GSD 24.75 4.34
UD_Romanian-Nonstandard 22.09 3.77
UD_Romanian-RRT 23.02 4.69
UD_Romanian-SiMoNERo 31.19 5.19
UD_Russian-GSD 19.46 5.28
UD_Russian-SynTagRus 17.3 5.04
UD_Russian-Taiga 11.01 4.58
UD_Scottish_Gaelic-ARCOSG 19.02 4.2
UD_Serbian-SET 22.31 4.93
UD_Slovak-SNK 9.5 4.41
UD_Slovenian-SSJ 17.37 4.63
UD_Spanish-AnCora 30.98 4.43
UD_Spanish-GSD 26.44 4.41
UD_Swedish-LinES 17.46 4.46
UD_Swedish-Talbanken 15.49 4.98
UD_Swedish_Sign_Language-SSLC 7.4 8.91
UD_Tamil-TTB 14.34 7.21
UD_Telugu-MTG 4.84 4.66
UD_Turkish-Atis 8.47 6.65
UD_Turkish-BOUN 12.46 5.51
UD_Turkish-FrameNet 7.14 5.36
UD_Turkish-IMST 10.05 5.41
UD_Turkish-Kenet 9.31 5.41
UD_Turkish-Penn 11.21 5.61
UD_Turkish-Tourism 4.64 5.03
UD_Turkish_German-SAGT 17.31 4.53
UD_Ukrainian-IU 16.8 4.64
UD_Urdu-UDTB 26.88 3.57
UD_Uyghur-UDT 11.63 5.48
UD_Vietnamese-VTB 14.49 3.99
UD_Welsh-CCG 19.73 4.06
UD_Western_Armenian-ArmTDP 18.13 5.06
UD_Wolof-WTB 19.21 3.46

Table 5: Mean Sentence Length (MSL) and Mean Word
Length (MWL) values per treebank.
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Abstract

The success of scene graphs for visual scene
understanding has brought attention to the ben-
efits of abstracting a visual input (e.g., image)
into a structured representation, where enti-
ties (people and objects) are nodes connected
by edges specifying their relations. Building
these representations, however, requires ex-
pensive manual annotation in the form of im-
ages paired with their scene graphs or frames.
These formalisms remain limited in the na-
ture of entities and relations they can cap-
ture. In this paper, we propose to leverage
a widely-used meaning representation in the
field of natural language processing, the Ab-
stract Meaning Representation (AMR), to ad-
dress these shortcomings. Compared to scene
graphs, which largely emphasize spatial rela-
tionships , our visual AMR graphs are more
linguistically informed, with a focus on higher-
level semantic concepts extrapolated from vi-
sual input. Moreover, they allow us to gen-
erate meta-AMR graphs to unify information
contained in multiple image descriptions under
one representation. Through extensive experi-
mentation and analysis, we demonstrate that
we can re-purpose an existing text-to-AMR
parser to parse images into AMRs. Our find-
ings point to important future research direc-
tions for improved scene understanding.

1 Introduction

The ability to understand and describe a scene
is fundamental for the development of truly in-
telligent systems, including autonomous vehicles,
robots navigating an environment, or even sim-
pler applications such as language-based image
retrieval. Much work in computer vision has fo-
cused on two key aspects of scene understanding,
namely, recognizing entities, including object de-
tection (Liu et al., 2016; Ren et al., 2015; Carion

*Work done during an internship at Samsung AI Centre -
Toronto
†Work done while at Samsung AI Centre - Toronto

et al., 2020; Liu et al., 2020a) and activity recog-
nition (Herath et al., 2017; Kong and Fu, 2022; Li
et al., 2018; Gao et al., 2018), as well as under-
standing how entities are related to each other, e.g.,
human–object interaction (Hou et al., 2020; Zou
et al., 2021) and relation detection (Lu et al., 2016;
Zhang et al., 2017; Zellers et al., 2018).

A natural way of representing scene entities and
their relations is in graph form, so it is perhaps un-
surprising that a lot of work has focused on graph-
based scene representations and especially on scene
graphs (Johnson et al., 2015a). Scene graphs en-
code the salient regions in an image (mainly, ob-
jects) as nodes, and the relations among these
(mostly spatial in nature) as edges, both labelled via
natural language tags; see Fig. 1(b) for an example
scene graph. Along the same lines, Yatskar et al.
(2016) propose to represent a scene as a semantic
role labelled frame, drawn from FrameNet (Rup-
penhofer et al., 2016) — a linguistically-motivated
approach that draws on semantic role labelling lit-
erature.

Scene graphs and situation frames can capture
important aspects of an image, yet they are limited
in important ways. They both require expensive
manual annotation in the form of images paired
with their corresponding scene graphs or frames.
Scene graphs in particular also suffer from being
limited in the nature of entities and relations that
they capture (see Section 2 for a detailed analysis).
Ideally, we would like to capture event-level se-
mantics (same as in situation recognition) but as a
structured graph that captures a diverse set of rela-
tions and goes beyond low-level visual semantics.

Inspired by the linguistically-motivated image
understanding research, we propose to represent
images using a well-known graph formalism for
language understanding, i.e., Abstract Meaning
Representations (AMRs Banarescu et al., 2013).
Similarly to (visual) semantic role labeling, AMRs
also represent “who did what to whom, where,
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Someone riding a wave on their surfboard.  
A man riding a wave  on top of a surfboard.  
A surfer is  on a surfboard riding a large wave. 
A man surfing a wave in front of a cliff. 
A man surfing with the waves in the sea near mountain side.

(a) Meta AMR

(z0 / ride-01 
  :ARG0 (z1 / man 
    :location (z2 / on 
       :op1 (z3 / surfboard) 
         :location (z4 / top))) 
  :ARG1 (z5 / wave 
    :mod (z6 / large)) 
  :location (z7 / front 
    :op1 (z8 / cliff)) 
  :location (z9 / sea 
    :ARG1-of (z10 / near-02 
      :ARG2 (z11 / side 
        :part-of (z12 / mountain)))))

:ARG0

z0/ride-01

z1/man

:ARG1 :location

:location

z2/on

:location

z5/wave z7/front

z8/cliff

z9/sea

z6/large

:mod z10/near-01

z11/side

z12/mountain

:ARG1-of

:ARG2

:part-of
z4/top z3/surfboard

:location :op1

:op1

(b) Scene Graph

cone

surfer

water

surfboardwetsuit

wave man

crevasse
IN

WEARING

hitting

behind

ON

stone surface shadow formation

Linearized AMR

Figure 1: An image from MSCOCO and Visual Genome dataset, along with its five human-generated captions,
and: (a) an image-level meta-AMR graph capturing its overall semantics, (b) its human-generated scene graph.

when, and how?” (Màrquez et al., 2008), but in
a more structured way via transforming an image
into a graph representation. AMRs not only en-
code the main events, their participants and argu-
ments, as well as their relations (as in semantic
role labelling/situation recognition), but also re-
lations among various other participants and ar-
guments; see Fig. 1(a). Importantly, AMR is a
broadly-adopted and dynamically evolving formal-
ism (e.g., Bonial et al., 2020; Bonn et al., 2020;
Naseem et al., 2021), and AMR parsing is an ac-
tive and successful area of research (e.g., Zhang
et al., 2019b; Bevilacqua et al., 2021; Xia et al.,
2021; Drozdov et al., 2022). Finally, given the high
quality of existing AMR parsers (for language), we
do not need manual AMR annotations for images,
and can rely on existing image–caption datasets to
create high quality silver data for image-to-AMR
parsing. In summary, we make the following con-
tributions:

• We introduce the novel problem of parsing im-
ages into Abstract Meaning Representations, a
widely-adopted linguistically-motivated graph
formalism; and propose the first image-to-AMR
parser model for the task.

• We present a detailed analysis and comparison
between scene graphs and AMRs with respect to
the nature of entities and relations they capture,
results of which further motivates research in the
use of AMRs for better image understanding.

• Inspired by work on multi-sentence AMR, we
propose a graph-to-graph transformation algo-
rithm that combines the meanings of several im-
age caption descriptions into image-level meta-
AMR graphs. The motivation behind generating
the meta-AMRs is to build a graph that covers

most of entities, predicates, and semantic rela-
tions contained in the individual caption AMRs.

Our analyses suggest that AMRs encode aspects
of an image content that are not captured by the
commonly-used scene graphs. Our initial results
on re-purposing a text-to-AMR parser for image-to-
AMR parsing, as well as on creating image-level
meta-AMRs, point to exciting future research di-
rections for improved scene understanding.

2 Motivation: AMRs vs. Scene Graphs

Scene graphs (SGs) are a widely-adopted graph
formalism for representing the semantic content of
an image. Scene graphs have been shown useful for
various downstream tasks, such as image caption-
ing (Yang et al., 2019; Li and Jiang, 2019; Zhong
et al., 2020), visual question answering (Zhang
et al., 2019a; Hildebrandt et al., 2020; Damodaran
et al., 2021), and image retrieval (Johnson et al.,
2015b; Schuster et al., 2015; Wang et al., 2020;
Schroeder and Tripathi, 2020). However, learning
to automatically generate SGs requires expensive
manual annotations (object bounding boxes and
their relations). SGs were also shown to be highly
biased in the entity and relation types that they
capture. For example, an analysis by Zellers et al.
(2018) reveals that clothing (e.g., dress) and ob-
ject/body parts (e.g., eyes, wheel) make up over
one-third of entity instances in the SGs correspond-
ing to the Visual Genome images (Krishna et al.,
2016), and that more than 90% of all relation in-
stances belong to the two categories of geometric
(e.g., behind) and possessive (e.g., have).

One advantage of AMR graphs is that we can
draw on supervision through captions associated
with images. Nonetheless, the question remains as
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to what types of entities and relations are encoded
by AMR graphs, and how these differ from SGs. To
answer this question, we follow an approach similar
to Zellers et al. (2018), and categorize entities and
relations in SG and AMR graphs corresponding to a
sample of 50K images. We use the same categories
as Zellers et al., but add a few new ones to capture
relation types specific to AMRs, namely, Attribute
(small), Quantifier (few), Event (soccer), and AMR
specific (date-entity). Details of our categorization
process are provided in Appendix A.

Figure 2 shows the distribution of instances for
each Entity and Relation category, compared across
SG and AMR graphs. AMRs tend to encode a
more diverse set of relations, and in particular cap-
ture more of the abstract semantic relations that
are missing from SGs. This is expected because
our caption-generated AMRs by design capture
the essential meaning of the image descriptions
and, as such, encode how people perceive and de-
scribe scenes. In contrast, SGs are designed to
capture the content of an image, including regions
representing objects and (mainly spatial/geometric)
visually-observable relations; see Fig. 1 for SG and
AMR graphs corresponding to an image. In the con-
text of Entities, and a major departure from SGs,
(object/body) parts are less frequently encoded in
AMRs, pointing to the well-known whole-object
bias in how people perceive and describe scenes
(Markman, 1990; Fei-Fei et al., 2007). In contrast,
location is more frequent in AMRs.

The focus of AMRs on abstract content suggests
that they have the potential for improving down-
stream tasks, especially when the task requires an
understanding of the higher level semantics of an
image. Interestingly, a recent study showed that
using AMRs as an intermediate representation for
textual SG parsing helps improve the quality of the
parsed SGs (Choi et al., 2022), even though AMRs
and SGs encode qualitatively different information.
Since AMRs tend to capture higher level semantics,
we propose to use them as the final image represen-
tation. The question remains as to how difficult it is
to directly learn such representations from images.
The rest of the paper focuses on answering this
question.

3 Method

3.1 Parsing Images into AMR Graphs

We develop image-to-AMR parsers based on
a state-of-the-art seq2seq text-to-AMR parser,
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Figure 2: Statistics on a selected set of top-frequency
Entity and Relation categories, extracted from the
AMR and SG graphs corresponding to around 50K im-
ages that appear in both Visual Genome and MSCOCO.

SPRING (Bevilacqua et al., 2021), and a mul-
timodal VL-BART (Cho et al., 2021). Both
are transformer-based architectures with a bi-
directional encoder and an auto-regressive de-
coder. SPRING extends a pre-trained seq2seq
model, BART (Lewis et al., 2020), by fine-tuning it
on AMR parsing and generation. Next, we describe
our models, input representation, and training.

Models. We build two variants of our image-to-
AMR parser, as depicted in Fig. 3(a) and (b).

• Our first model, which we refer to as
IMG2AMRdirect, modifies SPRING by replac-
ing BART with its vision-and-language coun-
terpart, VL-BART (Cho et al., 2021). VL-
BART extends BART with visual understand-
ing ability through fine-tuning on multiple
vision-and-language tasks. With this modi-
fication, our model can receive visual features
(plus text) as input, and generate linearized
AMR graphs.
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Figure 3: Model architecture for our two image-to-AMR models: (a) IMG2AMRdirect: A direct model that uses
a single seq2seq encoder–decoder to generate linearlized AMRs from input images; and (b) IMG2AMR2stage: A
two-stage model containing two independent seq2seq components. g and r stand for global and region features, q
for tag embeddings, and n for the embeddings of the predicted nodes. The input and output space of the decoders
come from the AMR vocabulary.

• Our second model, inspired by text-to-graph
AMR parsers (e.g., Zhang et al., 2019b; Xia
et al., 2021), generates linearized AMRs in
two stages by first predicting the nodes, and
then the relations. Specifically, we first pre-
dict the nodes of the linearized AMR for a
given image. These predicted nodes are then
fed (along with the image) as input into a sec-
ond seq2seq model that generates a linearized
AMR (effectively adding the relations). We
refer to this model as IMG2AMR2stage.

Input Representation. To represent images, we
follow VL-BART, which takes the output of Faster
R-CNN (Ren et al., 2015) (i.e., region features
and coordinates for 36 regions) and projects them
onto d = 768 dimensional vectors via two separate
fully-connected layers. Faster R-CNN region fea-
tures are obtained via training for visual object and
attribute classification (Anderson et al., 2018) on
Visual Genome. The visual input to our model is
composed of position-aware embeddings for the 36
regions, plus a global image-level feature (r and g
in Fig. 3). To get the position-aware embeddings
for the regions, we add together the projected re-
gion and coordinate embeddings. To get the global
image feature, we use the output of the final hid-
den layer in ResNet-101 (He et al., 2016), which is
passed through the same fully connected layer as
the regions to obtain a 768-dimensional vector.

Training. To benefit from transfer learning, we
initialize the encoder and decoder weights of both
our models from the pre-trained VL-BART. This
is a reasonable initialization strategy, given that
VL-BART has been pre-trained on input similar to
ours. Moreover, a large number of AMR labels are
drawn from the English vocabulary, and thus the

pre-training of VL-BART should also be appropri-
ate for AMR generation. We fine-tune our models
on the task of image-to-AMR generation, using
images paired with their automatically-generated
AMR graphs. We consider two alternative AMR
representations: (a) caption AMRs, created directly
from captions associated with images (see Sec-
tion 4 for details); and (b) image-level meta-AMRs,
constructed through an algorithm we describe be-
low in Section 3.2. We perform experiments with
either caption or meta-AMRs, where we train and
test on the same type of AMRs. For the various
stages of training, we use the cross-entropy loss be-
tween the model predictions and the ground-truth
labels for each token, where the model predictions
are obtained greedily, i.e., choosing the token with
the maximum score at each step of the sequence
generation.

3.2 Learning per-Image meta-AMR Graphs

Recall that, in order to collect a data set of im-
ages paired with their AMR graphs, we rely on
image–caption datasets such as MSCOCO. Specifi-
cally, we use a pre-trained AMR parser to generate
AMR graphs from each caption of an image. Im-
ages can be described in many different ways, e.g.,
each image in MSCOCO comes with five different
human-generated captions. We hypothesize that
these captions collectively represent the content of
the image they are describing, and as such propose
to also combine the caption AMRs into image-level
meta-AMR graphs through a merge and refine pro-
cess that we explain next.

Prior work has used graph-to-graph transfor-
mations for merging sentence-level AMRs into
document-level AMRs for abstractive and multi-
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Algorithm 1 META-AMR Graph Construction
1: Input: k human-generated image descriptions {ci}ki=1 for

a given image i; a set of pre-defined AMR relation types
R;

2: Output: A meta-AMR graph gmeta;
3: Initialize: Generate AMR graphs {gi} for the k descrip-

tions using a pre-trained AMR semantic parser; Initialize
gm = (N , E) to be the null graph.

4: N = ∪k
i=1Ni

5: for i = 1 ∼ k do
6: Ei = getEdges(gi)
7: for (ns, nt) : r ∈ Ei do . (ns, nt) is a pair of nodes

connected via an edge labeled as r
8: if (ns, nt) /∈ E .keys()

↪→ ∧ (nt, ns) /∈ E .keys()
↪→ ∧ r ∈ R then

9: E .add({(ns, nt) : r}) . Add a new edge when
neither (ns, nt) nor (nt, ns) previously included, and r
belongs to a pre-selected set of AMR relation typesR

10: Gm = weaklyConnectedComponents(gm) . Get all
connected components as gmeta candidates since it should
be a connected graph according to the definition of AMR

11: gmeta = getLargestComponent(Gm) . Get the
candidate with the largest number of nodes as it can cover
most entities and predicates in the image

12: gmeta = refineNodes(gmeta) . Replace node types by
their frequent hypernym if available

13: return gmeta

document summarization (e.g., Liu et al., 2015;
Liao et al., 2018; Naseem et al., 2021). Unlike in
a summarization task, captions do not form a co-
herent document, but instead collectively describe
an image. Inspired by prior work, we propose
our graph-to-graph transformation algorithm that
learns a unified meta-AMR graph from caption
graphs; see Algorithm 1. Specifically, we first
merge the nodes and edges from the original set
of k caption-level AMRs, only including a pre-
defined set of relation/edge labels. We then select
the largest connected component of this merged
graph, which we further refine by replacing non-
predicate nodes by their more frequent hypernyms,
when available. The motivation behind this refine-
ment process is to reduce the complexity of the
meta-AMR graphs (in terms of their size), which
would potentially improve parsing performance.
An example of a meta-AMR graph generated from
caption AMRs is given in Appendix C.

AMR graphs of the MSCOCO training captions
contain more than 90 types of semantic relations
and more than 21K node types, with long-tailed dis-
tributions; see Fig. 6 in Appendix B. To refine meta-
AMR graphs, we only maintain the top-20 most fre-
quent relation types that include core roles, such as
ARG0, ARG1, etc., as well as high-frequency non-
core roles, such as mod and location. To further

refine the graphs, we replace each non-predicate
node (e.g., salmon) with its most frequent hyper-
nym (e.g., fish) according to WordNet (Fellbaum,
1998). This results in just about 30% reduction in
the number of node types (to 15K). The average
complexity of graphs is also reduced from 19 nodes
and 23 relations to 16 and 18, respectively.

4 Experimental Setup

Data. For our task of AMR generation from im-
ages, we use an augmented version of the stan-
dard MSCOCO image–caption dataset, which is
composed of images paired with their captions,
automatically generated caption-level linearized
AMR graphs, and an image-level linearized meta-
AMR graph. We use the splits established in pre-
vious work (Karpathy and Fei-Fei, 2015), contain-
ing 113, 287 training, 5000 VALidation, and 5000
TEST images, where each image is associated with
five manually-annotated captions. Following the
cross-modal retrieval work involving MSCOCO
(e.g., Lee et al., 2018), we use a subset of the
VAL and TEST sets, containing 1000 images each.
AMR graphs of the captions are obtained by run-
ning the SPRING text-to-AMR parser (Bevilacqua
et al., 2021) that is trained on AMR2.0 dataset.1

The meta-AMR graph is created from the individ-
ual AMRs through our merge and refine process
described in Algorithm 1 of Section 3.

Parser implementation details. We initialize
our IMG2AMR models from VL-BART, which is
based on BARTBase. BART uses a sub-word tok-
enizer with a vocabulary size of 50, 265. Following
SPRING, we expand the vocabulary to include fre-
quent AMR-specific tokens and symbols (e.g., :OP,
ARG1, temporal-entity), resulting in a vocabulary
size of 53, 587. The addition of AMR-specific sym-
bols in vocabulary improves efficiency by avoiding
extensive sub-token splitting. The embeddings of
these additional tokens are initialized by taking the
average of the embeddings of their sub-word con-
stituents. The IMG2AMRdirect models are trained
for 60 epochs, while the IMG2AMR2stage models
are trained for 30 epochs per stage. We use a batch
size of 10 with gradients being accumulated for
10 batches (hence an effective batch size of 100),
the batch size was limited due to the length of
the linearized meta-AMRs. The optimizer used is
RAdam (Liu et al., 2020b), with a learning rate

1
https://catalog.ldc.upenn.edu/LDC2017T10
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Model Train/Test AMRs SMATCH SEMBLEU-1 SEMBLEU-2

IMG2AMRdirect meta-AMRs 37.7 ± 0.2 32.6 ± 0.8 15.2 ± 0.5

IMG2AMR2stage meta-AMRs 38.6 ± 0.3 30.9 ± 0.4 15.6 ± 0.3

IMG2AMRdirect caption AMRs 52.3 ± 0.4 68.6 ± 0.4 38.4 ± 0.8

Table 1: TEST results, averaged over 3 runs, for our IMG2AMR models that follow the best setting, when trained
and tested on either meta-AMRs or caption AMRs.

of 10−5, and a dropout rate of 0.25. Each experi-
ment is run on one Nvidia V100-32G GPU. Model
selection is done based on the best SEMBLEU-1.

5 Results

5.1 Image-to-AMR Parsing Performance

We use the standard measures of SMATCH (Cai and
Knight, 2013) and SEMBLEU (Song and Gildea,
2019) to evaluate our various image-to-AMR mod-
els. SMATCH compares two AMR graphs by cal-
culating the F1-score between the nodes and edges
of these two graphs. This score is calculated after
applying a one-to-one mapping of the two AMRs
based on their nodes. This mapping is chosen so
that it maximizes the F1-score between the two
graphs. However, since finding the best exact map-
ping is NP-complete, a greedy hill-climbing algo-
rithm with multiple random initializations is used
to obtain this best mapping. SEMBLEU extends
the BLEU (Papineni et al., 2002) metric to AMR
graphs, where each AMR node is considered a uni-
gram (used in SEMBLEU-1), and each pair of con-
nected nodes along with their connecting edge is
considered a bigram (used in SEMBLEU-2). These
metrics are calculated between the model predic-
tions and the noisy AMR ground-truth.

We report results on generating caption AMRs
(when the models are trained and tested on these
AMRs), as well as meta-AMRs. When evaluating
on caption AMR generation, we compare the model
output to the five reference AMRs, and report the
maximum of these five scores. The intuition is to
compare the predicted AMR to the most similar
AMR from the five references. Table 1 (top two
rows) shows the performance of the models on the
task of generating meta-AMRs from TEST images.
We perform ablations of the model input combina-
tions on VAL set (see Section D below), and report
TEST results for the best setting, which uses all the
input features for both models. The 2stage model
does slightly better on this task, when looking at

the SMATCH and SEMBLEU-2 metrics that take the
structure of AMRs into account. Note that SEM-
BLUE-1 only compares the nodes of the predicted
and ground-truth graphs.

Meta-AMR graphs tend to, on average, be longer
than individual caption AMRs (∼34 vs ∼12 nodes
and relations). We thus expect the generation
of meta-AMRs to be harder than that of caption
AMRs. Moreover, although we hypothesize that
meta-AMRs capture a holistic meaning for an im-
age, the caption AMRs still capture some (possibly
salient) aspect of an image content, and as such are
useful to predict, especially if they can be generated
with higher accuracy. We thus report the perfor-
mance of our direct model on generating caption
AMRs (when trained on caption AMR graphs); see
the final row of Table 1. We can see that, as ex-
pected, performance is much higher on generating
caption AMRs vs. meta-AMRs.

Given that AMRs and natural language are by de-
sign closer in the semantic space, unlike for AMRs
and images, it is not unexpected that the results
for our image-to-AMR task are not comparable
with those of SoTA text-to-AMR parsers, includ-
ing SPRING. Our results highlight the challenges
similar to those of general image-to-graph parsing
techniques, including visual scene graph genera-
tion (Zhu et al., 2022), where there still exists a
large gap in predictive model performance.

5.2 Image-to-AMR for Caption Generation

To better understand the quality of our generated
AMRs, we use them to automatically generate
sentences from caption AMRs (using an existing
AMR-to-text model), and evaluate the quality of
these generated sentences against the reference
captions of their corresponding images. Specif-
ically, we use the SPRING AMR-to-text model
that we train from scratch on a dataset composed
of AMR2.0, plus the training MSCOCO captions
paired with their (automatically-generated) AMRs.
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Model BLEU-4 CIDEr METEOR SPICE

IMG2AMRdirect + AMR2TXT 31.7 111.7 26.8 20.4
VL-BART∗ 35.1 116.6 28.7 21.5

Table 2: Image captioning results on TEST set, compared with the best reported captioning results for VL-BART.

We evaluate the quality of our AMR-generated cap-
tions using standard metrics commonly used in the
image captioning community, i.e., CIDEr (Vedan-
tam et al., 2015), METEOR (Denkowski and
Lavie, 2014), BLEU-4 (Papineni et al., 2002), and
SPICE (Anderson et al., 2016), and compare against
VL-BART’s best captioning performance as re-
ported in the original paper (Cho et al., 2021). Re-
ported in Table 2, the results clearly show that the
quality of the generated AMRs are such that rea-
sonably good captions can be generated from them,
suggesting that AMRs can be used as intermediate
representations for such downstream tasks. Future
work will need to explore the possibility of further
adapting the AMR formalism to the visual domain,
as well as the possibility of enriching image AMRs
via incorporating additional linguistic or common-
sense knowledge, that could potentially result in
better quality captions.

5.3 Performance per Concept Category
The analysis presented in Section 2 suggests many
concepts in AMR graphs tend to be on the more
abstract (less perceptual) side. We thus ask the fol-
lowing question: What are some of the categories
that are harder to predict? To answer this question,
we look into the node prediction performance of
our two-stage model for the different entity and
relation categories of Section 2. Note that this cat-
egorization is available for a subset of nodes only.
To get the per-category recall and precision val-
ues, we take the node predictions of the first stage
of the IMG2AMR2stage model (trained to predict
meta-AMR nodes) on the VAL set. For each VAL

image i, we have a set of predicted nodes, which
we compare to the set of nodes in the ground-truth
meta-AMR associated with the image. When calcu-
lating per-category recall/precision values, we only
consider nodes that belong to that category. We cal-
culate per-image true positive, true negative, and
false positive counts, which are used to obtain the
recall and precision using micro-averaging. Fig. 4
presents the per-category (as well as overall) recall
and precision values over the VAL set.

Interestingly, events (e.g., festival, baseball, ten-

nis) have the highest precision and recall. These
are abstract concepts that are largely absent from
SGs, suggesting that relying on a linguistically-
motivated formalism is beneficial in capturing such
abstract aspects of an image content. The event
category contains 14 different types, many refer-
ring to sports that have a very distinctive setup, e.g.,
people wearing specific clothes, holding specific
objects, etc. The possibility of encoding such ab-
stract concepts in the training AMRs (generated
from human-written descriptions likely to mention
the event) helps the model learn to generate them
for the relevant images during inference. The next
group with high precision and recall are entities
(which are likely to be more closely tied to the im-
age regions), and possessives (containing a small
number of high-frequency relations, e.g., have and
wear). Semantic relations have a decent perfor-
mance, but contain a diverse number of types, and
need to be further analyzed to disentangle the effect
of category vs. frequency.

Quantifiers (many of which are related to count-
ing), geometric relations, and attributes seem to
be particularly hard to predict. Counting is known
to be hard for deep learning models. Geometric
relations are much less frequent in AMRs, com-
pared to SGs. Perhaps, we do need to rely on
special features (e.g., relative position of bounding
boxes) to improve performance on these relations.
Attributes (such as young, old, small) require the
model to learn subtle visual cues. In addition to un-
derstanding what input features may help improve
performance on these categories, we need to further
adapt the AMR formalism to the visual domain.

5.4 Qualitative Samples: Generating
Descriptive Captions from meta-AMRs

In Section 5.2, we showed that caption AMRs pro-
duced by our IMG2AMR model can be used to
generate reasonably good quality captions via an
AMR-to-text model. Here, we provide samples of
how meta-AMRs can be used as rich intermediate
representations for generating descriptive captions;
see Fig. 5 and Section E. To get these captions, we
apply the same AMR-to-text model that we trained
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Figure 4: Node prediction performance on VAL, for the
two-stage model, broken down by category.

as described in Section 5.2 to the meta-AMRs pre-
dicted by our IMG2AMRdirect model. Captions
generated from meta-AMRs tend to be longer than
the original human-generated captions, and contain
much more details about the scene. These captions,
however, sometimes contain repetitions of the same
underlying concept/relation (though using different
wordings), e.g., caption (a) contains both in grass
and in a grassy area. We also see that our hyper-
nym replacement sometimes results in using a more
general term in place of a more specific but more
appropriate term, e.g., woman instead of girl in (d).
Nonetheless, these results generally point to the
usefulness of AMRs and especially meta-AMRs
for scene representation and caption generation.

6 Discussion and Outlook

In this paper, we proposed to use a well-known
linguistic semantic formalism, i.e., Abstract Mean-
ing Representation (AMR) for scene understand-
ing. We showed through extensive analysis the
advantages of AMR vs. the commonly-used visual
scene graphs, and proposed to re-purpose existing
text-to-AMR parsers for image-to-AMR parsing.
Additionally we proposed a graph transformation
algorithm that merges several caption-level AMR
graphs into a more descriptive meta-AMR graph.
Our quantitative (intrinsic and extrinsic) and qual-
itative evaluations demonstrate the usefulness of

(meta-)AMRs as a scene representation formalism.
Our findings point to a few exciting future re-

search directions. Our image-to-AMR parsers can
be improved by incorporating richer visual features,
a better understanding of the entity and relation cat-
egories that are particularly hard to predict for our
current models, as well as drawing on methods
used for scene graph generation (e.g., Zellers et al.,
2018; Zhu et al., 2022). Our meta-AMR generation
algorithm can be further tuned to capture visually-
salient information (e.g., quantifiers are too hard
to learn from images, and perhaps can be dropped
from a visual AMR formalism).

Our qualitative samples of captions generated
from meta-AMRs show their potential for gener-
ating descriptive and/or controlled captions. Con-
trollable image captioning has received a great deal
of attention lately (e.g., Cornia et al., 2019; Chen
et al., 2020, 2021). It focuses on the use of sub-
jective control, including personalization and style-
focused caption generation, as well as objective
control on content (controlling what the caption is
about, e.g., focused on a set of regions), or on the
structure of the output sentence (e.g., controlling
sentence length). We believe that by using AMRs
as intermediate scene representations, we can bring
together the work on these various types of control,
as well as draw on the literature on controllable
natural language generation (Zhang et al., 2022)
for advancing research on rich caption generation.
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(a) A couple of giraffe stand-
ing next to each other in a
field near rocks walking in
grass in a grassy area.

(b) A yellow and blue fire hy-
drant on a city street in front
at an intersection sitting on
the side of the road near a traf-
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beach plate, traveling and
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eating a sandwich and hold-
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smiling while eating.

(e) A white area filled with
lots of different kinds of
donuts with various toppings
sitting on them.
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water posing for a picture.

(g) A person in a red jacket
cross country skiing down a
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snowy mountain.

(h) A person in black shirt sit-
ting at a table in a building
with a plate of food with and
smiling while having meal.

Figure 5: A sample of images, along with descriptive captions automatically generated from the meta-AMRs
predicted by our IMG2AMRdirect model. Refer to Section E for the generated meta-AMRs. The url and license
information for each of these images is available in Section E. Faces were blurred for privacy.
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A AMR vs. SG: Entity and Relation
Categorization Details

The analysis provided in Section 2 requires us
to annotate the entities and relations of a sample
of AMRs and SGs into a pre-defined set of cate-
gories. We first select all images that appear in both
MSCOCO (Lin et al., 2014) and Visual Genome,
so we have access to ground-truth scene graphs,
as well as captions from which we can generate
AMR graphs for the same set of images. We use a
single AMR per image, generated from the longest
caption, but include all SGs associated with an
image in our analysis. For each SG and AMR
graph, we consider the entities and relations cor-
responding to ∼900 most frequent types (around
1.3M entity and 1M relation instances for SGs; and
around 130K entity and 150K relation instances for
AMRs). We annotate these into a pre-defined set
of entity and relation categories, including those
defined by (Zellers et al., 2018) plus a few we add
to cover new AMR relations. Table 5 provides a
breakdown of the categories, as well as examples
of word types we considered to belong to each
category. The table also provides the total num-
ber of word types per category and percentages of
instances across all types for each category.

Next, we describe our annotation process. SG
nodes (entities) come with their most common
WordNet sense annotations, which we use to iden-
tify their categories. For SG relations, we manually
annotate their categories. To annotate AMR enti-
ties and relations, we follow a similar procedure,
by automatically finding the most common Word-
Net sense for non-predicate AMR nodes (assuming
most of these will be entities) and correcting them if
needed. For example, the automatically-identified
most common sense of mouse is the Animal sense,
whereas in our captions, almost all instances of
the word point to the computer mouse (Artifact).
For any remaining concepts, including predicate
nodes (e.g., eat, stand) and entities for which a cat-
egory cannot be assigned automatically, we manu-
ally identify their categories.

B Distribution of AMR Node Types

Fig. 6 shows the distribution of the 90 AMR
role/edge types in our training data. As we can
see, keeping the top-20 types is justified given the
skewed distribution of the types. Future work will
need to examine the nature of the less frequent rela-
tions, and the implications of removing them from

AMR graphs.
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Figure 6: Frequency of the 90 AMR role/edge types
prior to the refinement process, which exhibits the char-
acteristics of a long-tail distribution.

C Meta-AMR Construction Example

Fig. 7 shows an example of how a meta-AMR is
constructed from five caption-level AMRs. The
corresponding captions are provided in red, and the
AMR graphs are given in PENMAN notation.

D Ablations

Effect of input on node prediction performance.
Table 3 presents performance of meta-AMR node
prediction (first stage of IMG2AMR2stage) with dif-
ferent input combinations, in terms of Precision
and Recall (when predicted and ground-truth nodes
are taken as sets), and BLEU-1 (when the order
of nodes in the final linearized AMR is taken into
consideration). These results suggest that an over-
all best performance is achieved by using all input
features, namely regions, tags and global image
feature.

{r} {q} {g} Recall Precision BLEU-1

X - - 34.5 47.1 33.1
- X - 30.4 42.8 29.7
- - X 30.6 39.9 29.1
X X - 35.8 49.0 34.3
X - X 35.1 47.5 33.9
- X X 32.9 46.5 32.1
X X X 36.7 48.4 35.6

Table 3: VAL performance of meta-AMR node predic-
tion (first stage of IMG2AMR2stage) with different in-
put combinations.

Effect of input on parsing performance. We
train our IMG2AMR models with different inputs to
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the encoders, and evaluate on VAL set. Specifically,
the input to the model may contain the global image
feature g, region embeddings r, tag embeddings
q (for the first encoder), and node embeddings n
(for the second encoder of IMG2AMR2stage). Ta-
ble 4 reports the VAL results of our two models
(trained and tested with meta-AMRs) with differ-
ent input combinations (region embeddings, tag
embeddings, global image features) for the direct
model, and (node embeddings, global image fea-
tures, region embeddings) for the second encoder
of the 2stage model. For IMG2AMR2stage, we fix
the input of the first encoder to the best combina-
tion according to Table 3 above, and ablate over
the input of the second encoder. Both models are
trained and tested with meta-AMRs. As we can see,
richer input generally results in better performance.
We can also see a big drop in the performance of
IMG2AMRdirect when only region features are used
as input, suggesting that tags can help associate
mappings between regions and AMR concepts.

Model Input SMATCH SEMBLEU-1 SEMBLEU-2

IMG2AMRdirect

{r} 30.3 18.6 5.4
{r,q} 39.1 32.9 16.2

{r,q,g} 39.0 33.7 16.4

IMG2AMR2stage

{n} 39.3 31.3 16.1
{n,g} 39.6 31.9 16.3

{n,g, r} 40.4 32.6 16.9

Table 4: Ablation over model inputs on VAL, for both
IMG2AMR models. For IMG2AMR2stage we use all
features {r,q,g} as the 1st encoder input.
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#Types %Tokens

Cateogry Example Types per Category AMR SG AMR SG

ENTITIES

Artifact clock, umbrella, bottle 128 128 22.7 24.4
Part eyes, finger, wing 21 44 3.1 13.1
Location beach, mountain, kitchen 86 52 20.7 11.2
Person man, women, speaker 30 19 17.9 11
Flora/Nature ocean, tree, flower 20 34 6.1 10.2
Clothing dress, scarf, suit 11 31 1.1 7.7
Food orange, donut, bread 52 23 8 2.8
Animal horse, bird, cat 16 20 6.4 4.7
Vehicle car, motorcycle, bicycle 18 17 6.1 4.5
Furniture table, chair, couch 9 10 4.0 2.9
Structure window, tower, circle 13 18 2.1 5.4
Building brick, house, cement 6 6 1.8 2.1

RELATIONS

Geometric down, edge, between 48 122 12.4 56.6
Possessive have, wear, contain 5 42 5.9 30.6
Semantic attempt, carry, eat 183 275 38.3 11.6
Attribute Color color, white, blue 13 8 5.6 0.1
Attribute young, small, colorful 82 - 12.8 -
AMR specific and, or, date-entity 8 - 11.1 -
Quantifier more, both, few 31 1 9.3 0.1
Event soccer, party, festival 14 - 3.4 -
Misc they, something, you 6 13 1.1 1.0

Table 5: The list of AMR and SG entity and relation categories, as well as examples of word types, number of
types, and percentage of tokens per category.

(z0 / bicycle
:ARG1-of (z1 / park-01

:ARG2 (z2 / kitchen
:location (z3 / 

stove))))

(z0 / and
:op1 (z1 / bicycle

:ARG1-of (z2 / lean-01
:ARG2 (z3 / stove)))

:op2 (z4 / cabinet
:location (z5 / inside

:op1 (z6 / kitchen))))

A bicycle parked in a kitchen with a stove and cabinets 

A black bicycle leaning against the kitchen cabinets .

A bicycle leaning on the stove and cabinets 
located inside the kitchen .A bicycle parked in a kitchen by the stove .

(z0 / bicycle
:ARG1-of (z1 / park-01

:ARG2 (z2 / room
:ARG0-of (z3 / have-03

:ARG1 (z4 / and))
:part (z6 / cabinet

:location (z12 / inside))
:mod (z10 / small)
:ARG1-of (z11 / white-03)
:location z5)

:ARG1 z4)
:ARG1-of (z7 / black-04)
:ARG1-of (z8 / lean-01

:ARG2 (z9 / against)
:ARG2 (z5 / stove)))

(z0 / bicycle
:ARG1-of (z1 / park-01

:ARG2 (z2 / kitchen
:ARG0-of (z3 / have-03

:ARG1 (z4 / and
:op1 (z5 / stove)
:op2 (z6 / cabinet)))))) (z0 / bicycle

:ARG1-of (z1 / black-04)
:ARG1-of (z2 / lean-01

:ARG2 (z3 / against
:op1 (z4 / cabinet

:part-of (z5 / kitchen)))))

(z0 / kitchen
:mod (z1 / small)
:ARG1-of (z2 / white-03)
:ARG0-of (z3 / park-01

:ARG1 (z4 / and
:op1 (z5 / bike)
:op2 (z6 / 

backpack))
:ARG2 z0))

Small white kitchen with a bike and 
backpack parked in it

Figure 7: An example of five caption AMRs and their corresponding meta-AMR. Captions are marked as red.
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E Generated AMRs for the Qualitative Samples

z0 / s t and -01

z1/gi raffe

:ARG1

z7/next - to
:ARG2

z8/field

: locat ion

z9 /near -02

:ARG2

z2/walk-01

:ARG0-of

z6 /coup le

: quan t

z3 / g r a s s
: locat ion

z4 / a r e a

: locat ion

z5 /g r a s sy
:mod

:ARG1

z10 / rock
:ARG2

(a) A couple of giraffe standing next to each other in a field near rocks walking in grass in a grassy area.

z0/s i t -01

z1 /hyd r an t

:ARG1

z10 / s ide

:ARG2

z12 /nea r -02

:ARG2

z2/f i re-03

:mod

z3/yel low-02
:ARG1-of

z4/b lue

:mod

z5 / s t r e e t

: locat ion

z7/in-front-of

: locat ion

z8 / th ing

: locat ion

z6/c i ty
:mod

z9 / in t e r sec t -01
:ARG1-of

z11 / road:part-of

:ARG1

z13/pos i t ion

:ARG2

:mod

z14/ t ra f f ic

:mod

(b) A yellow and blue fire hydrant on a city street in front at an intersection sitting on the side of the road near a traffic position.

z0 / t r a in

z1 / p a s s enge r

:mod

z2/go-01

:ARG1-of

z3 /c ross -02

:ARG0-of

z7 /pass -02

:ARG0-of

z8 / l a rge

:mod

z9/ long-03

:ARG1-of

z10/ t rave l -01
:ARG0-of

z11 /pass -02

:ARG0-of

z4 /p l a t e

:ARG1

z5 /beach

: locat ion

z6/wood:consist-of

:ARG1

:ARG1

z12 /wa t e r
:ARG1

(c) A large long passenger train going across a wooden beach plate, traveling and passing by water.

Figure 8: Images used in Section 5.4, along with their predicted AMRs and generated captions. Refer to
Section 5.4 for more details.
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z0/s i t -01

z1 /woman

:ARG1

z10 / t ab l e

:ARG2

z2 /ea t -01

:ARG0-of

z7/smile-01
:ARG0-of

z8/hold-01

:ARG0-of

z3 / sandwich

:ARG1

z4 /pe r son

:ARG0

z5/hot -dog

:ARG1

z6/bui ld ing

: locat ion

: t ime

z9 / and
:ARG1

(a) A woman sitting at a table eating a sandwich and holding a hot dog in a building smiling while eating.

z0 / a r e a

z1/fill-01

:ARG1-of

z8 /whi te -03

:ARG1-of

z9 /have-03

:ARG0-of

z2 /donu t
:ARG2

:cons i s t
z3 /k ind

:mod

z5/lot

: quan t

z6/s i t -01

:ARG1-of

z7 / bunch

:quan t

z4/differ-02
:ARG1-of

:ARG2

z10/ topp l ing:ARG1 z11/var ious
:mod

(b) A white area filled with lots of different kinds of donuts with various toppings sitting on them.

z0/s i t -01

z1 /g roup

:ARG1

z2 /pe r son

:ARG1

z9 / t ab l e

:ARG2

z11 / a round

:ARG2

:consist-of

z5 /have-03:ARG0-of

z7 /pose-01

:ARG0-of

z3/have-rel-role-91
:ARG0-of

z4 /pe r son
:ARG2

z6 /wa t e r
:ARG1

z8 /p i c tu re:ARG2

:locat ion

z10 /d in ing
:mod

(c) A group of people sitting around at a dining table with water posing for a picture.

Figure 9: (cont) Images used in Section 5.4, along with their predicted AMRs and generated captions. Refer to
Section 5.4 for more details.
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z0/ski-01

z1 /pe r son

:ARG0

z16 / snow

:locat ion

z17 /c ros s -coun t ry

:mod
z18/pos i t ion

: locat ion

z2 /wear -01

:ARG0-of

z5/ r ide-01

:ARG0-of

z9 /coup le

: quan t

z10/walk-01
:ARG0-of

z14 /have-03

:ARG0-of

z3 / j acke t:ARG1 z4/ red-02
:ARG1-of

z6 /sk i

:ARG1

z7 /down

:d i rec t ion

z8/cover -02

:ARG1-of

:ARG2

:d i rec t ion

z11 / s ide

:ARG2

z12 /moun ta in

:part-of

z13 / snowy

:mod

z15/po le:ARG1

:mod

(a) A person in a red jacket cross country skiing down a snow covered ski slope with a couple of people riding skis and walking
on the side of the snowy mountain.

z0/s i t -01

z1 /pe r son

:ARG1

z10 / t ab l e
:ARG2

z11/bui ld ing
:ARG2

z12 /p l a t e

: a ccompan i e r

z2 /wear -01

:ARG0-of

z5 /have-03

:ARG0-of

z7/smile-01
:ARG0-of

z3 / sh i r t
:ARG1

z4/b lack-04
:ARG1-of

z6 / and
:ARG1

z8/have-06

: t ime

:ARG0

z9 /mea l
:ARG1

:locat ion

z13/food

:consist-of

(b) A person in black shirt sitting at a table in a building with a plate of food with and smiling while having meal.

Figure 10: (cont) Images used in Section 5.4, along with their predicted AMRs and generated captions. Refer to
Section 5.4 for more details.
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Images used in this section (and the rest of the paper) are under a Creative Commons Attribution
License 2.0. They are available at (by the order of their appearance in this section):

• http://farm6.staticflickr.com/5299/5465041730_3fe1246cae_z.jpg and
http://cocodataset.org/#explore?id=505440

• http://farm6.staticflickr.com/5294/5461489420_1e4141517b_z.jpg and
http://cocodataset.org/#explore?id=332654

• http://farm4.staticflickr.com/3719/9115013219_344a42ce47_z.jpg and
http://cocodataset.org/#explore?id=329486

• http://farm4.staticflickr.com/3091/3187069218_162b55b720_z.jpg and
http://cocodataset.org/#explore?id=569839

• http://farm3.staticflickr.com/2020/1932016761_934411ac16_z.jpg and
http://cocodataset.org/#explore?id=5754

• http://farm4.staticflickr.com/3703/10047186866_e6b43fbd32_z.jpg and
http://cocodataset.org/#explore?id=298443

• http://farm8.staticflickr.com/7170/6795850593_435a36bcd9_z.jpg and
http://cocodataset.org/#explore?id=239235

• http://farm4.staticflickr.com/3786/9676804086_dbb624af5c_z.jpg and
http://cocodataset.org/#explore?id=386559
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Abstract

Humans exhibit garden path effects: When reading
sentences that are temporarily structurally ambigu-
ous, they slow down when the structure is disam-
biguated in favor of the less preferred alternative.
Surprisal theory (Hale, 2001; Levy, 2008), a promi-
nent explanation of this finding, proposes that these
slowdowns are due to the unpredictability of each
of the words that occur in these sentences. Chal-
lenging this hypothesis, van Schijndel and Linzen
(2021) find that estimates of the cost of word pre-
dictability derived from language models severely
underestimate the magnitude of human garden path
effects. In this work, we consider whether this un-
derestimation is due to the fact that humans weight
syntactic factors in their predictions more highly
than language models do. We propose a method for
estimating syntactic predictability from a language
model, allowing us to weigh the cost of lexical and
syntactic predictability independently. We find that
treating syntactic predictability independently from
lexical predictability indeed results in larger esti-
mates of garden path. At the same time, even when
syntactic predictability is independently weighted,
surprisal still greatly underestimate the magnitude
of human garden path effects. Our results support
the hypothesis that predictability is not the only fac-
tor responsible for the processing cost associated
with garden path sentences.

1 Introduction

Readers exhibit garden path effects: When reading
a temporarily syntactically ambiguous sentence,
they tend to slow down when the sentence is dis-
ambiguated in favor of the less preferred parse. For
example, a participant who reads the sentence frag-
ment

(1) The suspect sent the file . . .

a. . . . to the lawyer.
b. . . . deserved further investigation.

can construct a partial parse in at least two dis-
tinct ways: In one reading, the verb sent acts as
the main verb of the sentence, and the continua-
tion of the sentence as an additional argument to
sent (as in 1a). In another, less likely, reading, sent
the file acts as a modifier in a complex subject,
which then requires an additional verb phrase to
form a complete sentence (as in 1b). Prior work
has demonstrated that regions like deserved further
investigation, which disambiguate these temporar-
ily ambiguous sentences in favor of the modifier
parse (1b), are read slower than those same words
would be in an unambiguous version of sentence,
such as the following:

(2) The suspect who was sent the file deserved
further investigation.

In (2), the presence of who was signals to the reader
that sent the file acts as a modifier (Frazier and
Fodor, 1978).

One account of this phenomenon, surprisal the-
ory (Hale, 2001; Levy, 2008), suggests that read-
ers maintain a probabilistic representation of all
possible parses of the input as they process the
sentence incrementally. Processing difficulty in
garden path sentences is the cost associated with
updating this representation; this cost is propor-
tional to the negative log probability, or surprisal,
of the newly observed material under the reader’s
model of upcoming words. This theory predicts
that the slowdown associated with garden path sen-
tences can be entirely captured by the differences
in surprisal between the disambiguating region in
ambiguous garden path sentences and that same
region in a matched unambiguous sentence.

Van Schijndel and Linzen (2021) tested this hy-
pothesis. They estimated the surprisals associated
with garden path sentences using LSTM language
models (LMs) trained over large natural language

301



corpora. Based on the core assumption of surprisal
theory—that processing difficulty on a word, when
all lexical factors are kept constant, stands in a
constant proportion to the word’s surprisal, regard-
less of its syntactic context—they estimated a con-
version factor between surprisal and reading times
from non-garden path sentences. Applying this con-
version factor to the critical words in garden path
sentences, van Schijndel and Linzen found that
surprisal theory, when paired with the surprisals
estimated by their models, severely underestimated
the magnitude of the garden path effect for three
garden path constructions, consistent with attempts
to estimate the magnitude of other syntactically-
modulated effects (Wilcox et al., 2021). Moreover,
the predicted reading times did not correctly pre-
dict differences across the difference garden path
constructions, suggesting that no single conversion
factor between surprisal and reading times could
predict the magnitude of the garden path effect in
all three constructions.

The underestimation documented by van Schi-
jndel and Linzen can be interpreted in one of two
ways: Either (1) surprisal theory cannot, on its own,
account for garden path effects; or (2) predictability
estimates derived from LSTM LMs fail to capture
some aspect of human prediction that is crucial to
explaining the processing of garden path sentences.
This work investigates the latter possibility. We
ask if the gap between the magnitude of human
garden path effects in humans and the magnitude
that surprisal theory predicts from LMs is due to
a mismatch between how humans and LMs weigh
two contributors to word-level surprisal: syntactic
and lexical predictability. We hypothesize that the
LM next-word prediction objective does not suf-
ficiently emphasize the importance that syntactic
structure carries for human readers, who may be
more actively concerned with interpreting the sen-
tence. In this scenario, since garden paths are the
product of unpredictable syntactic structure—as
opposed to an unpredictable lexical item—using a
LM predictability estimate for the next word could
lead to underestimation of garden path effects.

We test the hypothesis that the gap between
model and human effects can be bridged by teas-
ing apart the overall predictability of a word from
the surprisal associated with the syntactic structure
implied by the word (see Figure 1) and weighting
the two factors independently, possibly assigning
a higher weight to syntactic surprisal. In this rea-

Lexical Surprisal
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The newfound microbes were...

Three girls trying to 

save up for a trip...

Owls are more flexible...

Figure 1: A depiction of the relationship between syn-
tactic and lexical surprisal. Some word tokens, such
as are in the context of owls are more flexible, are
highly predictable in all respects. Others are unpre-
dictable due to the syntactic structures they imply (try-
ing in girls trying to save up), and are expected to be
assigned high syntactic and lexical surprisal. Tokens
such as microbes in the context the newfound microbes
were, on the other hand, appear in a predictable syn-
tactic environment, but are unpredictable due to their
low lexical frequency; such words should be assigned
low syntactic surprisal but high lexical surprisal. Since
words that appear in unpredictable syntactic environ-
ments are themselves unpredictable, we do not expect
to find words with high syntactic surprisal but low lexi-
cal surprisal.

soning, we follow prior work on syntactic or unlex-
icalized surprisal carried out in the context of sym-
bolic parsers, where the probability of a structure
and particular lexical item can be explicitly disen-
tangled (Demberg and Keller, 2008; Roark et al.,
2009). But while past work has demonstrated that
that unlexicalized suprisal from symbolic parsers
correlates with measures of human processing dif-
ficulty (Demberg and Keller, 2008), simple recur-
rent neural networks trained to predict sequences
of part-of-speech tags have been shown to track
processing difficulty even more strongly (Frank,
2009), suggesting that even fairly limited syntac-
tic representations like part-of-speech tags can act
as a reasonable proxy of syntactic structure when
modeling human behavior.

To compute LSTM-based syntactic surprisal,
we train the LM with an auxiliary objective—
estimating the likelihood of the next word’s su-
pertag under the Combinatory Categorial Grammar
(CCG) framework (Steedman, 1987)—following
Enguehard et al. (2017). Such supertags can be
viewed as enriched part-of-speech tags that encode
syntactic information about how a particular word
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can be combined with its local environment. We
then define syntactic surprisal in terms of the like-
lihood of the next word’s CCG supertag, and pro-
pose a method of estimating that likelihood us-
ing our modified LMs. We validate our formula-
tion of syntactic surprisal by demonstrating that it
captures syntactic processing difficulty in garden
path sentences, while, crucially, not tracking un-
predictability that is due to low frequency lexical
items. Following van Schijndel and Linzen (2021),
we then use the syntactic and lexical surprisal val-
ues derived from those models to predict reading
times for three types of garden path sentences. We
find that adding syntactic surprisal as a separate
predictor does lead to larger estimates of garden
path effects, but those estimates are still an order of
magnitude lower than empirical garden path effects.
Finally, we discuss the implications of these find-
ings for surprisal theory and single-stage models
of syntactic processing.

2 Computing Syntactic Surprisal

Each incoming word can cause an adjustment in
the reader’s beliefs about the syntactic structure
of the sentence; when a syntactic structure that
was assigned a low probability prior to reading
the word now has high probability, the word can
be said to have high syntactic surprisal. We will
operationalize this intuition as the predictability
of next word’s supertag under the Combinatory
Categorial Grammar (CCG) formalism (Steedman,
1987):

surpsyn = − log(P (cn | w1, ..., wn−1)), (1)

where cn is the CCG supertag of the n-th word.
A CCG supertag encodes how a word combines
syntactically with adjacent constituents. For ex-
ample, a token with the tag S\NP combines with
an NP to its left to form an S constituent, and a
token with the tag (S\NP)/NP combines with an
NP to its right to form an S\NP constituent. Since
the sequence of supertags associated with all of the
words of a sentence often allows only one valid
parse, accurately predicting a sentence’s supertags
has been described as “almost parsing" (Bangalore
and Joshi, 1999); consequently, incremental CCG
supertagging can be seen as almost incremental
parsing.

We contrast this syntactic surprisal measure with
the standard token surprisal measure, which we

refer to as lexical surprisal:

surplex = − log(P (wn | w1, ..., wn−1)). (2)

Note that what we call lexical surprisal captures all
factors that contribute to a token’s predictability,
including syntactic ones.

In order to compute syntactic and lexical sur-
prisal for a given word, we need models that pre-
dict, given a left context, not only the next token,
as a standard LM does, but also the next token’s su-
pertag. To do this, we train models with both a lan-
guage modeling and CCG supertagging objective,
and estimate the distribution over the next word’s
tag by marginalizing over the distribution over the
next word that is defined by the LM. Formally, for a
sequence of words w1, ..., wn ∈ W with supertags
c1, ..., cn ∈ C, our model estimates the probability
of the next word given all observed words, pwn+1 =
P (wn+1 | w1, ..., wn), and the probability of the
most recent word’s supertag given all currently ob-
served words, pcn|wn

= P (cn | w1, ..., wn). We
then infer the distribution over the next word’s su-
pertag as

P (cn+1|w1, ..., wn) =
∑

w∗
n+1∈W

pcn+1|w∗
n+1

pw∗
n+1

(3)

If we knew the supertag of the next word cn+1,
we could simply compute the surprisal of that su-
pertag, − logP (cn+1 | w1, ..., wn). By contrast
with lexical surprisal, however—where there is no
uncertainty about the identity of wn+1 once that
word has been read—a word’s supertag is often am-
biguous during incremental processing. Consider
the verb gathered in the following sentences, for
example:

(3) The squirrels gathered near the tree.

(4) The squirrels gathered a few acorns.

In (3), gathered would eventually be assigned the
supertag S\NP, indicating that gathered is used in
its intransitive frame—a number of squirrels as-
sembled together as a group—and takes no direct
object. In (4), on the other hand, the appropri-
ate supertag would be (S\NP)/NP, which indicates
that in this sentence gathered is used in a transi-
tive frame and takes the noun phrase a few acorns
as a direct object. When processing this sentence
incrementally, a reader must maintain this uncer-
tainty over the appropriate supertag for a word past
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the point at which they have read that word. A
measure of syntactic surprisal that aims to model
processing difficulty at a particular word should
similarly take into account uncertainty over the su-
pertag of a word even after the word itself has been
processed. We take this uncertainty into account by
using the distribution pcn|wn

that our models define
over supertags, and computing syntactic surprisal
by marginalizing over this distribution:

pcn+1|wn
= P (cn+1 | w1, ..., wn) (4)

surpsyn = − log
∑

c∗n+1∈C
pc∗n+1|wn

pcn+1|wn+1

(5)

2.1 Model Architecture and Training

We trained four models, differing only in their ran-
dom seed, on both a language modeling and CCG
supertagging objective. The models consisted of
an LSTM shared across the two objectives, which
we refer to here as the encoder, and two classifiers,
one for language modeling and another for CCG
supertagging, which we refer to as the decoders.

Following Gulordava et al. (2018), the encoder
was a two-layer LSTM with 650 units per layer.
Each decoder consists of a single linear layer fol-
lowed by the softmax operation. For the supertag-
ging objective, we trained using CCGBank (Hock-
enmaier and Steedman, 2007), a set of CCG anno-
tations for the Wall Street Journal section of the
Penn Treebank (Marcus et al., 1993). The corpus
we used for language modeling was a concatena-
tion of the Wall Street Journal portion of the Penn
Treebank and the 80 million words from the En-
glish Wikipedia used by Gulordava et al. (2018).
Language modeling and supertagging losses were
weighted equally during training.

Models achieved language modeling perplexities
ranging from 74.76 to 75.70 on the test portion of
the Gulordava et al. (2018) corpus, while Gulor-
dava et al. (2018)’s best language model achieved
a perplexity of 52.0. Models assigned the high-
est likelihood to the correct CCG supertag in the
CCGBank test set between 84.1% and 84.5% of the
time, compared to bi-LSTM supertaggers which
can achieve an accuracy of 94.1% (Vaswani et al.,
2016). Note that these supertagging numbers are
not directly comparable, as our models use uni-
directional LSTMs and thus have no access to a
word’s right context when supertagging.

2.2 Experimental data
We evaluated our model on a subset of the Syntactic
Ambiguity Processing (SAP) Benchmark (Huang
et al., 2022), a dataset containing self-paced read-
ing times from 2000 native English speakers who
read a variety of syntactically complex construc-
tions as well as comparatively simple filler sen-
tences. The large size of the dataset allows us to
get precise estimates of the magnitude of the gar-
den path effect for each of the three types of garden
path sentences it contains. We describe each of
these constructions in what follows.

Main Verb/Reduced Relative (MVRR) This
ambiguity is illustrated in (5):

(5) The suspect sent the file deserved further
investigation given the new evidence.

(6) The suspect who was sent the file deserved
further investigation given the new evi-
dence.

In (5), before reading the word deserved, the
reader can interpret sent the file either as a main
verb and direct object (where the subject has sent
the file) or as a reduced relative clause (where the
subject has had the file sent to them). This is dis-
ambiguated in favor of the reduced relative clause
reading by the next word, deserved, which is the
true main verb of the complete sentence. We can
measure the processing difficulty incurred by this
disambiguation by comparing the reading times at
deserved in (5) with the reading times at deserved
in (6), where the relative clause who was sent the
file is unreduced and thus unambiguous.

Noun Phrase/Sentence (NPS) The NPS ambi-
guity is illustrated in (7):

(7) The suspect showed the file deserved fur-
ther investigation during the murder trial.

(8) The suspect showed that the file deserved
further investigation during the murder
trial.

Before reading deserved in (7), the file can be inter-
preted as either a direct object, where the suspect
is presenting a file to someone, or as the beginning
of a sentential complement, where the suspect is
making a point. The word deserved disambiguates
the sentence in favor of the less frequent senten-
tial complement reading. As before, the matched
control sentence (8) avoids the ambiguity, here by

304



using the explicit complementizer that before the
file; this control makes it possible to measure the
slowdown associated with disambiguation.

Noun Phrase/Zero (NPZ): Finally, in (9), be-
fore reading deserved, changed can be interpreted
in two ways: as a transitive verb taking the file
as a noun phrase direct object (where the file was
changed by the suspect); or as an intransitive verb,
with the file as the subject of a separate clause
(where the suspect was changed):

(9) Because the suspect changed the file de-
served further investigation during the jury
discussions.

(10) Because the suspect changed, the file de-
served further investigation during the jury
discussions.

The word deserved disambiguates the sentence
in favor of the less frequent intransitive reading.
Introducing a comma between the clauses in the
matched sentence (10) removes the ambiguity.

3 Validating Syntactic Surprisal

We first validate that our syntactic surprisal mea-
sure successfully isolates syntactic predictability
from word predictability. To be satisfied that that
is the case, we will require two things be true: first,
we expect syntactic surprisal to capture process-
ing difficulty that is the result of syntactic unpre-
dictability; and second, we expect that syntactic
surprisal is not redundant with lexical predictabil-
ity. We will evaluate each of these desiderata in
turn.

3.1 Syntactic Surprisal Captures Syntactic
Processing Difficulty

To verify that syntactic surprisal can capture syn-
tactic unpredictability, we investigate differences
in syntactic surprisal between the ambiguous and
unambiguous garden path sentences in Huang et al.
(2022). Since garden path effects are the result of
ambiguity about the syntactic structure of a sen-
tence, a difference in surprisal at the point of dis-
ambiguation indicates sensitivity to differences in
syntactic predictability.

We found differences in the expected direction
for all three types of garden sentences. This was
the case both for lexical surprisal—consistent with
prior work (Hale, 2001; van Schijndel and Linzen,
2021)—and for syntactic surprisal (Figure 2). We

did not find differences in the same direction before
the point of disambiguation, indicating that the
differences we observe after disambiguation are
not a consequence differences in surprisal earlier
in the sentence that the LM has not fully recovered
from.

3.2 Syntactic Surprisal Captures Only
Syntactic Predictability

To verify that syntactic surprisal successfully iso-
lates syntactic factors on predictability, we make
two comparisons: first, to lexical surprisal, to ver-
ify that syntactic surprisal does not capture all of
the variance captured by lexical surprisal; and sec-
ond, to unigram frequency, to verify that syntactic
surprisal is not driven by the frequency of specific
lexical items.

Syntactical surprisal does not capture all of the
variance captured by lexical surprisal If syn-
tactic surprisal captures a strict subset of the vari-
ance captured by lexical surprisal, we expect to
see a subset of words with high lexical surprisal
and low syntactic surprisal (in addition, perhaps,
to words with highly correlated syntactic and lexi-
cal surprisals). This subset should represent words
that are unpredictable for reasons that are inde-
pendent of the syntactic structures they imply. By
contrast, words that introduce infrequent syntactic
structures should have both high syntactic surprisal
and high lexical surprisal, as the unpredictability
of the syntactic structure means that a word that
implies that structure is necessarily unpredictable.
This matches what we see in Figure 3a: The rela-
tively frequent verb trying introducing a reduced
relative clause has high syntactic and lexical sur-
prisal, while infrequent nouns like microbe have
low syntactic surprisal but high lexical surprisal.

High syntactic surprisal does not reflect low un-
igram frequency In Figure 3b, we plot the syn-
tactic surprisals of words from the filler items with
their log-frequency in the Corpus of Contemporary
American English (COCA; Davies 2008–). We find
a significant but small positive correlation between
the two (r = 0.064, t = 3.18, p < 0.005), indicat-
ing that more frequent words have a higher syntac-
tic surprisal — the opposite of what we would ex-
pect if lexical frequency were driving syntactic sur-
prisal effects. This may be due to the fact that func-
tion words, which are generally high-frequency,
typically introduce additional syntactic structure
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(b) Log unigram frequency vs. syntactic surprisal.

Figure 3: Correlations between syntactic surprisal, lexical surprisal, and unigram frequency for each word in the
filler items of Huang et al. (2022). Since these results are fairly consistent across model instances, we present
results from a single instance. Two words — one with high syntactic surprisal and high lexical surprisal and one
with high lexical surprisal but low syntactic surprisal — are labeled with their context.

and thus have higher-than-average syntactic sur-
prisal.

These three results — that syntactic surprisal
captures garden path effects, that we find a sub-
set of words with low syntactic surprisal and high
lexical surprisal, and that we find no evidence of
low lexical frequency driving syntactic surprisal —
suggest that syntactic surprisal captures only the
syntactic contributions to a word’s unpredictability.
We will now use syntactic surprisal in concert with
lexical surprisal to directly predict the magnitude
of garden path effects.

4 Evaluating Against Human Reading
Times

Recall that surprisal theory assumes a linear rela-
tionship between surprisal and measures of pro-
cessing difficulty such as reading times. We follow
van Schijndel and Linzen (2021) and estimate a
mapping between our surprisal measures and read-
ing times by fitting linear mixed-effects models
to the filler (i.e., non-garden path) materials from
Huang et al. (2022). In order to compare syntactic
and lexical surprisal, we fit four conversion models:
one with syntactic surprisal as a predictor, one with
lexical surprisal, one with both types of surprisal,
and one that does not include either surprisal mea-
sure. All four models included baseline predictors
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other than surprisal — unigram frequency, word
position, and word length — which on their own
are not expected to capture garden path effects. To
account for spillover effects, where processing diffi-
culty from a word spills over to affect reading times
at future words, we included all of the aforemen-
tioned factors (except word position) not only for
the current word but also for the two prior words (a
simplification of the technique of van Schijndel and
Linzen 2021). This process is repeated with each
of the four sets of surprisals extracted from our four
language model/supertagger instances. Further de-
tails about the surprisal-to-RT conversion process
are presented in Appendix A.1. After all four of
our models have been fit to the filler items, we use
the estimated coefficients to predict reading times
for the each of the critical items.

5 Results

Predicted RT differences from our conversion mod-
els, as well as the RT differences observed in hu-
mans, are presented in Figure 4a. Regardless of the
predictors used in the mixed-effects model—lexical
surprisal, syntactic surprisal, neither, or both—
predicted reading time differences greatly under-
estimate the reading time differences observed in
humans. This is unlikely to be an issue with our
surprisal-to-reading-times conversion method more
broadly, as at the pre-disambiguation word, RTs
and predicted RTs match much more closely than
in post-disambiguation regions (particularly in cap-
turing effects in the pre-disambiguation region in
NPS sentences), indicating that the difference in
magnitudes is due specifically to an underestima-
tion of the garden path effect.

While the inclusion of syntactic surprisal does
not close the gap between model predictions and
the empirical reading times, it does typically lead
to a larger predicted garden path effect. To see this
difference more clearly, in Figure 4b we exclude
the human reading times and zoom in on the garden
path effects predicted by the models. To determine
whether adding syntactic surprisal as a predictor
affected the magnitude of the garden path effects
we predicted, we fit a Linear Mixed Effects Model
over all of our conversion models’ predicted read-
ing times for each garden path construction at each
word in the critical region. We present the results
of this analysis for the effect of interest (the interac-
tion between the conversion model and the garden
path effect) in Table 1. We find that (1) models

containing both surprisals predicted the largest gar-
den path effects at the disambiguating word and
first spillover word, (2) models with only syntac-
tic surprisal predicted greater garden path effects
than models with only lexical or no surprisal at the
disambiguating word, and (3) models with only lex-
ical surprisal predicted larger garden path effects
than models with only syntactic or no surprisal in
the spillover regions. Note that while models with
only lexical surprisal did predict larger effects than
other conversion models at the second spillover
word, the fact that this only takes place long after
the disambiguating word suggests that this differ-
ence is due to differing spillover profiles amongst
our surprisal measures. Since this work focuses
on the estimation of the magnitude of garden path
effects, we leave an investigation of this to future
work.

6 Discussion

What is the source of the discrepancy between the
magnitude of garden path effects in humans and
surprisal-based estimates of those magnitudes from
neural network language models? In this paper, we
have evaluated one possible answer to this ques-
tion: that word predictability estimates from LMs
underweight the importance of syntax to the pre-
dictions made by humans. We have proposed a
method of estimating syntactic predictability from
LSTM LMs augmented with a CCG supertagging
auxiliary objective; confirmed that this measure
matches our intuitive desiderata from a syntactic
surprisal measure; and compared garden path ef-
fect magnitude predictions derived from standard,
lexical surprisal and syntactic surprisal. Our main
finding is that while the syntactic surprisal measure
we propose does typically lead to larger predicted
garden path effects, model-predicted garden path
effects still vastly underestimate the magnitude of
garden path effects found in humans.

We defined syntactic surprisal in terms of the pre-
dictability of the next word’s CCG supertag. This
choice is motivated by the relative simplicity of
computing this measure—a straightforward auxil-
iary objective that can be added to any conceivable
neural language model—as well as two substan-
tive desiderata: First, we would like the measure to
capture processing difficulty due to syntactic unpre-
dictability. Since a word’s CCG supertags captures
how the word combines with the local syntactic
structure, we hypothesize that the surprisal of that
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Figure 4: Empirical and model-predicted readings times for the three garden path constructions. Bars indicate the
difference between the mean readings times for the ambiguous and unambiguous sentences across participants for
each condition. Error bars indicate bootstrapped 95% confidence intervals.

supertag—which indicates the extent to which that
syntactic combination is unexpected—is a good
predictor of syntactic unpredictability. This was
borne out in our analysis that showed that syntactic
surprisal predicts differences in the correct direc-
tion in three garden path constructions.

Second, since syntactic surprisal is designed to
isolate syntactic predictability from other forms
of predictability, it should not be perfectly corre-
lated with lexical factors. The comparisons to lexi-
cal surprisal and word frequency showed that this
desideratum was met: We were able to identify
in our materials words that were lexically surpris-
ing but had low syntactic surprisal, and we found
a positive correlation between frequency and syn-
tactic surprisal — the opposite of what would be

predicted if high syntactic surprisal was driven by
low word frequency.

The increase in model-predicted garden path
magnitudes when we use syntactic surprisal, com-
pared to using just standard lexical surprisal, sug-
gests that predictability estimates from LSTM LMs
indeed understate the role that syntactic factors play
in human prediction. To see why that is, recall that
syntactic surprisal captures a subset of the variance
that lexical surprisal does. The fact that adding
syntactic surprisal produces a better fit to human
reading times than lexical surprisal, then, suggests
that syntactic factors affect lexical surprisal less
than they would need to in order to capture vari-
ation in human reading times. One potential ex-
planation for this discrepancy is the difference in

308



Disambig MVRR NPS NPZ

Both vs. Syntactic Only β = 0.37, p < 0.001 β = 1.19, p < 0.001 β = 0.15, p = 0.056
Syntactic Only vs. Lexical Only β = 3.26, p < 0.001 β = 0.89, p < 0.001 β = 1.89, p < 0.001
Syntactic Only vs. Neither β = 6.77, p < 0.001 β = 2.85, p < 0.001 β = 1.77, p < 0.001

Spillover 1 MVRR NPS NPZ

Both vs. Syntactic Only β = 1.80, p < 0.001 β = 1.25, p < 0.001 β = 2.09, p < 0.001
Syntactic Only vs. Lexical Only β = −1.02, p < 0.001 β = −0.53, p < 0.001 β = −1.62, p < 0.001
Syntactic Only vs. Neither β = 5.10, p < 0.001 β = 3.27, p < 0.001 β = 2.36, p < 0.001

Spillover 2 MVRR NPS NPZ

Both vs. Syntactic Only β = 1.68, p < 0.001 β = 0.92, p < 0.001 β = 2.10, p < 0.001
Syntactic Only vs. Lexical Only β = −4.59, p < 0.001 β = −3.86, p < 0.001 β = −5.03, p < 0.001
Syntactic Only vs. Neither β = −0.30, p < 0.001 β = −0.92, p < 0.001 β = −3.61, p < 0.001

Table 1: Results of a Linear Mixed Effects analysis over our model-predicted reading times for our effect of inter-
est: the interaction between ambiguity and the conversion model. A significant result with a positive coefficient
indicates that the conversion model on the left side of the contrast label predicted a significantly larger garden path
effect than the model on the right. See Appendix A.2 for further details.

the tasks humans and LMs perform: While LMs
need only predict words in corpora, humans must
to comprehend what they read. While both tasks
demand some sensitivity to syntactic structure, the
need to interpret sentences may place greater im-
portance on predicting structure, leading to a higher
sensitivity to syntactic unpredictability.

While models with syntactic surprisal provided
a better fit to the human data than those with just
lexical surprisal, there remained a very large dis-
crepancy between model-predicted and human gar-
den path effect sizes. It may be possible to further
close this gap within the surprisal framework using
different approaches to estimating syntactic pre-
dictability; one such approach could rely on Recur-
rent Neural Network Grammars (Dyer et al., 2016),
which derive word-level predictability estimates
from explicit syntactic parsing mechanisms.

Another possibility is that the discrepancy is not
due to flaws in our estimates of human predictabil-
ity: perhaps surprisal, even based on a perfect sim-
ulation of human predictions, is simply not the
correct account of the magnitude of the garden
path effect observed in humans (van Schijndel and
Linzen, 2021). One family of alternative accounts
consists of two-stage, serial models of processing
(Frazier and Fodor, 1978; Fodor and Inoue, 1994;
Lewis, 1998; Bader, 1998; Sturt et al., 1999). In
such a model, when readers first read through the
ambiguous fragment of the sentence, they commit
to a small set of preferred parses. When they reach
a disambiguating region where all of the parses they
have committed to are no longer consistent with the

input, a reader would engage a separate, costly re-
analysis process in order to construct a new partial
parse consistent with the all of the currently avail-
able input. The processing cost associated with
this reanalysis procedures incurs a slowdown in
reading times that does not occur in an unambigu-
ous sentence where the incorrect initial parse is not
available, resulting the garden path effects that we
observe. Unlike surprisal-based accounts, however,
it is often unclear how to derive broad-coverage,
quantitative predictions for the size of garden path
effects from existing two-stage accounts. As a
result, it is difficult to know whether the quanti-
tative mismatches between surprisal-accounts and
human reading times that we observed should be
taken as evidence for an explicit reanalysis process.
This further highlights the need for precise imple-
mentations of two-stage serial models that we can
quantitatively evaluate against surprisal accounts.
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A Appendix

A.1 Converting Surprisals to Reading Times

In order to gauge the impact of syntactic surprisal
on the predicted reading time at word n, rtn, we fit
four mixed effects models over the filler data: one
containing only lexical surprisal (slexn ), one con-
taining only syntactic surprisal (ssynn ), one contain-
ing both, and one containing neither. As reading
times are sensitive to other features of the word
being read like unigram frequency (fn), position
in sentence p, and length in characters (cn), we
include those variables as additional factors in the
regression. In order to account for spillover effects,
where processing difficulty from a word often sur-
faces in the reading times of subsequent words, we
include all of the aforementioned factors for the
prior two words. We additionally include random
intercepts by item and by participant, as well as
random slopes by item for all of the surprisal fixed
effects. This gives us the following linear mixed
effects model formulas:

rtn ∼ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 | item) + (1 | participant)

(neither)

rtn ∼ slexn + slexn−1 + slexn−2

+ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 + slexn + slexn−1 + slexn−2 | item)

+ (1 | participant)

(lexical)

rtn ∼ ssynn + ssynn−1 + ssynn−2+

+ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 + ssynn + ssynn−1 + ssynn−2 | item)

+ (1 | participant)
(syntactic)

rtn ∼ slexn + slexn−1 + slexn−2

+ ssynn + ssynn−1 + ssynn−2

+ fn ∗ cn + fn−1 ∗ cn−1

+ fn−2 ∗ cn−2 + p

+ (1 + slexn + slexn−1 + slexn−2

+ ssynn + ssynn−1 + ssynn−2 | item)

+ (1 | participant)

(both)

These models were fit using filler data from Huang
et al. (2022), and the coefficients from each model
were used to predict reading times for all of the
critical, garden path items from the corresponding
surprisals, frequencies, lengths, and positions.

A.2 Statistical Analysis of Predicted RTs
To analyze the predicted reading times that come
from our four models of surprisal-to-reading time
conversion, we fit three separate linear mixed ef-
fects models: one over MVRR garden paths, one
over NPS garden paths, and one over NPZ garden
paths. Each model includes fixed effects of ambi-
guity and the types of surprisals used in predicting
reading times: syntactic surprisal only, lexical sur-
prisal only, both surprisals, or neither. Crucially,
we include the interaction between these two fac-
tors, representing how our choice of surprisal-to-RT
conversion model affects the size of the predicted
garden path effect. We additionally include random
intercepts by item and by participant. This results
in the following mixed effects model formula:

pred_rt ∼ ambiguity ∗model

+ (1 | item) + (1 | participant).

Since we have four different models converting
between surprisals and RTs, we estimate three con-
trasts for the interaction term: the model with both
surprisals vs. the model with only syntactic sur-
prisals, the model with only syntactic surprisals
vs. the model with only lexical surprisals, and the
model with only lexical surprisals vs. the model
with neither surprisal. The estimated magnitude
(represented by the β coefficient) as well as signifi-
cance of the difference for each of these contrasts
is reported in the main text in Table 1.

A.3 Variability in Conversion Analysis
Results Across Model Instances

In order to assess the robustness of our results with
respect to the randomness in the training of our
neural network models, we repeated our analysis
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using surprisals generated from four instances of
our LM/supertagging model. These models dif-
fered only in the random seed used during the ini-
tialization and training procedure. In Figure 4b
in the main text, we presented predicted reading
times averaged across these analyses. In Figure 5
we present the same results broken out across each
model instance.
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Figure 5: Empirical and model-predicted readings times for the three garden path constructions, broken out by the
LM/Supertagger models used to generate the surprisals. Bars indicate the difference between the mean readings
times for the ambiguous and unambiguous sentences across participants for each condition. Error bars indicate
bootstrapped 95% confidence intervals.
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Abstract

Prior studies of zero-shot stance detection iden-
tify the attitude of texts towards unseen topics
occurring in the same document corpus. Such
task formulation has three limitations: (i) Sin-
gle domain/dataset. A system is optimized on
a particular dataset from a single domain; there-
fore, the resulting system cannot work well on
other datasets; (ii) the model is evaluated on
a limited number of unseen topics; (iii) it is
assumed that part of the topics has rich annota-
tions, which might be impossible in real-world
applications. These drawbacks will lead to an
impractical stance detection system that fails
to generalize to open domains and open-form
topics.

This work defines OpenStance: open-
domain zero-shot stance detection, aiming
to handle stance detection in an open world
with neither domain constraints nor topic-
specific annotations. The key challenge of
OpenStance lies in the open-domain gener-
alization: learning a system with fully unspe-
cific supervision but capable of generalizing to
any dataset. To solve OpenStance, we pro-
pose to combine indirect supervision, from
textual entailment datasets, and weak supervi-
sion, from data generated automatically by pre-
trained Language Models. Our single system,
without any topic-specific supervision, outper-
forms the supervised method on three popular
datasets. To our knowledge, this is the first
work that studies stance detection under the
open-domain zero-shot setting. All data and
code are publicly released.1

1 Introduction

Stance detection differentiates the attitude (e.g.,
support, oppose, or neutral) of a text to-
wards a topic (Walker et al., 2012a). The topic can
be a phrase or a complete sentence. The same text
can express the author’s positions on many differ-
ent topics. For example, a tweet on climate warm-

1https://github.com/xhz0809/OpenStance

ing may also express attitudes about environmental
policies as well as the debate between electric or
fuel cars. Such compound expression can be seen
on all online platforms, including News outlets,
Twitter, blogs, etc. Therefore, stance detection can
be a complicated task that is essential for develop-
ing the inference capability of NLP models as well
as other disciplines such as politics, journalism,
etc.

Since the textual expressions and the size of top-
ics in the real world are unpredictable, zero-shot
stance detection has become the mainstream re-
search direction in this area: topics in the test set
are unseen during training. For example, Moham-
mad et al. (2016) created a dataset SemT6 based on
tweets with six noun phrases as topics. One of the
topics was reserved for testing and the remaining
were used for training. Allaway and McKeown
(2020) extended the topic size on the domain of
news comments by covering 4,000 topics in train-
ing and 600 unseen topics in testing.

However, despite the change in the domain and
topic size, there are three major limitations in previ-
ous studies which make the task not a real zero-shot
task: (i) the dataset only contains texts from a sin-
gle domain, such as news comments in VAST (All-
away and McKeown, 2020) and tweets in SemT6
(Mohammad et al., 2016); (ii) most literature stud-
ied only a limited size of topics with a single textual
form (either noun phrases or sentential claims), e.g.,
(Mohammad et al., 2016; Conforti et al., 2020); (iii)
rich annotation for at least part of the topics is al-
ways required, which is not possible in real-world
applications because data collection can be very
time-consuming and costly (Enayati et al., 2021).
Those limitations lead to an impractical zero-shot
stance detection system that cannot generalize well
to unseen domains and open-form topics.

In this work, we re-define what a zero-shot
stance detection should be. Specifically, we define
OpenStance: an open-domain zero-shot stance
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detection, aiming to build a system that can work in
the real world without any specific attention to the
text domains or topic forms. More importantly, no
task-specific supervision is needed. To achieve this,
we propose to combine two types of supervision:
indirect supervision and weak supervision. The in-
direct supervision comes from textual entailment—
we treat the stance detection problem as a textual
entailment task since the attitude toward a topic
should be inferred from the input text. Therefore,
the existing entailment datasets, such as MNLI
(Williams et al., 2018), can contribute supervision
to the zero-shot setting. To collect supervision
that is more specific to the OpenStance task,
we design two MASK choices (MASK-topic
and MASK-text) to prompt GPT-3 (Brown et al.,
2020) to generate weakly supervised data. Given an
input text and a stance label (support, oppose,
or neutral), MASK-topic predicts what topic
is appropriate based on the content; given a topic
and a label, MASK-text seeks the text that most
likely holds this stance. The collection of weakly
supervised data only needs the unlabeled texts and
the set of topics that users want to include. The
joint power of indirect supervision and weak super-
vision will be evaluated on VAST, SemT6 and Per-
spectrum (Chen et al., 2019), three popular datasets
that cover distinct domains, different sizes and di-
verse textual forms of topics. Experimental results
show that although no task-specific supervision is
used, our system can get robust performance on all
three datasets, even outperforming the task-specific
supervised models (72.6 vs. 69.3 by mean F1 over
the three datasets).

Our contributions are threefold: (i) we define
OpenStance, an open-domain zero-shot stance
detection task, that fulfills real-world requirements
while having never been studied before; (ii) we de-
sign a novel masking mechanism to let GPT-3 gen-
erate weakly supervised data for OpenStance.
This mechanism can inspire other NLP tasks that
detect relations between two pieces of texts; (iii)
our approach, integrating indirect supervision and
weak supervision, demonstrates outstanding gen-
eralization among three datasets that cover a wide
range of text domains, topic sizes and topic forms.

2 Related Work

Stance detection. Stance detection, as a recent
member of the NLP family, was mainly driven by
newly created datasets. In the past studies, datasets

have been constructed from diverse domains like
online debate forums (Walker et al., 2012b; Hasan
and Ng, 2014; Abbott et al., 2016), news comments
(Krejzl et al., 2017; Lozhnikov et al., 2018), Twitter
(Mohammad et al., 2016; Küçük, 2017; Tsakalidis
et al., 2018)), etc.

Zero-shot stance detection. Recently, re-
searchers started to work on zero-shot stance
detection in order to build a system that can handle
unseen topics. Most work split the collected
topic-aware annotations into train and test within
the same domain. Allaway and McKeown (2020)
made use of topic similarity to connect unseen top-
ics with seen topics. Allaway et al. (2021) designed
adversarial learning to learn domain-independent
information and topic-invariant representations.
Similarly, Wang and Wang (2021) applied
adversarial learning to extract stance-related but
domain-invariant features existed among different
domains. Liu et al. (2021) utilized common sense
knowledge from ConceptNet (Speer et al., 2017) to
introduce extra knowledge of the relations between
the texts and topics. Most prior systems worked on
a single domain and were tested on a small number
of unseen topics. Li et al. (2021) tried to test on
various unseen datasets by jointly optimizing on
multiple training datasets. However, they still
assumed that part of the topics or domains has rich
annotations. In contrast, our goal is to design a
system that can handle stance detection in an open
world without requiring any domain constraints or
topic-specific annotations.

Textual entailment as indirect supervision.
Textual entailment studies if a hypothesis can be
entailed by a premise; this was proposed as a uni-
fied inference framework for a wide range of NLP
problems (Dagan et al., 2005). Recently, textual en-
tailment is widely utilized to help solve many tasks,
such as few-shot intent detection (Xia et al., 2021),
ultra-fine entity typing (Li et al., 2022), corefer-
ence resolution (Yin et al., 2020), relation extrac-
tion (Xia et al., 2021; Sainz et al., 2021), event
argument extraction (Sainz et al., 2022), etc. As
far as we know, our work is the first one that suc-
cessfully leverages the indirect supervision from
textual entailment for stance detection.

Weak supervision from GPT-3. As the cur-
rently most popular and (arguably) well-behaved
pre-trained language model, GPT-3 (Brown et al.,
2020) has been a great success on few-shot and
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zero-shot NLP. As an implicit knowledge base
fully in the form of parameters, it is not surpris-
ing that researchers attempt to extract knowledge
from it to construct synthetic data, e.g., (Yoo
et al., 2021; Wang et al., 2021). We use GPT-3
to collect distantly supervised data by two novel
masking mechanisms designed specifically for the
OpenStance.

3 Problem definition

OpenStance has the following requirements:

• An instance includes three items: text
s, topic t and a stance label l (l ∈
{support,oppose,neutral}); the task
is to learn the function f(s, t)→ l;

• The text s can come from any domain; the
topic t can be any textual expressions, such
as a noun phrase “gun control” or a sentential
claim “climate change is a real concern”;

• All labeled instances {(s, t, l)} only exist in
test; no train or dev is provided;

• Previous work used different metrics for the
evaluation. For example, VAST (Allaway and
McKeown, 2020) used macro-averaged F1 re-
garding stance labels, while studies on SemT6
(Allaway et al., 2021; Liang et al., 2022) re-
ported the F1 scores per topic. To make sys-
tems be comparable, we unify the evaluation
and use the label-oriented macro F1 as our
main metric.

OpenStance vs. prior zero-shot stance detec-
tion. Prior studies of zero-shot stance detection
worked on a single dataset Di in which all texts
s comes from the same domain. Topics t in the
dataset are split into train, dev and test disjointly.
The main issue is that a model that fits Di does not
work well on a new dataset Dj that may contain
s of different domains and unseen t. For example,
a model trained on VAST can only get F1 49.0%
on Perspectrum, which is around the performance
of random guess. OpenStance aims at handling
multiple datasets of open domains and open-form
topics without looking at their train and dev.

OpenStance vs. textual entailment. Stance
detection is essentially a textual entailment prob-
lem if we treat the text s as the premise, and the
stance towards the topic t as the hypothesis. This

motivates us to use indirect supervision from tex-
tual entailment to deal with the stance detection
problem. Nevertheless, there are two distinctions
between them: (i) even though we can match l
of stance detection with the labels of textual en-
tailment: support → entailment, oppose
→ contradict and neutral → neutral,
whether a topic t in stance detection can be treated
as a hypothesis depends on the text form of t. If t is
noun phrases such as “gun control”, t cannot act as
a hypothesis alone as there is no stance in it; if t is
a sentential claim such as “climate change is a real
concern”, inferring the truth value of this hypoth-
esis is exactly a textual entailment problem. This
observation motivates us to test OpenStance on
topics of both phrase forms and sentence forms;
(ii) Zero-shot textual entailment means the size of
the annotated instances for labels is zero, while
OpenStance requires the topics have zero la-
beled examples.

4 Methodology

This section introduces how we collect and com-
bine indirect supervision and weak supervision to
solve OpenStance.

Indirect Supervision. As we discussed in Sec-
tion 3, stance detection is a case of textual entail-
ment since the stance l towards a topic t should be
inferred from the text s. To handle the zero-shot
challenge in OpenStance, textual entailment is
a natural choice for indirect supervision.

Specifically, we first cast stance detection in-
stances into the textual entailment format by com-
bining l and t as a sentential hypothesis h, such
as “it supports topic”, and treating the s as
the premise p; then a pretrained model on MNLI
(Williams et al., 2018), one of the largest entail-
ment dataset, is ready to predict the relationship
between the p and h. An entailed (resp. contra-
dicted or neutral) h means the topic t is supported
(resp. opposed or neutral) by the text s.

Unfortunately, the indirect supervision from tex-
tual entailment may not perform well enough in
real-world OpenStance considering the widely
known brittleness of pretrained entailment mod-
els and the open domains and open-form topics in
OpenStance. Therefore, in addition to the indi-
rect supervision from textual entailment, we will
collect weak supervision that is aligned better with
the texts {x} and the topics {t}.
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Weak Supervision. For the next step, we would
like to create some weakly supervised data using
easily available resources to obtain a better un-
derstanding of the target task. We used GPT-3
(Brown et al., 2020), a pre-trained autoregressive
language model that can perform text completion
at (arguably) a near-human level, to help us create
some weakly labeled instances.

We form incomplete sentences using prompts,
and let the GPT-3 complete them. Since a stance
label l connects the text s and the topic t and
such connection is unavailable in a zero-shot set-
ting, the construction of incomplete sentences is
driven by two questions: (i) given an input text
s and a stance, e.g., support, what topics are
supported by s? (ii) given a topic and a stance,
for example, support, what texts support this
topic? As a result, there are two kinds of prompts:
MASK-Topic and MASK-Text. To implement
the two masking mechanisms, we need to prepare
three sets: the raw texts {s}, a set of topics {t},
and the known stance labels {support, oppose,
neutral}. It is noteworthy that no topic-specific
human annotations are used here.

•MASK-Topic: In this masking frame-
work, we randomly choose a text from
{s} and a stance label from {support,
oppose, neutral}, then build the prompt as:
S/he claims text, so s/he label the idea of
MASK

For example, when the text is “Coldest and
wettest summer in memory” and the label is
oppose, the prompt would be “S/he claims cold-
est and wettest summer in memory, so s/he opposes
the idea of”. Then, this prompt is fed into GPT-3,
and the completion “global warming” would be the
predicted topic.

•MASK-Text: In this case, we randomly
choose a topic from {t} and a stance
label towards it, then build the prompt as:
His/her attitude towards topic is label be-
cause s/he thinks MASK

For example, when the topic is “climate
change is a real concern”, the label is “op-
pose”, the completed sentence filled by GPT-3
could be “His attitude towards climate change is
a real concern is opposition because s/he thinks
the science behind climate change is not settled”.

For any dataset of stance detection, we first col-
lect the three sets (i.e., {s}, {t}, and {l}) from
the label-free training set without peeking at any

gold annotations, then use MASK-Topic and
MASK-Text prompts to generate equal number of
weakly supervised examples. We will study which
masking scheme is more effective in experiments.
In addition, to have a fair comparison with super-
vised methods that learn on the train of a task, we
make sure our generated weakly supervised data
has the same size as the train for any target task.

Although noise is common in weakly super-
vised data, GPT-3 performs badly on neutral
completions for both MASK-Topic and
MASK-Text tasks. This is not a surprise for the
MASK-Topic since the GPT-3 is asked to provide
a topic that the given text has a neutral attitude
for, while most texts, obtained from unlabeled
train and originally extracted from social networks,
usually express a strong attitude. Furthermore, in
MASK-Text, even though the GPT-3 can output
a text given the neutral label towards a topic,
the response is very general and does not provide
any insights. For example, when the template is
"His attitude towards high school writing skills is
neutral because he thinks [MASK]", GPT-3
fills out the MASK with "that they are important
but not essential." Obviously, it is much easier to
generate text with a clear attitude compared to
a neutral stance. On the one hand, GPT-3 may
not really understand what a neutral stance is.
On the other hand, even humans cannot easily
write a neutral opinion towards a topic. Since the
quality of generated neutral instances is not
very promising, we take the same approach as how
VAST (Allaway and McKeown, 2020) collected
its neutral samples: matching texts with random
topics in the dataset.

Training strategy. To keep consistent format and
make full use of the entailment reasoning frame-
work, we convert all phrase-form topic in the
weak supervision data into a sentence-form hypoth-
esis with the positive stance, i.e., “he is in favor of
topic” (note that this does not change the original
label). Then, we randomly split the weak super-
vision data as train (80%) and dev (20%). Given
the entailment dataset MNLI as the indirect su-
pervision data (Dind) and weakly supervised data
(Dweak) from GPT-3, we first pretrain a RoBERTa-
large (Liu et al., 2019) on Dind, then finetune on
Dweak. In inference, we test the final model on the
test of each task, checking the system’s generaliza-
tion ability on diverse domains without optimizing
on any domain-specific train.

317



domain
#topic topic

#labels
train/test form

SemT6 tweet 6 phrase 3
VAST debate 4641/600 phrase 3
Persp. debate 541/227 sentence 2

Table 1: Dataset statistics.

5 Experiments

5.1 Datasets

We choose datasets that can cover (i) multiple do-
mains, (ii) different sizes of unseen topics, and (iii)
various textual forms of topics (phrase-form and
sentence-form). Therefore, we evaluate on three
mainstream stance detection datasets: SemT6 (Mo-
hammad et al., 2016), VAST (Allaway and McK-
eown, 2020) and Perspectrum (Chen et al., 2019).
We discard their training sets and dev sets to satisfy
the definition of OpenStance.

SemT6 (Mohammad et al., 2016) con-
tains texts from the tweet domain regard-
ing 6 topics: Donald Trump, Atheism,
Climate Change is a real Concern,
Feminist Movement, Hillary Clinton,
and Legalization of Abortion. It is a
three-way stance detection problem with labels
{support, oppose, neutral}. Note that the
prior applications of SemT6 for zero-shot stance
detection always trained on five topics and tested
on the remaining one. To match the motivation of
OpenStance, we treat the whole SemT6 data
as test, i.e., all six topics are unseen. When we
report the data-specific supervised performance,
we follow prior work to regard any five topics as
seen and test on the sixth topic; each topic will
have the chance to be unseen, and the average
performance is reported.

VAST (Allaway and McKeown, 2020). In con-
trast to SemT6, VAST contains text from the New
York Times “Room for Debate” section, and many
more topics (4,003 in train, 383 in dev and 600
in test). Those diverse topics, covering various
themes, such as education, politics, and public
health, are short phrases that are first automatically
extracted and then modified by human annotators.
Like SemT6, it also has three stance labels, but the
neutral topics were randomly picked from the
whole topic set. For our OpenStance task, we

only use its test to evaluate our system and do not
touch the gold labels of its train and dev.

Perspectrum (Chen et al., 2019) is a binary
stance detection benchmark (label is support or
oppose) with two main distinctions with SemT6
and VAST: (i) both its text and topics were col-
lected from several debating websites, and (ii) the
topics are sentences rather than noun phrases. Sim-
ilar to VAST, we do not train our model on its
train and dev. The performance on test will be
reported. Since there are no neutral samples in this
dataset, when the model is pretrained as a 3-way
classifier, we set the probability threshold as 1/3
on the oppose label: any prediction that has the
oppose probabilities lower than 1/3 will be con-
sidered as support. Otherwise, the label would
be oppose.

The detailed statistics of the three datasets are
listed in Table 1.

5.2 Baselines
There are no prior systems that work on this new
OpenStance problem since no training data is
available. Here, we consider three baselines that
can work on an unsupervised scheme.

BERT (Devlin et al., 2019). Given the (text,
topic) as input, “BERT-large-uncased” is used
as a masked language model to predict the masked
token in “text, it [MASK] topic”. BERT will
output the probabilities of the three label tokens
{support, oppose, neutral} and the label
that receives the highest probability would be the
predicted stance.

GPT-3 (Brown et al., 2020). Given the text
and the topic with the instruction telling
the model what task we are trying to ac-
complish, GPT-3 is able to complete the
prompt by choosing one of the given labels
{support, oppose, neutral}. GPT-3 also
has functions designed for classification, but
the text completion scheme does a better job
on this stance detection task. Our prompt:
Given a topic and a text, determine whether the stance of
the text is support, against, or neutral to the topic.
Topic: Atheism
Text: Everyone is able to believe in whatever they want.
Stance:

Cosine similarity. We compare the similari-
ties between the text and a hypothesis sen-
tence that combines label and topic, such
as “it supports the topic”, “it opposes the
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F1 Score
SemT6 VAST Persp. mean

random guess 32.0 33.3 49.8 38.3
data-specific supervised learning (prior SOTA) 38.9 78.0 91.0 69.3

cross-domain transfer
SemT6 as train 38.9 28.9 47.7 38.5

VAST as train 55.4 78.0 49.0 60.8

Pers as train 26.7 27.0 91.0 48.2

op
en

-d
om

ai
n

tr
an

sf
er ba

se
lin

e BERT 22.7 36.8 36.5 32.0
GPT-3 30.5 34.2 39.9 34.9
Cosine 31.5 35.9 62.7 43.4

ou
rs

Dind and

SemT6-based Dweak 63.7 69.8 82.8 72.1
VAST-based Dweak 64.3 72.0 80.4 72.2
Persp-based Dweak 64.5 68.7 79.5 70.9
joint Dweak 63.2 73.5 81.0 72.6

w/o indirect 49.6 64.6 38.2 50.8
w/o weak 45.3 53.7 79.1 59.4
w/o MASK-Topic 45.5 65.2 74.2 61.6
w/o MASK-Text 63.4 70.8 78.2 70.8

Table 2: Open-domain experiment results on SemT6, VAST and Perspectrum. Our final number is in bold.

topic”, or “it is unrelated to the topic”.
We first get the sentential representations by
sentence-BERT (Reimers and Gurevych, 2019),
then choose the label whose resulting hypothesis
obtains the highest cosine similarity score.

In addition to the unsupervised baselines, we
further consider the data-specific supervised train-
ing as the upperbound, and the following vari-
ants of our system: i) only MASK-Text or
MASK-Topic; ii) only indirect supervision or
weak supervision.

5.3 Setting

GPT-3 for Dweak collection. The engine we
chose for GPT-3 is “curie”, which gives good
quality at a reasonable price. There are sev-
eral parameters that we played with. We set
the temperature, which goes from 0 to 1 and
controls the randomness of the completion gen-
erated, as 0.8 for MASK-Topic and 0.9 for
MASK-Text for more diverse results. The ran-
domness for MASK-Textis slightly higher be-
cause for some datasets the number of topics is
extremely limited, such as SemT6, which only has
6 topics in total; therefore, we want to force diverse
responses from GPT-3. The max number of tokens
GPT-3 can generate is 6 for MASK-Topic and
150 for MASK-Text. It is worth mentioning that

GPT-3 will not necessarily generate as much as the
upper bound, sometimes not even close. We let the
stop word be "\n", so that it stops generating when
it reaches a new paragraph. “top_p” is set as 1,
letting all tokens in the vocabulary been used. “fre-
quency_penalty” is 0.3 for MASK-Text to avoid
the model producing the same line again and again.

Training details. All models are optimized using
AdamW (Loshchilov and Hutter, 2019). Learning
rate 1e-6, batch size 16, maximal (premise, hypoth-
esis) length is 200. The system is trained for 20
epochs on train and the best model on dev is kept.

5.4 Result

Table 2 lists the main results. We first include “data-
specific supervised learning” as the upperbound
performance and the “cross-domain transfer” that
takes each dataset as the source domain and tests on
others respectively. Both settings try to explore the
upper limit when we apply human-annotated super-
vision. Our core task, OpenStance, is evaluated
in the last three blocks.

From the baseline block, we can observe that
for all domains, baseline methods mostly per-
form like random guess, except for the slight
improvement of the “cosine” approach over Per-
spectrum. This result indicates the difficulty of
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the real-world OpenStance task we proposed.
Although BERT and GPT-3 are the top-tier pre-
trained language models, they still cannot handle
OpenStance well.

Then look at our approach that combines indirect
supervision data (Dind) and weak supervision data
(Dweak). Note that Dweak can be collected based
on the label-free train of VAST, SemT6 or Perspec-
trum. We try Dweak for each of the task domains
and also put them jointly (i.e., “joint Dweak”). We
note that all four versions of Dweak result in very
consistent performance—mostly around 72% by
the “mean”. This clearly supports the robustness
of our method: it is less affected by the original
domain where text and topic come from, and a
single system based on each of the domain or their
combination can perform well on all domains.

The last block of Table 2 reports the ablation
study, where we discard individual source of su-
pervision (indirect or weak) or individual mask-
ing scheme (MASK-Text or MASK-Topic). We
observe that i) indirect supervision and weak su-
pervision play complementary roles for the task
OpenStance; and they both outperform base-
lines by large margins, and ii) both masking
schemes help, and the MASK-Topic contributes
more. This is maybe because MASK-Topic re-
quires the GPT-3 to generate shorter texts than
MASK-Text so that MASK-Topic can yield
higher-quality data. Additionally, deriving support-
ing sentences for a given topic sometimes requires
substantial background knowledge and solid rea-
soning, which is still a difficult task for GPT-3.

5.5 Analysis

Next, we conduct a deep analysis for the system
robustness towards prompts (Q1), the required size
of Dweak (Q2), the noise in generated Dweak (Q3),
and the error patterns made by our system (Q4).

Q1: Robustness of dealing with prompts.
Prompt design takes place in both GPT-3 com-
pletion and the conversion from stance detec-
tion to textual entailment. When generating the
prompt for GPT-3, how we construct the prompt
in MASK-Topic and MASK-Text can make a
huge impact on the completion received. In
MASK-Topic, we use the prompt “He said text,
so he label the idea of [MASK]”. The reason
why we add “the idea of ” at the end of the prompt is
because it helps the model understand that we want
a noun phrase. Otherwise, we will see completions
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Figure 1: Mean F1 vs. size of Dweak.

like “that”, “it”, etc. Similarly, in MASK-Text, the
final prompt we use is “His attitude towards topic
is label because he thinks [MASK]”. Consider-
ing the freedom of GPT-3 completion, we add “s/he
thinks” at the end of the prompt, forcing GPT-3 to
generate a reasoning for the given topic/label pair.
If we don’t add “he thinks” at the end, it would be
common to see GPT-3 repeating the given sentence
in the generated completion. In addition, when the
label is neutral, such as the prompt “His atti-
tude towards high school writing skills is neutral
because he thinks [MASK]”, GPT-3 would output
sentences like “he does not have a strong opinion
either way” if we don’t have “he thinks” at the
end. After the modification, responses would make
more sense, such as “that they are important but not
essential.” These tricks in prompt design suggest
that it is essential to make the sentence structure as
clear as possible and provide content that helps to
instruct the model on what we want.

When we convert the topic phrase into a senten-
tial hypothesis, we again get involved in the prompt
design. During training, we stick with “he is in fa-
vor of topic” template to limit the training size,
but in the testing, we found the majority voting
of four templates (“he/she is in favor of topic”
and “he/she opposes topic”) lead to comparable
performance with “he is in favor of topic”. This
indicates the pre-trained entailment system is con-
siderably robust in dealing with hypotheses derived
from different templates.

Q2: How much weakly supervised data is
needed? We answer this question by applying
Dweak alone or together with Dind. For each case,
we test on sizes varying from 100 to 50,000 and re-
port the average results over 3 random seeds. From
the Figure 1, we can see that both settings can reach
similar performance when we collect over 10k data
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of Dweak, but the pretraining on Dind can dramati-
cally reduce the required size of Dweak: from 10k
to around 500.

Q3: Error patterns of weakly supervised data.
We collect typical error patterns in Dweak derived
by MASK-Topic and MASK-Text separately.

MASK-Topic. Three typical error types.
•Incomplete generation. Sometimes GPT-3

fails to give a complete topic phrase and cuts
in the middle even though it hasn’t reached
the maximum token limit. For example:
He claims 16 year olds are informed
enough to cast a vote, so he supports
the idea of GIVING 16-YEAR-OLDS

In this example, the topic given by GPT-3 is “giv-
ing 16-year-olds”, which is not a complete phrase
as we expected. This kind of errors indicate that
GPT-3 sometimes stops generating before provid-
ing a complete idea even when the word limit is
not exceeded.

•Failure in understanding the stance. Since
we are providing opposite labels (i.e., support
and oppose), we hope that GPT-3 would pro-
duce distinct topics that hold opposite stances.
However, sometimes GPT-3 fails to understand
the stances when generating topics. For example:
He claims A higher minimum wage means
less crime, so he supports the idea of
A MINIMUM WAGE
He claims A higher minimum wage means
less crime, so he opposes the idea of
A MINIMUM WAGE

This error type is the most common one in the
weakly supervised data (approximately 85% error
instances), indicating that GPT-3 is still less effec-
tive to interpret negated information.

•Misunderstanding the text. The GPT-
3 does not always understand the meaning
of the sentence correctly. For example:
He claims women who are housewives
should be paid, so he supports the idea of
WOMEN BEING PAID LESS THAN MEN

Here, the predicted topic is related but not the
main subject of the sentence. Such a mistake is
rare but still exists weak supervision.

MASK-Text. Even though GPT-3 can
mostly provide a sentence that is related to
the topic and align with the correct stance,
more than 50% of the time the content is
very short and less informative compared to
the texts from the datasets. For example:
His attitude towards middle east oil is
opposition because he thinks IT IS A WASTE

His attitude towards miss america is support be-
cause he thinks SHE IS TALENTED

This is not that surprising since GPT-3 was
trained to mainly satisfy the language modeling
criterion; thus, it would be “lazy” to return with
a solid and long response. These MASK-Text in-
stances are never wrong in the judgment of atti-
tudes, so they can still give the model some help,
although limited, in determining the attitudes.

Q4: Error analysis of our system. Due to space
limitation, we summarize two common error pat-
terns made by our system.

•Failed to connect the topic and text. The text of-
ten mentions the topic with distinct expressions and
contains its stance implicitly. Therefore, it brings
more difficulty to the model to successfully locate
the topic and identify the stance. For example:
Topic: musician
Text: Spotify and Pandora pay usage rates that are much
lower than the radio, records and legal downloads that
they are replacing. Low enough to where many potential
new artists won’t be able to even earn a living. There
must be some alternative other than artists simply being
forced to accept the new streaming model that destroys
royalties. For example, who set streaming royalty rates?
Can artists unionize and negotiate collectively with the
streaming services? If we don’t sort this out, we will lose a
new generation of artists – which is bad for everyone.
Gold label: support
Predicted label: neutral

•Incorrect ground-truth labels. The gold
labels are not always correct. Sometimes
the model makes a more appropriate judge-
ment than the data provides. For example:
Topic: keep weight
Text: “All the medical evidence points to the fact that
it’s nearly impossible to keep off weight once lost. The
body just won’t let you." This is incorrect, and could lead
to fatalism that could harm people who are overweight. For
example, I lost 70 pounds. That was at least a year ago. It
has not come back. It is easy to keep off......”
Gold label: neutral
Predicted label: support

6 Conclusion

In this work, we define OpenStance, a more re-
alistic and challenging zero-shot stance detection
problem in an open world. Under such a setting,
multiple domains and numerous topics can be in-
volved, while no topic-specific annotations are re-
quired. To solve this problem, we proposed to com-
bine indirect supervision from textual entailment
and weak supervision collected from GPT-3. Our
system, without the help of any task-specific super-
vision, outperforms the supervised method on three
benchmark datasets that cover various domains and
free-form topics.
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Abstract

Even though fine-tuned neural language models
have been pivotal in enabling “deep” automatic
text analysis, optimizing text representations
for specific applications remains a crucial bot-
tleneck. In this study, we look at this problem
in the context of a task from computational
social science, namely modeling pairwise simi-
larities between political parties. Our research
question is what level of structural information
is necessary to create robust text representa-
tion, contrasting a strongly informed approach
(which uses both claim span and claim cate-
gory annotations) with approaches that forgo
one or both types of annotation with document
structure-based heuristics. Evaluating our mod-
els on the manifestos of German parties for the
2021 federal election. We find that heuristics
that maximize within-party over between-party
similarity along with a normalization step lead
to reliable party similarity prediction, without
the need for manual annotation.

1 Introduction

A party manifesto, also known as electoral program,
is a document in which parties express their views,
intentions and motives for the next coming years.
Since this genre of text is written not just to inform,
but to persuade potential voters that the parties
compete for (Budge et al., 2001), it provides a
strong basis to understand the position taken by
parties according to various policies because of
its direct access to the parties’ opinions. Political
scientists study the contents of party manifestos,
for instance, to investigate parties’ similarity with
respect to the several policies (Budge, 2003), to
predict party coalitions (Druckman et al., 2005),
and to evaluate the extent to which the parties that
they vote for actually corresponds to their own
world view (McGregor, 2013).

To carry out systematic analyses of party rela-
tions while taking into account differences in style
and level of detail, these analyses are increasingly

grounded in two types of manual annotation about
claims, statements that contain a position or a view
towards an issue, that can be argued or demanded
for (Koopmans and Statham, 1999): First, abstract
claim categories (Burst et al., 2021) are used to
group together diverse forms and formulations of
demands. Second, annotation often includes the
stance that parties take towards specific political
claims to abstract away from the many ways to ex-
press support or rejection in language. In addition,
these types of annotation offer a direct way to em-
pirically ground party similarity in claims and link
these to concrete textual statements. At the same
time, such manual annotation is extremely expen-
sive in terms of time and resources and has to be
repeated for every country and every new election.

In this paper, we investigate the extent to which
this manual effort can be reduced given appropri-
ate text representations. We build on the advances
made in recent years in neural language models
for text representations and present a series of fine-
tuning designs based on manifesto texts to com-
pute party similarities. Our main hypothesis is that
the proximity between groups can be more easily
captured when the model receives adequate indica-
tion of the differences between groups (and their
stances) and this can be done via fine-tuning for
instance. This can be achieved by using signal
that is freely available in the manifestos’ document
structure, such as groupings by party or topic. In-
formation of this type can serve as an alternative
feedback for fine-tuning in order to create robust
text representations for analysing party proximity.

We ask three specific questions: (1) How to cre-
ate robust representations for identifying the simi-
larity between groups such as in the case of party
relations? (2) What level of document structure
is necessary for this purpose? (3) Can computa-
tional methods capture the relation between parties
in unstructured text? We empirically investigate
these questions on electoral programs from the Ger-
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man 2021 elections, comparing party similarities
against a ground truth built from structured data.
We find that our hypothesis is borne out: We can
achieve competitive results in modelling the party
proximity with textual data provided that the text
representations are optimized to capture the dif-
ferences across parties and normalized to fall in a
certain distribution that is appropriate for comput-
ing text similarity. More surprisingly, we find that
completely unstructured data reach higher corre-
lations than more informed settings that consider
exclusively claims and/or their policy domain. We
make our code and data available for replicability.1

Paper structure. The paper is structured as fol-
lows. Section 2 provides an overview of related
work. Section 3 describes the data we work with
and our ground truth. Section 4 presents our mod-
eling approach. Sections 5 and 6 discuss the exper-
imental setup and our results. Section 7 concludes.

2 Related Work

2.1 Party Characterization

The characterization of parties is an important topic
in political science, and has previously been at-
tempted with NLP models. Most studies, however,
have focused on methods to place parties along the
left to right ideological dimension. For instance, an
early example is Laver et al. (2003) who investigate
the scaling of political texts associated with parties
(such as manifestos or legislative speeches) with a
bag of words approach in a supervised fashion, with
position scores provided by human domain experts.
Others, instead, have implemented unsupervised
methods for party positioning in order to avoid pick-
ing up on biases of the annotated data and to scale
up to large amounts of texts from different political
contexts while still implementing word frequency
methods (Slapin and Proksch, 2008). More recent
studies have sought to overcome the drawbacks of
word frequency models such as topic reliance and
lack of similarity between synonymous pairs of
words, e.g. Glavaš et al. (2017) and Nanni et al.
(2022) implement a combination of distributional
semantics methods and a graph-based score propa-
gation algorithm for capturing the party positions
in the left-right dimension.

Our study differs from previous ones in two main
aspects. First, our aim is not to place parties a

1https://github.com/tceron/capture_similarity_
between_political_parties.git

left-to-right political dimension but to assess party
similarity in a latent multidimensional space of
policy positions and ideologies. Second, our focus
is not on the use of specific vocabulary, but on
representations of whole sentences. In other words,
our proposed models work well if they manage to
learn how political viewpoints are expressed at the
sentence level in party manifestos.

2.2 Optimizing Text Representations for
Similarity

Fine Tuning. Recent years have seen rapid ad-
vances in the area of neural language models, in-
cluding models such as BERT, RoBERTa or GPT-
3 (Devlin et al., 2019; Liu et al., 2020; Brown
et al., 2020). The sentence-encoding capabilities
of these models make them generally applicable to
text classification and similarity tasks (Cer et al.,
2018). Both for classification and for similarity,
it was found that pre-trained models already show
respectable performance, but fine-tuning them on
task-related data is crucial to optimize the models’
predictions – essentially telling the model which
aspects of the input matter for the task at hand.

On the similarity side, a well-known language
model is Sentence-BERT Reimers and Gurevych
(2019), a siamese and triplet network based on
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2020) which aims at better encoding the similar-
ities between sequences of text. Sentence-BERT
(SBERT) comes with its own fine-tuning schema
which is informed by ranked pairs or triplets and
tunes the text representations to respect the pref-
erences expressed by the fine-tuning data. Of
course, this raises the question of how to obtain
such fine-tuning data: The study experiments both
with manually annotated datasets (for entailment
and paraphrasing tasks) and with the use of heuris-
tic document structure information, assuming that
sentences from the same Wikipedia section are se-
mantically closer and sentences from different sec-
tions are further away. Parallel results are also
found by Gao et al. (2021) in their SimCSE model,
which reach even better results when fine-tuning
with contrastive learning: They also compare a
setting based on manually annotated data from an
inference dataset with a heuristic setting based on
combining a pair of sentences with its drop-out
version as positive examples and different pairs as
negative examples.

Both studies find slightly lower performance for
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Party Sentence Domain

AfD People’s insecurities and fears, especially in rural regions, must be taken
seriously.

Social Groups

CDU We want to strengthen our Europe together with the citizens for the chal-
lenges of the future.

External
Relations

Linke The policies of federal governments that ensure private corporations and
investors can make big money off our insurance premiums, co-pays and
exploitation of health care workers are endangering our health!

Political
System

FDP In this way, we want to create incentives for a more balanced division of
family work between the parents.

Welfare and
Quality of Life

Grüne After the pandemic, we do not want a return to unlimited growth in air
traffic, but rather to align it with the goal of climate neutrality.

Economy

SPD We advocate EU-wide ratification of the Council of Europe’s Istanbul
Convention as a binding legal norm against violence against women.

Fabric of
Society

Table 1: Examples from the 2021 party manifestos and their annotated domains.

the heuristic versions of their fine-tuning datasets,
but still obtain a relevant improvement over the non-
fine-tuned versions of their models, pointing to the
usefulness of heuristically generated fine-tuning
data, for example based on document structure.

Postprocessing to Improve Embeddings A
problem of the use of neural language models to
create text representations that was recognized re-
cently concerns the distributions of the resulting
embeddings: They turn out to be highly anisotropic
(Ethayarajh, 2019; Gao et al., 2019), meaning that
their semantic space takes a cone rather than a
sphere format - in the former two random vectors
are highly correlated while in the latter they should
be highly uncorrelated. This can cause similarities
between tokens or sentences to be very similar even
when they should not. To counteract this tendency,
Li et al. (2020) impose an isotropic distribution
onto the embeddings via a flow-based generative
model. Su et al. (2021) propose a lightweight, even
slightly more effective approach: The text embed-
dings undergo a linear so-called whitening transfor-
mation, which ensures that the bases of the space
are uncorrelated and each have a variance of 1.

3 Data

Before we describe the methods we will use, we
describe our textual basis and the ground truth we
will aim to approximate.

3.1 The Manifesto Dataset
As stated above, we are interested in deriving party
representations from party manifestos. Party mani-

festos generally contain sections roughly separated
by policy topics, however, some party manifestos
are organized more strictly by topics than others.
For this reason, we utilize the manifesto dataset pro-
vided by the Manifesto Project (Burst et al., 2021),
which provides manifestos from around the world
and offers consistent markup of policy domains
and categories 2.

More specifically, every sentence from the man-
ifestos is annotated with domain names and cate-
gories. In this paper, consistent with our goal of
reducing annotation effort, we consider only the
domain. The domain corresponds to a broad policy
field such as ‘political system’ and ‘freedom and
democracy’. In most cases, an entire sentence is an-
notated with a single domain, but some sentences
have been split when falling into two distinct do-
mains. Nearly every sentence is annotated with a
domain label, except the introduction and end sec-
tions which usually contain an appeal to the voter
and do not belong to any policy category.

For reasons that will become clear in the next
subsection, we focus on German data and use the
party manifestos written by the six main German
parties (CDU/CSU, SPD, Grüne, Linke, FDP, AFD)
for the federal elections in 2013, 2017 and 2021.
Table 1 shows some examples of sentences with
their respective domain names. Due to space con-
straints, more information about the description of
the dataset is found in appendix A.1.

2More information on https://manifesto-project.
wzb.eu/information/documents/corpus
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3.2 Ground Truth: Wahl-o-Mat

A problem with the task of predicting party proxim-
ity is to find a suitable ground truth against which
to evaluate the models. In this study, we make use
of a highly structured dataset, Wahl-o-Mat (WoM)
from which we can construct a ground truth of party
similarities with minimal manual involvement.

Wahl-o-Mat (WoM, Wagner and Ruusuvirta
(2012)) is an online application that provides voting
advice. The application collects users’ stances on
a range of policy issues via a questionnaire. There
are 38 issues in total and they cover a wide range
of topics, e.g. ‘Germany should increase its de-
fense spending’ or ‘The promotion of wind energy
is to be terminated’. The users’ stances are then
matched against those of the German parties in or-
der to suggest the closest choices for users. The
database behind WoM consists of the stances that
each party takes towards each policy issue, which
can be ‘agree’, ‘disagree’, or ‘neutral’.

WoM provides each user with a “percentage
overlap” that they have with the different parties,
suggesting that the set of policy issues and the
stances are an informative basis for computing po-
sitional similarity (Wagner and Ruusuvirta, 2012).
In this spirit, we define as our ground truth the party
distance matrix which we obtain by representing
each party by its vector of stances (represented -1,
1, 0) towards the different policy issues and com-
puting the Hamming (L1) distances among them.
Such distance calculations are used by political
scientists to understand the overall (dis)similarity
between party and voters (McGregor, 2013).

Figure 1a shows the distance matrix between
parties: the higher the distance, the more they dis-
agree on WoM policy issues. Figure 1b visualizes
the ground truth differently, as an agglomerative
clustering of the distance matrix. This ground truth
arguably stands up to scrutiny: The two most left-
oriented parties, Grüne (greens) and Linke (left),
are most similar (distance 0.18), due to their similar
environmental programs and shared concern about
foreign policy. They are then most similar to so-
cial democratic SPD. On the other main branch of
the clustering tree, which covers the right-oriented
parties, AFD (right wing) and CDU/CSU (center
conservative) are most similar, although less than
the left parties (distance 0.45). Finally, the liberal
party FDP groups with the conservative parties, but
reluctantly so: it assumes a kind of bridge position
between the left and right oriented parties.

(a) Distances between parties

(b) Aggloremative clustering

Figure 1: Based on Wahl-o-Mat policy positions.

4 Methods

We describe our method in three steps: (a) we de-
fine a set of informative text representations mod-
els; (b) we compute party similarities, parallel to
Section 3.2, on the basis of these text representa-
tions; (c) we post-process the data.

4.1 Building Informative Text
Representations

The first step is to build text representations that
are informative for party similarity. As sketched
above, we use neural language models (NLMs) as
the current state of the art. This involves selecting
a base embedding model and defining the different
fine-tuning schemes.
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Base embedding model: SBERT. We choose
SBERT as the basis for our models. With its focus
on sentence similarity and its computational effi-
ciency, it is arguably the most appropriate model
for our goals. Pre-trained SBERT without any fine-
tuning 3 serves directly as our first model.

Fine-tuning SBERT. Fine-tuning of SBERT can
take place in different ways, but given our type of
data, we use the triplet objective function where
the model receives as input an anchor sentence a,
a positive sentence p that is similar to the anchor
sentence and a negative sentence n unrelated to
both previous sentences. The objective of the fine-
tuning is to minimize

max(∥Sa − Sp∥ − ∥Sa − Sn∥+ ϵ, 0) (1)

which encourages the model to learn that Sp is at
least ϵ closer to Sa than to Sn. ∥·∥ is the distance
metric, which is kept as the default Euclidean 4. We
experiment with two ways of constructing triplets
for fine-tuning, first by domain and then by party.

SBERTdomain follows the same logic as in Dor
et al. (2018) with the Wikipedia sections (and repli-
cated in Reimers and Gurevych (2019)). We use
the domain information from the manifestos (cf.
Section 3) to construct triplets: The anchor and the
positive sentences are part of the same domain and
the negative sentence is from a different domain
across party manifestos. The hypothesis is that
aligning sentences by topic should help the model
focus on relevant policy distinctions across parties.

SBERTparty , in contrast, intends to learn the
distinction between the way parties express their
claims or their ideologies and opinion. Here, we
construct triplets by combining anchor sentences
with positive sentences from the same party – ir-
respective of the domain – and negative sentences
from the other parties’ manifestos. The hypothesis
of this setup is that the embeddings incorporate the
parties’ stances along with the way that particular
sentences are presented, or styles used. We assume
that many aspects of the text contribute to capturing
the stance such as sentiment, text style and word
usage.

3Pre-trained model: https://
huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

4Loss function and more details on: https://www.sbert.
net/docs/package_reference/losses.html#sentence_
transformers.losses.BatchAllTripletLoss

ID Grouping Filtering Infor.
CLAIMDOM Domain Claims only ++++
CLAIM - Claims only +++
DOM Domain All sentences ++
NONE - All sentences +

Table 2: Models for the computational of party similar-
ity, varying in the amount of information used

4.2 Four Models for Party Similarities
With the methods described in the previous subsec-
tion, we can obtain representations for individual
sentences. We now need to define how to aggregate
these sentences into global party representations –
or rather, their similarities.

Table 2 shows four aggregating strategies that
differ in the amount of information that they take
into account. They differ in two main dimensions:
(a), the grouping: is the similarity computed glob-
ally, over the complete manifestos, or domain by
domain (b), the filtering: is the similarity based
on all sentences in the manifestos, or only on sen-
tences that contain concrete claims (cf. Section 1).

Regarding grouping, we hypothesize that it is
easier for language models to assess the proximity
between parties if sentences from matching topics
are compared. Similarly, we expect that filtering
by claims serves to focus the models on the ‘core’
of the parties’ policies.

CLAIMDOM: using claims and domains. In
this, the most informed, model, we represent par-
ties by the claims that they make, compare these
claims by domain, and then average the by-domain
similarities. Formally, let s⃗ be the embedding
produced for a sentence by an (implicit) encoder
model, cl(T ) the set of claim sentences contained
a text T, and dom(P, i) the set of sentences for do-
main i in the manifesto of a party P . Then we can
define the representation of a domain (Equation
1), the similarity for domain i (Equation 2), and a
global similarity (Equation 3):

⃗dom(P, i) =
∑

s∈cl(dom(P,i))

s⃗ (2)

sim(P1, P2, i) = cos( ⃗dom(P1, i), (3)
⃗dom(P2, i))

sim(P1, P2) =
1

|Dom|
∑

i

sim(P1, P2, i) (4)

CLAIM: using claims, but no domains. To com-
pute similarities without domain information, we
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Figure 2: Twin matching: Solid lines mean pairings of
maximal similarity.

could simply average over all sentences of the man-
ifestos. However, pilot experiments showed that
this procedure resulted in a severe loss of informa-
tion. To avoid this, we introduce a method called
twin matching, visualized in Figure 2. Twin match-
ing maps each sentence in one manifesto to its
nearest neighbor in the other manifesto (Equation
5) – in most cases, this will be a sentence of the
same domain. Furthermore, we normalize the sim-
ilarity to the twin by dividing by the maximum
inter-claim similarity to both manifestos, and aver-
age over all sentences in the manifesto (Equation 7).
Our hypothesis is that this procedure provides an
approximating to domain-based grouping without
the need for explicit domain labeling.

Formally, let tw(s, T ) denote the nearest neigh-
bor, or twin, of sentence s in text T :

tw(s, T ) = argmax
t∈T

cos(s, t) (5)

Then the maximum inter-claim similarity C of a
manifesto P , is

C(P ) = max
p,p′∈cl(P )∧p ̸=p′

cos(p, p′) (6)

Then the similarity of two texts is:

sim(P1, P2) = (7)
∑

s∈cl(P1)

cos(s, tw(s, P2))

|cl(P1)|(C(P1) + C(P2))

DOM: using domains, but no claims. This
model is identical to CLAIMDOM, but uses all sen-
tences instead of just claims in Equation (2).

NONE: using neither domains nor claims. This
model is identical to CLAIM, but uses all sentences
instead of just claims in Equations (6) and (7).

4.3 Post-processing
As mentioned in Section 2, sequence representa-
tions should form an isotropic space for good sim-
ilarity prediction. Therefore, we also experiment

with post-processed embeddings of the sentences
by applying whitening transformation to our em-
beddings as suggested in Su et al. (2021). Follow-
ing their normalization procedure, we start with a
matrix Rn×d representing n sequence vectors from
a given encoding model with dimension d.5 Then,
matrix W (Rd×d) is computed through singular
value decomposition (SVD) and saved along with
the mean vector µ (R1×d) retrieved from the initial
input embedding matrix. Finally, every vector (x̃i)
of interest for the analysis is converted into our
final representation as in x̃i = (xi − µ)W .

Su et al. (2021) compute W and µ either with
the data from the task at hand (train, validation and
test set) or with data from another NLI task. In
this study, we experiment with the same data of the
analysis, i.e., the entire MaClaim21 in the CLAIM-
DOM and CLAIM models and Manifesto21 in the
DOM and NONE models. This means that each
sequence representation of the dataset is stacked
into a matrix for the computation of W and µ.

5 Experimental Setup

5.1 Datasets

Fine tuning. We use the German Manifesto data
for 2013 and 2017 to fine-tune SBERT following
Section 4.1. There is a deliberate temporal gap
between the fine tuning datasets and the year of our
ground truth, namely 2021, to ensure that the model
picks up generalizable differences between parties
rather than overfitting. However, we acknowledge
the drawback that fine-tuning does not receive any
signal from newly emerged topics (e.g. Covid19)
and that party communication has not transformed
drastically over the last four years.

Appendix A.3 provides more details and statis-
tics, including evaluation on a 20% held-out valida-
tion set, which shows that fine-tuning improves
both SBERTparty and SBERTdomain over plain
SBERT, with SBERTdomain gaining most.

Party representation. To compute party similar-
ities following Section 4.2, we use the 2021 mani-
festos, which arguably form the right textual basis
to evaluate against our Wahl-o-Mat ground truth for
the 2021 German elections (Section 3.2). Recall
that the Manifesto data comes with annotated do-
mains, but not with annotated claims. We therefore
applied an automatic claim classifier to identify
claims (Blokker et al., 2020). We evaluated the

5The pre-trained model we use has 768 dimensions.
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MaClaim21 Manifesto21

Model + postproc. CLAIMDOM
(++++)

CLAIM
(+++)

DOM
(++)

NONE
(+)

fasttextavg 0.17 0.30 0.27 0.28
fasttextavg+whiten 0.54∗ 0.35 0.44∗ 0.41
BERTgerman 0.12 0.28 0.11 0.27
BERTgerman +whiten 0.37 0.47∗ 0.36 0.48∗

RoBERTaxml 0.03 0.35 0.08 0.33
RoBERTaxml+whiten 0.39 0.51∗ 0.46∗ 0.54∗

SBERT 0.38 0.47∗ 0.31 0.47∗

SBERT(whiten) 0.57∗ 0.50∗ 0.53∗ 0.57∗

SBERTdomain 0.22 0.23 0.32 0.16
SBERTdomain+whiten 0.44∗ 0.45∗ 0.41 0.52∗

SBERTparty 0.45 0.13 0.32 0.16
SBERTparty+whiten 0.53∗ 0.70∗ 0.50∗ 0.69∗

Table 3: Experimental results: Mantel’s correlation between categorical and textual distance matrices. +whiten
means that the models have undergone whitening postprocessing. The + symbol indicates the level of informativeness
from Table 2. Highest correlation for each model in boldface. * p-value < 0.05.

results of the classifier by calculating the precision
on a subset of 324 manually labeled claims from
the 2021 manifestos and obtained a reasonable pre-
cision of 75,6%. More information about data and
classifier can be found in Appendix C.1.

This procedure results in two datasets for model
training: Manifesto21 (with domain annotation)
has 17,052 sentences; MaClaim21 (with domain
and claim annotation) consists of 9,814 claims.
More details and statistics are in Appendix B.

5.2 Models

In our empirical evaluation below, we vary the fol-
lowing three parameters: (1), Embedding model
and fine-tuning (SBERT plain vs. SBERTdomain
vs. SBERTparty). (2), Party similarity computation
(CLAIMDOM vs. CLAIM vs. DOM vs. NONE). (3),
Postprocessing (whitening vs. none). We consider
all combinations of these parameters.

Baselines We consider three baselines. The first
and simplest one is a pre-trained FastText model
for German based on character n-gram embeddings
(Bojanowski et al., 2017). We compute sentence
representations by tokenizing the sentences based
on the FastText tokenizer and averaging all Fast-
Text token representations.6

6We evaluated both on the general version of fasttext for
German available on fasttext.cc and also on a trained ver-
sion with newspaper articles from TAZ for a more domain
specific model. Since both models obtained comparable re-
sults, we report only results for the former.

The other two baselines use transformer-driven
(sub)word embeddings, namely from BERT-
German 7 and multilingual RoBERTa-XLM 8. We
choose the former because monolingual models of-
ten perform better than multilingual ones and the
latter because it is the student model with which
SBERT has been trained, which allows us to check
how much better SBERT can be in a text similarity
task in the political domain. Again, we feed each
sentence to these models and compute the final rep-
resentations by averaging all token representations
from the two last layers of the model, a strong base-
line for similarity tasks (Li et al., 2020; Su et al.,
2021).

5.3 Evaluation

To evaluate the pairwise party similarities com-
puted by the models, we turn them into distances
and compare them against our ground truth distance
matrix (Section 3.2) with the Mantel test (Mantel,
1967). This test is a variant of standard correlation
tests (such as Spearman’s rho) which are not appli-
cable to distance matrices because they assume that
the observations are independent of one another. In
our case, changing the position of one value in the
matrix would change the correlation between a pair
or parties. Having said that, the Mantel test ad-
dresses this problem by calculating correlations on

7https://huggingface.co/
bert-base-german-cased

8https://huggingface.co/xlm-roberta-base
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all permutations of the flattened distance matrix.
The two-tail hypothesis tests whether the correla-
tion between the ground truth matrix and the target
distance matrix is statistically significant or not.
We use the nonparametric version of the test since
the party distances are not normally distributed.

6 Results and Discussion

Table 3 shows the quantitative results of our exper-
iments. We first discuss the effect of our various
experimental parameters.

Effect of postprocessing. By comparing the up-
per and the lower row in each colored block, we ob-
serve that the the whitening transformation is bene-
ficial in nearly all models, and where it is not, the
loss is minor. On average, post-processed model
embeddings are 22 percentage points higher in the
correlations, and consistently obtain significant cor-
relations with the ground truth. This suggests that
the benefit of enforcing isotropic distributions ex-
tends to the domain and genre of political texts.
Given the substantially higher performance of the
models with the post-processing step, we focus on
their results for the remainder of this discussion.

Effect of embedding models and fine-tuning.
Comparing the rows in the table, we observe that
our two baseline models, BERT and RoBERTa,
show generally worse performance than even the
non fine-tuned SBERT. BERT is generally the
worst performer among the three, despite its mono-
linguality, which we interpret as evidence that the
architectures more geared towards similarity tasks
have an advantage. We take these results as valida-
tion of our choice of SBERT as embedding model.

Interestingly, our simplest baseline, fasttextavg,
performs better than most models in the most in-
formative scenario (Mantel=0.54) and relatively
well with domain information (Mantel=0.44), but
degrades when less information is available. This
suggests that FastText embeddings are informative
enough to support generalization from rich annota-
tion, but are not able to align semantically similar
sentences well in a less informative scenario such
as in the twin matching approach.

Among the fine-tuned variants of SBERT,
SBERTdomain performs surprisingly badly and is
generally outperformed by vanilla RoBERTa. This
suggests that optimizing the model to pick up on
domain contrasts is distracting the model from cap-
turing the dis(similarity) between parties.

In contrast, SBERTparty does very well, and
competes with vanilla SBERT for the best re-
sults. Indeed, SBERT wins in both setups that
are grouped by the domain category (CLAIMDOM

and DOM), reaching 0.57 and 0.53, respectively.
Conversely, SBERTparty wins the two scenarios
without the grouping by domains (CLAIM’s Man-
tel=0.70 and NONE’s Mantel=0.69), and achieves
the overall highest correlations here.

These results suggest that SBERT, without any
fine-tuning, is reasonably good at capturing the
proximity between parties if more information is
provided: if we have both only claim structure and
the domain category then SBERT can be enough
(Mantel=0.57). If there is unstructured data, but
there is still domain information, despite having a
drop in performance, it can still achieve a reason-
able correlation (Mantel=0.53).

SBERTparty, in contrast, performs better in the
settings without domain information, that is, when
the party similarity is based on twin sentence
similarity (Section 4.2). We believe that this is
the case because the sentence-level fine-tuning of
SBERTparty is most directly carried forward into
the predictions of the model. In effect, therefore,
fine-tuning SBERT by contrasting the party differ-
ence is the best way to encode fine-grained differ-
ences between parties’ views and ideologies.

Analysis by agglomerative clustering. To com-
plement the analysis by correlation coefficients
in Table 3, we compute agglomerative clusterings
with average linkage for the best models from Ta-
ble 3. The results, shown in Figure 3, show a
good correspondence to the quantitative results,
thus lending support our use of the Mantel test.

Indeed, the two SBERT models in 3(a) and 3(c),
which reach moderate correlation coefficients, dis-
agree substantially with the ground truth clustering:
they group, for example, the far right AFD with
the liberal FDP in (a), and with the left wing Linke
in (c). Also, the conservative CDU is grouped
with Grüne (greens) and social democratic SPD.
In contrast, the two SBERTparty models in 3(b)
and 3(d) show a better match with the ground truth,
even though both group Grüne with SPD instead
of Linke, and (b) has AFD as an outlier altogether.

General outcome. Probably the most striking
outcome of our experiment is that the best results
– both in terms of the correlation coefficient and
in terms of the clustering – results from models
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(a) CLAIMDOM model (0.57) (b) CLAIM model (0.70) (c) DOM model (0.53) (d) NONE model (0.69)

Figure 3: Agglomerative clustering for the best model of each setting. Mantel correlation in parenthesis. Ground
truth’s comparison in Fig. 1b.

that use very little structured information (CLAIM,
NONE). The difference among the two is small,
and can be seen as a trade-off between using a
larger, more noisy dataset (all sentences: Mani-
festo21) and a more focused dataset (just the claims:
MaClaim21) of about half the size. These results
confirm the idea that it is possible to use natu-
ral language processing methods to identify the
dis(similarity) between party according to their pol-
icy positions with unstructured data.

We believe that this result is a combination of
a good choice of fine-tuning regimen – providing
the embeddings with a signal concerning the con-
trast between parties – with an appropriate way to
model similarity, with our twin matching approach
which helps to match the most relevant parts of the
two manifestos to one another. These two aspects
reinforce each other, since a well fine-tuned model
is better able to push away dissimilar parties while
bringing closer together similar ones.

7 Conclusion

In this paper, we have investigated to what degree
text representations can capture the proximity of
parties and how to best fine-tune representations
for this task. Our results indicate that aspects that
have been proposed as important for this type of
analysis in political science, namely annotation of
domains (Burst et al., 2021) and claims (Koopmans
and Statham, 1999), do not appear to matter greatly
for this task – or at least, manual annotation can
be replaced by NLP tools: we have recognized
claims with a classifier (Blokker et al., 2020) and
have proposed a weekly supervised method, “twin
matching”, to approximate domain-level similarity
computation. Indeed, one of our models that does
not use any manual annotation is among the top
contenders. Of rather greater importance for party
similarity prediction, according to our findings, is

fine-tuning the text representations and postpro-
cessing them.

This is good news for computational political
science: the judicious use of document structure
appears able to help alleviate the effort of having
domain experts annotate large corpora. The two
main limitations of our current study relate to this
outlook: (a) we only experimented with a single
language and ground truth – future work should
take into account multiple languages and time peri-
ods, with a potential long term goal of text-based
models for party development (König et al., 2013);
(b) we only scratched the surface of cues avail-
able for fine-tuning. Future work could, for ex-
ample, take into account other aspects of parties
such as ideological position (Glavaš et al., 2017),
or reach beyond manifestos to include informa-
tion from other types of party interactions (Strom,
1990). In addition to that, work on interpreting both
the fine-tuned and vanilla SBERT models would
be interesting to better understand the predominant
dimensions of the sentence representations in the
political domain.
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A Appendix

A.1 Fine-tuning data

Party Num. inst.
Grüne 5913
Die Linke 4243
Social Democratic Party of Germany (SPD) 3566
Free Democratic Party (FDP) 3149
Christian Democratic Union (CDU) 2569
Alternative for Germany (AfD) 770

Table 1: Number of instances in the train set of the fine-tuning of SBERTparty. Data from the 2013 and 2017
manifestos.

Domain name Num. inst
Welfare and Quality of Life 7078
Economy 6330
Fabric of Society 2586
Freedom and Democracy 2395
External Relations 2306
Social Groups 2144
Political System 1682

Table 2: Number of instances in the train set of the fine-tuning of SBERTdomain. Data from the 2013 and 2017
manifestos. More information about the categories can be found on https://manifesto-project.wzb.eu/
coding_schemes/mp_v5

Party Year Sentence Domain
AfD 2017 This oligarchy holds the levers of state

power, political education and informa-
tional and media influence over the popu-
lation.

Political System

CDU 2017 We have set ourselves an ambitious goal:
We want full employment for all of Ger-
many by 2025 at the latest.

Social Groups

FDP 2013 We want to continue to give people the
freedom to pursue their ideas - creating
growth, progress and prosperity for all.

Freedom and Democracy

Grüne 2013 We want to make a change today to move
towards an economy that benefits every-
one, not just a few.

Welfare and Quality of Life

Die Linke 2013 But the populations and workers of these
countries have common interests: the fight
against wage depression, recession and
mass unemployment.

Economy

SPD 2017 This includes ensuring that social cohesion
in our country becomes stronger again and
that decent dealings with one another are
not lost to political radicalization.

Fabric of Society

Table 3: Examples from the training dataset with their corresponding domain names translated from German.
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A.2 S-BERT training parameters

• Pre-trained model: paraphrase-multilingual-mpnet-base-v2

• Maximum sequence length: 128

• Train batch size: 16

• Number of training epochs: 5

• Learning rate: 2e-5

• Warm up steps: 100

A.3 Fine-tuning evaluation

Model f1 SBERT (f1)
SBERTdomain 71,39% 66,66%
SBERTparty 68,79% 66,66%

Table 4: Comparison of the f1 scores between the non-fine-tuned and fine-tuned SBERT models on the held out
validation set.

B Appendix

B.1 Data for the evaluation

Party Num. claims
Die Linke 2770
Gruene 2380
CDU 1685
FDP 1388
SPD 952
AfD 638

Table 5: Number of claims per party in MaClaim21.

Party Num. sentences
Die Linke 4850
Gruene 3947
CDU 2775
FDP 2239
SPD 1665
AfD 1574

Table 6: Number of sentences per party in Manifesto21.

C Appendix

C.1 Claim identifier

The claim identifier was trained on annotated data from the DebateNet dataset (Lapesa et al., 2020).
The annotations are based on news articles from the German newspaper TAZ regarding the migration in
the domestic scenario. Sentences that contain a claim are considered as positive and sentences without
any claims are negative. It has been verified that the claim identifier trained on DebateNet can transfer
reasonably well to the party manifestos (Blokker et al., 2020) with an averaged f1 score of 82% across the
election campaigns of 2013 and 2017. More information regarding the training process:
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• Number of training instances: 13,283

• Number of validation instances: 1,477

• Number of testing instances: 1,641

• Maximum sequence length: 128

• Train batch size: 32

• Number of training epochs: 5

• Learning rate: 3e-5

C.2 Evaluation on 2021 party manifestos
Expert annotators from the political science faculty annotated 324 unique political claims from six major
German parties competing in the federal election of 2021. Annotations of claims followed a fine-grained
hierarchical ontology (codebook) yielding 75 unique sub-categories that are divided into eight major
categories. While the latter broadly corresponds to relevant policy fields, such as ‘health’, ‘economy
and finance’, or ‘education’, the former specifies the concrete policy measure to be taken, for instance,
‘mandatory vaccination’, ‘raise taxes’, ‘expansion of education and care services’. We do not provide the
inter-annotator agreement because annotators worked closely together in this task. However, we verified
the quality of the dataset by having a third annotator gold standardizing the dataset.

The classifier detected 245 out of the 324 annotated claims, reaching a reasonable precision of 75,6%.
In total, the classifier predicted 9,814 claims out of 17,052 sentences.
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Abstract

We propose an ACT-R cue-based retrieval
model of the real-time gender predictions dis-
played by second language (L2) learners. The
model extends a previous model of native (L1)
speakers according to two central accounts in
L2 sentence processing: (i) the Interference
Hypothesis, which proposes that retrieval inter-
ference is higher in L2 than L1 speakers; (ii) the
Lexical Bottleneck Hypothesis, which proposes
that problems with gender agreement are due
to weak gender representations. We tested the
predictions of these accounts using data from
two visual world experiments, which found that
the gender predictions elicited by German pos-
sessive pronouns were delayed and smaller in
size in L2 than L1 speakers. The experiments
also found a “match effect”, such that when the
antecedent and possessee of the pronoun had
the same gender, predictions were earlier than
when the two genders differed. This match ef-
fect was smaller in L2 than L1 speakers. The
model implementing the Lexical Bottleneck
Hypothesis captured the effects of smaller pre-
dictions, smaller match effect and delayed pre-
dictions in one of the two conditions. By con-
trast, the model implementing the Interference
Hypothesis captured the smaller prediction ef-
fect but it showed an earlier prediction effect
and an increased match effect in L2 than L1
speakers. These results provide evidence for
the Lexical Bottleneck Hypothesis, and they
demonstrate a method for extending computa-
tional models of L1 to L2 processing.

1 Introduction

Although the world population is quickly becoming
bilingual, there are very few computational models
of bilingual sentence processing. Because most
of these models were developed for technological
applications—e.g., automatic translation—, this re-
sults in a scarcity of models that are cognitively
realistic or even evaluable with human data (Frank,
2021; Frank et al., 2016; Hinaut et al., 2015; Hen-

driks and Vogelzang, 2020). However, such mod-
els are crucial to develop computational research
that is informed by state-of-the-art psycholinguistic
work. With this goal, we propose a computational
cognitive model of bilingual processing built in an
architecture, ACT-R, which is designed to model
human cognition and can be evaluated with human
data (Anderson, 2007; Ritter et al., 2019). The
ACT-R architecture has also been used to model a
number of linguistic phenomena, such as retrieval
interference effects in linguistic dependency resolu-
tion (Vasishth et al., 2008), the influence of promi-
nence on pronoun resolution (Patil et al., 2016b;
Patil and Schumacher, 2022), the effect of memory
load on sentence processing (van Rij et al., 2013),
sentence processing in patients with aphasia (Cres-
centini and Stocco, 2005; Patil et al., 2016a), the
interaction of sentence processing and eye move-
ments (Engelmann et al., 2013), and incremental
formal semantic processing (Brasoveanu and Dot-
lačil, 2020).

Accounts of bilingual processing can be divided
in terms of how they explain differences between
native (L1) and non-native (L2) processing. Here
we focus on two different explanations of L1–L2
differences. The first, the Interference Hypothesis
(IH), makes reference to the cue-based retrieval
theory (Cunnings, 2017b,a). The Interference Hy-
pothesis stipulates that memory retrieval is key for
different parts of sentence processing, including
the processing of non-local pronoun-antecedent de-
pendencies like “John noticed that Richardi had
cut himselfi with a knife”. When “himself ” is
encountered, speakers attempt to retrieve an an-
tecedent matching the pronoun features. Retrieval
success requires suppressing interfering elements
that match some but not all of the relevant features
(e.g., “John” has the appropriate gender and num-
ber features but not the syntactic ones, because it
is outside the clause of the pronoun). The Interfer-
ence Hypothesis proposes that L1 and L2 speakers
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are similar in their likelihood of initiating retrieval
operations, but that L2 speakers are more prone
to interference, yielding more misretrievals (e.g.,
wrongly recovering “John” as the pronoun’s an-
tecedent).

By contrast, the Lexical Bottleneck Hypothesis
(LBH) is framed within so-called capacity-based
accounts, which propose that L1–L2 differences
arise because speakers process an L2 in a nois-
ier cognitive architecture, resulting in slower and
more error-prone parsing (Just and Carpenter, 1992;
McDonald, 2006; Hopp, 2022). The Lexical Bot-
tleneck Hypothesis proposes that L1–L2 parsing
differences are due to variability in the bilingual
lexicon. Specifically, because lexical processing
“precedes and feeds into syntactic processing, key
characteristics of bilingual lexical processing may
cause aspects of non-target parsing” (Hopp, 2018,
pp. 6). With regard to grammatical features like
gender—the focus of this paper—the claim is that
L2 speakers fail to use this information for syn-
tactic processing because L2 words have weaker
or more unstable gender representations, making
the retrieval of gender information less robust in
L2 than in L1. An additional factor—not modeled
here—is L1 transfer, such that L2 gender process-
ing may be harder in syntactic contexts that differ
between the L1 and the L2.

We evaluate the Interference Hypothesis and
the Lexical Bottleneck Hypothesis by using their
claims to modify an ACT-R model that was pre-
viously shown to capture L1 predictive process-
ing (Patil and Lago, 2021). The predictions of
the modified ACT-R models are evaluated against
the results of two eye-tracking experiments that
examined how L1 and L2 speakers use gender fea-
tures to do memory retrieval and to predict up-
coming referents (Stone et al., 2021b; Lago et al.,
under review). We show that the ACT-R version
that implements the Lexical Bottleneck Hypothesis
does a better job at capturing L2 gender predic-
tions. Our results—although currently limited to
gender—suggest that the Lexical Bottleneck Hy-
pothesis provides a suitable framework to model
the predictive use of morphosyntactic information
in L2, and could be extended to other features such
as number, case and animacy.

2 Modeling L2 processing

2.1 Starting point: The L1 model

We consider Patil and Lago’s (2021) model of pro-
cessing possessive pronouns as our starting point.
They modeled visual-world eye-tracking data from
Stone et al. (2021b) in ACT-R and the cue-based
retrieval framework (CBR, henceforth) (Lewis and
Vasishth, 2005; Lewis et al., 2006). Our goal is to
model the L2 visual-world eye-tracking data from
Lago et al. (under review) by modifying the model
to reflect the processing assumptions of the IH and
the LBH. The model has the following structure
most of which is inherited from ACT-R and CBR.

Sentence processing takes place as an incremen-
tal word-by-word left-corner parsing. Parsing rules
are part of ACT-R’s procedural memory, whereas
the lexical entries, syntactic phrases and the incre-
mental parse tree (NP, DP, VP, IP, etc.) are part
of ACT-R’s declarative memory. Each declarative
memory element, called a chunk, has an activa-
tion associated with it which is determined by the
equation 1.1 At each input word, parsing rules are
applied on chunks that are available in short-term
memory to process the word. If a required chunk is
not available in short-term memory, it is retrieved
from declarative memory by specifying a set of
cues as feature-value pairs, a cue-based retrieval
mechanism.

The speed, accuracy and success of retrieving a
chunk depends on its current activation level. The
activation of chunki is influenced by its usefulness
in the past (the base level activation Bi), relevance
in the current context (the spreading activation re-
ceived through retrieval cues which is determined
by the first summation component in eq. 1), de-
gree of match with the retrieval request (the par-
tial matching determined by the second summation
component in eq. 1) and stochastic noise (ϵi). The
strength of association Sji is calculated by eq. 2
which is influenced by fanj , the number of chunks
matching cuej . The value for Mji is calculated by
the degree of match between a retrieval cue (cuej)
and chunki. The values for W (the maximum
spreading activation), P (the partial match scale)
and S (the maximum associative strength) in the
calculation of Ai are constants across all simula-

1This is a simplified version of ACT-R’s activation equa-
tion and it represents how activation is calculated in CBR. The
equation can be simplified further to have only one summation
term but for comparability with the original ACT-R equation
we have kept the two summations separate.
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tions and are set as ACT-R’s parameter values.

Ai = Bi +
∑

cuej

WSji +
∑

cuej

PMji + ϵi (1)

Sji = S − ln(fanj) (2)

For modeling the visual-world eye-tracking task
from Stone et al. (2021b), Patil and Lago (2021) ex-
tended the existing architecture with the following
new assumptions: (i) the model predicts the target
picture at each input word, (ii) prediction of the
target picture is implemented as a cue-based mem-
ory retrieval, and (iii) the probability of fixating an
object is determined by the activation of the chunk
representing that object. To incorporate the vari-
able influence of different retrieval cues, Patil and
Lago (2021) also proposed a cue-weighting mecha-
nism as a modification to the strength of association
equation (as in eq. 3) such that the amount of acti-
vation spreading from cuej to chunki is influenced
by the importance of that cue.

Sji = weightjS − ln(fanj) (3)

The next two sections describe two possible mod-
ifications of the L1 model to implement two theo-
ries of L2 processing: (i) the Interference Hypothe-
sis, and (ii) the Lexical Bottleneck Hypothesis.

2.2 The IH model

IH proposes that L2 speakers are prone to higher in-
terference compared to L1 speakers and that leads
L2 speakers to misretrieve non-target elements
more often during sentence processing. Although
IH is not a computationally implemented theory, it
is described in terms of the CBR framework of sen-
tence processing, and, hence, an L1 model imple-
mented in CBR can be straightforwardly extended
to L2 processing. In ACT-R and CBR, misretrievals
due to interference take place through the mecha-
nism of partial matching (the second summation
term in eq. 1). Partial matching enables non-target
chunks (chunks that match some of the cues from
the retrieval request but not all) to be considered
in the retrieval process. Due to random fluctuation
in the activation of chunks (the random noise ϵi
eq. 1), partially matching chunks can get retrieved
instead of the target chunk in some of the retrieval
requests (a misretrieval). Misretrievals happen in
L1 speakers as well. In fact, in psycholinguistics
misretrievals due to partial matching have been sug-
gested to explain some of the grammatical illusions

such as agreement attraction and spurious NPI li-
censing (Wagers et al., 2009; Vasishth et al., 2008).
But as per IH, misretrievals happen more often in
L2 speakers.

In ACT-R the frequency of misretrievals is con-
trolled by defining the penalty to the activation of a
chunk when its feature doesn’t match the retrieval
cue. The penalty is specified through a parame-
ter called maximum difference, the highest penalty
for a perfect mismatch. By default the value of
maximum difference is -1.2 This means that the
activation penalty increases as a function of the
number of cues mismatched by a chunk, making
its retrieval less likely. The value of maximum dif-
ference can be changed to calibrate the penalty of
a mismatch. Reducing this penalty leads the non-
target chunks to get retrieved more often, i.e. higher
misretrievals. We propose that reducing the value
of maximum difference would be the way of ex-
tending the L1 model to L2 processing in terms of
IH.

2.3 The LBH model
LBH proposes that L2 speakers fail to use grammat-
ical features such as gender in syntactic processing
because the gender representations of L2 words are
weaker or more unstable, and speakers process an
L2 in a noisier cognitive architecture. Although
LBH is not specified in connection with a specific
cognitive or sentence processing architecture, it can
be realized in CBR. A possible implementation of
LBH in the ACT-R and CBR frameworks could
be done by: (i) having weaker representation of
the gender feature in chunks representing various
referents present in the input, and (ii) making the
representations of the referents noisier compared
to their representations in the L1 model.

In a typical CBR model the gender features
have discrete values (e.g. feminine, masculine and
neuter), and chunks denoting various referents have
a certain, relatively low, activation noise associated
with them (ϵi eq. 1). We propose the following two
modifications to the L1 model for implementing
LBH.

First, the gender features have values that are
encoded as weaker than corresponding L1 values –
feminine-weak, masculine-weak and neuter-weak.
This leads the corresponding chunk to only weakly
match a retrieval cue for a specific gender. For

2Conversely, ACT-R also provides a parameter called max-
imum similarity that specifies the least penalty for a perfect
match which is set to 0 by default.
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example, a chunk for a feminine referent encod-
ing gender as feminine-weak will weakly match a
retrieval request of type ‘gender = feminine’. As
a consequence, the chunk receives less spreading
activation from the retrieval cue than a chunk that
encodes gender clearly as feminine. This is equiva-
lent to saying that the referent does not have exactly
the same value of the feature as the parser expects
but is similar enough to be considered in the re-
trieval request.

We implement this behavior partly by using
ACT-R’s built-in functionality of setting similar-
ities between a retrieval cue and a feature value
(the Mji values in the partial matching component
of eq. 1), and partly by modifying the spreading ac-
tivation component in eq. 1. The partial matching
component in the activation equation sums to a neg-
ative value since Mji values vary between 0 (for a
perfect match between a retrieval cue and a feature)
and -1 (for a mismatch); effectively a penalty to
a chunk for not fully matching a retrieval request.
In ACT-R by default Mji’s are either equal to the
value of the parameter maximum similarity (0 by
default) or to the value of the parameter maximum
difference (-1 by default), but they can be set to any
value between 0 and -1 to reflect the degree of sim-
ilarity between a pair of values (e.g. feminine and
feminine-weak or red and maroon). We propose
that for the LBH model the similarity between an
expected gender and the weaker value lies between
the two extremes 0 and -1 but closer to 0 since a
weak gender is more similar than dissimilar to the
corresponding strong gender. Reciprocally, the sim-
ilarity between an expected gender and any other
weak gender (e.g. feminine and masculine-weak)
also lies between the two extremes and, in this case,
closer to -1 since it is more dissimilar than the same
weaker gender but less dissimilar than a different
strong gender (e.g. feminine and masculine).

We also propose that this graded similarity be-
tween a cue and a feature value also influences the
spreading activation component. This is not part
of the original ACT-R framework, so we consider
a further modification to the computation of the
strength of association, Sji, as in 4–6. The strength
of association now reflects how well the feature
value matches the retrieval cue. This modification
has influence on the calculations of activation only
when a cue and a value don’t perfectly match or
mismatch, when they do, the value of activation
is the same as in the original ACT-R framework.

When a value perfectly matches a requested cue
(i.e. Mji = 0) eq. 4 reduces to eq. 3, and when a
value perfectly mismatches (i.e. Mji = -1) it leads
to no activation spreading.

Sji = weightjsimjiS − ln(fanj) (4)

fanj =
∑

chunkk

simjk (5)

simjk = (1 +Mjk) (6)

To implement the LBH proposal that speakers
process an L2 in a noisier cognitive architecture, we
propose a second change to the L1 model in terms
of its activation noise. This change is more intrinsic
to ACT-R because the activation equation includes
a noise term that controls the random fluctuations
in the activation of chunks (ϵi in eq. 1). Higher
noise value makes the representation of chunks
noisier. We suggest that a noisier L1 model, along
with weaker gender representation, should be the
L2 model representing LBH.

Note that an alternative implementation of the
LBH could test if both weak gender and noisier rep-
resentations are necessary to capture the L2 data.
Moreover, ACT-R also assumes another type of
noise, the noise in procedural memory. It is con-
ceivable that the noisier representation proposed by
the LBH is realized as noisier procedural memory
(e.g. Patil et al. 2016a used the noise in procedural
memory to model data from patients with aphasia).
However, we consider that weak gender and acti-
vation noise are the closest realization of the LBH
in ACT-R, and a good starting point for modeling
LBH. We leave other possible implementations for
future research.

3 Human data

The human data was taken from two visual world
eye-tracking experiments with the same materials
and design but two different groups of participants:
74 L1 German speakers (Stone et al., 2021b, Ex-
periment 2) and 132 L2 German learners (Lago
et al., under review, Experiment 2). The L2 group
comprised native speakers of Spanish and English.
Because they did not differ behaviorally, the com-
parisons below consider a unified group of L2 par-
ticipants. We reanalyzed the two experiments to
directly compare L1 and L2 processing.

In the experiments, L1 and L2 participants were
asked to help find the belongings of two fictional
characters, Martin and Sarah. They were told that
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they would see images and hear instructions, and
that their task was to select the object mentioned by
the instruction. The instructions always contained a
possessive pronoun doubly-marked for gender: the
gender of the pronoun stem (sein-/ihr-) agreed in
gender with the antecedent (Martin or Sarah). The
gender of the pronoun suffix agreed in gender with
the upcoming noun, which allowed participants to
predict the identity of the target object prior to hear-
ing it in the instruction, e.g.: ‘Click on his.MASC
blue.MASC button.MASC’.

The experimental trials showed 2 colored ob-
jects: a target object (e.g. a blue button.MASC)
and a competitor of a different gender (e.g. a blue
bottle.FEM). The 96 items were distributed in two
conditions (1). In the MATCH condition, the pos-
sessor and target noun had the same gender, i.e.,
both masculine or both feminine. In the MIS-
MATCH condition, the possessor mismatched the
gender of the target object but matched the com-
petitor’s. The results of the experiments showed
that the gender of the pronoun was used predic-
tively, such that participants showed a target-over-
competitor looking preference prior to hearing the
noun. In addition, there was a “match effect”, with
predictions starting earlier in the match than in
the mismatch condition (Figure 1). We examined
whether the size and onset of predictions and/or the
onset of match effects differed between L1 and L2.

(1) a. MATCH condition
Klicke auf seinen blauen Knopf!
Click on his.MASC blue.MASC
button.MASC

b. MISMATCH condition
Klicke auf ihren blauen Knopf!
Click on her.MASC blue.MASC but-
ton.MASC

The size of predictions was quantified as the
target-over-competitor looking preference in the en-
tire time-window before the target noun was heard
(i.e., from pronoun onset to noun onset plus 200ms
to account for saccade planning). The onset of pre-
diction was quantified as the earliest point in time
at which fixations to the target object significantly
differed from fixations to the competitor. This time-
point, together with a 95% confidence interval, was
taken as the prediction onset (Stone et al., 2021a).
Our L1–L2 comparisons revealed the following
differences: (i) The size of predictions was approx-

imately 9 percentage points smaller in L2 than in
L1 (henceforth SMALLER-PREDICTION). The
target-over-competitor advantage was 58 [56, 60]
% in the L2 group vs. 67 [65, 69] % in the L1
group. (ii) The onset of predictions was always
later in L2 than L1 (LATER-PREDICTION). In
the match condition, the difference in L1–L2 on-
sets was 211 [60, 320] ms. In the mismatch condi-
tion, the difference in L1–L2 onsets was 108 [60,
160] ms. (iii) The match effect—the difference
between mismatch vs. match onsets—occurred in
both groups: L1 match effect 303 [160, 400] ms
and L2 match effect 200 [120, 280] ms. The match
effect in onset times was numerically smaller in the
L2 group (SMALLER-MATCH), but the between-
group difference was not statistically reliable (as
evidenced by the 95% CI crossing 0): 103 [-40,
220] ms.

4 Computational models

4.1 Modeling details

We generate predictions of IH model and LBH
model based on the L2 modeling hypotheses and
extensions proposed in sections 2.2 and 2.3. We use
the L1 model reported in Patil and Lago (2021) and
extend the model to capture the effects of L2 pro-
cessing from Lago et al. (under review). The goal
is to capture the three L2 vs. L1 effects observed
in the data presented in section 3: (SMALLER-
PREDICTION) smaller size of predictions in L2,
(LATER-PREDICTION) later prediction onsets in
L2 for both MATCH and MISMATCH conditions,
and (SMALLER-MATCH) smaller match effect in
L2.

The IH and LBH models were used to generate
predicted fixation patterns from the onset of the
(possessive) pronoun to the onset of noun. From
these predicted fixation profiles, the three effects
concerning L1-L2 differences were calculated as
follows. The SMALLER-PREDICTION effect
was calculated by averaging the size of predictions
(i.e. mean fixation probability) in the temporal win-
dow between the onsets of the possessive pronoun
and the noun across match and mismatch condi-
tions. The effect of LATER-PREDICTION was
calculated by subtracting the onset predicted by
the L1 model from the onset predicted by each of
the two L2 models for each condition separately.
Finally, the SMALLER-MATCH effect was calcu-
lated by subtracting the prediction onsets of the
match vs. mismatch conditions. All model predic-
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Figure 1: Human data (top two rows): Fixation curves to the target and competitor object averaged across items
and participants. The predictive time-window extended from the onset of the pronoun to the onset of the noun,
shifted 200 ms to the right. The x-axis is time-locked to the pronoun. Estimated predictive onsets and their 95%
confidence intervals (in ms) are overlaid on the fixation curves in each condition. Model data (bottom two rows):
Predictions of the model for fixation probabilities to the target and competitor object in the L2 groups. The x-axis
reflects processing time in model-internal units. Vertical arrows show the model-predicted onsets.
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tions are generated by running 100,000 simulations
of each model including the L1 model. Due to
ACT-R’s stochastic noise component, some of the
predicted the values deviate from the ones reported
in Patil and Lago (2021), but the qualitative ef-
fects remain the same as reported by them. We
consider our calculations of L1 predictions as re-
liable as theirs because we calculated the values
by running a higher number of simulations (10,000
vs. 100,000). The ACT-R parameter values that
were changed to implement the assumptions of the
IH and LBH models are listed in Table 1. We also
tested how the predictions of the two models var-
ied as a function of variation in the values of these
parameters (see section 4.3).

4.2 Model predictions
The predictions of the two L2 models for predic-
tion onsets and fixation probabilities are shown in
Figure 1 (lower panels). The three effects observed
in the data and the corresponding predictions of the
two L2 models are summarized in Table 2. Both
L2 models capture the SMALLER-PREDICTION
effect — they show a smaller prediction size com-
pared to the L1 model; however, numerically, the
LBH model’s prediction is closer to the human
data. With regard to the LATER-PREDICTION
effect, it is only captured by the LBH model and
only in the match condition. While LBH also pre-
dicts a delayed L2 prediction onset in the mismatch
condition (18 ms), visual inspection of the data re-
vealed that the effect was driven by a few outlier
simulations (around 10% of the simulations). On
the other hand the IH model doesn’t capture the
LATER-PREDICTION effect in either the match
or mismatch conditions. The SMALLER-MATCH
effect is captured only by the LBH model but not
by the IH model, which predicts the effect to be in
the opposite direction. In both conditions the IH
model in fact predicts earlier prediction onsets for
L2 than L1 speakers (a negative effect).

4.3 Model predictions across parameter
variation

To test if the predictions of the two models were
restricted to the specific values selected for the pa-
rameters, we generated predictions of the models
by varying the parameter values around the values
we selected. We only varied the parameters that
were modified for implementing the IH and LBH,
and only within a range that was still meaningful
to represent the hypotheses that were implemented.

For parameter variation we randomly sampled 200
values from a uniform distribution with bounds
defining a range of values around a selected param-
eter value. For each random value of a parameter
we generated predictions by running 1000 simula-
tions of the model.

Figure 2: Distributions in terms of histograms of the
effects predicted by the IH and the LBH models. The y-
axis depicts the frequency of the predicted effects and it
has different heights for different panels. Black dots rep-
resent the mean effects observed in the L2 data. Predic-
tion distributions for the IH model are generated by vary-
ing ACT-R’s maximum difference parameter, whereas
those for the LBH model are generated by varying the
activation noise parameter and the similarity values be-
tween strong and weak genders. These are the same
parameters that were used to implement the respective
L2 hypothesis through those models (c.f. Table 1).

For the IH model we varied ACT-R’s maximum
difference (penalty) parameter between the values
of -0.7 to -0.3 (U(−0.7,−0.3)) because a value
higher than -0.3 would be too close to the value
of no penalty (i.e. 0) for a retrieval cue mismatch
and a value lower than -0.7 would be too close
to the default penalty (i.e. -1) in the L1’s model.
For the LBH model we varied ACT-R’s activation
noise parameter and the similarity values between
strong and weak genders. We varied the activa-
tion noise in the range 0.3 to 0.7 (U(0.3, 0.7)), and
the similarity between the strong and weak gender
values of the same gender in the range -0.4 to -0.1
(U(−0.4,−0.1)) and between the strong and weak
values of different genders in the range -0.9 to -0.6
(U(−0.9,−0.6)). Since the activation noise value
for the L1 model was 0.25 we chose values higher
than that, but at the same time if the activation
noise is too high, the activation has too high impact
of the random noise compared to other crucial com-
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Table 1: ACT-R parameters values that were modified to model the proposals of the IH and LBH of L2 processing.
The column “L1” show the original parameter values used in Patil and Lago (2021), while the columns “IH” AND
“LBH” show the values modified to model the L2 data. The values that were modified are in bold face. All other
ACT-R parameters had the same value as used in the L1 model.

ACT-R parameter L1 IH LBH
Activation noise (ANS) 0.25 0.25 0.5
Maximum difference (MD) -1 -0.5 -1
Similarity between weak & strong gender values of the same gender — — -0.25
Similarity between weak & strong gender values of different genders — — -0.75

Table 2: Comparison of effects of interest in the L2 human data and in the predictions of the IH and LBH models.

Effect Condition Human data IH model LBH model
SMALLER-PREDICTION 9% 3.2% 11.1%

LATER-PREDICTION
match 211 [60, 320] ms -58 ms 207 ms

mismatch 108 [60, 160] ms -1 ms 18 ms
SMALLER-MATCH 103 [-40, 220] ms -57 ms 189 ms

ponents influencing the activation and hence the
retrievals (see eq. 1). For similarity, values below
-0.4 would mean that the strong and weak genders
are 40% or more dissimilar, and values above -
0.1 would mean they are almost similar (less than
10% dissimilar). The range for similarity between
the strong and weak values of different genders
was just a mirror image of the range for similarity
between the strong and weak values of the same
gender in the interval [0,−1].3

The distribution of the three effects of inter-
est for above-mentioned range of parameter val-
ues for the two L2 models are shown in Figure
2, along with the mean effects observed in the
data. A visual inspection supports the generaliza-
tions drawn in section 4.2 — the LBH captures
the effects SMALLER-PREDICTION, LATER-
PREDICTION in the match condition (but not in
the mismatch condition) and SMALLER-MATCH
for most of the parameter combinations, whereas
the IH qualitatively (but not quantitatively) cap-
tures the SMALLER-PREDICTION effect (since
it predicts positive values for the effect) but barely
captures any of the other effects.

3As another approach one could also vary the values of
these three parameters for a broader range of the intervals. Al-
though these values might not represent either of the theories,
they are informative to find the broadest range of values for
which the current implementation does not break. Moreover,
it is also possible to test other parameters in ACT-R that do not
represent either of the L2 hypotheses, the “hyperparameters”,
to see if they influence predictions. Due to time constraints,
we restricted our simulations to narrower intervals around the
chosen values.

5 Discussion

We proposed computational cognitive models of
two main theories of L2 processing — the Inter-
ference Hypothesis and the Lexical Bottleneck Hy-
pothesis. Both are verbally stated theories of pro-
cessing differences between L2 and L1 speakers,
and ours is, to our knowledge, the first computa-
tional cognitive realization of those theories. The
theories were implemented by extending an exist-
ing L1 processing model (Patil and Lago, 2021).
We used visual-world eye-tracking data from a pre-
dictive sentence processing task to test the models.
The results showed that the LBH performed better
than IH in capturing the three key effects observed
in the data. With the exception of one effect, the
IH predicted effects that were opposite to the ones
observed in human speakers. Overall the LBH ap-
pears to be a more likely explanation of L2 sentence
processing as far as the predictive use of gender in
processing is concerned. Therefore, we propose
that the well-attested difficulty shown by L2 speak-
ers in using gender predictively (as compared to L1
speakers) is more likely attributable to problems in
how L2 speakers represent gender information in a
non-native language (Gollan et al., 2008; Kroll and
Gollan, 2014; Hopp, 2018) and/or to difficulties in
using this information as quickly as L1 speakers
(Grüter et al., 2017; Kaan, 2014).

An important qualification is that the two imple-
mentations evaluated here did not model the poten-
tial effect of L1 transfer. Recall that the L2 group
consisted of both Spanish and English learners of
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German. Because the majority of nouns used in
the human experiments had the same gender across
Spanish and German, and because there was no ev-
idence of between-group differences, we think that
the current dataset is not suitable for modeling L1
transfer effects. Research using other datasets will
be relevant to address the role of L1 transfer, which
is hypothesized to play a role in the Lexical Bottle-
neck Hypothesis (Hopp, 2018, 2022). The role of
L1 transfer in the IH is less clear, but it may affect
the current implementation if, for example, both
L1- and L2-based gender features are available for
retrieval in the memory chunks corresponding to
the objects on-screen.

The effects reported in the L1 and L2 data were
possibly born out of retrieval interference dur-
ing predictive processing (Patil and Lago, 2021).
Hence we expected the IH account to capture the
effects better as the IH is rooted in the cue-based
retrieval framework of sentence processing, and
cue-based retrieval theory has rendered explanation
to various psycholinguistic phenomenon through
retrieval interference. A possible reason for the IH
predicting opposite patterns to the ones observed in
the data could because retrieval interference as per
the cue-based retrieval theory can lead to two op-
posite processing phenomena — inhibitory vs. fa-
cilitory processing — depending on the context
(Dillon et al., 2013; Patil et al., 2016b; Parker et al.,
2017). The precise nature of the interference effect
in a given context can only be predicted through
an actual implementation of the model. Our results
emphasize the importance of computationally for-
malizing the predictions of the cue-based retrieval
theory in particular (Vasishth et al., 2019), and of
verbal theories in cognition in general (Guest and
Martin, 2021).

Although the LBH model captured crucial pat-
terns in the differences between L2 and L1 pro-
cessing, one serious limitation of the model (and
also of the IH model) was in terms of capturing
the effect of delayed prediction onsets (LATER-
PREDICTION) in the mismatch condition for L2
speakers. Since both the L2 models failed at cap-
turing this effect, we think it is also unlikely that
a combination of the two models would be able
to capture this effect. This also implies that the
gender prediction in L2 speakers possibly also in-
volves a process that cannot be explained by either
of the hypotheses. We think a computational im-
plementation of another L2 processing hypothesis,

in combination with the LBH model, might help
capture this effect.

Acknowledgements

The research for this project has been funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation): Project-ID 281511265 –
SFB 1252 “Prominence in Language” in the project
C07 “Forward and backward functions of discourse
anaphora” at the University of Cologne, Depart-
ment of German Language and Literature I, Lin-
guistics, and Project-ID 317308350 – “AGREE:
Agreement in native and second language process-
ing”. We furthermore thank the Regional Comput-
ing Center of the University of Cologne (RRZK)
for providing computing time on the DFG-funded
(Funding number: INST 216/512/1FUGG) High
Performance Computing (HPC) system CHEOPS
as well as support.

Supplementary files

The model code and supplementary files are avail-
able at: https://osf.io/p28k6/

References
John R. Anderson. 2007. How can the human mind

occur in the physical universe? Oxford series on
cognitive models and architectures. Oxford Univer-
sity Press, New York, NY, US.

Adrian Brasoveanu and Jakub Dotlačil. 2020. Compu-
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Abstract

Supervised Question Answering systems (QA
systems) rely on domain-specific human-
labeled data for training. Unsupervised QA
systems generate their own question-answer
training pairs, typically using secondary knowl-
edge sources to achieve this outcome. Our ap-
proach (called PIE-QG) uses Open Information
Extraction (OpenIE) to generate synthetic train-
ing questions from paraphrased passages and
uses the question-answer pairs as training data
for a language model for a state-of-the-art QA
system based on BERT. Triples in the form of
<subject, predicate, object> are extracted from
each passage, and questions are formed with
subjects (or objects) and predicates while ob-
jects (or subjects) are considered as answers.
Experimenting on five extractive QA datasets
demonstrates that our technique achieves on-
par performance with existing state-of-the-art
QA systems with the benefit of being trained
on an order of magnitude fewer documents and
without any recourse to external reference data
sources.

1 Introduction

Question Answering systems (QA systems) pro-
vide answers to input questions posed in natural lan-
guage. Answering questions from unstructured text
can be performed using Machine Reading Com-
prehension (MRC). Given a passage, several sen-
tences or a paragraph, and a question posed, the
QA system produces the best suitable answer. Ex-
tractive Question Answering systems (EQA sys-
tems) are a subset of QA systems and involve an
MRC task where the predicted answer is a span
of words from the passage. With pre-trained lan-
guage models (Radford et al., 2018), EQA systems
achieve excellent results, surpassing even human
performance. Pre-trained language models, such
as BERT (Devlin et al., 2019) and GPT (Radford
et al.), can be fine-tuned to perform downstream
tasks such as QA. However, huge amounts of data

are required to train these models for specific do-
mains, making the task labor-intensive, in terms
of the effort required to assemble suitable domain-
specific training data.

A single training instance for an EQA system
dataset requires a question, a passage, and an an-
swer. Domain-relevant documents can be collected
with advanced information retrieval tools, and pas-
sages are formed by splitting documents into sev-
eral related sentences or a paragraph. However,
generating the question and answer pairs, that pro-
vide the training set for the QA system from a given
passage, is considered the most difficult challenge,
an approach known as unsupervised QA (Cui et al.,
2004).

Existing unsupervised QA system techniques
such as (Lewis et al., 2019) and (Lyu et al., 2021)
use an out-of-domain dataset for question gen-
eration, namely, they require additional training
sources beyond what can be provided by the target
corpus and a pre-trained generic model. On the
other hand, rule-based QA system methods, those
constrained to generate question-answer pairs from
only the corpus itself, run the risk of generating
questions with high lexical overlap with the pas-
sage, at risk of forcing the model to learn word
matching patterns. The work of (Fabbri et al., 2020)
and (Li et al., 2020) use information retrieval-based
methods, such as elastic search and citation naviga-
tion, to create questions from passages other than
those presented within the target dataset. However,
these methods may not generate sufficient training
questions, especially when the corpus is small and
has no citation or inter-document linking structure.

In this paper, we focus on addressing the limita-
tions of EQA systems using a novel unsupervised
Paraphrased Information Extraction for Question
Generation (PIE-QG) method that generates syn-
thetic training data through the extraction of <sub-
ject, relation, object> triples from a given corpus.
We use the original passage to produce question-
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Paraphrasing

The European Commission ,
which is responsible for
regulation competition in the
European Union , is
concerned that these deals
could violate EU antitrust laws.

Open Information Extraction

European Commission is worried that the deals could violate EU antitrust laws.

Q: What is worried that the deals could violate EU antitrust laws? 
Answer: The European Commission

Question Formation

<the deals, could violate, EU antitrust laws>

 <The European Commission, is worried, that the deals could violate EU antitrust laws>

Context, Question, Answer

Context

Filtered

Figure 1: Question Generation from a context (left) by paraphrasing followed by information extraction using
OpenIE. Note: The text in green indicates the selected answer.

answer training pairs by generating a paraphrased
version of the original passage to avoid lexical over-
lap between the passage and the question-answers.
We adopt Open Information Extraction (Kolluru
et al., 2020) to extract <subject, relation, object>
triples from every sentence of the paraphrased pas-
sage. These triples are rich in semantics and rep-
resent raw facts; therefore, generating question-
answer pairs from triples results in well-formed
and effective training data. Furthermore, many sen-
tences in the passage contribute to generating mean-
ingful extractions, thus helping to pose questions
in different ways from a single passage. An exam-
ple of the question generation process we propose
(called PIE-QG for Paraphrasing, Information Ex-
traction Question Generation) is shown in Figure 1.
The contributions of this paper are as follows:

1. We describe the PIE-QG method in which
paraphrased passages from the original cor-
pus are used to generate question-answer
pairs without reliance on external reference
data sources, such as retrieval-based or inter-
document link navigation methods. Paraphras-
ing passages reduces the effect of lexical over-
lap between the passage and the question.

2. We generate multiple questions from a sin-
gle paraphrased passage by adopting Open
Information Extraction to extract facts, thus in-
creasing the number of question-answer pairs
extracted from the corpus.

We have conducted experiments on four Extrac-
tive QA datasets and demonstrate that the proposed
PIE-QG method achieves comparable performance
in terms of Exact Match (EM) and F1 score while
requiring significantly fewer passages.

The remainder of this paper is organized as fol-
lows. We present related work in Section 2. In Sec-
tion 3, we describe the proposed PIE-QG method.
Section 4 discusses the experimental setup. In Sec-
tion 5, we evaluate the performance of our method.
Section 6 presents the limitations of the proposed
method and Section 7 offers some concluding re-
marks.

2 Related Work

Pre-trained language models, such as BERT (De-
vlin et al., 2019), can be fine-tuned for downstream
tasks like Extractive QA systems (EQA systems).
A comprehensive natural language (NL) passage,
which might be several sentences or a paragraph of
NL-text, is considered as the context where the
model finds the answer span. The input ques-
tion and the context are represented as a single
sequence, passed to a pre-trained model and the
answer is predicted by calculating the probabili-
ties of the first and last tokens of the answer span.
Pre-trained language models such as BERT (De-
vlin et al., 2019), T5 transformer (Raffel et al.,
2020) and XLNet (Yang et al., 2019), achieve ex-
ceptional performance in EQA systems, however
at the cost of reliance on large human-annotated
supervised datasets. The Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016)
is a widely used dataset for EQA systems.

Lewis et al. (2019), Fabbri et al. (2020), Li et al.
(2020), and Lyu et al. (2021) used randomly sam-
pled passages from Wikipedia, where named en-
tities, or noun chunks, are identified as answers
as these tend to be useful for question answering.
The questions are then formed in natural language
according to the passage and a selected answer
phrase.
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w1, w2, w3,....wn w1, w2, w3,....wm w1, w2, w3,..wi,..wm

<s1, v1, o1> 
........... 

<st, vt, ot>

<s1, v1, o1> 
........... 

<sk, vk, ok>

Context, Question, Answer

<s1, <v1, o1>, <v2, o2>> 
........... 

<sk, vk, ok>

q1: Wh + v1+o1 + v2 + o2? | a1: s1 
........... 

qk: Wh + sk+vk? | ak: ok

Passage Paraphrased Passage Coreference Resolution Open Information Extraction

Named Entity Filtering

Generate Question and Answers Pairs

Merging Triples Question Formation

Answer

NER

QuestionContext

Figure 2: The general pipeline of PIE-QG for question generation using paraphrasing and OpenIE. Note: Blue
indicates named entities, red merged triples with a common subject and green the selected answers.

Unsupervised EQA is achieved using the cloze-
translation method (Lewis et al., 2019) by forming
passage, question-answer triples from a given tar-
get corpus. The answers present in the passages are
masked to form “fill in the blanks” styled questions,
so-called cloze questions. The authors translate
natural language questions using a neural machine
translation (NMT) model trained with different cor-
pora that contain cloze questions and natural ques-
tion pairs.

Questions generated directly from the passage
can only answer simple cloze questions by match-
ing text within the passage, an approach that can
not give correct answers for differently phrased
questions. In an effort to broaden the questions
used to train an EQA system, Fabbri et al. (2020)
generated questions using a similar sentence taken
from a different passage. The actual passage is con-
sidered a query and sentences are retrieved using
elastic search. The most similar sentence, which
contains the answer but excludes the original query
passage, and with less than 95% similarity, to avoid
plagiarised sentences, is used to form the question-
answer pairs. The answer from these sentences is
masked and a question in the form of a “Wh+B+A?”
rule, where “wh” (one of what, when, or who) is
selected based on the answer-entity type (“B” is a
fragment of the sentence that comes after the an-
swer mask, and “A” is the fragment that is present
before the answer mask).

Li et al. (2020) uses citations to form a summary
of the passage. The cited passage is considered

the context, and the sentence where the citation
appeared is used for question generation, to avoid
lexical overlap. The question generation process
involves masking the answer with a cloze mask,
where the mask mentions only the type of the an-
swer entity. The dependency tree for the sentence is
altered in such a way that the cloze mask is brought
to the beginning. The question is then created by
replacing the cloze mask with the suitable “wh”
word, again determined by the type of the answer
entities.

Lyu et al. (2021) perform unsupervised QA by
creating a question generation model from text
summaries. The model uses dependency trees
and semantic role labels extracted from the sum-
mary to generate a question. A neural encoder-
decoder model is then trained to translate articles to
summary-informed questions. The trained model
is applied to the actual passages to create ques-
tions. However, we consider this method as a trans-
fer learning task rather than unsupervised ques-
tion generation due to its dependency on a text-
summary dataset. Our method compares to Fabbri
et al. (2020) and Li et al. (2020), avoids the sen-
tence and citation-based retrieval, and minimizes
the requirement of having a large corpus to gener-
ate question-answer pairs.

3 Paraphrased Information Extraction
for Question Generation

To overcome the reliance on external reference data
sources with a large number of passages, we made
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use of OpenIE and paraphrased passages for unsu-
pervised synthetic question generation. The actual
passages are first altered to a paraphrased form
and <subject, predicate, object> triples are then
extracted from the paraphrased passages. These
triples, combined with certain heuristics, form
question-answer pairs which are then used along-
side the original passage as context to fine-tune the
QA model.

The pipeline of our proposed EQA question gen-
eration process is illustrated in Figure 2. The steps
in this pipeline are detailed as follows.

(i) Paraphrasing: Question-answer pairs gen-
erated directly from the passage result in inferior
QA system performance, as they produce models
that have little ability to generalize (Fabbri et al.,
2020). Paraphrasing is therefore adopted to al-
ter the passage without changing its actual mean-
ing. The intuition behind this is to create ques-
tions from passages that are semantically similar
but lexicographically different from the original
passage. Paraphrasing question-answer pairs them-
selves has been shown to cause semantic drift (Pan
et al., 2021). By contrast, in our approach, the pas-
sage is paraphrased, rather than question-answer
pair. This improves the model’s performance. The
effect of paraphrasing is discussed in Section 5.

(ii) Co-reference resolution: As we aim to make
use of every sentence in the passage to generate
questions, some sentences are ineffective due to the
presence of pronouns (Ma et al., 2021). This prob-
lem is solved by implementing co-reference reso-
lution, replacing pronouns in the paraphrased pas-
sages with the proper name of the referring noun.

(iii) Information Extraction: OpenIE is applied
on paraphrased passages to generate extractions in
the form of arguments and relations from natural
language text (Mausam, 2016). Given a sentence
wi in the passage, {w1, w2, w3, ..wN}, OpenIE
generates extractions {T1, T2, T3, ...TM}, where
each extraction is in the form <subject, predicate,
object>, namely triples. OpenIE is proven to be
an efficient solution for downstream tasks such as
complex question answering (Khot et al., 2017).

(v) Question formation: OpenIE extractions pro-
duced from a passage are used to form questions as
a synthetic training set for QA system fine-tuning.

(vi) Named entity filtering: Since triples ex-
tracted from a passage have different types of ex-
tractions, we select the triples that contain named
entities in the answer. In other words, the subject

Algorithm 1: PIE-QG: Question genera-
tion from passages.

Input :Given a passage P from the corpus
Output :A list of Question-Answer Pairs

P ′ = Paraphrase(P )
CP = Coreference_Resolution(P ′)
T = Open_IE(CP )
named_entities = NER(CP )
Tne = NE_filter(T , named_entities )
TIF = IdenticalTriple_filter(Tne)
TM = Merge_Triples(TIF )
TIF = Remove_Merged_Triples(TIF , TM )
QA_Pairs←− newlist
for tn in TM do

A = Select_Answer(tn)
Q = Wh
for <subject, relation, object> in tn do

Q = Q + relation + object/subject
QA_Pairs←− append(⟨Q,A, P ⟩)

end
end
for <subject, relation, object> in TIF do

Q = Wh + relation + object?
A = subject
QA_Pairs←− append(⟨Q,A, P ⟩)
Q = Wh + relation + object?
A = object
QA_Pairs←− append(⟨Q,A, P ⟩)

end
return QA_Pairs

(or object) is selected as an answer only if it is a
named entity.

(vii) Eliminating duplicate triples: One down-
side of open information extraction is the presence
of duplicate or semantically redundant triples. Gen-
erating separate questions from similar or duplicate
triples causes inferior performance in the EQA sys-
tem model, hence redundant triples are sorted and
the longest triple from the sort is selected as the
single source for final question generation.

(viii) Merging triples: Questions generated from
the triples using the above methods result in simple
and easy-to-answer questions. For robust model
training, we generate more complex questions from
multiple triples by grouping triples with the same
subject or object. For instance, if there are two
triples of the form {⟨s1, r1, o1⟩, ⟨s2, r2, o2⟩} and
s1 = s2, we form a question-answer pair with “Wh

353



+ r1 + o1, r2 + o2?” as the question and s1 (or s2)
as the answer.

Each triple extracted from a paraphrased passage
can form two questions with either subject or ob-
ject as an answer. When a subject is selected as
an answer, the question is formulated as “Wh +
relation + object?”. Conversely, when an object
is selected as the answer, the question generated
is of the form “Wh + subject + relation?”. “Wh”
is the question word in these formulations and the
appropriate form is selected from a list, based on
the answer entity type as earlier described.

4 Experimental Platform

Datasets The performance of our question gener-
ation method is evaluated in terms of Exact-Match
(EM) and F-1 score using existing EQA datasets,
namely SQuAD v1.1 (Rajpurkar et al., 2016) devel-
opment set, and NewsQA (Trischler et al., 2016),
BioASQ (Tsatsaronis et al., 2015) and DuoRC
(Saha et al., 2018) test sets. SQuAD version 1.1 is
acquired from the official version1 while the Fisch
et al. (2019) published versions of test sets are
considered for NewsQA, BioASQ, and DuoRC. A
more recent SQuAD v2.0 (Rajpurkar et al., 2018)
is considered unsuitable for our experiments as the
synthetic training set does not contain unanswer-
able questions.

Question Generation We take a relatively small
subset of 30,000 passages from the (Li et al., 2020)
sampled Wikipedia dataset for question generation
and for training the model. The pseudo-code for
the proposed question generation technique is pre-
sented in Algorithm 1.

Some of the questions resulting from this pro-
cess can be grammatically incorrect. We rely on
questions posed to the model during inference to
be in natural language with correct grammar, we
experiment by introducing a grammar correction
module in the pipeline to synthesize syntactically
accurate questions but later removed this due to its
effect discussed in Section 5.

Sourced Wikipedia passages are trans-
formed into paraphrased passages with a
pre-trained model2 based on the PEGASUS
transformer (Zhang et al., 2020). Pronouns in
the paraphrased passage are replaced with the

1https://rajpurkar.github.io/SQuAD-explorer/
2https://huggingface.co/tuner007/pegasus_

paraphrase

nouns they refer to. We used neuralcoref3 for this
purpose, the spaCy implementation of pre-trained
co-referent resolution based on reinforcement
learning (Clark and Manning, 2016). OpenIE6 is
used to extract <subject, predicate, object> triples
from the pronoun-replaced paraphrased passages.
OpenIE6 uses Iterative Grid Labeling and is
based on BERT. A spaCy-based named-entity
recognition (NER) module (Honnibal et al., 2020)
is used to generate a list of named-entities from
the passage. Named-entity recognition (NER)
is particularly helpful for filtering triples and
determining the answer-entity type for appropriate
“wh” word selection. The simplest version of “Wh”
word is selected for a particular named entity based
on Fabbri et al. (2020). Questions generated from
this process are grammatically corrected using a
RoBERTa-based (Liu et al., 2019) grammar cor-
rection module named “GECToR” (Omelianchuk
et al., 2020). All models are applied from the
above-mentioned sources out-of-the-box, namely
with no domain specific fine-tuning.

QA fine-tuning We use pre-trained BERT mod-
els from Devlin et al. (2019) as the baseline and
fine-tune the models for downstream QA system
tasks with the generated training data. The gen-
erated question, and its context (the actual NL-
passage that contains both the question and its an-
swer), are represented as a single sequence, sepa-
rated by different segment masks and the “[SEP]”
token. The final linear layer of the model is trained,
to identify the start and end spans of the answer, by
computing log-likelihood for each token. All ex-
periments are performed on the uncased version of
the BERT-base model with a learning rate of 3e-5,
a maximum sequence length of 384, a batch size
of 12, a document stride of 128 for 2 epochs, and
a check-point at every 500 steps. The best check-
point was selected by validating each against 5000
QA pairs randomly sampled from the synthetic
training data. We use the Huggingface4 implemen-
tation for input tokenization, model initialization,
and training. For comparison with the state-of-
the-art EQA models, we also experimented on the
BERT-large whole-word masking version with the
same training data. All models are trained and
validated on a single NVIDIA Tesla A100 GPU.

3https://spacy.io/universe/project/neuralcoref
4https://huggingface.co
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SQuAD1.1 NewsQA BioASQ DuoRC
PIE-QG Heurisitcs EM F-1 EM F-1 EM F-1 EM F-1
Open IE 22.8 36.5 13.0 23.9 16.6 24.3 22.0 28.5
+ Paraphrasing 37.7 53.6 19.9 32.3 20.3 31.6 32.6 40.7
+ Co-reference Resolution 44.2 53.4 21.1 31.8 26.5 34.7 34.8 40.4
+ Named-Entity filter 46.6 56.5 21.7 32.5 30.3 36.9 36.9 42.4
+ Filtering Identical Triples 47.5 57.8 21.8 32.2 30.1 37.1 35.1 41.1
+ Merging Triples 48.6 58.7 21.8 32.8 29.6 37.5 34.3 40.1
+ Grammar Correction 47.1 56.8 21.9 32.3 29.1 36.5 35.2 40.7

Table 1: Ablation study of the different techniques used in PIE-QG and their subsequent impacts on the EM and F-1
after fine-tuning the BERT-base model. Note: Each step represents an incremental upgrade to the previous step in
question generation.

5 Results and Discussion

The effectiveness of the question-answer data gen-
erated using the PIE-QG method is measured by
training the BERT-base model and evaluating it
against existing EQA development and test sets.
The Exact Match (EM) and F-1 scores are selected
as the metrics to evaluate the effectiveness of each
component in the QA models. The initial set of
questions is created using OpenIE, where the pas-
sage is directly used to form triples and generate
questions as described in Section 3. The intuition
behind using OpenIE is to generate multiple ques-
tions from a single passage. However, as previously
described, such a simple-minded approach suffers
from having pronouns as answers, ungrammatical
questions, and high degrees lexical similarity be-
tween passage and question, making most extracted
triples suitable for word matching only.

Effect of Paraphrasing Using paraphrased pas-
sages for question generation avoids lexical over-
laps with the passage and improves model perfor-
mance. Ten different paraphrases are generated
for each sentence in the passage using the PEGA-
SUS (Zhang et al., 2020) paraphrasing generation
model. Jensen-Shannon Divergence (JSD) is cal-
culated for each paraphrase against the original
sentence. JSD calculates a divergence score based
on the word distributions between two sentences, a
higher value for JSD accounts for a more different
sentence, while a lower value JSD score represents
higher lexical overlap. In our PIE-QG pipeline, sen-
tences with the highest JSD values are selected for
question generation to make the question syntacti-
cally different. Paraphrasing has a strong positive
effect on the model, improving the EM F-1 score
by at least 4% and 7% respectively on all evaluation
sets.

Effect of Co-reference Resolution The presence
of pronouns in passages results in meaningless
question-answer pairs. For instance, “Vaso Sep-
ashvili (; born 17 December 1969) is a retired
Georgian professional footballer. He made his pro-
fessional debut in the Soviet Second League B in
1990 for FC Aktyubinets Aktyubinsk” is the pas-
sage. This produces a triple “<He, made, his pro-
fessional debut in the Soviet Second League B in
1990 for FC Aktyubinets Aktyubinsk>”. While the
relation and object form a question “Who made his
professional debut in the Soviet Second League B
in 1990 for FC Aktyubinets Aktyubinsk?” with
the subject “He” selected as the answer. The best
answer for this question is found co-referenced
in the previous sentence where the pronoun “He”
refers to “Vaso Sepashvili”. To address this we
alter the passage with co-reference resolution to
replace all pronouns with the referring proper noun.
The above sentence is changed in such a way that
the extracted triple becomes “<Vaso Sepashvili,
made, his professional debut in the Soviet Second
League B in 1990 for FC Aktyubinets Aktyubinsk>”
and the ideal answer is selected. Pronouns were re-
placed with their referring nouns using this method
to generate meaningful questions while the original
passage is retained for training the QA model. In
this way, co-referent resolution has a positive im-
pact on the model performance increasing the EM
by 2%-6% across all the sets.

Named-Entity Filtering As triples are the di-
rect source of training questions, the quality of
triples leads to better training questions for the PIE-
QG model. In general, OpenIE6 returns all possi-
ble triples from a sentence, but selecting suitable
triples, to generate better question-answer pairs, be-
comes important. To assist in identifying the best
set of triples, we filter triples that do not contain
named entities. We use Named Entity Recogni-
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SQuAD1.1 NewsQA BioASQ DuoRC
Fine-tuning Models EM F-1 EM F-1 EM F-1 EM F-1 #Training

Contexts
BERT-base
Sentence Retrieval (Fabbri et al., 2020) 46.1† 56.8† 20.1 31.1 29.4 38.1 28.8 35.0 45K
PIE-QG (Ours) 48.6 58.7 21.8 32.5 29.6 37.5 34.3 40.1 20-28K
BERT-large
Cloze Translation (Lewis et al., 2019) † 45.4 55.6 19.6 28.5 18.9 27.0 26.0 32.6 782K
RefQA (Li et al., 2020) 57.1 † 66.8 † 27.6 41.0 42.0 54.9 41.6 49.7 178K
+ Iterative Data Refinement 62.5 † 72.6 † 32.1 45.1 44.1 57.4 45.7 54.2 240K
PIE-QG (Ours) 61.2 72.6 29.7 44.1 43.6 55.1 44.6 52.9 20-28K

Table 2: Comparison of PIE-QG with state-of-the-art unsupervised QA models. Note: Iterative refinement achieves
the best performance through structural analysis of the corpus via citation and intra-document links, a model that
requires×8 as many contexts as the PIE-QG model we propose.‘†’ indicates results taken from the existing literature,
and all other figures are evaluated with published synthetic training data (or) pre-trained models. “#Training Contexts”
are measured based on respective published synthetic datasets. Each model uses the same synthetic training data
sourced from Wikipedia for fine-tuning and is evaluated against the standard EQA datasets.

tion (NER) to extract all named entities from the
passage. To become a candidate to be selected for
the question generation process, either the subject
or object from the triple must contain at least one
named entity. This NER filtering method is bene-
ficial to the model, it eliminates many impractical
question-answer pairs from the training set and im-
proves the overall Exact Match (EM) and F-1 score
by 2% except for NewsQA.

Effect of Filtering Identical Triples Semanti-
cally similar triples are formed using OpenIE6 with
a high degree of lexical overlap. Constructing ques-
tions from these triples causes question duplication
and has the potential to deteriorate model perfor-
mance and even result in over-fitting. To filter sim-
ilar or duplicate triples, each triple is verified with
other triples extracted from the passage to discover
lexical overlaps between them. If a triple formed
as a sentence is a sub-string of another, the shorter
is removed from the training set to avoid the pro-
duction of redundant questions. From Figure 1,
triples such as <the deals, could violate, EU an-
titrust laws> and <The European Commission, is
worried, that the deals could violate EU antitrust
laws> convey the same meaning with a high degree
of lexical overlap, hence the former is removed.
Filtering identical triples in this way has a small
but favorable impact on the model as shown in the
ablation summary in Table 1.

Effect of Merging Triples A subject (or object)
in a passage can exhibit relations to multiple ob-
jects (or subjects). Triples with common subjects
are merged to form complex questions such that
QA model can understand complex relationships.
Merging triples has a small but positive effect on

the model performance improving EM by 1.2% and
F-1 by 0.9% as shown in Table 1.

Effect of Grammar Correction Questions gen-
erated from the above process often contain gram-
matical errors which can negatively impact model
performances. We experimented with “GECToR”
5, a grammar correction module that tags and cor-
rects input questions with grammar errors. For
instance, the question “What is is worried that the
deals could violate EU antitrust laws?” is formu-
lated. The repeat occurrence of the verb “is” is
an obvious error. The grammar correction mod-
ule alters the question where the final question is
formulated correctly as “What is worried that the
deals could violate EU antitrust laws?”. Based on
heuristics presented in Table 1, all incremental up-
grades until “Merging Triples” improve the model
performance, but Grammar correction does not and
is hence removed from the pipeline.

Effect of Training Data Size Experiments were
conducted to measure the EM and F-score at dif-
ferent synthetic data sizes to identify the optimal
number of training questions. Figure 3 presents
the results of these experiments and reveals that
PIE-QG achieves peak performance between 30K-
50K training questions using BERT-large model
and begin to over-fit beyond that number. The
same effect is also observed in (Fabbri et al., 2020).
The method to determine the optimal number of
training questions is to split the generated question-
answer pairs into blocks each of 10K. These are
then split into training and validation sets. At fixed
points of 500 training steps, the validation set is

5https://github.com/grammarly/gector
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Figure 3: Evaluation of the PIE-QG model F-score for
different datasets against the number of questions in the
training set using the BERT-large model, the optimal
number for each dataset is in the range 30-50K.

measured against the QA model. This incremen-
tally informs the process of when the model opti-
mizes against the number of question-answer pairs
used to train it. It is observed, shown in Figure 3,
that this occurs for each of the datasets in the range
30-50K. Increasing the number of template-styled
training questions negatively affects the evaluation
performance after a certain point because of mem-
orisation of synthetic data patterns.

Comparison with the State-of-the-Art Fabbri
et al. (2020) use a BERT-base model as the back-
bone for their experiments while Lewis et al. (2019)
and Li et al. (2020) employed the BERT-large
whole word masking pre-trained model. Questions
generated from the PIE-QG model performed bet-
ter than the information retrieval-based method pre-
sented by Fabbri et al. (2020) and produced an
absolute improvement of 2.5% on EM and 1.9%
on F-1 on the SQuAD 1.1 development set. Com-
paring BERT-large models, the PIE-QG model out-
performs citation retrieval-based RefQA, a method
that involves dependency tree reconstruction. How-
ever, RefQA, which includes a refinement tech-
nique, achieves the best performance, achieving
1-2.5% higher F-1 score than that of PIE-QG, but
at the cost of using 8× more passages and 10×
more training questions. Also, refinements in Re-
fQA are performed on the training data through
iterative cross-validations on the SQuAD 1.1 devel-
opment set, whereas the PIE-QG model does not
involve such a process. The number of passages
and questions used by each method are presented
in detail in Table 3. PIE-QG outperforms retrieval-

System #Contexts #Questions
Fabbri et al. (2020) 45K 50K
RefQA Li et al. (2020) 178K 300K
+ IDR 240K 480K
PIE-QG 20-28K 30-50K

Table 3: Comparison of statistics of the synthetic train-
ing data generated by existing unsupervised question
generation methods with PIE-QG.

based question generation on every dataset and pro-
duces comparable performance with RefQA with
8× fewer passages.

To summarise, the experimental results demon-
strate the advantages of the PIE-QG method;

1. Paraphrasing the original passage eliminates
the need of using external knowledge sources
to avoid lexical overlap;

2. Multiple questions generated using OpenIE
with our proposed method minimizes the re-
quirement of a large corpus without having to
sacrifice the performance.

6 Limitations

The downside of the PIE-QG unsupervised ques-
tion generation pipeline is the use of external mod-
ules like paraphrasing, OpenIE, and NER, which
may not exist in languages other than English. The
quality of question-answer pairs generated to train
the QA model is therefore dependent on the perfor-
mance of these modules on the selected corpus. It
is however anticipated that PIE-QG will perform
similarly well on any English language corpus. It
is future work to apply these modules within the
PIE-QG pipeline to other languages where compa-
rable language-specific models can be sourced and
performance outcomes analyzed.

7 Conclusion

With no reliance on any external reference cor-
pora, the PIE-QG model uses paraphrasing and
Open Information Extraction (OpenIE) to gener-
ate synthetic training questions for fine-tuning the
language model in a QA system based on BERT.
Triples in the form of <subject, predicate, ob-
ject> are extracted from paraphrased passages, and
questions are formed with subjects (or objects) as
answers. Pronoun co-referents are resolved and
where possible, triples are merged, and duplicate
and highly similar triples are removed. Further-
more, triples that do not contain named entities
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P Georgia Tech undergraduate programs continue to excel, and I’m pleased that we’ve been able
to maintain this measure of excellence for so long, ” said Interim President and Provost Gary
Schuster.

Q Who was said that he was pleased that Georgia Tech undergraduate programs continued to excel?
A Gary Schuster
P “We’re very upset, very angry,” said Raphael Felli, 35, a U.S.- based attorney and son of executed

Colonel Roger Felli, who was foreign minister in the Acheampong administration.
Q Who was is an attorney based in the U.S., is the son of executed Colonel Roger Felli?
A Raphael Felli
P Liberty and Tyranny Sells a Million. Politics Radio host Mark R. Levin’s bestselling Liberty

and Tyranny : A Conservative Manifesto has sold one million copies, according to publisher
Threshold Editions.....Published on March 24, 2009, Liberty debuted at # 1 on the New York
Times bestseller list.

Q What sell a million, made it to the New York Times bestsellers list?
A Liberty

Table 4: Example synthetic question-answer pairs generated using PIE-QG. Note: P represents the passage extracted
from a document. Q and A are the generated question and the selected answer from the passage, respectively.

are eliminated. The PIE-QG pipeline results in a
high-quality question-answer training set that in-
forms the QA model. Using the PIE-QG pipeline
results in a QA model that achieves performance
comparable to the state-of-the-art performance us-
ing significantly fewer passages. It is only narrowly
outperformed by RefQA, an approach that uses it-
erative data refinement, and therefore relies on the
citation structure of corpora and×10 more training
questions.
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Abstract
Targeted studies testing knowledge of subject-
verb agreement (SVA) indicate that pre-trained
language models encode syntactic informa-
tion. We assert that if models robustly encode
subject-verb agreement, they should be able to
identify when agreement is correct and when
it is incorrect. To that end, we propose gram-
matical error detection as a diagnostic probe
to evaluate token-level contextual representa-
tions for their knowledge of SVA. We eval-
uate contextual representations at each layer
from five pre-trained English language models:
BERT, XLNET, GPT-2, ROBERTA, and ELEC-
TRA. We leverage public annotated training
data from both English second language learn-
ers and Wikipedia edits, and report results on
manually crafted stimuli for subject-verb agree-
ment. We find that masked language models
linearly encode information relevant to the de-
tection of SVA errors, while the autoregressive
models perform on par with our baseline. How-
ever, we also observe a divergence in perfor-
mance when probes are trained on different
training sets, and when they are evaluated on
different syntactic constructions, suggesting the
information pertaining to SVA error detection
is not robustly encoded.

1 Introduction

Recent work investigates whether linguistic infor-
mation is encoded in pre-trained transformer-based
language models (Peters et al., 2018; Devlin et al.,
2019). Research using diagnostic methods (Shi
et al., 2016; Alain and Bengio, 2017; Adi et al.,
2017; Conneau et al., 2018; Hupkes et al., 2018)
indicates models encode syntax via experiments
targeting, for example, part-of-speech and depen-
dency labelling (Tenney et al., 2019; Jawahar et al.,
2019; Hewitt and Manning, 2019), while targeted
syntactic evaluation studies show models encode
a large amount of hierarchical syntactic informa-
tion in tests for subject-verb agreement (Linzen
et al., 2016; Marvin and Linzen, 2018; Goldberg,

2019). Although previous research has covered a
large number of probing tasks (Tenney et al., 2019;
Liu et al., 2019a), no one has yet fully explored
grammatical error detection (GED) as a probe. We
assert that the ability to detect ungrammatical to-
kens serves as a complementary evaluation to as-
sess linguistic competence.

GED is a natural and complex NLP task that as-
sesses a model’s ability to detect which tokens in a
sentence are grammatically incorrect. Ungrammat-
ical tokens may be categorised within a taxonomy1

comprising three operational categories (replace-
ment, unnecessary, and missing) and twenty-five
categories based on parts-of-speech. For example:

(1) [Replacement subject-verb agreement]
The train are a good option for long trips.

(2) [Replacement pronoun] Everybody must
have free time for yourself.

(3) [Missing determiner] The birth of [a] new
star.

(4) [Unnecessary preposition] Public trans-
port means travelling around [...] by using
trains, buses, and planes.

To do well in the task, a model must encode and
make use of a wide array of linguistic information.
For example, detecting subject-verb agreement er-
rors in English tests a model’s capacity to identify
i) verbs, ii) the subjects of the verbs, iii) the gram-
matical number (singular/plural) of both, and iv)
whether their number agrees.

The above makes the task a very interesting test-
bed for evaluating a model’s syntactic knowledge.
We operationalise the GED task and train probes to
detect replacement subject-verb agreement errors
(as in Example 1) using contextual representations
from different hidden layers from five pre-trained
English language models – BERT (Devlin et al.,

1Much recent research in GED uses error-type labels based
on ERRANT (Bryant et al., 2017).
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2019), XLNET (Yang et al., 2019), GPT-2 (Radford
et al., 2019), ROBERTA (Liu et al., 2019b), and
ELECTRA (Clark et al., 2020).

To ensure a robust and thorough evaluation, we
leverage existing publicly annotated data from two
domains for training: essays by learners of English
as a second language from both the Cambridge
English Write & Improve + LOCNESS (W&I)
corpus (Bryant et al., 2019) and the First Cer-
tificate in English corpus (FCE) (Yannakoudakis
et al., 2011), along with a corpus of automati-
cally extracted edited sentences from native En-
glish Wikipedia edit histories (Grundkiewicz and
Junczys-Dowmunt, 2014). For evaluation, we re-
frame the minimal-pair dataset from Marvin and
Linzen (2018) to create targeted evaluation sets an-
notated for GED. In doing so, we demonstrate how
existing minimal-pair datasets can be leveraged to
create challenging and interpretable test sets for
GED models2 (Hu et al., 2020).

We find that ELECTRA, BERT, and ROBERTA lin-
early encode information for the detection of SVA
errors in the contextual representations of verbs,
however, we observe a gap in performance when
probes are trained on data from different domains,
implying the information is not encoded consis-
tently or robustly. The results show consistent
patterns across layers: both BERT and ELECTRA

encode information related to SVA errors in the
middle-to-late layers, while ROBERTA seems to
encode information earlier in the model. Probes
trained on representations from GPT-2 and XLNET

(with uni- and bi-directional decoding) perform
poorly on the evaluation set, indicating a funda-
mental difference from either the training objective
or pre-training data. Finally, we show that GED
probes can complement existing tools for syntactic
evaluation: our results suggest that although neural
language models perform well on targeted syntac-
tic evaluation tasks, their encoding of SVA does
not robustly extend to the detection of SVA errors.3

2 Token-level grammaticality

We motivate the use of GED-probes by first review-
ing previous literature involving grammaticality
judgements and tests for subject-verb agreement,
then discuss the advantages in tests for GED.

2In principle these minimal-pair datasets can also be used
to evaluate grammatical error correction systems.

3We release our code at https://github.com/
chrisdavis90/ged-syntax-probing

Boolean acceptability judgements have long
been used as a primary behavioural measure to
observe humans’ grammatical knowledge (Chom-
sky, 1957; Pater, 2019), and have recently been
employed in computational linguistics to evaluate
grammatical knowledge in neural models. For ex-
ample, Warstadt et al. (2019) train classifiers to
predict sentence-level Boolean acceptability judge-
ments on example sentences from the linguistics
literature. As each sentence is designed to demon-
strate a particular grammatical construction, perfor-
mance on the task is interpreted as a reflection of
the implicit knowledge of the classifier.

An alternative approach frames acceptability as
a choice between minimal pairs of sentences – one
grammatical and another ungrammatical, where the
difference between the two is typically one or two
tokens. Marvin and Linzen (2018) evaluate linguis-
tic knowledge by testing whether a language model
assigns higher probability to a grammatical sen-
tence relative to its minimally different ungrammat-
ical counterpart. Similar to Warstadt et al. (2019),
fine-grained grammatical knowledge is evaluated
by controlling the evaluation stimuli, with the hy-
pothesis that models must have implicit knowledge
of the underlying grammatical concept to succeed.

Rather than evaluating sentence-level scores,
Linzen et al. (2016) compare predicted probabili-
ties assigned to target verbs in minimal pair sen-
tences, where each sentence in a pair uses a dif-
ferent form of the verb. Goldberg (2019) extends
this to masked language models where he replaces
a target verb with the [MASK] token and feeds
the entire sentence to a BERT model. A model is
considered successful, and thereby has knowledge
related to SVA, if it assigns higher probability to
the correct form of the verb.

Our work differs from the above in three impor-
tant ways. First, we don’t assume to know where
the incorrect token is – the probe is trained to de-
tect errors for all tokens in a sentence, given each
token’s contextual representation. This is a more
fine-grained evaluation compared to sentence-level
judgements and tests whether probes know where
the error is located. Second, instead of targeting
information in the masked token, we investigate
whether the model implicitly encodes SVA informa-
tion in a token’s contextual representation. Third,
we test for knowledge of SVA without comparing
to the counterpart token or sentence. We argue
that if a model has knowledge of SVA, it should
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Syntactic Construction Example
Simple agreement The author laughs/laugh∗

Agreement in a sentential complement The bankers knew the officer smiles/smile∗

Agreement across a prepositional phrase The farmer near the parents smiles/smile∗

Agreement across a subject relative clause The officers that love the skater smile/smiles∗

Short verb-phrase coordination The senator smiles and laughs/laugh∗

Long verb-phrase coordination The manager writes in a journal every day and
likes/like∗ to watch television shows

Agreement across an objective relative clause The farmer that the parents love swims/swim∗

Agreement within an objective relative clause The farmer that the parents love/loves∗ swims

Table 1: Examples for the main syntactic constructions from the subject-verb-agreement stimuli from Marvin and
Linzen (2018). Bold indicates the subject-noun, and underlined tokens indicate the grammatical/ungrammatical∗

verb.

be able to detect SVA-errors without requiring a
comparison.

3 Data

3.1 Second language learner corpora

Following previous work in grammatical error
correction and detection, we use the Cambridge
English Write & Improve + LOCNESS corpus
(Bryant et al., 2019) and the First Certificate in
English (Yannakoudakis et al., 2011), hereinafter
W&I-FCE.4

The edit annotations in these corpora were pre-
processed and standardised using the ERRANT
annotation framework (Bryant et al., 2017). One
advantage of this framework is that error types are
modular, and consist of “operation” + “main” type
tags. This provides us flexibility to target grammat-
ical errors at different levels of granularity. E.g. all
NOUN errors or only R:NOUN for replacement nouns.
In addition, we can take advantage of the correc-
tions provided with each edit annotation to control
the number and variation of grammatical errors.
Since we focus only on replacement subject-verb-
agreement errors, R:VERB:SVA, we correct all other
error types and keep only those sentences contain-
ing at least one grammatical error. This leaves
1936 sentences for training and 142 sentences for
validation.

3.2 Dataset of Wikipedia edits

As an alternative to the learner corpora, we addi-
tionally experiment with a corpus of automatically
extracted edited sentences from native English
Wikipedia edit histories (WIKED) (Grundkiewicz

4Public data for W&I and the FCE are available at: https:
//www.cl.cam.ac.uk/research/nl/bea2019st#data

and Junczys-Dowmunt, 2014). We use the clean
and preprocessed version of English Wikipedia ed-
its, consisting of ~29 million sentences.5 We fol-
low the same procedure as above and retain only
sentences with R:VERB:SVA errors by correcting
all other error types, and keep only the sentences
containing at least one error. This leaves ~233K
sentences, from which we sample five training sets
each with 1936 sentences each to match the amount
of sentences in the learner corpora after processing,
and 5839 sentences for the validation set. Statistics
for both corpora are given in Appendix A. We refer
to the sampled training sets as WIKED-S.

3.3 Minimal-pair datasets

We use the manually constructed subject-verb
agreement stimuli from Marvin and Linzen (2018)
(M&L) to evaluate the GED-probes – this enables
a more controlled evaluation compared to the natu-
rally occurring sentences in W&I-FCE and WIKED.
The dataset consists of seven main syntactic con-
structions, shown in Table 1. In addition to those
shown in the table, sentences with multiple nouns
(except for those testing VP coordination) include
instances with two nouns and one acts as a distrac-
tor, potentially agreeing with the verb even though
it is not the subject:

(5) a. The farmer near the parent smiles/smile∗.
b. The farmer near the parents smiles/smile∗.
c. The farmers near the parent smiles∗/smile.
d. The farmers near the parents smiles∗/smile.

In the above sentences, the verbs marked with
an asterisk are ungrammatical. The dataset also
expands on sentences testing agreement with ob-
ject relative clauses: agreement is tested across

5https://github.com/snukky/wikiedits
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and within the clause, using animate and inani-
mate main subjects, and with and without the that-
complementizer.

We process the M&L minimal pairs to create
token-level GED annotations, where the ungram-
matical verbs are tagged as R:VERB:SVA.6 We in-
clude all of the ungrammatical and grammatical
sentences for evaluation – to be successful, the
GED-probe should recognise when the agreement
is correct and label all tokens as grammatical.7 Fi-
nally, we capitalise the first word in each sentence
and add a full stop if one doesn’t already exist.
Appendix B contains details about the processed
dataset.

4 Experiment 1: Per Layer Probes

We first investigate whether models encode SVA-
errors by examining probing performance at each
layer; we want to test whether models encode this
information in the final layer, the token representa-
tion, but also how this information develops across
the layers. We then break-down performance by
syntactic construction to better understand how the
SVA-error encoding generalizes. Finally, we carry
out a follow-up experiment to investigate the im-
pact of training data size and verb frequency.

4.1 Experimental setup

For each model, we extract contextual representa-
tions for every token in a sentence for every one
of the twelve layers in the model. We then train
a linear probe (Tenney et al., 2019; Hupkes et al.,
2018; Liu et al., 2019a) per layer to predict whether
each token-level contextual representation is un-
grammatical. We train two versions of each probe:
one trained using W&I-FCE, and the other using
WIKED-S. Every probe is evaluated on the M&L

stimuli
Since the probe is trained to detect R:VERB:SVA

errors, high probing performance would indicate
the probe has learned to extract features to identify
subject-verb agreement errors from the contextual
representations of the verbs. This implicitly in-
cludes sub-tasks to identify the verb, the subject
noun, the number of both the verb and noun, and

6In principle, any minimal-pair dataset can be converted to
token-level annotations using ERRANT, but not all grammati-
cal errors map cleanly to ERRANT categories. For example,
replacement pronouns (R:PRON) includes reflexive anaphor
gender- and number- agreement errors.

7While the evaluation stimuli consists of minimal pairs,
the training data does not.

that their number disagrees. Furthermore, as this is
a token labelling probe, high probing performance
would indicate the pre-trained model has encoded
the relevant features in the contextual representa-
tions of the verbs.

We evaluate probes using F1 on the evaluation
stimuli from M&L containing an equal number of
grammatical and ungrammatical sentences.8 We
compare probes to a VERB-ONLY baseline which
incorrectly tags all verbs as ungrammatical. The
number of verbs per sentence varies across syntac-
tic constructions; constructions with one verb have
an equal number of grammatical and ungrammat-
ical verbs, and therefore have a baseline score of
0.67. Constructions with two and three verbs have
scores of 0.40 and 0.30, respectively. Evaluating
the baseline over all constructions yields a score of
0.43.

We evaluate five pre-trained models: BERT-
BASE-CASED, GPT-2 (small), ROBERTA-BASE, XL-
NET with both uni-directional (XLNET-UNI) and
bi-directional XLNET-BI decoding, and ELECTRA-
BASE (discriminator). As all five models use sub-
word tokenisation, we follow Liu et al. (2019a) and
use the last sub-word unit for token classification.
We train the probes for 50 epochs with a patience
of 10 epochs for early stopping based on in-domain
validation sets.

Four of the five models were pre-trained with
a language modelling objective: either masked
language modelling (MLM) or autoregressive lan-
guage modelling (ALM). Whereas ELECTRA is
the exception – the replaced token detection train-
ing objective is somewhat aligned with GED and
therefore we may expect representations to encode
grammatically discriminative information.9 Indeed,
Yuan et al. (2021) find ELECTRA outperforms BERT

when fine-tuned for binary GED targeting a wide
range of error-types. BERT and ROBERTA also de-
tect replaced tokens during training, but only on
1.5% of tokens.

8This departs from F0.5 used in the GED literature, which
was motivated from educational applications where high pre-
cision is preferred over recall because false-positives can
be more harmful for language learners compared to false-
negatives.

9The ELECTRA discriminator model is trained to detect
substituted tokens in a grammatical sentence, where an orig-
inal token is substituted with a plausible alternative from a
masked language model.
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(a) W&I-FCE (b) WIKED-S

Figure 1: F1 scores for probes trained on contextual representations at different layers from BERT, ELECTRA,
ROBERTA, XLNET with bidirectional decoding (XLNET-BI), XLNET with unidirectional decoding (XLNET-UNI), and
GPT-2. 1a and 1b show results for probes trained on W&I-FCE and the WIKED-S training sets respectively. The
VERB-ONLY baseline scores are illustrated using grey horizontal lines. 1b shows the mean and standard deviation
across the five training sets (§3.2). All probes are evaluated on the M&L stimuli (§3.3).

W&I-FCE WIKED-S

Model Layer F1 Layer F1

ELECTRA 9 0.95 10 0.89±0.02

BERT 12 0.89 12 0.73±0.03

ROBERTA 5 0.80 5 0.70±0.04

XLNET-BI 6 0.59 6 0.51±0.01

XLNET-UNI 3 0.48 3 0.43±0.02

GPT-2 6 0.45 6 0.48±0.02

VERB-ONLY - 0.43 - 0.43

Table 2: Top F1 scores on the M&L evaluation set, for
probes trained on either W&I-FCE or WIKED-S. Scores
for probes trained on WIKED-S are reported as the mean
±1 standard deviation over the five sampled training
sets.

4.2 Results

Figure 1 shows F1 scores for probes trained on
W&I-FCE and WIKED-S, and evaluated on the M&L

stimuli.10 For the latter, we plot the mean and stan-
dard deviation evaluated over the five sampled train-
ing sets. We illustrate the VERB-ONLY baseline
score with a grey horizontal line. Table 2 shows
layers which obtained the top F1 score per model.

The figure and table shows ELECTRA encodes
the most salient information for SVA error detec-
tion, with probes obtaining maximum scores of
0.95 and 0.89 (σ=0.02) when trained on W&I-

10We additionally evaluate probes against the other error
types in the W&I dataset and verify that probes only detect
SVA errors. Probes trained on either BERT or ELECTRA ob-
tain mean scores of 0.04 (σ=0.04), verifying that information
extracted by the probe is isolated to subject-verb agreement
errors.

FCE and WIKED-S, respectively. Though this may
not be surprising given the replaced token detec-
tion pre-training objective, it illustrates that probes
trained on representations from a model capable of
SVA error detection can obtain high performance
using both training sets.

We observe a divergence in performance be-
tween MLM-probes and ALM-probes; the MLM-
probes tend to perform better, obtaining maximum
scores between 0.70 and 0.89 F1, while the ALM-
probes don’t score above 0.59 on either training
set. In fact, probes trained on representations from
GPT-2 and XLNET-UNI often perform worse than
the VERB-ONLY baseline at 0.43 and don’t score
above 0.50 F1. These results imply that GPT-2 and
XLNET-UNI representations do not linearly encode
enough information to differentiate between gram-
matical and ungrammatical verbs in SVA.

The MLM-ALM performance gap could be due
to the language model directionality: the two uni-
directional models (GPT-2 and XLNET-UNI) do per-
form the worst, but this fails to account for the
performance of XLNET-BI – a bi-directional lan-
guage model which does not perform much better.
It may be that the MLM training objective helps to
imbue contextual representations with information
useful for detecting SVA errors, but we cannot dis-
count the inclusion of the replaced token detection
objective, even though it is rarely included. Finally,
we note key differences in the pre-training data
used by the models: BERT and ELECTRA use the
BooksCorpus and English Wikipedia, GPT-2 uses
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web-scraped data, and XLNET and ROBERTA use
a combination of BooksCorpus, Wikipedia, and
web-scraped data.

When we examine performance across layers we
see that ELECTRA- and BERT-probes follow a sim-
ilar trajectory, with performance on par with the
baseline from layers 1-5 and higher performance
only in layers 8-12. SVA-error information is high-
est in the final layer for BERT (the token represen-
tation) while layers 9 and 10 seem to encode the
most useful information for ELECTRA. In contrast,
probes trained with representations from ROBERTA

peak at layer 5 but have mostly consistent perfor-
mance until 12, apart from a drop in layer 7.

The results for BERT support those from Jawa-
har et al. (2019), where they find probes encode
elements of syntax in the middle to late layers. Liu
et al. (2019a) also find that later layers obtain the
best performance for a general GED probe, though
they experiment on a single dataset (FCE (Yan-
nakoudakis et al., 2011)) and include all grammat-
ical error types. Recent results from Lasri et al.
(2022b) show that removing number information
from nouns at different layers has a detrimental
effect on the number-agreement task up until layer
8. They hypothesise that some transfer of noun-
number takes place in the previous layers. Our
results seem to support this: low probing perfor-
mance in layers 1-5 (when the noun-number has
yet to be transferred to the verb), and high prob-
ing performance in layers 8-12 after transfer has
taken place. Interestingly, performance for ELEC-
TRA takes the same shape, suggesting that the pre-
training objective (replace token detection versus
MLM) may not have an important role in how mod-
els encode SVA information, especially given that
ROBERTA, trained using masked-language mod-
elling, displays a different pattern across layers.
Finally, if GED-probe-performance can be taken
as a proxy for noun-number transfer, then results
for ROBERTA-probes suggest that noun-number in-
formation is transferred to the target verb earlier,
possibly due to the more robust optimization.

Turning to probe performance across training
sets, we find that probes trained on W&I-FCE

consistently perform better than those trained on
WIKED-S, for all models tested apart from GPT-2.
This could be due to a domain mismatch, where
learner writing may be more similar to the M&L

stimuli than data from WIKED-S. Though, at the
very least this indicates that information pertaining

to SVA errors is not consistently encoded.
Previous work finds some evidence that BERT’s

representations encode knowledge of SVA (Gold-
berg, 2019; Jawahar et al., 2019; Newman et al.,
2021; Lasri et al., 2022a) but that this knowledge
is based on heuristics rather than robust SVA rule
learning (Chaves and Richter, 2021; McCoy et al.,
2019). Our results indicate that information en-
coded in contextual representations extends to the
detection of SVA errors in ELECTRA, BERT, and
to a lesser extent, ROBERTA. However, we find the
encoding is not robust across domains, supporting
the heuristic-learning claim. These results illustrate
the importance of utilising training and evaluation
datasets from disparate domains to evaluate probes.

4.3 Results per syntactic construction
We break down the performance of probes for each
syntactic construction in the M&L dataset. Fig-
ure 2 illustrates F1 scores for probes trained on
W&I-FCE and WIKED-S using representations from
each layer of BERT and ROBERTA.11 The VERB-
ONLY baseline is shown as grey horizontal lines.
For brevity, we present results on sentences with
simple agreement, sentential complements, prepo-
sitional phrases, subject relative clauses, and object
relative clauses (agreement within and across the
clause). Results for the other models and syntactic
constructions are included in Appendix E.

The trends across layers observed in Figure 1 are
generally consistent within syntactic constructions:
probes trained on BERT representations improve in
the later layers, while layers 5 and 8-12 seem to be
the most salient for probes trained on ROBERTA.

Probes for both models detect SVA errors in the
simple agreement constructions – with only the
BERT-probe trained on WIKED-S scoring less that
0.90 F1. We find BERT-probes perform well for
most constructions, especially in layer 12, but per-
formance for ROBERTA-probes drops for sentences
with subject-relative clauses, prepositional phrases,
and object-relative clasues (agreement within the
clause), particularly when trained on WIKED-S data.
This suggests that the token representation from
BERT models, potentially used in downstream tasks,
already encodes a lot of information related to SVA
before any fine-tuning.

When comparing performance between probes
across training sets, we observe a noticeable differ-

11We select BERT and ROBERTA because they are both
MLMs, whereas the ELECTRA-discriminator is trained using
a replaced token detection objective.
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Figure 2: F1 scores for probes trained on contextual representations from BERT and ROBERTA, using both the
W&I-FCE and WIKED-S training sets. The probes are evaluated on M&L stimuli. The VERB-ONLY baseline is
illustrated using grey horizontal lines.

ence in performance between BERT-probes trained
on W&I-FCE versus those trained on WIKED-S,
most evidently in five out of the six syntactic con-
structions shown. On the other hand, probes trained
on ROBERTA don’t always display a performance
gap – performance is more comparable between
probes on sentences testing simple agreement, sen-
tential complements, and agreement across object
relative clauses. For sentences with subject relative
clauses we find the probes trained on WIKED-S out-
perform those trained on W&I-FCE. These results
may indicate that information pertaining to the de-
tection of SVA errors is more robustly encoded in
ROBERTA than BERT – that is, the information is
more invariant to the choice of probe training set.

5 Experiment 2: Generalisation to unseen
verbs

In our first experiment, we observe that although
the MLMs encode more information for SVA er-
ror detection compared to the ALMs, the informa-
tion does not always generalize across domains or
syntactic constructions. We carry out a follow-up
experiment to investigate whether the information
generalizes across verbs using probes trained on
BERT representations and WIKED data. We focus
on layers 6 to 12 as these were the layers where
performance was above the baseline. There are 13
target verbs in the M&L stimuli, of which “to be” is

the most frequent with 946 occurrences in WIKED-
S. The remaining verbs appear very infrequently –
for example, eight verbs have frequencies less than
30. To test generalization across verbs we remove
all sentences from the training and development
sets which contain a verb from the M&L stimuli ex-
cept for “to be”. We then re-sample sentences from
the full WIKED data to maintain 1936 sentences as
in the first experiment. Due to the infrequency of
many verbs and to ensure a more thorough evalua-
tion, we also increase the training set size by 4- and
8-times to yield training sets with 7744 and 15488
sentences, respectively. We refer to the three sizes
as small, medium, and large. This results in paired
training sets: for each training set size, there is
one set “with M&L verbs” and a set “without M&L

verbs”. We sample each training set five times and
report the mean and standard deviation over the
samples. For example, we sample five training sets
with 7744 sentences “with M&L verbs”, and an-
other five “without M&L verbs”. Since we are only
interested in the performance of 12 verbs, we mod-
ify the evaluation stimuli to remove a) sentences
containing only “to be” verbs, and for sentences
with multiple verbs we remove the “to be” token
from evaluation. For example, in the sentence “The
movie the security guards like is good”, we remove
“is” from evaluation.

Figure 3 illustrates the F1 scores: the left and
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Figure 3: F1 scores for probes trained on BERT representations, with varying amounts of data (left and centre);
1x=1936, 4x=7744, 8x=15488 sentences. The plots show the mean and standard deviation across five training sets
(§5). On the left, probes are trained on data including M&L verbs, while the centre shows scores for probes trained
on data without M&L verbs (apart from “is” and “are”, as described in §5). The right-hand plot shows the mean and
standard deviation of differences in F1 scores between probes trained on the two types of dataset: with and without
M&L verbs. The VERB-ONLY baseline is shown as a grey horizontal line.

centre plots show results for probes trained on data
with and without M&L verbs, respectively. The
plot on the right presents the mean and standard de-
viation for the pairwise differences between probes
trained on datasets of the same size. The right-hand
plot shows that for the smallest training set size we
observe a slight benefit when including the M&L

verbs, but this is limited to ~0.05 F1 and restricted
to layers 8-10. We generally observe no difference
in performance for the medium and large training
sets, indicating that SVA-error information does
generalize across verbs. Furthermore, we observe
no difference when comparing results across train-
ing set sizes in the left and central plots, except
for probes trained on the small training set without
M&L verbs. These results indicate that SVA-error
information is linearly accessible and generalizable
across across the verbs we test, even when probes
are trained with limited data. Future work may ex-
pand the investigation to cover more verbs, though
we expect performance to deteriorate as verbs be-
come infrequent in the pre-training data (Wei et al.,
2021).

6 Discussion

Our experiments test whether information for SVA
errors is implicitly encoded in the contextual rep-
resentations of verbs, but they don’t provide any
indication as to how the information is encoded:
is grammaticality encoded atomically or compo-
sitionally? Furthermore, we note that selecting
the “erroneous token” can be an ambiguous choice

between the noun and the verb, for example in
“The authors laughs”. Yet, the probes we evalu-
ate never tag the nouns. This could indicate that
a) the probes learn to only tag verbs, and/or b)
that SVA-grammaticality is disparately encoded be-
tween nouns and verbs. A compositional account
of grammatical encoding is a plausible explanation
given the results provided in Lasri et al. (2022b) –
that nouns and verbs have different encodings for
number. We plan to investigate how grammaticality
is encoded in future work, both in pre-trained lan-
guage models as well as models trained specifically
for GED.

7 Conclusion

We analyse whether pre-trained transformer-based
language models implicitly encode knowledge of
SVA errors using GED probes. We carry out a thor-
ough evaluation on five models, using two public
training sets from different domains, and evaluate
on a manually constructed evaluation set. This en-
ables us to get a more complete and reliable picture
of a models’ performance.

Grammatical error detection is a challenging and
linguistically aligned task to assess the knowledge
of neural language models; we show that GED-
probes can be used as a complementary analysis
tool to evaluate a models’ linguistic capabilities.

Our results show that ELECTRA, BERT, and
ROBERTA encode information for SVA-error de-
tection, but GPT-2 and XLNET do not. For BERT

and ROBERTA, we find that the SVA-error encod-
ing is not robust across all syntactic constructions
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or training set domains, though we do find some
evidence that the encoding generalizes across verbs
for BERT. Furthermore, a layer-wise analysis re-
veals the final layers in ELECTRA and BERT are the
most salient for SVA-error detection.
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A Corpus statistics

Corpus # sentences µ sent. length (σ) µ errors per sentence (σ)

Original
FCE-train 28K 16 (11) 1.9 (2.5)
W&I-train 34K 18 (12) 2.0 (2.8)
BEA-dev 4K 20 (12) 1.9 (2.8)
WikEd (total) 28M 22 (12) 1.6 (1.6)

Processed
FCE-train 626 25 (14) 1.1 (0.3)
W&I-train 1310 27 (21) 1.1 (0.3)
BEA-dev 142 26 (19) 1.1 (0.3)
WikEd-train 1936 24 (12) 1.0 (0.2)
WikEd-dev 5839 23 (11) 1.0 (0.2)

Table 3: Corpus statistics.

B Marvin & Linzen statistics

Statistics per construction.

Construction # sentences µ sent. length (σ)

Simple agr. 280 4.57 (0.49)
In sent. comp. 3360 7.57 (0.49)
Across prep. 44800 8.85 (1.17)
Across subj. rel. 22400 8.77 (0.64)
Short VP coord 1680 7.14 (0.64)
Long VP coord 800 14.40 (0.49)
Across obj. rel. 44800 9.18 (0.86)
Across obj. rel. (no comp) 44800 8.18 (0.86)
Within obj. rel. 44800 9.18 (0.86)
Within obj. rel. (no comp) 44800 8.18 (0.86)

Table 4: Details for the evaluation stimuli from (Marvin and Linzen, 2018).
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C Results for probes trained on W&I-FCE

Model 1 2 3 4 5 6 7 8 9 10 11 12

BERT 0.40 0.43 0.43 0.44 0.48 0.50 0.61 0.74 0.84 0.82 0.84 0.89
ELECTRA 0.43 0.46 0.47 0.50 0.50 0.53 0.76 0.88 0.95 0.88 0.90 0.91
ROBERTA 0.51 0.50 0.66 0.67 0.80 0.71 0.65 0.69 0.73 0.74 0.74 0.72
GPT-2 0.37 0.35 0.37 0.37 0.36 0.45 0.43 0.34 0.38 0.31 0.21 0.25
XLNET-BI 0.39 0.44 0.46 0.50 0.59 0.59 0.52 0.48 0.47 0.48 0.45 0.41
XLNET-UNI 0.31 0.43 0.48 0.46 0.44 0.39 0.36 0.35 0.33 0.34 0.29 0.31

Table 5: F1 scores for probes trained on contextual representations at different layers from BERT, ELECTRA,
ROBERTA, XLNET with bidirectional decoding, XLNET with unidirectional decoding, and GPT-2. Probes were
trained on learner data described in §3.1, and evaluated on the Marvin and Linzen (2018) stimuli (§3.3).

D Results for probes trained on WIKED-S

Model 1 2 3 4 5 6 7 8 9 10 11 12

BERT 0.39 0.39 0.40 0.43 0.43 0.47 0.53 0.62 0.68 0.65 0.65 0.73
ELECTRA 0.42 0.43 0.45 0.48 0.48 0.49 0.66 0.83 0.87 0.89 0.88 0.84
ROBERTA 0.46 0.48 0.60 0.62 0.70 0.65 0.59 0.63 0.70 0.65 0.68 0.69
GPT-2 0.37 0.39 0.42 0.44 0.45 0.48 0.44 0.41 0.40 0.38 0.37 0.34
XLNET-UNI 0.38 0.41 0.43 0.43 0.42 0.38 0.35 0.34 0.35 0.35 0.33 0.35
XLNET-BI 0.40 0.43 0.45 0.48 0.51 0.51 0.48 0.44 0.43 0.43 0.42 0.43

Table 6: F1 scores for probes trained on contextual representations at different layers from BERT, ELECTRA,
ROBERTA, XLNET with bidirectional decoding, XLNET with unidirectional decoding, and GPT-2. Probes were
trained on wikipedia data described in §3.2, and evaluated on the Marvin and Linzen (2018) stimuli (§3.3).
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E Results across syntactic constructions

Figure 4: F1 scores for probes trained the W&I-FCE and training set. The probes are evaluated on M&L stimuli. The
VERB-ONLY baseline is illustrated using grey horizontal lines.
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Figure 5: F1 scores for probes trained the WIKED and training set. The probes are evaluated on M&L stimuli. The
VERB-ONLY baseline is illustrated using grey horizontal lines.
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Abstract

Text segmentation is a natural language pro-
cessing task with popular applications, such as
topic segmentation, element discourse extrac-
tion, and sentence tokenization. Much work
has been done to develop accurate segmenta-
tion similarity metrics, but even the most ad-
vanced metrics used today,B, and WindowDiff,
exhibit incorrect behavior due to their evalua-
tion of boundaries in isolation. In this paper,
we present a new segment-alignment based ap-
proach to segmentation similarity scoring and
a new similarity metric A. We show that A
does not exhibit the erratic behavior of B and
WindowDiff, quantify the likelihood of B and
WindowDiff misbehaving through simulation,
and discuss the versatility of alignment-based
approaches for segmentation similarity scor-
ing. We make our implementation of A pub-
licly available and encourage the community to
explore more sophisticated approaches to text
segmentation similarity scoring.

1 Introduction

Text segmentation is a natural language processing
(NLP) task that consists of dividing a sequence of
text elements into segments.

Let T = e1, e2, e3...en be a sequence of text el-
ements (e.g. words, sentences, paragraphs, etc...).
A segmentation S of T is given by a binary string
Q = [0|1]n−1 that encodes boundaries between
the elements of T . The ith character of Q codi-
fies the presence of a boundary (1) or lack thereof
(0) between ei and ei+1 in S. S contains m − 1
boundaries and partitions T into m segments1.

Measuring similarity between segmentations is
not simple. The most straightforward approach is
to frame a segmentation as a series of decisions
made at every potential boundary position (PBP),

1This definition corresponds to single-type segmentation.
A multi-type version also exists where different boundary
types are considered, enabling the encoding of different types
of segments and even hierarchical relations between them.

S Dogs are cute Very fast cars

0 0 1 0 0

Figure 1: Example segmentation with Q = 00100.

which exist between every pair of elements in T ,
and to calculate the average PBP agreement, but
this does not match human intuition well.

Consider how S in Figure 1 compares with h1
and h2 in Figure 2: h1 agrees with S in 4 out of 5
positions (one missing boundary), while h2 agrees
with S in only 3 out of 5 positions (one missing and
one “extra" boundary). Yet it is easy to agree that
h2 is actually closer to S, as it has simply “shifted"
the boundary in S one unit to the right.

h1 Dogs are cute Very fast cars

h2 Dogs are cute Very fast cars

Figure 2: Alternate segmentations to S from Figure 1.

To address this, researchers have proposed a vari-
ety of similarity metrics that distinguish “soft" and
“hard" errors (shifted versus missing/extra bound-
aries). However, existing metrics look at boundary
errors in isolation; they do not consider the impact
that errors have on segments around them.

r

h3

h4

Figure 3: Three similar segmentations.

Consider how hypothesis segmentations h3 and
h4 compare to a reference segmentation r in Figure
3. Both have a boundary that is shifted one PBP
to the right, which results in an“extra" element in
the segment to the left of the PBP and a missing
element in the segment to the right. However, the
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resulting segment distortion is not the same. In h3,
only 1/2 of the elements in the the first segment
are correct, while 1/2 of the reference elements are
missing from the second segment; in h4, the third
segment has 4/5 correct elements, and the fourth
segment has 1/4 missing elements. It is easy to
argue then that h4 is closer to r than h3, but current
metrics are unable to distinguish between them.

We propose a new similarity metric based on
segment alignment, which scores segmentations
based on how well their segments match, rather
than their boundaries (Section 3). We show
that our metric aligns more closely with human
intuition than existing metrics (Section 4) and
quantify the errors encountered by those metrics
(Section 5). Code for our new metric and rel-
evant materials are made publicly available at
https://github.com/sierra98x/resources.

2 Existing Metrics

Current segmentation similarity metrics fall into
two categories: window-based metrics try to cap-
ture errors by sliding a window across the element
sequence T and comparing the boundaries in both
segmentations; in contrast, edit-based metrics try
to find a sequence of boundary edit operations that
would make both segmentations equal.

2.1 Window-Based Metrics

WindowDiff (Pevzner and Hearst, 2002) and Pk
(Beeferman et al., 1999) are the most popular simi-
larity metrics currently used.
Pk is defined as “the probability that a random

pair of elements, k elements apart, will be classi-
fied inconsistently by two segmentations as belong-
ing/not belonging in the same segment.” Given
an element sequence T of length n, a reference
segmentation r, and an alternate segmentation h,
a window of size k + 1 is slid across the elements
(k is recommended by the authors to be half the
average segment size in r); at every window po-
sition, the segmentations are compared based on
the elements at the edges of the window, ei and
ei+k; if the segmentations disagree on whether the
elements belong in the same segment, a penalty of
1 is added; finally, the penalty sum is divided by
the number of windows:

Pk(r, h) =
1

n− k
i=n−k∑

i=1,j=i+k

δ(ri,j) ̸= δ(hi,j)

Figure 4: Illustration of Pk and WindowDiff with k = 4
(Pevzner and Hearst, 2002). Penalized windows indi-
cated by dashed lines.

where δ(xi,j) is true iff ei, ej are in the same seg-
ment in segmentation x.

There are a variety of situations where Pk pe-
nalizes errors inconsistently (Pevzner and Hearst,
2002): it penalizes missing boundaries more than
extra boundaries, fails to penalize extra boundaries
that are in close proximity to correct boundaries,
and is also quite sensitive to the window size k.

WindowDiff improves on Pk by using a dif-
ferent penalty criteria. Instead of comparing the
elements at the window edges, WindowDiff counts
the number of boundaries between the edge ele-
ments and assigns a penalty of 1 if the number is
inconsistent between segmentations:

WD(r, h) =
1

n− k
i=n−k∑

i=1,j=i+k

b(ri,j) ̸= b(hi,j)

where b(xi,j) is the boundary count between ei and
ej in segmentation x.

WindowDiff solves some of Pk’s inconsistency
problems, but still produces unintuitive scores and
penalizes errors at the edges of the element se-
quence less than those towards the middle (a weak-
ness shared with Pk). WindowDiff is usually re-
ported along with Pk rather than instead of it.

Lamprier et al. (2007) present a simple correc-
tion to WindowDiff: adding k − 1 extra elements
at the beginning and end of the sequence T ensures
that errors at every PBP are penalized an equal num-
ber of times. Further, they argue that WindowDiff
is unfair because the expected score of a random
segmenter depends on the number of boundaries
in the reference r. To address this, they present
two normalized versions of WindowDiff, NWin
and TNWin, which take into account the expected
WindowDiff scores of two random segmentations
with the same cardinality as the reference and hy-
pothesis segmentations being evaluated.
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Finally, Scaiano and Inkpen (2012) propose
WinPR, which uses the element padding correction
from (Lamprier et al., 2007) and categorizes the
errors at each window into true positives (correct
boundaries), false positives (extra boundaries), true
negatives (correct empty PBPs), and false negatives
(missing boundaries), allowing for finer-grained er-
ror analysis and the calculation of F1 scores.

Although WinPR is an improvement on Win-
dowDiff, it has not been widely adopted by the
community and, like NWin, depends on the cor-
rectness of WindowDiff; the improvements pre-
sented in WinPR and NWin do not offset the core
theoretical issues with WindowDiff. The th Thus,
throughout the rest of this paper, we will limit our
discussion of window-based metrics to WindowD-
iff and Pk.

2.2 Edit-Based Metrics
Edit-based segmentation similarity metrics
are based on ideas introduced by Damerau-
Levenshtein string edit distance (Damerau, 1964;
Levenshtein, 1966) and partially replicated by
Generalized Hamming Distance (Bookstein et al.,
2002). The general idea is that every segmentation
can be framed as a sequence of boundaries, each
placed at a specific position. If we define a set of
edit operations (with costs) that can modify any
sequence of boundaries, the distance between two
segmentations can be measured as the cost of the
optimal sequence of edit operations required to
make the two segmentations equal. The optimal
sequence of edit operations is equivalent to a
boundary alignment between the segmentations.

Segmentation Similarity (Fournier and Inkpen,
2012) and Boundary Similarity (Fournier and
Inkpen, 2012) are both based on the same set of
boundary edit operations:

• Match: Mark a boundary as correct (no cost).
• Addition/Deletion: Insert or delete a boundary.
• K-Transposition: Shift a boundary to the left or

right by a max of k units2. Default k = 13.
• Substitution: Replace a boundary with one of a

different type4.

Segmentation Similarity (S) (Fournier and
Inkpen, 2012) assigns a constant cost to all edit

2If a boundary can not be transposed, it must be deleted
and a boundary must be inserted at the corresponding location.

3When k > 1, Segmentation Similarity and Boundary
Similarity allow transpositions across existing boundaries.

4Only required for multi-type segmentation.

Figure 5: Example segmentation alignment with bound-
ary edit operations (Fournier, 2013).

operations and normalizes the resulting distance
based on the total number of possible boundaries
for the given element sequence. The idea behind
this normalization is to scale the cost based on the
potential complexity of the segmentation in ques-
tion; the intuition is that a constant cost is less
impactful on a longer/more complex sequence than
it is on a shorter/simpler one.

LetAe, Te Se be the sets of the optimal boundary
addition/deletion, transposition, and substitution
operations required to align a pair of segmentations,
h1 and h2, over a sequence of elements T . Further,
let b be the number of boundary types (in the case
of multi-type segmentation) available.

S(h1, h2, T ) = 1− |Ae|+ |Te|+ |Se|
b(|T | − 1)

Fournier and Inkpen argue that S a) produces
scores that align favorably with human intuition
compared to WindowDiff in three key examples,
b) has reduced sensitivity to variations in segment
sizes compared to WindowDiff, and c) produces
more accurate inter-annotator agreement scores
than WindowDiff in one dataset. It is also noted
that S can be used for multi-type segmentation,
where traditional window-based methods can not.

Boundary Similarity (B) (Fournier, 2013) im-
proves S by introducing weighted-costs transposi-
tions/substitutions, improving the edit distance nor-
malization factor, and producing a confusion matrix
from the edit operations to calculate F1 scores.

B(h1, h2, T ) = 1− |Ae|+ t(Te, k) + s(Se, Bt)

|Ae|+ |Te|+ |Se|+ |M |
where k is the maximum transposition distance,
|M | is the number of matching boundary pairs
between the two segmentations, Bt is the set of
boundary types, and t and s are functions that re-
turn the weighted sums of Te (transpositions) and
Se (substitutions). The normalization factor in B
produces behavior that aligns more closely with
human judgement than in S.

376



When comparing scores generated by WindowD-
iff, Pk, S, and B on a handful of key examples,
Fournier argues that B produces behavior that falls
more in line with human intuition. B is further
shown on one dataset to produce more reliable inter-
annotator agreement scores when compared to S,
as S-based inter-annotator agreement scores are
shown to be inflated, and also to overcome Win-
dowDiff’s bias towards segmentations with few or
tightly-clustered boundaries when evaluating three
segmenters.

As we will demonstrate Section 4, however, B
(and WindowDiff) disregards the impact of individ-
ual mistakes on the surrounding segments, which
leads to scores that do not align well with human
judgement in key scenarios.

3 An Alignment-Based Approach to
Segmentation Similarity Scoring

In Section 1, Figure 2, we presented an example
that showcased the importance of weighing bound-
ary differences in terms of the impact they have
on their corresponding segments. None of the cur-
rent metrics attempt to do this, and they can not be
easily modified to do so.

We propose to measure similarity between a pair
of segmentations by comparing the segments de-
fined in them. The intuition is straightforward:
two segmentations are similar iff the segments de-
fined by them are similar. Inspired by alignments
from machine translation and string comparison,
our approach measures segmentation similarity by
finding the maximum likelihood segment alignment
and scoring its correctness.

The concept of the most likely alignment is
based on two key observations. First, it only makes
sense to align overlapping segments. Second, the
overlap between two segments is a good indicator
for their “closeness”, which tells us if they should
be aligned. Thus, the maximum likelihood align-
ment (MLA) is one where every segment is aligned
to its closest other segment.

h1

h2

Figure 6: Sample maximum likelihood alignment.

Consider the example alignment in Figure 6: h2
has fuzzily merged the first two segments in h1 into

a single segment, which results in the third segment
from h1 having a slightly shifted boundary in h2.
Here, it does not make sense to align the third
segment in h1 with the first segment in h2; even
if they overlap, the third segment in h1 overlaps
mainly with the second segment in h2.

The MLA can be found greedily in O(m1+m2)
time, wherem1 andm2 are the number of segments
in h1 and h2, respectively. We only need to find
the closest segment for any given segment5. Figure
7 shows pseudocode for generating the MLA6.

MLA(h1,h2,fn: c):

for each segment p in h1
| for each p-overlapping segment q in h2
| | closeness = c(p,q)
| r = max c(p,x) segment in h2
| align p (source) to r (target)

repeat for h2
return list of alignment edges

Figure 7: Maximum likelihood alignment algorithm.

The MLA depends on the closeness function c.
For a generic alignment, where all elements in the
element sequence are considered equal, we recom-
mend a simple intersect ratio function i between
two segments, x and y:

i(x, y) =
intersect(x, y)

|x|
The MLA explains the differences between a

pair of segmentations in terms of boundaries: in
Figure 8, missing/extra boundaries are indicated
by the existence of segments with more than one
aligned segment. The first segment in h3 is aligned
to two segments in h4 because h4 contains an ex-
tra boundary; similarly, the third segment in h4 is
aligned to two segments in h3 because the third
segment in h4 is missing a boundary present in h3.
Furthermore, the existence of pairs of aligned seg-
ments with no alignments to any other segments
are indicators of matches or transpositions, such as
the last segments in h3 and h4.

5We resolve max closeness ties with Jaccard index scores
(see next page); if the tie can not be broken, the left-most
segment is chosen to align. Other tie-breaking strategies may
be used.

6Pseudocode is not O(m1 +m2); presented for brevity.
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h3

h4

Figure 8: Maximum likelihood alignment.

Once the MLA has been generated, a function
should be chosen to map the MLA to a similarity
score. A simple approach is to assign a weight
to every alignment edge, using a function g, and
normalize by the number of edges in the MLA.
This generic similarity score A is defined as:

A(h1, h2, c, g) =

∑
edge∈MLA(h1,h2,c)

g(edge)

# edges in MLA(h1, h2, c)

A variety of edge weighting functions can be
used: clustering similarity functions such as the
rand index, or set similarity metrics such as the
overlap coefficient, the Sørensen–Dice coefficient,
or the Jaccard index. Both symmetric and asymmet-
ric weighting functions can be used, as the edges
generated by the MLA function are directed; we
recommend the Jaccard index, since it guarantees a
symmetrical segmentation similarity score. Further,
the Jaccard version of A can be easily modified to
distinguish between “soft” and “hard” mistakes by
penalizing edges with weights under some thresh-
old t. The Jaccard index, J ∈ [0, 1], between two
sets S and T is defined as:

J(S, T ) =
|intersect(S, T )|
|union(S, T )|

The MLA approach with similarity score func-
tion A compares favorably to WindowDiff, B, and
similar metrics in terms of error analysis, as the
MLA structure and edge weights provide informa-
tion about segmentation differences in terms of
both boundaries and segments.

Further, the separation between the MLA algo-
rithm and the similarity score functionAmakes our
approach quite versatile, as the MLA may instead
be scored with a different, task-specific similarity
scoring function. Consider the reference segmen-
tation r and candidate segmentations h1 and h2 in
Figure 9: h1 and h2 are equidistant to r under A
with Jaccard (0.58), B, and WindowDiff. However,
for a task like topic segmentation, h2 may be pre-
ferred, as it contains “meta” topics that consistently
match two topics each in r, whereas h1 contains
two correct topics, but one really bad third topic,

which is a mixture of four topics in r. Conversely,
for a task like sentence segmentation, h1 may be
preferred, as it correctly identifies two sentences,
where h2 contains only incorrect sentences. The
MLA could be used in conjunction with a simi-
larity scoring function that imposes exponentially
increasing penalties on segments with many align-
ments to favor h2, while a scoring function that
considers only the highest weighted edge for any
given segment would favor h1.

r

h1

h2

Figure 9: Reference segmentation and two candidates.

Finally, as we will show in the following section,
a straightforward implementation of A, using the
intersect ratio i as the closeness function and the
Jaccard index J as the edge weight function, be-
haves favorably compared to current metrics in a
key set of examples.

4 Similarity Metric Behavior

In this section, we outline three erratic behaviors
from B and WindowDiff, and compare these met-
rics against A in a series of example segmentations.

4.1 Cross-Boundary Transpositions

Since B and WindowDiff look at each boundary
in isolation, they consider all boundary shifts with
the same distance to be equally bad, resulting in
pseudo-transpositions, where one boundary crosses
over another, being penalized the same as standard
transpositions. It is easy to argue against this, as
a boundary shift that crosses another boundary is
not a true transposition, but rather a pair of over-
and under-segmentations. This is illustrated in Fig-
ure 10, where h1 is clearly closer to the reference
segmentation r than is h2. h1 transposes the left-
most boundary of r two units to the right, while
h2 pseudo-transposes the rightmost boundary two
units to the left, crossing over the middle boundary.
h2 results in an oversegmentation of the second
segment and undersegmentation of the third and
fourth segments of r. A correctly identifies this
behavior because it works on segment alignments;
B and WindowDiff, however, incorrectly score h1
and h2 as being equally close to r.
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r

h1

h2

Pair A B (k=1) 1−WD (k=2)
(r, h1) 0.83 0.50 0.67
(r, h2) 0.60 0.50 0.67

Figure 10: Cross-boundary pseudo-transposition.

r

h1

h2

Pair A B (k=1) 1−WD (k=2)
(r, h1) 0.91 0.83 0.83
(r, h2) 0.79 0.83 0.83

Figure 11: Constant cost transpositions.

4.2 Constant Cost Transpositions
B and WindowDiff measure the cost of a transposi-
tion based on its absolute distance, without consid-
ering the impact it has on the surrounding segments.
This quickly leads to problematic behavior, as any
given pair of segmentations that contain transpo-
sitions with the same distance will get the same
score (assuming all other boundary operations are
the same). Figure 11 illustrates this problem: B
and WindowDiff score both segmentations equally,
even though the impact of the transposed bound-
aries is not the same. Both h1 and h2 transpose
a boundary by one unit, but in h1 this results in a
single extra/missing token in segments originally
of size five, while in h2, the extra/missing token
affects segments originally of size two, impacting
them more significantly. A produces proper behav-
ior here, weighing the distance of the transposition
in relation to the corresponding segment sizes.

4.3 Vanishing Transpositions
Unlike A, the sensitivity of B and WindowDiff
to “near-misses” (transpositions) is regulated by
constants. B defines a maximum transposition
distance, while WindowDiff utilizes a fixed win-
dow size. This causes problematic behavior, as
boundary shifts beyond the maximum transposi-
tion distance for each metric look the same, which
is compounded with the disregard for segment sizes
mentioned in the previous subsection.

h1a

h1b

h2a

h2b

h3a

h3b

h4a

h4b

h5a

h5b

Pair A B (k=1) 1−WD (k=2)
(h1a, h1b) 0.70 0.33 0.69
(h2a, h2b) 0.76 0.33 0.69
(h3a, h3b) 0.83 0.33 0.69
(h4a, h4b) 0.91 0.75 0.85
(h5a, h5b) 1 1 1

Figure 12: Vanishing Transpositions

The five segmentation pairs in Figure 12 illus-
trate this behavior. Although the pairs are ordered
by increasing similarity, B and WindowDiff score
three out of five pairs equally using their default
maximum transposition distance values of 1. The
behavior of B is particularly concerning, as it
jumps from a relatively high score of 0.75 for the
fourth pair, to a very low score of 0.33 for the
third pair. In contrast, A correctly matches the first
segments and second segments in each pair and
considers the relative impact of the transposition
given the size of the segments involved.

4.4 Alignment with Human Intuition

We perform a simple experiment to verify whether
human judgement of segmentation similarity is sen-
sitive to the kind of errors previously described. We
hand-craft 3 reference segmentations r, each with
a pair of alternate segmentations, h1 and h2, that
exemplify each of the problems described in this
section (cross-boundary transpositions, constant
cost transpositions, and vanishing transpositions).
We present each of these 3 instances to 6 NLP grad-
uate students and ask them to indicate whether the
alternate segmentations, h1 and h2 are equally sim-
ilar to their reference segmentation r, or whether
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one is more similar than the other. For all 3 refer-
ence segmentations, all 6 students agree that h1 and
h2 are not equally similar to r; in fact, they prefer
the candidate segmentation that has the smallest
relative impact on the segments being transposed.
The document presented to students and the tally
of their responses is available in Appendix A.

5 Error Quantification

We quantify the likelihood of WindowDiff and B
behaving erroneously through simulation7. For the
three main error types described in Section 4, we
first instantiate every possible reference segmen-
tation r for sequences of length n ∈ [5, 20]. We
then try to find two alternate segmentations h1 and
h2 that B or WindowDiff score as equally simi-
lar to r, but in fact are not. Finally, for both B
and WindowDiff, we present the ratio of reference
segmentations r of length n for which such error-
producing pairs h1 and h2 exist. We also include A
in our simulations and verify that it does not behave
erroneously in any of the tested scenarios, so it is
not included in our discussion.

To simplify our analysis, we use the Lamprier-
corrected version of WindowDiff (Lamprier et al.,
2007), which pads the beginning and end of the
sequence with k − 1 elements. The number of er-
rors produced by this version is a lower bound on
the number of errors produced by the original Win-
dowDiff, which penalizes boundary mismatches at
the edges less than those at the center.

5.1 Cross-Boundary Transpositions

We consider B and WindowDiff (WD) to behave
erroneously if a pair of segmentations h1 and h2
are judged equally similar to r, where h2 pseudo-
transposes a boundary by x units, crossing an exist-
ing boundary from r, and h1 performs a standard
transposition on any boundary, i.e., does not trans-
pose across boundaries, also by x units. We only
consider h1 where the two segments on either side
of the transposed boundary have Jaccard > 0.5
with their corresponding original segments in r, i.e.
the transposition can reasonably be considered a
“soft" mistake where the affected segments are still
more similar to the originals than not, in contrast to
the pseudo-transposition in h2, where, by crossing

7We use the implementation of B from the segeval Python
3 package (Fournier, 2013) and WindowDiff from the Python
3 NLTK package (Bird et al., 2009). Simulation code is avail-
able at https://github.com/sierra98x/resources.

a boundary, h2 effectively oversegments one refer-
ence segment and undersegments another (Figure
10).

Figure 13: Ratio of potential cross-transposition errors
for B and WindowDiff.

Figure 13 shows the percentage of the reference
segmentation space for which such erroneous pairs
h1, h2 exist, for both B and WD with various se-
quence lengths n. First, note that B and WD be-
have similarly; both B and WD penalize transposi-
tions based solely on distance, so it is expected that
they would judge any erroneous pair h1, h2 to be
equidistant to r if both h1, h2 transpose one bound-
ary by the same distance. Second, the relationship
between the number of segments m and the total
number of elements in the sequence n reveals an
interesting trend: when the number of segments is
too low or too high, it is impossible to construct
erroneous pairs. For example, erroneous pairs can-
not be constructed for m = 2 because there is
no “second" boundary to transpose across; simi-
larly, when m approaches n, the segments become
unit-sized and can no longer be involved in either
normal or cross-boundary transpositions. Thirdly,
the increasing-decreasing behavior of the curves
stems from the “soft" transposition constraint that
we impose on h1. It can be shown that the smallest
possible sizes for two adjacent segments containing
a “soft" transposition are 5 and 3; this is because
the minimum (pseudo-)transposition distance re-
quired to cross a boundary is 2 units. Once m is
large enough that the average segment size is less
than 3, it becomes increasingly hard to find such
adjacent segments of sizes 5 and 3, so the number
of erroneous h1, h2 pairs decreases steadily.
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5.2 Constant Cost Transpositions

Here, B and WD behave erroneously if a pair of
segmentations h1 and h2 are judged equally similar
to r, where h1 “soft” transposes a boundary by x
units, and h2 “hard” transposes any boundary by
x units, i.e., the segments on either side of the
transposition in h2 have Jaccard < 0.5 with their
corresponding original segments in r.

Figure 14: Ratio of potential constant cost transposition
errors for B and WindowDiff.

The trend in Figure 14 can be explained as fol-
lows: if the ratio between the number of segments
m and the sequence length n is too low, the seg-
ments are so large that it is rare to find a pair of
segments such that transposing their boundary re-
sults in a “hard” error; conversely, when the ratio
is too high, all segments are small, so it becomes
increasingly hard to find “soft" transpositions. Like
in Figure 10, B and WD follow the same trend be-
cause h1, h2 transpose by the same number of units;
in addition, we see once again that the number of
erroneous pairs starts decreasing once the average
segment size (m/n ratio) drops below 3.

5.3 Vanishing Transpositions

Here, B and WD behave erroneously if a pair of seg-
mentations h1 and h2 are judged equally similar to
r, where h1 transposes a boundary by x units and
h2 transposes the same boundary by y > x units.
Again, we only consider h1 with “soft” transposi-
tions, where the two segments on either side of the
transposed boundary have Jaccard > 0.5 with the
corresponding original segments from r; h2 may
have a “soft" or “hard" transposition.

Figure 15 differs from Figures 13 and 14 in that
B and WD behave differently for this error type,
which makes sense, given that this is the only ex-

Figure 15: Ratio of potential vanishing transposition
errors for B and WindowDiff.

periment where h1, h2 do not transpose by the
same number of units: recall that B has a fixed
maximum transposition size (default value of 1) be-
yond which transpositions can not be distinguished,
while WD’s maximum transposition size depends
on the window size k, which is equal to half the av-
erage segment size, and thus a function of m and n.
The global peak in error rate for WD occurs when
k is so small that no transpositions are allowed; B
makes fewer mistakes than WD because B always
allows transpositions of size 1. The local minimum
between the first and second maxima for WD is
caused by the step-wise nature of the k function,
since the window size must be a whole number.

6 Limitations

While we have seen that A performs favorably
when compared to B and WindowDiff, further in-
vestigation may be warranted on the general MLA
approach. First, the space of potential alignments
for a given pair of segmentations can be quite large,
and while a simple greedy intersection ratio ap-
proach generates sensible alignments, edge cases
may exhibit undesirable behavior.

Consider Figure 16: h0 deletes a boundary from
r, while h1 and h2 transpose it different distances.
However, A gives h2 a worse score than h0; this
behavior is explained by the MLA between r and
h2 containing a diagonal alignment between the
first segment in h2 and the second segment in r,
due to the first segment in r being very small — so
small that transposing its boundary by two units
is considered worse than deleting it. The intersect
ratio closeness function in A uses segment size to
distinguish “soft” and “hard” transpositions; as we
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r

h0

h1

h2

Pair A B (k=1) 1−WD (k=2)
(r, h0) 0.67 0.50 0.88
(r, h1) 0.79 0.75 0.88
(r, h2) 0.58 0.33 0.62

Figure 16: Intricate behavior of A.

saw in Figure 12, when the segments are longer,
A will match the left and right segments of a two-
unit transposition with the original segments in r,
resulting in a similarity score greater than h0.

However, specific applications may lean towards
favoring “soft" transpositions over deletions regard-
less of segment size, which would require a) a dif-
ferent segment-to-segment closeness function c, or
b) maximizing some global MLA function, such as
Maximum Spanning Tree.

Second, in Figure 9, we presented a reference
segmentation r and two different candidate seg-
mentations h1 and h2 that are scored equally by
A, B, and WD. Here, the fact that A can not dis-
tinguish between them is not due to the MLA, as
there is only one possible alignment between each
candidate and r. Thus, it may be of interest to de-
velop more sophisticated MLA scoring functions,
in order to distinguish between h1 and h2.

7 Conclusion

In this paper, we present a new alignment-based ap-
proach to text segmentation similarity scoring and
present a new similarity metric A. We show that,
unlike A, the most advanced segmentation similar-
ity metrics, B and WindowDiff, behave erratically
in three key scenarios. We discuss the versatility of
alignment-based approaches when paired with dif-
ferent alignment and scoring functions, and show
that A, B, and WindowDiff exhibit intricate be-
haviors that should be explored in the future. We
make our implementation of A publicly available8

in hope that it encourages the NLP community to
explore more sophisticated approaches to text seg-
mentation similarity scoring.

8Our implementation of A, along with relevant materials,
can be found at https://github.com/sierra98x/resources.
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Intro====

A segmentation splits a sequence of elements
into meaningful, non-overlapping segments.

Ex. Split a transcript into utterances:

I did not go to work yesterday, did you? |
No, Johnathan filled in for me.

Note: For simplicity, the elements in every
segmentation example are masked.

The previous example would look like this:
A.A.A.A.A.A.A.A.A|B.B.B.B.B.B

Questions===

For each of the following instances, 3 segmentations
are presented: Gold, H1, and H2.

Determine whether H1 or H2 is closer to gold, or if
they are the same, according to your interpretation.

-AT [Cross-Boundary Transposition (LABEL NOT SHOWN)]

A|B|C.C.C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D.D.D - Gold
A.B|C|C.C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D.D.D - H1

A|B|C.C.C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D.D.D - Gold
A|B|C.C.C.C.C.C.C.C.C.C.D.D|D.D.D.D.D.D.D.D - H2

-RTC [Constant Cost Transposition (LABEL NOT SHOWN)]

A|B.B|C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D - Gold
A|B.B|C.C.C.C.C.C.C.C.D|D.D.D.D.D.D.D - H1

A|B.B|C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D - Gold
A.B|B|C.C.C.C.C.C.C.C|D.D.D.D.D.D.D.D - H2

-VT [Vanishing Transposition (LABEL NOT SHOWN)]

A.A.A.A.A.A.A.A|B.B.B.B.B.B.B.B - Gold
A.A.A.A.A.A.A.A.B.B|B.B.B.B.B.B - H1

A.A.A.A.A.A.A.A|B.B.B.B.B.B.B.B - Gold
A.A.A.A.A.A.A.A.B.B.B|B.B.B.B.B - H2

The students achieved perfect agreement on the
evaluation and judged as more similar the candidate
segmentation with the smallest impact on the gold
segments.

Instance H1 Votes H2 Votes Same Votes
AT 0 6 0
RTC 6 0 0
VT 6 0 0

Table 1: Human evaluation results
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Abstract

Notwithstanding recent advances, syntactic
generalization remains a challenge for text de-
coders. While some studies showed gains
from incorporating source-side symbolic syn-
tactic and semantic structure into text genera-
tion Transformers, very little work addressed
the decoding of such structure. We propose
a general approach for tree decoding using
a transition-based approach. Examining the
challenging test case of incorporating Univer-
sal Dependencies syntax into machine trans-
lation, we present substantial improvements
on test sets that focus on syntactic generaliza-
tion, while presenting improved or compara-
ble performance on standard MT benchmarks.
Further qualitative analysis addresses cases
where syntactic generalization in the vanilla
Transformer decoder is inadequate and demon-
strates the advantages afforded by integrating
syntactic information.1

1 Introduction

In parallel to the impressive achievements of large
neural networks in a variety of NLP fields, more
and more work emphasizes the importance of the
inductive biases models possess and the types of
generalizations they make (Welleck et al., 2021;
Csordás et al., 2021; Ontanón et al., 2021). Syntac-
tic generalization has been repeatedly identified as
a problem in text generation (Linzen and Baroni,
2020; Hu et al., 2020), an issue that we address
here. Importantly, language models may fail, some-
times unexpectedly, on constructions that can be
reliably parsed using standard syntactic parsers. In
this work, we propose a method for incorporating
syntax into the decoder to assist in mitigating these
challenges, focusing on NMT as a test case.

The use of (mostly syntactic) structure in ma-
chine translation dates back to the early days of
the field (Lopez, 2008). While focus has shifted

1Code supplied in github.com/borgr/nematus

to string-to-string methods since the introduction
of neural methods, considerable work has shown
gains from integrating linguistic structure into
NMT and text generation technologies. We briefly
survey such methods in §7.

Incorporating target-side syntax has been less
frequently addressed than source-side syntax, pos-
sibly due to the additional conceptual and technical
complexity it entails, as it requires to jointly gen-
erate the translation and its syntactic structure. In
addition to linearizing the structure into a string,
that allows to easily incorporate source and target
structure (Aharoni and Goldberg, 2017b; Nadejde
et al., 2017), several works generated the nodes
of the syntactic tree using RNNs (Gū et al., 2018;
Wang et al., 2018; Wu et al., 2017). Others have
shown gains from multi-task training of a decoder
with a syntactic parser (Eriguchi et al., 2016). How-
ever, we are not aware of any Transformer-based
architecture to support the integration of target-side
structure in the form of a tree or a graph. Address-
ing this gap, we propose a flexible architecture for
integrating graphs into a Transformer decoder.

Our approach is based on predicting the output
tree as a sequence of transitions (§3), following the
transition-based tradition in parsing (Nivre, 2003,
and much subsequent work). The method (pre-
sented in §4) is based on generating the structure
incrementally, as a sequence of transitions, as is
customary in transition-based parsers. However,
unlike standard linearization approaches, our pro-
posed decoder re-encodes the intermediate graph
(and not only the generated tokens), thus allow-
ing the decoder to take advantage of the hitherto
produced structure in its further predictions.

In §2, we discuss the possibilities offered by
such decoders, that do not only auto-regress on
their previous outputs, but also on (symbolic) struc-
tures defined by those outputs. Indeed, a decoder
thus built can condition both on information it did
not predict (e.g., external knowledge bases) and
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information predicted later on. We introduce bidi-
rectional attention into the decoder, that allows to-
ken representations to encode the following tokens
that were predicted. This is similar to the bidirec-
tional attention in the encoder, where any token can
attend to any token, and not only to preceding ones.

Our architecture is flexible, supporting decoding
not only into trees, but into any graph structure for
which a transition system exists. We test two archi-
tectures for incorporating the syntactic graph. One
inputs the graph into a Graph Convolutional Net-
work (GCN; Kipf and Welling, 2016), and another
dedicates an attention head to point at the syntac-
tic parent of each token, which does not yield any
increase in the number of parameters.

We assess in §6 the impact of the proposed ar-
chitecture on syntactically challenging translation
cases (Choshen and Abend, 2019) and in general.
We experiment with a 4 layered model in three tar-
get languages, and a 6 layered on En-De. Due to
the high computational cost, we experiment with
the model on a single language pair only. We
find that on the syntactic challenge sets proposed
by Choshen and Abend (2019), the proposed de-
coder achieves substantial improvements over the
vanilla decoder, which do not diminish (and even
slightly improve) when increasing the size of the
model. In addition, evaluating on the standard MT
benchmarks, we find that the syntactic decoders
outperform the vanilla Transformer for the smaller
model size on all examined language pairs: on
the English-German (En-De) and German-English
(De-En) challenge sets and on En-De, De-En and
English-Russian (En-Ru) test sets, and obtain com-
parable results to the vanilla when experimenting
with a larger model on En-De. Finally, we analyse
the different modifications in isolation, finding that
the ablated versions’ performance resides between
the full model and the vanilla decoder.

2 Decoding Approach

Jo@@ hn put the coals out

root

nsubj det
obj

compound:prt

Example 1: Target-side structure reduces the ambigu-
ity of “put”. De source: “John löschte die Kohlen” (lit.
John put-out the coals).

Disambiguating and connecting distant words is
a known challenge in NMT (Avramidis et al., 2020).

In Example 1 to disambiguate “put” as not having
the sense “lay” but “extinguish”, “out” must be
considered. To achieve this from the autoregressed
output, the decoder’s representation may need to be
re-computed after predicting “out”. We note that
while source-side information can potentially be
used to disambiguate “put”, it may still be bene-
ficial to enhance the auto-regressive decoder with
disambiguating information.

Current implementations impose an architectural
bias, namely, a decoded token’s representation may
not attend to future tokens. Transformer models
mask attention in the following manner (we did not
find any alternative methods): Token embeddings
attend only to previously generated tokens, even
when the following tokens are already known. This
practice “ensures that the predictions for position i
can depend only on the known outputs at positions
less than i” (Vaswani et al., 2017).

We propose to allow attending to any known
token (Fig. 1), as done on the encoder side. Due to
its conceptual resemblance to Bidirectional RNN,
we name this Bidirectional Transformer or biTran.

Formally, let o1 . . . on be a hitherto predicted
sequence and d max sentence length. Attention is
softmax (L+M) where L ∈ Rd×d are the logits
and M ∈ Rd×d is a mask. Hence, M(i, j) = −∞
masks a token j from representation i.

Mv(i, j) =

{
0 j < i

−∞ o.s.

while Bidirectional attention mask is

Mbi(i, j) =

{
0 n < j

−∞ o.s.

This change does not introduce any new param-
eters or hyperparameters, but still increases the
expressivity of the model. We note, however, that
this modification does prevent some commonly im-
plemented speed-ups relying on unidirectionality
(e.g., in NEMATUS; Sennrich et al., 2017).

Apart from the technical contribution, we em-
phasize that this and the following approaches take
advantage of attention-based models being state-
less. Transformers can, therefore, be viewed as
conditional language models, namely as models for
producing a distribution for the next word, given
the generated prefix and source sentence. View-
ing them as such opens possibilities that were
not native to RNNs, such as predicting only par-
tial outputs and conditioning on per-token or non-
autoregressed context (see App. A).
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Figure 1: Illustration of the information fed into the decoder with each method. Left: Vanilla. Center: Bidirectional
Decoder Right: Structural Decoder. At a given step Bidirectional Decoder attends to all predicted words and
Syntactic Transformer predicts edges and receives both edges and words as input.

3 Transition-based Structure Generation

We turn to describe how we represent structure
within the proposed decoder.

We generate the target-side structure with a
transition-based approach, motivated by the prac-
tical strength of such methods, as well as their
sequential nature, which fits neural decoders well.
We therefore augment the vocabulary with transi-
tions. Our work is inspired by RNNG (Dyer et al.,
2016), a conceptually similar architecture that was
developed for RNNs. At each step, the input to the
decoder includes the tokens and the parse graph
that was generated thus far. As edges and their
tokens are not generated simultaneously (but rather
by different transitions; see below), we rely on bidi-
rectional attention to update the past embeddings
when a new edge connects previously generated
tokens. In this section, we present the syntactic
transitions and in the next (§4), the ways we incor-
porate it back into the model.

In this work, we represent syntax through Univer-
sal Dependencies (UD; Nivre et al., 2016), but note
that other syntactic and semantic formalisms that
have transition-based parsers (Hershcovich et al.,
2018; Stanojević and Steedman, 2020; Oepen et al.,
2020) fit the framework as well. We select UD due
to its support for over 100 languages and its status
as the de facto standard for syntactic representation.

We base our transition system on arc-standard
(Nivre, 2003), which can produce any projective
tree. Both contain a transition connecting two
words by a labeled edge. However, we replace
SHIFT that reads the next word by SUBWORDt gen-
erating a new sub-word t. Sub-words are generated
successively until a full word is formed. To avoid
suboptimal representation of transition tokens, we
add the edges going through them to the graph (e.g.,

the edge LEFT-ARC:det det−→ the).
We denote with f the transition functions updat-

ing a word stack Σ and the labeled graph G. If a, b
are the top and second words in Σ respectively, and
x a transition, then f(x; Σ) is defined as:

x (token) Σ Edges Added
Subwordt t,a,b ∅
LEFT-ARC:l a a

l−→ b, x l−→ b, a l−→ x

RIGHT-ARC:l b b
l−→ a, x l−→ a, b l−→ x

For brevity, we denote an edge from/to every
subword of a as an edge from/to a. Overall, the
translation sequence to create the graph in Ex-
ample 1 is: Jo@@ hn put LEFT-ARC:nsubj the
coals LEFT-ARC:det RIGHT-ARC:obj out RIGHT-
ARC:compound:prt (more details in App. B)

4 Regressing on Generated Structure

As discussed in §2, the state-less nature of the
Transformer allows re-encoding not only the pre-
vious predictions, but any information that can be
computed based on them. So far, we proposed to
autoregress on the syntactic structure, token by to-
ken. However, as f is deterministic, learning to
emulate it, is pointless. Instead, we can autoregress
on the generated graph itself, G = f (o1 . . . on), as
well as the encoder output, o1 . . . on.

Our approach is modular and works with any
graph encoding method. We experiment with two
prominent methods for source-side graph encoding.

GCN Encoder. Graph Convolutional Networks
(GCN; Kipf and Welling, 2016) are a type of graph
neural network. GCNs were used successfully by
previous work to encode source-side syntactic and
semantic structure for NMT (Bastings et al., 2017;
Marcheggiani et al., 2018). The GCN layers are
stacked immediately above the embedding layer.
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The GCN contains weights per edge type and label
as well as gates, that allow placing less emphasis on
the syntactic cue if the network so chooses. Gating
is assumed to help against noisy structure, which
machine output is expected to be. See ablation
experiments to assess the impact of gating in §6.3.

Following Kipf and Welling (2016), we intro-
duce 3 edge types. Self from a token to itself, Left
to the parent tokens and Right from the parents.

A GCN layer over input layer h, a node v and a
graph G containing nodes of size d, with activation
ρ, edge directions dir, labels lab, and a function N
from a node in G to its neighbors is

gcn(h, v,G) = ρ

( ∑

u∈N (v)

gu,v · fu,v
)

where fu,v are graph weighted embedding:
fu,v =

(
Wdir(u,v) hu + blab(u,v)

)

and gu,v is the applied gate:
gu,v = σ

(
hu · ŵdir(u,v) + b̂lab(u,v)

)

where σ is the logistic sigmoid function and
ŵdir(u,v) ∈ Rd, W ∈ Rd×d, b̂lab(u,v) ∈ R, b ∈ Rd
are the learned parameters for the GCN.

Attending to Parent Token. The second re-
encoding method we test, PARENT, dedicates an
attention head only to the parent(s) of the given to-
ken. Commonly, the parent is given by an external
parser (Hao et al., 2019) or learned locally in each
layer, to focus the attention (Strubell et al., 2018).
Unlike such approaches, we define the parents by
the self-generated graph. To allow ignoring it when
preferable or when no parent was generated, we
also allow attending to the current token. To recap,
for a token oi, we mask all but oi and its parents.

PARENT differs from GCN considerably. On
the one hand, PARENT requires minimal architec-
tural changes and no additional hyperparameters. It
also affects different network parts, some attention
heads, rather than an additional embedding. On the
other hand, only GCN represents the labels and the
whole graph, specifically children. By considering
both architectures, we show that graph methods for
the encoder (Bastings et al., 2017) may be easily
adapted to the decoder, demonstrating the flexibil-
ity of the proposed framework.

5 Experimental Setup

Metrics. We report BLEU (Papineni et al., 2002)
and chrF+ (Popovic, 2017) and note that chrF+ has
been deemed more reliable (Ma et al., 2019).

Model. Medium (large) models are trained with
batch size 128, embedding size 256 (512), 4 (6) de-
coder and encoder blocks, 8 attention heads (PAR-
ENT replaces one). We train for 90K (150K) steps,
where empirically some saturation is reached, al-
lowing a fair system comparison (Popel and Bojar,
2018). The GCN architecture includes 2 layers
with residual connections. Parses are extracted by
UDPipe (Straka, 2018), UD2.0 for English and
German and UD2.5 syntagrus for Russian.

Unable to identify a preexisting implementation,
we implemented labeled sparse GCNs with gat-
ing in Tensorflow. Implementation mostly focused
on memory considerations, and was optimized for
runtime when possible. More on implementation
details, filtering and preprocessing in App. B.

Language Pairs. We experiment on 3 language
pairs with 3 target languages: English (De-En),
German (En-De) and Russian (En-Ru). We use the
WMT16 data (Bojar et al., 2016) for En-De, and
either the clean News commentary or the full noisy
WMT20 data (Barrault et al., 2020) for En-Ru.

Test sets. Newstest 2012 served as a develop-
ment set. To measure the overall system perfor-
mance we used newstest 2013-15.

To test syntactic generalization, we used the chal-
lenge sets by Choshen and Abend (2019). Those
are sub-sets of the books and newstest corpora
in En↔De, automatically filtered by a syntac-
tic parser to contain lexical long-distance depen-
dencies. i.e., sentences where two or more non-
consecutive words correspond to a single word.
E.g., “put ... out” in Example 1 corresponds to the
German “löschte” (see also Example 2). Previous
work has shown such phenomena to be challenging
for present-day NMT systems.

Improving the automatic measures on one such
challenge set indicates better performance on a
specific phenomenon, while better overall chal-
lenge set performance implies better handling of
lexical long-distance dependencies. The various
challenge set settings are represented as a triplets
(dir, p, dom), corresponding to the direction, in-
spected phenomenon and domain. Direction can be
either “source” or “target”, indicating whether the
long distance dependency is in the source or the tar-
get reference. Representing the target-side syntax
more effectively should improve target challenges
and potentially also the source side’s, by increasing
the model’s “awareness” to syntactic structure. By
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Source der gruppe, an die sich der Plan richtet
Gloss the group to which himself the plan aims
Ref. the group to whom the plan is aimed

PARENT the group to which the plan is aimed
Vanilla the group aimed at the plan

Example 2: A part of a sentence with a long-distance
German reflexive verb from the challenge set.

phenomenon, we refer to the syntactic phenomenon
in question. There are three test cases for English
phenomena and two for German. By domain we
refer to the origin of the examples, which can be
either the sizable books corpus (Tiedemann, 2012),
or a smaller news corpus (Barrault et al., 2020).

6 Results

We compare the syntactic generalization abilities
of the different decoders in §6.1, and continue by
examining their overall performance (§6.2). We
then assess the contribution of the components of
the system through ablation experiments (§6.3) and
evaluate the effects of noisy training data (§6.4).

6.1 Syntactic Generalization

We evaluate the syntactic generalization abilities
of the models using the syntactic challenge sets.
Results (Table 1) show that the medium PARENT

(GCN) improves over the Vanilla in 18 (20) of 20
target challenge settings and 19 (19) of 20 in the
source challenges. The large model improves in
18/20 of the challenges and gains seem similar or
even larger. The latter results suggest that simply
using larger models is unlikely to address these
gaps in syntactic generalization. See also E.

6.2 Overall Performance

Table 2 presents the test performance for all models.
For medium-sized models, the UD-based decoders
(GCN and PARENT rows) outperform the vanilla
decoder in all settings, with 0.7-1.1 average BLEU
improvements and 1-2.4 chrF+. We see a slight
advantage to the GCN decoder on De-En, and an
advantage to PARENT on En-De and En-Ru. We
apply a sign test on all medium size test sets and
separately on challenge sets. GCN and PARENT are
significantly (p < 0.01) better than BiTran, which
is significantly better than Vanilla Transformer.

With the large models, PARENT performs compa-
rably to the vanilla (Table 2b), despite the superior
results it obtains on syntactic generalization.

6.3 Ablation Experiments

To better understand the contribution of different
parts of the architecture, we consider ablated ver-
sions (See Table 2 and App. E). Differences are
small but consistent. In one, Linearized, we train
the vanilla Transformer over the transitions, lin-
earized to a string, without encoding the graph
through GCN or attention. This is reminiscent of
the approaches taken by Aharoni and Goldberg
(2017b); Nadejde et al. (2017), albeit with a dif-
ferent form of linearization. Results place Lin-
earized in a clear place: consistently better than the
structure-unaware models but not as good as the
structure-aware ones.

We turn to experiment with ablated versions of
the GCN decoder. Unlabeled ignores the labels and
relies only on the graph structure, while Ungated,
also removes the gate g. Gating was hypothesized
to be important to avoid over-reliance on the er-
roneous edges (Bastings et al., 2017; Hao et al.,
2019). As our graphs are generated by the network,
rather than fed into it by an external parser, this is
a good place to test this hypothesis.

Comparing GCN with and without labels, we
find their contribution to be limited. Despite some
improvement in overall BLEU, as often as not, Un-
labeled is better on the challenges. We advise cau-
tion, however, in interpreting these results, as they
may not necessarily indicate that syntactic labels
are redundant. There are two technical points to
consider. First, the labels’ role in GCNs is small,
they contribute many hyperparameters, while only
affecting a bias term. Presumably, this is an ineffi-
cient use that should be addressed in future work.
Second, the labels are incorporated also through
the transitions, and hence have token embeddings.
These could compensate for the disregard of labels.

Unlike labels, gating appears to be crucial. The
Ungated scores are lower than the Unlabeled vari-
ant in 34/40 challenges. This might indirectly sup-
port the hypothesis that gating aids with erroneous
parses. It also hints introducing similar mecha-
nisms to PARENT may also be beneficial.

Even BiTran provides a small (up to .28
BLEU,.42 chrF+) but consistent improvement. In-
deed, it outperforms the vanilla on average and in
10/12 scores in each pair. We observe a similar
trend in the challenge sets (Table 1): BiTran im-
proves scores in 26/40 syntactic challenge sets. In
conclusion, bidirectionality in itself is somewhat
beneficial, both in general and specifically for ag-
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Preposition Stranding Particle Reflexive
Books News Books News Books News

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla – – – – 4.14 20.72 20.31 49.04 8.08 32.38 20.65 49.09
PARENT – – – – 8.37 33.78 20.54 49.99 8.60 33.49 21.39 50.01

(a) Target challenge sets for En-De, large models (Preposition Stranding is omitted as it is not present in German)
Vanilla 8.70 33.58 13.82 43.41 8.59 32.66 15.28 44.28 8.54 32.85 18.90 45.82
PARENT 9.03 34.83 11.53 45.12 8.59 33.71 14.99 45.90 9.05 34.11 20.79 46.73

(b) Source challenge sets for En-De, large models
Vanilla 5.95 25.88 9.96 36.96 5.37 24.69 9.39 39.19 5.32 24.71 16.48 42.04
PARENT 6.21 28.12 11.17 41.13 5.47 25.74 11.93 41.24 5.71 26.22 15.56 42.76
GCN 6.21 27.27 11.31 40.48 5.51 25.53 10.35 39.83 5.46 25.70 16.45 43.03

(c) Source challenge sets for En-De, medium models
Vanilla 6.38 27.30 9.18 38.22 6.53 25.70 10.54 38.28 6.15 25.94 17.20 43.12
PARENT 7.59 27.87 10.81 39.22 7.07 26.50 9.72 39.57 6.82 26.58 17.56 44.00
GCN 6.33 26.60 10.14 41.00 6.69 26.16 10.60 39.81 6.33 25.83 20.16 44.19

(d) Target challenge sets for De-En, medium models

Table 1: Results on the syntactic challenge sets, both on the larger sets from books and the smaller ones from news.
Models include Vanilla and the GCN and PARENT UD-based decoders. Models can be large or medium in size
and trained on En-De or De-En. Challenges are either in the source or target translation. See also App. E.

2013 2014 2015
BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 17.61 45.54 18.23 47.29 19.57 47.50
PARENT 18.11 46.75 18.6 48.46 20.55 49.20
GCN 18.03 46.43 18.86 48.46 20.32 48.90
BiTran 17.64 45.66 18.34 47.53 19.33 47.61
Linearized 17.71 46.07 18.39 47.69 19.81 48.36
- Gates 17.81 46.12 18.43 48.08 20.06 48.62
- Labels 17.98 46.40 18.77 48.29 19.96 48.73

(a) Overall performance for En-De, medium models
Vanilla 23.64 53.44 21.94 53.13 21.60 50.84
PARENT 23.56 54.08 22.11 53.77 20.69 49.16

(b) Overall performance for En-De translation, large models
Vanilla 21.51 48.20 21.4 48.46 21.44 48.13
PARENT 22.46 49.24 21.75 49.41 22.14 49.31
GCN 22.33 49.27 21.76 49.71 22.43 49.73
BiTran 21.63 48.48 21.42 48.86 21.38 48.54
Linearized 21.95 49.27 21.83 49.79 22.2 49.70
- Gates 22.28 49.33 21.89 49.68 22.04 49.39
- Labels 22.21 49.46 21.75 49.73 22.26 49.57

(c) Overall performance for De-En translation, medium models
Vanilla 13.2 38.72 17.17 43.69 14.19 40.87
PARENT 13.61 40.67 18.53 46.44 15.75 43.57
GCN 13.25 40.31 17.86 46.09 15.38 43.09

(d) Overall performance for En-Ru

Table 2: Overall performance in different settings. Ablated models (where applicable), appear in the bottom part
of the table and include the Bidirectional Transformer (BiTran), with linearized syntax (Linearized), GCN without
labels or gating (-Gates) and GCN without labels (-Labels). The syntactic variants consistently outperform the
vanilla and ablated variants in the medium size setting and are comparable to it in the large one. The Bidirectional
Transformer (BiTran) slightly outperforms Vanilla Transformer.

gregating the syntactically correct context tokens.

As a next step, we compare GCN ablations to
PARENT. Like unlabeled GCNs, PARENT does not
rely on the labels and successfully provides a dif-
ferent way to incorporate the graph structure. We

note that while labels are not incorporated, they
appear as transition inputs and can be attended to.
Comparing the two architectures, PARENT shows
significant gains over Unlabeled GCN. Despite be-
ing easier to implement and being much lighter
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in terms of memory, time and hyperparameters,
PARENT generally outperforms Unlabeled GCN in
both performance and specific challenges. PARENT

is slightly better than unablated? GCN on En-De
and slightly worse on De-En. It is better on 3 of
5 De-En phenomena and one of the En-De, when
compared to the GCN variant.

6.4 Noise Robustness

Preliminary experiments indicate that syntactic ar-
chitectures may be more sensitive to noisy training
data than the vanilla Transformer, possibly ampli-
fying parser errors. To test this, we trained on the
full WMT data for En-Ru, which is mostly crawled
data. Results show that the improvement in chrF+
is smaller, 1 point instead of 1.5-2.5 in other set-
tings, and BLEU scores are somewhat worse (see
App. §E.1). It seems then that overall, the inclusion
of noisy data diminishes the relative improvement.

An alternative explanation to these results may
be that our methods contribute less in the presence
of more training data. Our positive results on En-
De and De-En, that use relatively large amounts
of data (4.5M sentence pairs), show that if this is
indeed the case, saturation is slow.

6.5 Qualitative Analysis

To complement the automatic challenges, we com-
pile a set of 99 simple subject-verb-object sen-
tences where the German object and subject can
swap locations without affecting the meaning. We
created three sets of sentences, where the case
marking for the subject and object may or may
not be ambiguous. For example, Das Pferd bringt
der Vater and Der Vater bringt das Pferd both trans-
late to the father brings the horse. Such examples
are of particular interest to us here, as the case of
the first noun phrase is ambiguous (“Das Pferd”
could be either a subject or an object) and is only
disambiguated by the case marking of the second
one. These cases require some understanding of
the syntax to translate correctly. See App. §C.

A native-speaking German annotator, fluent in
English, evaluated the medium-size PARENT and
Vanilla outputs on these sentences. The ambigu-
ous examples were challenging for both systems,
especially the ambiguous case markings. However,
overall, PARENT is more robust to the changes in
order. Interestingly, both models (PARENT more
consistently) translate some sentences to passive
voice, keeping both (changed) order and meaning.

7 Related Work

While there are indications that Transformers im-
plicitly learn some syntactic structure when trained
as language models or as NMT (e.g., Jawahar et al.,
2019; Manning et al., 2020; Don-Yehiya et al.,
2022), it is not at all clear whether such informa-
tion replaces the utility of incorporating syntactic
structure. Indeed, a considerable body of work
suggests the contrary. Much previous work tested
RNN-based and attention-based systems for their
ability to make structural generalizations (Welleck
et al., 2021; Csordás et al., 2021; Ontanón et al.,
2021). Syntactic generalizations seem to pose a par-
ticularly difficult challenge (Ravfogel et al., 2019;
McCoy et al., 2019). Moreover, while NMT often
succeeds in translating inter-dependent linearly dis-
tant words, their performance is unstable: the same
systems may well fail on other “obvious” cases of
the same phenomena (Belinkov and Bisk, 2017;
Choshen and Abend, 2019). This evidence pro-
vides motivation for efforts such as ours, to incor-
porate linguistic knowledge into the architecture.

Syntactic structure was used to improve vari-
ous tasks, including code generation (Chakraborty
et al., 2018), question answering (Bogin et al.,
2020), automatic proof generation (Gontier et al.,
2020) language modelling (Wilcox et al., 2020) and
grammatical error correction (Harer et al., 2019).
Such approaches, however, are task specific. E.g.,
the latter makes strong conditional independence
assumptions, and is less suitable for MT where the
source and target syntax may diverge considerably.

In NMT, some works used structural cues by
reinforcement learning (Wieting et al., 2019; Yehu-
dai et al., 2022), but the gain from such methods
seems to be limited (Choshen et al., 2020). Aharoni
and Goldberg (2017a) and Nadejde et al. (2017)
proposed to replace the source and target tokens
with a linearized constituency graph or CCG parses.
Eriguchi et al. (2016) proposed an RNN to encode
the source syntax. Some works suggested modi-
fying RNNs to encode source-side syntax (Chen
et al., 2017, 2018; Li et al., 2017). Song et al.
(2019) used a graph RNN to encode source-side
AMR structures. Few works suggested changes in
the Transformer to incorporate source-side syntax:
Nguyen et al. (2020) and Bugliarello and Okazaki
(2020) proposed a tree-based attention mechanism
to encode syntax; Zhang et al. (2019) incorporated
the first layers of a parser in addition to the to-
ken embeddings. Relatedly, previous work showed
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gains from using syntactic information for prepro-
cessing (Ponti et al., 2018; Zhou et al., 2019a).

Much fewer works focused on structure-based
decoding. Eriguchi et al. (2017), building on Dyer
et al. (2016), train a decoder in a multi-task setting
of translation and parsing. Notably, unlike in the
method we propose, their generated translation is
not constrained by the parse during the decoding.
Few works proposed alternating between two con-
nected RNNs one translating and one creating a
linearized graph using a tree-based RNN (Wang
et al., 2018) or transition-based parsing (Wu et al.,
2017). Gū et al. (2018) both parse and generate,
using a recursive RNN representation.

Other work changed RNNs (Tai et al., 2015) or
Transformers to include structural inductive biases,
but without explicit syntactic information. Wang
et al. (2019) suggested an unsupervised way to train
Transformers that learn tree-like structures follow-
ing the intuition that such representations are more
similar to syntax. Shiv and Quirk (2019) encoded
tree-structured data in the positional embeddings.

8 Discussion

The work we presented is motivated from several
angles. First, we note that Transformers are trained
in the same way that former sequence to sequence
models are trained (e.g., RNNs) and to many, they
are just a better architecture for the same task. In-
stead, our work emphasizes the possibility of condi-
tional training using Transformers; namely, Trans-
formers should be able to predict the third token
given the first two, even without previously pre-
dicting them. Although generally not implemented
this way, Transformers are already conditional net-
works, and allow for flexibility not found in RNNs.

The finding that MT quality changes between
beginnings and ends of predicted sentences both in
RNNs and in Transformers (Liu et al., 2016; Zhou
et al., 2019b), further motivates conditional transla-
tion. This is often explained by lack of context and
disregard for the future tokens. Such future context
is used by humans (Xia et al., 2017) and can po-
tentially improve NMT (Tu et al., 2016; Mi et al.,
2016). Moreover, as the encoded input is constant
throughout the prediction, the varying performance
is likely due to the decoder. Attending to all predic-
tions from lower layers, as we propose here, aims
to provide more of this required information.2

2Admittedly, for the very first generated tokens, bidirec-
tionality will not help, as there is nothing to attend to.

Finally, previous work investigated the reasons
why incorporating source syntax helps RNNs (Shi
et al., 2018) and Transformers (Pham et al., 2019;
Sachan et al., 2020). These works show evidence
that similar gains can be obtained when incorporat-
ing either syntactic trees or non-syntactic, syntacti-
cally uninformative, ones. A hypothesis followed,
that graph-like architectures are helpful, but that
syntactic information is redundant. While GCN
creates such an architecture, linearized syntax, ar-
guably PARENT and to some extent the labels GCN
component, do not. Still, they allow gains over the
vanilla decoder, which challenges this hypothesis.

9 Conclusion

We presented a flexible method for constructing
decoders capable of outputting trees and graphs.
We show that the improved decoder achieves no-
table gains in syntactic generalization, and in some
settings improves overall performance as well. Our
proposal is based on two main modifications to
the standard Transformer decoder: (1) autoregres-
sion on structure; (2) bidirectional attention in the
decoder, which allows recomputing token embed-
dings in light of newly decoded tokens. Testing
on two variants for the decoder, we find that they
both show superior syntactic generalization abili-
ties over the vanilla Transformer, and that the gap
does not diminish with model size. The method
is flexible enough to allow decoding into a wide
variety of graph and tree structures.

Our work opens many avenues for future work.
One direction would be to focus on conditional
networks, training with (intentionally) noisy pre-
fixes, randomly masking “predicted” spans during
training (as done in masked language models, De-
vlin et al., 2019), and data augmentation through
hard words or phrases rather than full sentences.
Another direction might enhance bidirectionality
by allowing “regretting” and changing past pre-
dictions. Finally, the work opens possibilities for
better incorporating structure into language gen-
erators, of incorporating semantic structure and
of enforcing meaning preservation (thus targeting
hallucinations, Wang and Sennrich, 2020), by in-
corporating source and target structure together.
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A From sequence-to-sequence to
conditional

Attention-based models are characterized by being
state-less. They can, therefore, be viewed as con-
ditional language models, namely as models for
producing a distribution for the next word, given
the generated prefix and source sentence It is possi-
ble to re-encode other information (not only the de-
coded output) into the decoder at each step, or pre-
dict only tokens of interest, rather than the complete
sequence. It is also possible to change the source
sentence partially or completely (e.g., adding noise
to increase robustness), condition on additional in-
formation (§4) and adjust this information during
prediction (e.g. force predicted word characteris-
tics). Nevertheless, the standard practice is to only
re-encode past predictions.3

Unlike RNNs, attention-based models do not in-
herently rely on past predictions in terms of inputs,
weights and gradients. The only connection to past
predictions is mediated through their re-encoding
back into the decoder.

RNNs receive past states as inputs. Backprop-
agation through time sees the current network as
connected to the previous networks supplying the
state input. Thus, the gradients take into account
past predictions as well.

In contrast, Transformers have gradients over
representation of past words only if they are fed
into the network. Unlike backpropagation through
time, the preceding tokens can be changed, or even
omitted (e.g., in a limited window size scenario).
Specifically, in our case, preceding tokens may
have different representations at each generation
step.

To sum, the representation is updated to provide
good representation for the current step, but it is not
calculated over the actual network of the previous
step. It is often the case, though, that the previ-
ous decoded words are auto-regressed and hence
updated.

This architecture, therefore, allows more flex-
ibility than RNNs. Still, Transformers are of-
ten thought about as an extension to RNNs, i.e.,
sequnce-to-sequence models. For that reason it is
rare to find changes to the training schedule that
incorporate more knowledge, change "past" infor-
mation or translate only parts of a sentence with
a network. With such methods, for example, one

3This is true even in cases of bidirectional generation (e.g.,
Zhang et al., 2018).

can dynamically force features of the next predic-
tion (by a changing input) or augment learning by
teaching the network only over hard cases. Such
an approach may choose augmented data in a reg-
ular way, but stop the prediction at the part in the
sentence one wishes the network to learn, or even
teach it several alternatives with the same prefix.

B Experimental Setup

The code is adapted from the NEMATUS code
repository (Sennrich et al., 2017) and will be re-
leased upon publication. All hyperparameters are
either taken from the original suggestions or opti-
mized for the vanilla Transformer and used as is
for our suggested models.

Networks are all trained with batch size 128, em-
bedding size 256, 4 decoder and encoder blocks,
8 attention heads (one of which might be a parent
head §4), 90K steps (where empirically some satu-
ration is reached. This is a relatively fair compar-
ison (Popel and Bojar, 2018)), learning rate 1e−4,
4K warm-up steps, Adam (Kingma and Ba, 2015)
optimizer with beta 0.9 and 0.999 for the first and
second moment and epsilon of 1e−8. We use the
standard (structure-unaware) Transformer encoder
in all our experiments. Each model was trained on
4 NVIDIA Tesla M60 or RTX 2080Ti GPUs for
approximately a week (2 for GCN architecture),
large models on RTX6000.

Preprocessing includes truecasing, tokenization
as implemented by Moses (Koehn et al., 2007) and
byte pair encoding (Sennrich et al., 2016) with-
out tying. Empty source or target sentences were
dropped. In training, the maximum target sentence
length is 40 non-transition tokens (BPE).

We used UDPipe English and German over UD
2.0 and Russian with 2.5 with syntagrus version.

In unreported trials, we found that whenever
noisy and crawled data is used, filtering is crucial
for even the baselines to show reasonable results.
On full En-Ru (See §6.2), we filter unexpected lan-
guages by langID (Lui and Baldwin, 2012) and
improbable alignment (p < −180) with FastAlign
(Dyer et al., 2013). Overall, about half the sen-
tences were filtered by those measures or length.

There were 4,066,323 training sentences after
filtering En-De and 4,468,840 before. In En-Ru,
there were 19,557,568 after and 37,948,456 before.
The English challenge sets on books and news sizes
are respectively, 1,188 and 11 reflexive, 3,953 and
17 particle, 191 and 8 prepositions stranding, and
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the German 2,628 and 261 reflexive and 7,584 and
232 particle. WMT dev and test sets are always of
about 3K sentences in size.

We use chrF++.py with 1 word and beta of 3 to
obtain chrF+ (Popovic, 2017) score as in WMT19
(Ma et al., 2019) and detokenized BLEU (Papineni
et al., 2002) as implemented in Moses. We use two
automatic metrics: BLEU as the standard measure
and chrF+ as it was shown to better correlate with
human judgments, while still being simple and un-
derstandable (Ma et al., 2019). Both metrics rely
on n-gram overlap between the source and refer-
ence, where BLEU focuses on word precision, and
chrF+ balances precision and recall and includes
characters, as well as word n-grams.

Transitions. We made two practical choices
when creating the transition graph. First, we
deleted the root edge, as the root is not a
word in the translation. Second, we train
only on projective parses. This choice re-
duces noise due to the low reliability of current
non-projective parsers (Fernández-González and
Gómez-Rodríguez, 2018), while not losing many
training sentences. We do note, however, that this
choice is not without its risks: it might be less fit-
ting for some languages in which non-projective
sentences are common.

The transitions serve as the NMT vocabulary.
There are 45 labels and two directions of connec-
tions, summing up to 90 new tokens. This hardly
affects the standard vocabulary size, which usually
consists of tens of thousands of tokens(Ding et al.,
2019). We treat both token and transition pre-
dictions in the same way, and do not rescale their
score as done in Stanojević and Steedman (2020).
If anything, the need to memorize more should hurt
performance, and so increased performance should
come despite enlarging the vocabulary and not be-
cause of it. It is possible to split the tokens into
directions and labels (summing to 47). This comes
at the cost of lengthy sentences which increase
training time and memory consumption. We did
not experiment with other methods for encoding
the transitions (e.g., embedding labels and edges
separately).

C Mixup challenge

We follow the results of (Bisazza et al., 2021) that
Transformers are able to learn languages with free
order, given case markings. Given those findings,
we wonder whether indeed Transformers are robust

Vanilla PARENT

Object 6 6
Subject 5 8

Both 10 13

Table 3: Amount of sentences where the rare order
(OVS) in German was still well corrected. In rows,
what had unambiguous casing.

to mixing the order where case marking exists.
To do that, we take lists of nouns and verbs to

create simple sentences from. Then, we create
three types of sentences, validated to be correct
and convey the same meaning in both orders by an
in-house annotator who is a native German speaker.
Ones with both marked such as: den Ball bringt der
Hund (lit. the dog brings the ball), ones with only
the subject marked: das Pfred drängt der Hund
(the dog urges the horse), and ones with only the
object.

The three lists of sentences are:

• Den {Ball, Stein, Tisch, Hamster} {bringt,
wirft, drückt} {das Kind, die Mutter, das Mäd-
chen}

• Das {Pferd, Kind, Mädchen} {drängt, drückt,
zieht} der {Vater, Hund, Student}

• Den {Ball, Stein, Tisch, Hamster} {bringt,
wirft, drückt} der {Vater, Hund, Student}

Then, we switch the object and subject and cal-
culate how often is the translation correct in terms
of places. We disregard other errors such as choice
of verb in English.

Interestingly, as seen in the results section §E,
both networks are quite bad at it (although the syn-
tactic variant is better).

D Results with the Large

We include the full results over the two larger mod-
els PARENT and the Vanilla. While overall results
are comparable, PARENT consistently performs bet-
ter on the challenge sets, often with large margins.
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Preposition Stranding Particle Reflexive
Books News Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 8.70 33.58 13.82 43.41 8.59 32.66 15.28 44.28 8.54 32.85 18.90 45.82
PARENT 9.03 34.83 11.53 45.12 8.59 33.71 14.99 45.90 9.05 34.11 20.79 46.73

Table 4: Source challenge sets for En-De translation of large models. PARENT outperforms the Vanilla.

2013 2014 2015 Average
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 23.64 53.44 21.94 53.13 21.60 50.84 22.39 52.47
PARENT 23.56 54.08 22.11 53.77 20.69 49.16 22.12 52.34

Table 5: Test sets for En-De translation of large models.

Particle Reflexive
Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 4.14 20.72 20.31 49.04 8.08 32.38 20.65 49.09
PARENT 8.37 33.78 20.54 49.99 8.60 33.49 21.39 50.01

Table 6: Target challenge sets for En-De translation of large models. PARENT outperforms the Vanilla.
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E Additional Results

We include here the full results including ablations
that were omitted in the paper due to space con-
siderations. For ease of comparison we also split
them by challenge direction (source Table 7 and
target Table 8). Note that improvements in the syn-
tactic aspect could also be seen in the ablations
(not reported in the main paper). Moreover, BiTran
improves over the Vanilla even as a standalone ar-
chitecture.
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Particle Reflexive
Books News Books News

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 7.15 27.66 17.79 44.91 6.83 26.84 19.68 45.06
PARENT 7.82 28.43 19.66 46.32 7.49 27.70 20.97 47.07
GCN 7.32 27.67 20.13 46.77 7.11 27.16 20.68 47.15

BiTrans 7.02 27.60 18.58 45.09 6.8 26.90 19.87 45.89
Linearized 7.44 28.05 19.2 46.21 7.27 27.43 20.25 46.92
- Gates 7.62 28.23 19.71 46.36 7.38 27.65 20.74 47.19
- Labels 7.75 28.60 19.01 46.51 7.44 27.90 20.81 47.32

(a) Syntactic source challenge sets for De-En

Preposition Stranding Particle Reflexive
Books News Books News Books News

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 5.95 25.88 9.96 36.96 5.37 24.69 9.39 39.19 5.32 24.71 16.48 42.04
PARENT 6.21 28.12 11.17 41.13 5.47 25.74 11.93 41.24 5.71 26.22 15.56 42.76
GCN 6.21 27.27 11.31 40.48 5.51 25.53 10.35 39.83 5.46 25.70 16.45 43.03

BiTrans 5.3 26.38 10.56 38.05 6.07 26.08 10.21 39.48 5.77 26.01 13.91 37.74
Linearized 5.99 26.90 8.86 39.12 5.24 25.42 10.45 39.56 5.48 25.47 14.94 42.15
- Gates 5.29 25.86 11.64 40.51 5.3 25.03 10.01 38.64 5.31 25.41 12.08 37.00
- Labels 5.83 27.05 8.62 38.33 5.41 25.62 11.98 41.79 5.42 25.67 16.55 41.65

(b) Syntactic source challenge sets for En-De

Table 7: Results on the syntactic challenge sets, both on the large challenges from book domain and the smaller
ones from news. Models include Vanilla and Bidirectional Transformer baselines (top) and the GCN and PARENT
syntactic variants (middle). Ablated models (bottom) include Vanilla with linearized syntax (Linearized), GCN
without labels or gating (-Gates) and GCN without labels (-Labels). Among the baselines, BiTrans is better. It is
inconclusive which syntactic method is best, but they are significantly superior to both baselines.
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Preposition Stranding Particle Reflexive
Books News Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 6.38 27.30 9.18 38.22 6.53 25.70 10.54 38.28 6.15 25.94 17.2 43.12
PARENT 7.59 27.87 10.81 39.22 7.07 26.50 9.72 39.57 6.82 26.58 17.56 44.00
GCN 6.33 26.60 10.14 41.00 6.69 26.16 10.6 39.81 6.33 25.83 20.16 44.19

BiTrans 6.75 27.44 8.92 37.76 6.29 25.69 10.77 39.15 6.24 25.93 17.22 43.96
Linearized 6.79 27.46 7.79 39.62 6.55 25.96 12.95 40.78 6.56 26.28 16.38 43.76
- Gates 6.89 27.31 10.46 40.80 6.53 26.26 12.45 40.70 6.62 26.50 15.97 43.10
- Labels 7.05 27.51 9.89 38.24 6.98 26.42 12.83 40.18 6.62 26.65 18.9 46.59

(a) Syntactic target challenge sets for De-En

Particle Reflexive
Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 5.4 25.84 16.24 43.22 5.12 24.94 16.47 42.71
PARENT 5.52 26.96 16.19 44.83 5.37 26.31 16.86 44.30
GCN 5.6 26.74 15.57 43.23 5.34 25.91 16.44 43.52

BiTrans 5.81 26.79 15.84 43.25 5.43 25.88 16.33 42.44
+ Linearized 5.32 26.30 15.69 43.77 5.07 25.57 16.19 43.07
- Gates 5.31 26.21 15.49 43.45 5.01 25.30 15.67 43.13
- Labels 5.56 26.55 15.78 43.96 5.24 25.67 16.8 43.65

(b) Syntactic target challenge sets for En-De

Table 8: Results on the syntactic challenge sets, both on the large challenges from book domain and the smaller
ones from news. Models include Vanilla and Bidirectional Transformer baselines (top) and the GCN and PARENT
syntactic variants (middle). Ablated models (bottom) include the Vanilla with linearized syntax (Linearized), GCN
without labels or gating (-Gates) and GCN without labels (-Labels). Among the baselines, BiTrans is better. It is
inconclusive which syntactic method is best, but they are significantly superior to both baselines.
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2013 2014 2015 Average
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 17.61 45.54 18.23 47.29 19.57 47.50 18.47 46.78
BiTrans 17.64 45.66 18.34 47.53 19.33 47.61 18.44 46.93

PARENT 18.11 46.75 18.6 48.46 20.55 49.20 19.09 48.14
GCN 18.03 46.43 18.86 48.46 20.32 48.90 19.07 47.93

Linearized 17.71 46.07 18.39 47.69 19.81 48.36 18.64 47.37
- Gates 17.81 46.12 18.43 48.08 20.06 48.62 18.77 47.61
- Labels 17.98 46.40 18.77 48.29 19.96 48.73 18.90 47.80

(a) Test sets for En-De translation
2013 2014 2015 Average

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 21.51 48.20 21.40 48.46 21.44 48.13 21.45 48.26
BiTrans 21.63 48.48 21.42 48.86 21.38 48.54 21.48 48.63

PARENT 22.46 49.24 21.75 49.41 22.14 49.31 22.12 49.32
GCN 22.33 49.27 21.76 49.71 22.43 49.73 22.17 49.57

Linearized 21.95 49.27 21.83 49.79 22.20 49.70 21.99 49.59
- Gates 22.28 49.33 21.89 49.68 22.04 49.39 22.07 49.46
- Labels 22.21 49.46 21.75 49.73 22.26 49.57 22.07 49.59

(b) Test sets for De-En translation

Table 9: En-De and De-En results on newstest 2013-15. Ablated models include the Transformer decoder with
linearized syntax (Linearized), GCN without labels or gating (-Gates) and GCN without labels (-Labels). The syn-
tactic variants consistently outperfom the vanilla and ablated variants, and the Bidirectional Transformer (BiTrans)
slightly outperforms Vanilla Transformer.
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E.1 Noisy data
Table 10a presents the two tables side by side for
ease of comparison. The one on larger noisy Rus-
sian train set and the cleaner one.
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2013 2014 2015 Average
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 13.20 38.72 17.17 43.69 14.19 40.87 14.85 41.09
BiTran 13.13 39.10 17.63 44.63 14.59 41.52 15.12 41.75
GCN 13.25 40.31 17.86 46.09 15.38 43.09 15.50 43.16
PARENT 13.61 40.67 18.53 46.44 15.75 43.57 15.96 43.56

(a) Test sets for En-Ru translation trained on news data
2013 2014 2015 Average

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 16.84 44.28 20.12 47.7 14.74 40.92 17.23 44.30
BiTran 16.84 44.46 20.61 48.17 14.79 41.05 17.41 44.56
GCN 17.11 45.55 20.29 48.67 14.6 41.63 17.33 45.28
PARENT 16.8 45.42 20.2 48.95 14.59 41.73 17.20 45.37

(b) Test sets for En-Ru translation trained on noisy data

Table 10: En-Ru results on newstest 2013-15 trained on clean (top) or noisy (bottom) data. Models include Vanilla,
Bidirectional Transformer and syntactic variants. The syntactic ones improve over all datasets and on average.
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Abstract

When a language model is trained to predict
natural language sequences, its prediction at
each moment depends on a representation of
prior context. What kind of information about
the prior context can language models retrieve?
We tested whether language models could re-
trieve the exact words that occurred previously
in a text. In our paradigm, language models
(transformers and an LSTM) processed English
text in which a list of nouns occurred twice.
We operationalized retrieval as the reduction in
surprisal from the first to the second list. We
found that the transformers retrieved both the
identity and ordering of nouns from the first
list. Further, the transformers’ retrieval was
markedly enhanced when they were trained on
a larger corpus and with greater model depth.
Lastly, their ability to index prior tokens was
dependent on learned attention patterns. In con-
trast, the LSTM exhibited less precise retrieval,
which was limited to list-initial tokens and to
short intervening texts. The LSTM’s retrieval
was not sensitive to the order of nouns and it
improved when the list was semantically co-
herent. We conclude that transformers imple-
mented something akin to a working memory
system that could flexibly retrieve individual
token representations across arbitrary delays;
conversely, the LSTM maintained a coarser and
more rapidly-decaying semantic gist of prior
tokens, weighted toward the earliest items.

1 Introduction

Language models (LMs) are computational sys-
tems trained to predict upcoming tokens based
on past context. To perform this task well, they
must construct a coherent representation of the text,
which requires establishing relationships between
words that occur at non-adjacent time points.

Despite their simple learning objective, LMs
based on contemporary artificial neural network
architectures perform well in contexts that require
maintenance and retrieval of dependencies span-

Before the 
meeting, Mary 
wrote down
a list of words:

county, muscle,
vapor.

After the 
meeting, Mary 
took a break 
and...

After she got 
back, she read
the list again:

LM input sequence

preface 
string

first list intervening 
text

prompt 
string

second list

context in memory   retrieval

change in surprisal

Paradigm
1) How detailed is LM memory of nouns (identity and ordering)?
2) How resilient is LM memory to size and content of intervening text?
3) How invariant is LM memory w.r.t. the content of noun lists?

county, muscle,
vapor.

Figure 1: Characterizing verbatim memory retrieval in
neural language models. In our paradigm, language
models processed English text in which a list of nouns
occurred twice. We operationalized retrieval as the re-
duction in surprisal from the first to the second list pre-
sentation. We measured retrieval while varying: a) set
size, b) the structure of the second list, c) the length of
the intervening text, and d) the content and structure of
the intervening text.

ning multiple words. For example, LMs learn to
correctly match the grammatical number of the sub-
ject and a corresponding verb across intervening
words; for example, they prefer the correct The
girls standing at the desk are tall, to the incorrect
The girls standing at the desk is tall (Linzen et al.,
2016; Marvin and Linzen, 2018; Gulordava et al.,
2018; Futrell et al., 2018). The ability to maintain
context across multiple words is likely to be a cen-
tral factor explaining the success of these models,
potentially following fine-tuning, in natural lan-
guage processing tasks (Devlin et al., 2019; Brown
et al., 2020).

The work discussed above has shown that LMs
extract linguistically meaningful signals and that,
over the course of learning, they develop a short-
term memory capacity: the ability to store and
access recent past context for processing, possibly
akin to the working memory systems thought to en-
able flexible human cognitive capacities (Baddeley,
2003). What is the nature of the memory processes
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that LMs learn? Are these memory processes able
to access individual tokens from the recent past
verbatim, or is the memory system more implicit,
so that only an aggregate gist of the prior context
is available to subsequent processing?

Here, we introduce a paradigm (Fig. 1), inspired
by benchmark tasks for models of human short-
term memory (Oberauer et al., 2018), for charac-
terizing short-term memory abilities of LMs. We
apply it to two particular neural LM architectures
that possess the architectural ingredients to hold
past items in memory: attention-based transformers
(Vaswani et al., 2017) and long short-term mem-
ory networks (Hochreiter and Schmidhuber, 1997,
LSTM). Whereas LSTMs incorporate the past by
reusing the results of processing from previous time
steps through dedicated memory cells, transform-
ers use the internal representations of each of the
previous tokens as input. These architectural ingre-
dients alone, however, are not sufficient for a model
to have memory. We hypothesize that whether or
not the model puts this memory capacity to use
depends on whether the training task (next word
prediction) requires it — the parameters control-
ling the activation of context representations and
subsequent retrieval computations are in both cases
learned.

Our goal is to determine whether and when the
LMs we study maintain and retrieve verbatim rep-
resentations of individual prior tokens. First, we
measure the detail of the context representation:
does the LM maintain a verbatim representation of
all prior tokens and their order, or does it instead
combine multiple prior tokens into a summary rep-
resentation, like a semantic gist? Second, we con-
sider the resilience of the memory to interference:
after how many intervening tokens do the represen-
tation of prior context become inaccessible? Third,
we consider the content-invariance of the context
representations: does the resilience of prior context
depend on semantic coherence of the prior infor-
mation, or can arbitrary and unrelated information
sequences be retrieved?

2 Related Work

Previous studies examined how properties of lin-
guistic context influenced next-word prediction ac-
curacy in transformer and LSTM LMs trained on
text in English. Khandelwal et al. (2018) showed
that LSTM LMs use a window of approximately
200 tokens of past context and word order informa-

tion of the past 50 words, in the service of predict-
ing the next token in natural language sequences.
Subramanian et al. (2020) applied a similar analy-
sis to a transformer LM and showed that LM loss
on test-set sequences was not sensitive to context
perturbations beyond 50 tokens. O’Connor and
Andreas (2021) investigated whether fine-grained
lexical and sentential features of context are used
for next-word prediction in transformer LMs. They
showed that transformers rely predominantly on
local word co-occurrence statistics (e.g. trigram
ordering) and the presence of open class parts of
speech (e.g. nouns), and less on the global struc-
ture of context (e.g. sentence ordering) and the
presence of closed class parts of speech (e.g. func-
tion words). In contrast with these studies, which
focused on how specific features of past context
affect LM performance on novel input at test time,
our paradigm tests for the ability of LMs to retrieve
nouns that are exactly repeated from prior context.

In a separate line of work bearing on memory
maintenance in LSTMs, Lakretz et al. (2019, 2021)
studied an LSTM’s capacity to track subject-verb
agreement dependencies. They showed that LSTM
LMs relied on a small number of hidden units and
the gating mechanisms that control memory con-
tents. Here, we are similarly concerned with mem-
ory characteristics that support LM performance,
but — akin to behavioral tests in cognitive science
— we infer the functional properties of LM mem-
ory by manipulating properties of repeated noun
lists and observing the effects these manipulations
have on the behavior (surprisal) of the LM rather
than on its internal representation.

A third related area of research proposes ar-
chitectural innovations that augment RNNs and
LSTMs with dedicated memory components (e.g.
Weston et al., 2015; Yogatama et al., 2018) or im-
prove the handling of context and memory in trans-
formers (see Tay et al., 2020, for review). Here,
we are not concerned with improving architectures,
but with developing a paradigm that allows us to
study how LMs put to use their memory systems,
whether those are implicit or explicit.

3 Methods

3.1 Paradigm: Lists of Nouns in Context

Noun lists were embedded in brief vignettes (Fig-
ure 1, A and B). Each vignette opened with a pref-
ace string (e.g. “Before the meeting, Mary wrote
down the following list of words:”). This string was
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followed by a list of nouns (the first list), which
were separated by commas; the list-final noun was
followed by a full stop (e.g. “county, muscle, va-
por.”). The first list was followed by an intervening
text, which continued the narrative established by
the preface string (“After the meeting, she took a
break and had a cup of coffee.”). The intervening
text was followed by a short prompt string (e.g.
“After she got back, she read the list again:”) after
which another list of nouns, either identical to the
first list or different from it, was presented (we re-
fer to this list as the second list). The full vignettes
are provided in Section A.1 of the Appendix.

3.2 Semantic Coherence of Noun Lists

We used two types of word lists: arbitrary and se-
mantically coherent. Arbitrary word lists (e.g. “de-
vice, singer, picture”) were composed of randomly
sampled nouns from the Toronto word pool.1 Se-
mantically coherent word lists were sampled from
the categorized noun word pool,2 which contains
32 lists, each of which contains 32 semantically
related nouns (e.g. “robin, sparrow, heron, ...”).
All noun lists used in experiments are reported in
Tables 1 and 2 of the Appendix.

After ensuring there were at least 10 valid, in-
vocabulary nouns per semantic set (as this was the
maximal list length we considered), we were able
to construct 23 nouns lists. Finally, to reduce the
variance attributable to tokens occurring in specific
positions, we generated 10 “folds” of each list by
circularly shifting the tokens in the first list 10
times. In this way, each noun in each list was tested
in all possible ordinal positions. This procedure
resulted in a total of 23× 10 = 230 noun lists.

3.3 Language Models

LSTM We used an adaptive weight-dropped
(AWD) LSTM released by Merity et al. (2018)3,
which had 3 hidden layers with 400-dimensional
input embeddings, 1840-dimensional hidden states,
and a vocabulary size of 267,735. The model con-
tained 182.3 million trainable parameters. It was
trained on the Wikitext-103 corpus (Merity et al.,
2016) and achieved a test-set perplexity of 41.8.

1http://memory.psych.upenn.edu/files/
wordpools/nouns.txt

2http://memory.psych.upenn.edu/files/
wordpools/catwpool.txt

3Our code is available at: https://github.com/
KristijanArmeni/verbatim-memory-in-NLMs.
Our experiment data are available at: https:
//doi.org/10.17605/OSF.IO/5GY7X

Full training hyperparameters are reported in Sec-
tion A.4 of the Appendix.

Transformer We trained a transformer LM on
approximately 40 million subset of the Wikitext-
103 benchmark.4 We retrained the BPE tokenizer
on the concatenated Wikitext-103 training, evalu-
ation, and test sets and set. The vocabulary had
28,439 entries. We trained both the 12-layer GPT-2
architecture (known as “GPT-2 small”, 107.7 mil-
lion trainable parameters) and, as a point of com-
parison, smaller, 1-, 3-, and 6-layer transformers
(29.7, 43.9, and 65.2 million trainable parameters,
respectively). The context window was set to 1024
tokens and embedding dimension was kept at 768
across the architectures. The perplexities for the
12-, 6-, 3- and 1-layer models on the Wikitext-103
test set were 40.3, 46.7, 60.1, and 93.2, respectively.
The full transformer training details are reported in
Section A.5 of the Appendix.

We also evaluated the transformer LM pretrained
by Radford et al. (2019), accessed through the Hug-
ging Face Transformers library (Wolf et al., 2020).
We refer to this model simply as GPT-2. It was
trained on the WebText corpus, which consists of
approximately 8 million online documents. We
used the GPT-2-small checkpoint which has 12
attention layers and 768-dimensional embedding
layer. The model contains 124 million parameters
and has a vocabulary of 50,257 entries. We used
the maximum context size of 1024 tokens.

3.4 Surprisal

For each token wt in our sequence, we com-
puted the negative log likelihood (surprisal):
surprisal(wt) = − log2 P (wt|w1, . . . , wt−1).
In cases when the transformer byte-pair encoding
tokenizer split a noun into multiple tokens—e.g.
“sparrow” might be split into “sp” and “arrow”—
we summed the surprisals of the resulting tokens.

Quantifying retrieval: repeat surprisal To
quantify how the memory trace of the first list
affected the model’s expectations on the second
list, we measured the ratio between the surprisal
on the second list and the surprisal on the first
list: repeat surprisal = s̄(L2)

s̄(L1)
×100, where

s̄(L1) refers to mean surprisal across non-initial
nouns in the first list and s̄(L2) to mean surprisal
across all non-initial nouns in the second list. We

4After retokenization with the BPE tokenizer, the training
corpus contained 44,824,396 subword tokens.

407

http://memory.psych.upenn.edu/files/wordpools/nouns.txt
http://memory.psych.upenn.edu/files/wordpools/nouns.txt
http://memory.psych.upenn.edu/files/wordpools/catwpool.txt
http://memory.psych.upenn.edu/files/wordpools/catwpool.txt
https://github.com/KristijanArmeni/verbatim-memory-in-NLMs
https://github.com/KristijanArmeni/verbatim-memory-in-NLMs
https://doi.org/10.17605/OSF.IO/5GY7X
https://doi.org/10.17605/OSF.IO/5GY7X


take a reduction in surprisal on second lists to indi-
cate the extent to which an LM has retrieved tokens
from the first list.

4 Transformer Results

We first describe the results of our experiments
with the two largest transformer models, the off-
the-shelf GPT-2 and the 12-layer transformer we
trained; LSTM results are discussed in Section 5,
and results with smaller transformers are discussed
towards the end of this section.

The transformers retrieved prior nouns and
their order; this capacity improved when the
model was trained on a larger corpus. We
tested whether the transformers could retrieve the
identity and order of 10-token noun lists (arbitrary
or semantically coherent). To this end, we con-
structed vignettes in which the second list was ei-
ther (a) identical to the first list, (b) a permutation
of the first list, or (c) a list of novel nouns not
present in the first list.5 We then measured retrieval
as reduction in surprisal from first to second list.

When the two transformers were presented with
second lists that were repeated version of the first
ones (blue in Fig. 2, B and C), token-by-token
surprisal decreased compared to novel tokens, sug-
gesting that the transformers were able to access
verbatim representations of past nouns from con-
text. When the second list was a permutation of the
first one, surprisal was higher compared to when
it was repeated, indicating that the transformers
expected the nouns to be ordered as in the first list.
Training set size played an important role in sup-
porting verbatim recall: surprisal differences were
considerably smaller for the transformer trained
on the 44 million Wikitext-103 corpus (Fig. 2, B)
compared to GPT-2 (Fig. 2, C).

In order to contextualize the magnitude of these
retrieval effects, we computed the relative surprisal
across all tokens in lists except the first one (Fig. 3).
When the first and second lists were identical (e.g.
with N = 10 arbitrary nouns), the Wikitext-103
transformer’s median relative surprisal was at 81%
of the first list, compared to 87% for the permuted
lists, and 101% for the novel lists. In GPT-2, repeat
surprisal was only 2% of the first list, much lower

5Novel nouns in the string were introduced by randomly
selecting a list of nouns from one the 22 remaining lists in the
noun pool. In semantically coherent lists, novel nouns were
drawn from a different semantic category than the nouns in
the first list.

than the 58% for the permuted lists, and 96% of
the novel list.

Retrieval in GPT-2 was robust to the exact phras-
ing of the text that introduced the lists. Replacing
the subject ‘Mary’ with ‘John’ in the vignette, re-
placing the colon with a comma or randomly per-
muting the preface or the prompt strings did not
affect the results (Fig. 7, bottom, Appendix A). By
contrast, the same perturbations reduced retrieval
effects for Wikitext-103 (Fig. 7, top, Appendix A),
supporting the conclusion that larger training cor-
pus size contributes to robustness of transformer
retrieval.

Transformer retrieval was robust to the num-
ber of items being retrieved. In studies of hu-
man short-term memory, performance degrades as
the number of items that need to be retained in-
creases (“set-size effects”, Oberauer et al. 2018).
Is our LMs’ short-term memory similarly taxed
by increasing the set size? We varied the number
of tokens to be held in memory with N tokens ∈
{3, 5, 7, 10}. For this comparison, the length of
the intervening text was kept at 26 tokens. Results
reported in Fig. 3 show that for both the smaller
Wikitext-103 transformer and the larger GPT-2,
verbatim recall was, for the most part, consistent
across the different set sizes. For GPT-2, repeat sur-
prisal increased monotonically with set size only
when the order of nouns in second list, either se-
mantically coherent or arbitrary, was permuted.6

Transformer retrieval was robust to the length
and content of intervening text, but scrambling
the intervening text reduced retrieval of or-
der information. For how long are individual
items retained in the memory of the LM? We
tested this by varying the length of the interven-
ing text for N tokens ∈ {26, 99, 194, 435} (see
Fig. 1, panel B). To generate longer intervening text
samples, we continued the narrative established
by the initial preface string (“Before the meeting,
Mary wrote down the following list of words:”).
All intervening text strings ended with the same
prompt string (“When she got back, she read the
list again:”) which introduced the second list.

6This increase in surprisal with set size for permuted se-
quences is to be expected, of course, because, if the model
has perfect memory of the list of tokens, but cannot predict
the order in which they will reoccur, then its probability of
guessing the next item in a permuted list where k items have
yet to be observed will be 1/k, and the mean value of k is
larger for larger set sizes.
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Figure 2: Median surprisal (over N list = 230) broken down per token position in second lists of arbitrary nouns
and semantically coherent nouns. Negative values on x-axis represent 4 tokens of prompt string that introduced
the second list: “(she) read the list again”. The 0-index marks the first noun in the list. Line style and hue denote
manipulation of the second list relative to the first list. Error bands denote 95% confidence interval around the
median (bootstrap estimate).

Memory retrieval in the transformer models,
whether trained on Wikitext-103 or a much larger
corpus size, was largely invariant to the size of
the intervening text between the first and second
lists (Fig. 3, B and C, respectively). The results
suggest that the two transformers were retrieving
prior nouns using a form of direct indexing of the
relevant words from the input buffer, rather than
implementing a generic memory heuristic, such as
predicting that the nouns that have occurred in the
most recent 20 tokens will recur.

Increasing the length of well-formed, semanti-
cally coherent intervening text does not, then, inter-
fere with memory retrieval in the transformer. In
models of human memory, current context, such
as immediately preceding text, can indeed be used
as a cue for recalling the encoded items (Kahana,
2020). Does the transformers’ capacity to retrieve
copies of past nouns rely on the content and struc-
ture of the intervening text? We tested this by
creating incongruent and scrambled versions of the
longest intervening text (435 tokens). An incongru-
ent condition was created by using intervening text
that was syntactically well-formed but semantically
incongruent with respect to the preface. The scram-
bled version was created by randomly permuting
the tokens of the intervening text.

The transformers’ retrieval of past tokens was

largely unaffected by the specific content of the
intervening text, as long as the intervening text was
coherent/well-formed (Fig. 4). However, in GPT-2,
median surprisal across permuted arbitrary lists of
nouns increased by 8% when the intervening text
was scrambled (Fig. 4, bottom) compared to well-
formed text. This suggests that GPT-2 relied on
narrative coherence of the intervening text, rather
than its aggregate semantic content alone, as a cue
for retrieving the ordering information of arbitrary
word lists.

Transformer verbatim recall is learned, guided
by attention, and requires increase in size. Hav-
ing shown that the transformer LMs could flexibly
and robustly retrieve words and their ordering ver-
batim from short-term memory (Figs. 3 and 4), we
next asked: is this ability learned, or does it de-
rive directly from the architecture? To address this
question, we re-ran the experiment with varying
number of tokens in lists with a randomly initial-
ized transformer model (architecture as in Section
3.3). This random-weights model was unable to
retrieve words or their order: for example, repeat
surprisal remained at 100% relative to first lists re-
gardless of whether or not the nouns in the second
list have appeared before (Fig. 8, top, Appendix
A).

Next we tested whether the transformers’ abil-
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Figure 3: Verbatim token retrieval for varying number of tokens being retrieved (left) and the length of the intervening
text (right). Reported is proportion of list-averaged surprisal on second relative to first list of nouns. Points show
group median (over N list = 230). Error bars denote 95% confidence interval around the median (bootstrap estimate).
For set size manipulation, intervening text is fixed at 26 tokens. For intervening text manipulation, set size is fixed
at 10 tokens.
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Figure 4: LM memory retrieval for different intervening texts. We plot relative list-averaged surprisal over all
non-initial tokens in lists. Points show group median (over N list = 230). Error bars denote 95% confidence interval
around the median (bootstrap estimate). Note that in the top-row plots y-axis starts at 60%.
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Figure 5: LM memory retrieval for models of different sizes. Reported is relative list-averaged surprisal over all
non-initial tokens in lists. Points show group median (over N list = 230). Error bars denote 95% confidence interval
around the median (bootstrap estimate). Note that in these plots y-axis starts at 70%.

ity to recall past tokens depended on the attention
mechanism (Bahdanau et al., 2014; Vaswani et al.,
2017) which allows it, in principle, to use all past
words, weighted according to their relevance, for
next word prediction. To test for the role of atten-
tion in verbatim retrieval, we randomly permuted
the rows of key and query matrices in each of the
12 attention layers of GPT-2 and reran the experi-
ment with varying number of tokens in lists. The
shuffled-attention model retained some capacity to
retrieve past nouns (Fig. 8, bottom, Appendix A),
but the effect was greatly reduced. For example,
repeat surprisal for lists of N = 10 semantically
coherent nouns was at 90% relative to first lists
for shuffled-attention, compared with 3% for the
intact model. Intriguingly, this shuffled-attention
model showed the same surprisal for repeated and
permuted lists, indicating that it was no longer ac-
cessing word order information from the original
list. Thus, the attention mechanism is necessary for
transformers to index past nouns and their order
from memory.

Finally, a deep layered architecture is a key char-
acteristic of transformers and performance typi-
cally scales with model size (Radford et al., 2019;
Kaplan et al., 2020). Does the capacity to per-
form verbatim recall depend on model size? To
address this question, we trained transformers with
1, 3, 6 and 12 layers on our 40-million subset of

Wikitext-103. Consistent with the hypothesis that
size – in addition to architecture – is crucial, the
smaller 1- and 3-layer models showed a modest
verbatim recall capacity, but were not sensitive to
order (e.g. the 3-layer model shows 90% repeat sur-
prisal for repeated and permuted lists of N = 10
tokens, Fig. 5). Sensitivity to order progressively
emerged in 6- and 12-layer models, where in the 12-
layer model repeat surprisal levels were 5% and 7%
lower for repeated relative to permuted 10-token
lists (Fig. 5). While this result confirms that even
transformers trained on smaller amounts of text can
exhibit short-term memory with sufficient increase
in complexity, it remains unclear whether it is the
increased depth or the parameter count alone that
contribute to this increase in performance.

5 LSTM Results

The LSTM retrieves gist-like memories over
short intervening distances, facilitated by se-
mantic coherence. The LSTM language model
expected nouns in the second list to belong to the
same semantic category as the first list, and es-
pecially to the category of the earliest nouns in
the first list. If the intervening text was no longer
than 26 tokens, LSTM repeat surprisal across non-
initial token positions (Fig. 3, A) showed a modest
decrease (5%) relative to first list, but only when
the nouns in the first and second lists came from
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Figure 6: LSTM verbatim token retrieval for varying
number of tokens being retrieved at short (4-token) in-
tervening text. Reported is proportion of list-averaged
surprisal on second relative to first list of nouns (repeat
surprisal). Points show group median (over N list =
230). Error bars denote 95% confidence interval around
the median (bootstrap estimate).

the same semantic category. Examining surprisal
values broken down by token position in the list
(Fig. 2, top) shows that in semantically coherent
lists of nouns, surprisal was higher for novel lists
than for repeated or permuted lists, but this memory
effect was only present for tokens near the begin-
ning of the list.

In light of this limited evidence for retrieval in
the LSTM across 26 intervening tokens, we exam-
ined whether the LSTM retrieves more successfully
over shorter intervals. We reduced the interven-
ing text to 4 tokens of coherent text (“Before the
meeting, Mary wrote down the following lists of
words. One was: <first list> And the other: <sec-
ond list>”). In this short-range retrieval setting, we
now observed a small reduction of relative repeat
surprisal of 5% and 4% for arbitrary lists of 3 or 5
nouns, respectively, as well as a stronger reductions
ranging from 12% (3-token list) to 5% (10-token
list) for semantically coherent lists (Fig. 6).

Overall, the reduction in surprisal was compa-
rable for repeated and permuted lists, indicating
that the LSTM did not predict that words would
occur in their original order. Taken together, the
experiments described in the section suggest that
the LSTM retrieves a semantic gist of the prior
list, rather than individual tokens in order. Con-
sistent with this notion of an aggregate semantic
memory, we found that retrieval was stronger for se-
mantically coherent lists, for which an aggregated
semantic representation would be closer to each of
the individual words in the list.

6 Discussion

Short-term memory—the capacity to temporar-
ily store and access recent context for current
processing—is a crucial component of language
prediction. In this paper, we introduced a paradigm
for characterizing a language model’s short-term
memory capabilities, based on retrieval of verbatim
content (sequences of nouns) from prior context,
and used this paradigm to analyze LMs with trans-
former and LSTM architectures.

The transformers we tested were able to access
verbatim information – individual tokens and their
order – from past context. Furthermore, this verba-
tim retrieval was learned and largely resilient to in-
terference from intervening context. This indicates
that the models (especially those trained on the
largest corpora) implemented, via learning, a high-
resolution memory system. The ability to access
individual tokens may in turn support functions that
rely on token indexing, akin to the functionality of
the general-purpose working memory (WM) buffer
proposed in cognitive science (Baddeley, 2003).

Such flexible WM could subserve the reported
ability of transformers to rapidly generalize to new
tasks at runtime (Brown et al., 2020), also known as
“in-context learning”. Indeed, in concurrent work
to ours, Olsson et al. (2022) observed that small
(2 or 3-layer) attention-only transformers devel-
oped attention heads that functioned as so-called
“induction heads”. These effectively performed pat-
tern matching by looking over the past context for
any occurrences of the current token and predict-
ing the same (or similar) sequence completions.
Attention heads that learned this basic inductive
computation were also shown to perform more gen-
eral in-context learning for complex tasks such as
language translation. Similarly, it has been sug-
gested that in standard RNNs such meta-learning
requires a short-term memory mechanism known
as fast weights (Schmidhuber, 1992; Ba et al.,
2016) which can be thought of as analogous to
self-attention in transformers (Schlag et al., 2021).

However, a highly resilient verbatim memory
system could also be disadvantageous if it causes
the LM to place too much confidence on verbatim
features of prior context for next-word prediction.
Indeed, text generated from a transformer LM’s pre-
dictions can be highly repetitive (Holtzman et al.,
2020) – it is possible that an over-reliance on ac-
cessing short-term memory may underlie this ten-
dency.
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In contrast to the transformers, the LSTM model
only retrieved a coarse semantic category of pre-
vious lists, without fine-grained information about
word order, and was only able to do so when the
intervening text was short. This is in spite of the
fact that the LSTM had a larger parameter count
than the transformer models and obtained compa-
rable perplexity on WikiText103 (Table 3). The
tendency of LSTMs to rely on the fuzzy represen-
tation of past context for next-word prediction has
been reported previously (Khandelwal et al., 2018).
Whereas in sequence-to-sequence tasks requiring
recall of short lists of pseudowords, recurrent neu-
ral networks are a good model of human short-term
memory (Botvinick and Plaut, 2006), later research
has shown that the copying capacity of LSTMs
does not generalize to longer sequences of symbols
(Grefenstette et al., 2015).

Is tracking a shallow representation of context
always a limitation? Not necessarily. Humans
frequently maintain a “good-enough” (i.e. gist-
like) representation of context (Ferreira and Patson,
2007). When the potential for memory capacity is
limited (e.g. when context must be compressed to
a single hidden state as in an RNN) maintaining
a broad, gist-like – as opposed to token-specific –
memory of context may be more efficient overall.

The memory paradigm and the measure of re-
peat surprisal introduced here allowed us to pin-
point computational differences in how neural LMs
put their architectural capacities to use for stor-
ing and accessing context in short-term memory
when processing English text. While our decision
to use autoregressive (left-to-right) LMs was ul-
timately based on our initial cognitive psycholin-
guistic motivation, it may be fruitful to apply our
paradigm to other classes of transformer models,
for example, bidirectional encoder-only transform-
ers such as BERT (Devlin et al., 2019) and encoder-
decoder models such as T5 (Raffel et al., 2020).
These architectures have gained traction in applied
NLP settings and it would be informative to test
whether this paradigm can provide diagnostic value
for LM performance on other benchmarks. Simi-
larly, if the compressed context representation in
LSTMs serves as a short-term memory bottleneck,
it would be instructive to test LSTM LM archi-
tectures when explicitly augmented with attention
(Bahdanau et al., 2014) or a copy-mechanism (Gu
et al., 2016). Finally, our attention-ablation experi-
ment in the transformer was performed uniformly

across layers; future studies could focus on targeted
ablations of specific attention heads to pinpoint the
mechanistic locus of short-term memory (Olsson
et al., 2022).

7 Conclusions

Pretrained language models, and self-supervised
predictive learning broadly, have received in-
creased attention in terms of their (in)sufficiency
as a framework for achieving feats of human-like
language processing (Kaplan et al., 2020; Linzen
and Baroni, 2021). Here, akin to the line of work
evaluating cognitive linguistic capacities of neu-
ral LMs (Futrell et al., 2019; Ritter et al., 2017),
we tested the ability of language models to per-
form an important aspect of human intelligence
for natural language — flexibly accessing items
from short-term memory — and showed that the
transformer model, even though not trained with a
short-term memory objective, retrieved remarkably
detailed representations of past context. This capac-
ity emerged from training: a transformer trained
on a small amount of data showed more modest
retrieval abilities. The retrieval abilities of LSTM
LMs, by contrast, were different; the LSTM main-
tained a summary representation of the list, which
was not sensitive to word order. We conclude that
our paradigm can illuminate the memory systems
that arise in neural language models.

8 Broader Impact

The research reported here addresses a specific,
basic research question about the functional orga-
nization of short-term memory in contemporary
language processing algorithms. Although from a
broader perspective, the nature of (working) mem-
ory is likely an important question in developing
human-like artificial intelligence systems deployed
in real-life scenarios, it is, in our opinion, unlikely
that the results reported here could pose or lead to
novel societal risks as we are primarily trying to
better the understanding of the already developed
systems.
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A.1 Vignettes
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Intact intervening text:
Before the meeting, Mary wrote down the following list of words:
W1,W2, ...,WN

intervening_text1: After the meeting, she took a break and had a cup of coffee. When she got back,
she read the list again: W1,W2, ...,WN

intervening_text2: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. When she got
back, she read the list again: W1,W2, ...,WN

intervening_text3: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. While she
was walking, she listened to the wonderful bird songs. During the walk, Mary could not stop thinking
about the meeting. She was thinking about the discussions she had with her coworkers. Luckily, she
met her neighbors Sarah and Ryan and they talked briefly. When she got back, she read the list again:
W1,W2, ...,WN

intervening_text4: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. While she was
walking, she listened to the wonderful bird songs. During the walk, Mary could not stop thinking about
the meeting. She was thinking about the discussions she had with her coworkers. Luckily, she met her
neighbors Sarah and Ryan and they talked briefly. The couple has just moved to the area from a different
city. Mary thought they were very a lovely couple and made good company. They were just getting to
know the neighborhood and this was their first time in the park. Mary was curious what were their first
impressions of the town. The neighborhood felt very safe to them and they absolutely loved the park. This
was only their second time visiting the park. There was so much to discover, so many winding paths and
hidden gardens. When she got back, she read the list again: W1,W2, ...,WN

intervening_text5: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. While she was
walking, she listened to the wonderful bird songs. During the walk, Mary could not stop thinking about
the meeting. She was thinking about the discussions she had with her coworkers. Luckily, she met her
neighbors Sarah and Ryan and they talked briefly. The couple has just moved to the area from a different
city. Mary thought they were very a lovely couple and made good company. They were just getting to
know the neighborhood and this was their first time in the park. Mary was curious what were their first
impressions of the town. The neighborhood felt very safe to them and they absolutely loved the park. This
was only their second time visiting the park. There was so much to discover, so many winding paths and
hidden gardens. It was not a big park by any means, but it offered a quiet refuge where one can escape the
worries of everyday life. It also offered opportunities to do sports of all kinds. Young people from around
the area played basketball, football, or volleyball. Others took part in outdoor workout sessions. Young
families were going on a stroll with their children. Finally, there were so many people who brought their
dogs for a walk. It was incredibly satisfying to see the joy our animal friends get when you throw them a
ball. All this diversity of people and activities made a walk in this park a truly rewarding and relaxing
daily routine. In fact, Sarah and Ryan were thinking of getting a dog. They have not fully decided yet
but they really wanted to spend more time outdoors. Mary liked dogs as well, but she was more of a cat
person herself. She and her husband had two cats. One was two and the other four years old. They were
very independent and spent most of their time outdoors. Mary thought having an animal was a great idea.
They talked for a little bit and then Sarah and Ryan invited her to come over for a cup of coffee. Mary
said she had time over the weekend. When she got back, she read the list again: W1,W2, ...,WN
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Scrambled intervening text:
Before the meeting, Mary wrote down the following list of words:
W1,W2, ...,WN

intervening_text1: After a break, a cup and coffee of had she the took meeting. When she got back,
she read the list again: W1,W2, ...,WN

intervening_text2: Outside the the beautiful and park flowers blooming were in and was warm really.
After, walk for Mary the a went meeting. It needed busy break she day was a and a. When she got back,
she read the list again: W1,W2, ...,WN

intervening_text3: Luckily and and met Sarah they Ryan briefly talked her, neighbors she. Thinking
during, stop meeting the not about Mary the could walk. The while walking to songs bird listened
wonderful, she she was. After, walk for Mary the a went meeting. Had she about she coworkers her
with the was discussions thinking. Outside the the beautiful and park flowers blooming were in and
was warm really. It needed busy break she day was a and a. When she got back, she read the list again:
W1,W2, ...,WN

intervening_text4: First they their was neighborhood getting and the in park the this to were time
know just. There paths so much, and many gardens hidden winding to was discover so. The while walking
to songs bird listened wonderful, she she was. Had she about she coworkers her with the was discussions
thinking. From the just area city different the a moved couple to has. The absolutely and very them loved
they park the safe neighborhood to felt. Outside the the beautiful and park flowers blooming were in and
was warm really. And Mary were couple company good lovely made very thought a they. Luckily and
and met Sarah they Ryan briefly talked her, neighbors she. Thinking during, stop meeting the not about
Mary the could walk. After, walk for Mary the a went meeting. Their this park visiting second was the
time only. Impressions Mary what first town the of were was their curious. It needed busy break she day
was a and a. When she got back, she read the list again: W1,W2, ...,WN

intervening_text5: It needed busy break she day was a and a. First they their was neighborhood
getting and the in park the this to were time know just. Had she about she coworkers her with the was
discussions thinking. Of they independent most outdoors time their and were spent very. Get it friends
them our joy satisfying when the throw ball a animal to was you see incredibly. The while walking to
songs bird listened wonderful, she she was. Weekend had time Mary said the over she. An Mary idea
a animal thought great was having. Mary a she was as but cat of herself person more well liked, dogs.
It of opportunities kinds sports to also all do offered. Cats husband had she and two her. They spend
they really fully but more to outdoors time wanted decided have yet not. A a and of rewarding park all
in made this activities relaxing routine daily truly walk people this and diversity. There paths so much,
and many gardens hidden winding to was discover so. Finally dogs who were people for brought walk
a their so, many there. Luckily and and met Sarah they Ryan briefly talked her, neighbors she. The
absolutely and very them loved they park the safe neighborhood to felt. Outside the the beautiful and park
flowers blooming were in and was warm really. Young football basketball around played„ volleyball or
the people area from. Their this park visiting second was the time only. To Sarah a a for her they Ryan
then invited and cup coffee of over come and little talked bit for. From the just area city different the a
moved couple to has. And Mary were couple company good lovely made very thought a they. Young with
going children stroll on families their a were. Worries a means escape where a offered but one refuge can
it by any it the quiet of life everyday, big was park not. Of in Sarah thinking dog a were getting and fact
Ryan,. Thinking during, stop meeting the not about Mary the could walk. After, walk for Mary the a went
meeting. And one old four the was years other two. Impressions Mary what first town the of were was
their curious. Sessions in outdoor others took workout part. When she got back, she read the list again:
W1,W2, ...,WN
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Incongruent intervening text:
Before the meeting, Mary wrote down the following list of words:
W1,W2, ...,WN

intervening_text1: There is a voice in the waters of the great sea. It calls to man continually. When
she got back, she read the list again: W1,W2, ...,WN

intervening_text2: Sometimes it thunders in the tempest, when the waves leap high and strong and
the wild winds shriek and roar. Sometimes it whispers in the calm, small voice, as if to solicit our regard.
When she got back, she read the list again: W1,W2, ...,WN

intervening_text3: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. The sea has
much to say; far more than could possibly be comprehended in one volume, however large. It tells us of
the doings of man on its broad bosom, from the day in which he first ventured to paddle along shore to
the day when he launched his great iron ship, and rushed out to sea. When she got back, she read the list
again: W1,W2, ...,WN

intervening_text4: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. The sea has
much to say; far more than could possibly be comprehended in one volume, however large. It tells us of
the doings of man on its broad bosom, from the day in which he first ventured to paddle along shore to the
day when he launched his great iron ship, and rushed out to sea. Before proceeding to the consideration of
the wonders connected with and contained in the sea, we shall treat of the composition of the sea itself
and of its extent, depth, and bottom. What is the sea made of? Salt water, is the ready reply that rises
naturally to every lip. But to this we add the question, what is salt water? To these queries we give the
following reply, which, we doubt not, will rather surprise some of our readers. The salt of the ocean varies
considerably in different parts. When she got back, she read the list again: W1,W2, ...,WN

intervening_text5: After the meeting, Mary went for a walk. It was a busy day and she needed a
break. Outside was really beautiful and warm and the flowers in the park were blooming. The sea has
much to say; far more than could possibly be comprehended in one volume, however large. It tells us of
the doings of man on its broad bosom, from the day in which he first ventured to paddle along shore to the
day when he launched his great iron ship, and rushed out to sea. Before proceeding to the consideration of
the wonders connected with and contained in the sea, we shall treat of the composition of the sea itself
and of its extent, depth, and bottom. What is the sea made of? Salt water, is the ready reply that rises
naturally to every lip. But to this we add the question, what is salt water? To these queries we give the
following reply, which, we doubt not, will rather surprise some of our readers. The salt of the ocean varies
considerably in different parts. Near the equator, the great heat carries up a larger proportion of water by
evaporation than in the more temperate regions. Thus, as salt is not removed by evaporation, the ocean in
the torrid zone is salter than in the temperate or frigid zones. The salts of the sea, and other substances
contained in it, are conveyed there by the fresh water streams that pour into it from all the continent of the
world Here, as these substances cannot be evaporated, they would accumulate to such a degree as to render
the ocean uninhabitable by living creatures.The operations of the ocean are manifold. But we cannot
speak of these things without making passing reference to the operations of water, as that wonder-working
agent of which the ocean constitutes but a part. Nothing in this world is ever lost or annihilated. As the
ocean receives all the water that flows from the land, so it returns that water, fresh and pure, in the shape
of vapour, to the skies. where, in the form of clouds, it is conveyed to those parts of the earth where its
presence is most needed. After having gladdened the heart of man by driving his mills and causing his
food to grow, it finds its way again into the sea: and thus the good work goes on with ceaseless regularity.
When she got back, she read the list again: W1,W2, ...,WN

7

7The incongruent intervening text was sampled from: “The ocean and its wonder” by R. M. Ballantyne (obtained from:
https://www.gutenberg.org/ebooks/21754).
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Short intervening text:
Before the meeting, Mary wrote down the following lists of words. One was:
W1,W2, ...,WN

intervening_text1: And the other: W1,W2, ...,WN
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A.2 Noun Lists
A.3 Model Parameter Comparison
Comparison of model parameters across the three main models
used in the present study is reported in Table 3.

A.4 LSTM Training Details
The AWD LSTM model was trained using our own
version of the original repository. The hyperparam-
eters used for training are reported in Table 4 (es-
sentially input arguments to the original training script
which we used: https://github.com/salesforce/
awd-lstm-lm/blob/master/main.py).

To deploy the training job on an HPC cluster, we used a
single GPU (NVIDIA RTX8000), requested 14GB of RAM
and a job time of 48 hours. This was sufficient for the model
to converge to the perplexity reported in Table 3.

A.5 Transformer Training Details
Transformer training hyperparameters are reported
in Table 5. These are effectively input argu-
ments to the HuggingFace Trainer() (https:
//huggingface.co/transformers/v4.6.0/
main_classes/trainer.html) and GPT2Config()
(https://huggingface.co/transformers/v4.
6.0/model_doc/gpt2.html#gpt2config) classes.
The model was trained until convergence and training was
stopped (early stopping) when the loss did not decrease for at
least 0.01 bits in 5 consecutive evaluations.

To train the transformer model on a HPC cluster, we re-
quested a single GPU (NVIDIA RTX8000) with 44GB RAM
and 12 hours of job time.

A.6 Compute Resources for Short-term
Memory Evaluation Tasks

For a single job (single experimental condition, e.g., evalu-
ating GPT-2 on vignettes with N = 230 input sequences
containing exactly repeated, abstract noun lists of length 10
and intervening text set to 26 tokens), a single GPU device was
used and we typically requested ∼12 hours of core-walltime
and ∼ 4 GB of RAM. To evaluate the RNN models, requesting
06:00 (hh:mm) of walltime and 4GB was typically more than
sufficient to avoid any memory overflows.
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Table 1: Arbitrary lists of nouns used in present experiments.

list

1 patience, notion, movie, women, canoe, novel, folly, silver, eagle, center.
2 pleasure, pattern, leader, culture, worker, master, meadow, writer, apple, costume.
3 paper, belief, factor, total, comrade, angle, battle, pistol, nothing, riches.
4 cabin, doorway, candle, parent, monarch, kindness, lover, copy, soldier, kingdom.
5 future, legend, problem, flavor, prairie, forehead, illness, planet, canvas, chamber.
6 oven, patient, daughter, bubble, colour, product, echo, pepper, fountain, music.
7 village, shipping, beauty, football, merit, autumn, lumber, research, resort, rival.
8 county, muscle, vapor, shepherd, sickness, herald, value, mission, finger, building.
9 iron, onion, opera, attack, prison, butter, interest, colonel, commerce, beggar.
10 blanket, marriage, ticket, baby, treasure, event, weakness, cottage, cotton, judgment.
11 summer, bottom, meaning, campaign, voyage, cannon, helmet, thunder, hatred, stanza.
12 effort, province, parcel, temple, river, major, meeting, career, bargain, chimney.
13 acre, fortune, motive, question, service, minute, tiger, author, sorrow, parlor.
14 motor, lawyer, powder, habit, mountain, district, learning, leather, hero, water.
15 orange, letter, acid, stocking, olive, garden, feeling, motion, compass, model.
16 island, theory, person, season, supper, reason, patent, picture, custom, twilight.
17 dragon, pillow, aspect, chairman, marble, horror, justice, danger, bedroom, canal.
18 writing, pocket, training, circuit, cousin, chapter, quarter, button, turkey, surface.
19 sailor, matter, darkness, scatter, captain, tunnel, method, wagon, effect, arrow.
20 image, butcher, anchor, scholar, compound, tribute, victim, lily, witness, widow.
21 candy, window, detail, ocean, program, traffic, feather, array, pilot, silence.
22 vessel, robber, banner, kitten, lemon, failure, princess, painter, bullet, rifle.
23 engine, timber, harbour, party, level, money, single, system, unit, traitor.

Table 2: Semantically coherent lists of nouns used in present experiments.

list

1 window, door, roof, wall, floor, ceiling, room, basement, hearth, hall.
2 leg, arms, head, eye, foot, nose, finger, ear, hand, toe.
3 sailboat, destroyer, battleship, cruiser, submarine, yacht, canoe, freighter, tugboat, steamship.
4 robin, sparrow, heron, eagle, crow, hawk, parrot, pigeon, woodpecker, vulture.
5 apple, pear, banana, peach, grape, cherry, plum, grapefruit, lemon, apricot.
6 hammer, saw, nails, level, plane, chisel, ruler, wrench, drill, screws.
7 hurricane, tornado, rain, snow, hail, storm, wind, cyclone, clouds, sunshine.
8 oxygen, hydrogen, nitrogen, carbon, sodium, sulphur, helium, chlorine, calcium, potassium.
9 chemistry, physics, psychology, biology, zoology, botany, astronomy, mathematics, geology, microbiology.
10 piano, drum, trumpet, violin, clarinet, flute, guitar, saxophone, trombone, oboe.
11 knife, spoon, fork, pan, pot, stove, bowl, mixer, cup, dish.
12 trout, shark, herring, perch, salmon, tuna, goldfish, cod, carp, pike.
13 football, baseball, basketball, tennis, swimming, soccer, golf, hockey, lacrosse, badminton.
14 doctor, lawyer, teacher, dentist, engineer, professor, carpenter, salesman, nurse, psychologist.
15 oak, maple, pine, elm, birch, spruce, redwood, walnut, fir, hickory.
16 shirt, socks, pants, shoes, blouse, skirt, coat, dress, hat, sweater.
17 cancer, measles, tuberculosis, polio, malaria, leukemia, pneumonia, smallpox, influenza, encephalitis.
18 mountain, hill, valley, river, rock, lake, canyon, tundra, ocean, cave.
19 murder, rape, robbery, theft, assault, arson, kidnapping, larceny, adultery, battery.
20 log, cat, horse, cow, lion, tiger, elephant, pig, bear, mouse.
21 fly, ant, bee, mosquito, spider, beetle, wasp, moth, flea, butterfly.
22 blue, red, green, yellow, black, purple, white, pink, brown, blonde.
23 cotton, wool, silk, rayon, linen, satin, velvet, denim, canvas, felt.
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Table 3: Comparison of main architectural and training parameters between models used in the current study.

Model GPT-2 transformer (WT-103) AWD LSTM

Reference Radford et al (2019) ours Merity et al (2017)
Nr. layers 12 12 3
Train set size 40 (GB text data) 40 (M tokens) 102 (M tokens)
Nr. parameters (M) 117 107.7 182
Embedding size 768 768 400
Hidden size 768 768 1,840
Vocabulary size 50,257 28,439 267,735
Context window (n. tokens) 1024 1024 -
WikiText103 perplexity 37.50 40.3 41.9

Table 4: Hyperparameter setup for training AWD LSTM.

Parameter value

Vocabulary size (nr. tokens) 267,735
Nr. layers 3
Input embedding size 400
Hidden size 1840
Output dropout 0.4
Embedding dropout 0
Hidden dropout 0.01
Input dropout 0.01
Weight drop 0.2
Weight decay 1.2−6

Tie weights True
Learning rate 1−3

Epochs 44
Lr reduction (epochs) [25, 35]
Batch size 128
Adam alpha 0
Adam beta 0
BPTT 200

Table 5: Hyperparameters for the transformers trained as part of this work.

1 layer 3 layer 6 layer 12 layer

Activation function gelu_new gelu_new gelu_new gelu_new
Nr. layers 1 3 6 12
Nr. heads 3 3 6 12
Context size 1024 1024 1024 1024
Causal mask dimensionality 1024 1024 1024 1024
Vocabulary size 28,439 28,439 28,439 28,439
Per device train batch size 12 12 12 12
Per device eval batch size 12 12 12 12
Learning rate 0.00007 0.00007 0.00007 0.00006
Adam beta1 0.6 0.6 0.6 0.6
Adam beta2 0.05 0.05 0.05 0.1
Nr. parameters (millions) 29.7 43.9 65.2 107.7

423



3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Comma as cue

3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

’John’ instead of ’Mary’1) 2)

3) 4)

Verbatim retrieval in control vignettes

1) 2)

3 5 7 10
Set size

(n. tokens)

60

80

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Comma as cue

3) 4)

3 5 7 10
Set size

(n. tokens)

60

80

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

’John’ instead of ’Mary’

A)  Wikitext-103 transformer B) Radford et al (2019) transformer

3 5 7 10
Set size

(n. tokens)

60

80

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled preface string

3 5 7 10
Set size

(n. tokens)

60

80

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled prompt string

3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled preface string

3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled prompt string

-4 -2 0 2 4 6 8
token position relative to list onset

0

20

su
rp

ri
sa

l
(b

it)

Arbitrary list

-4 -2 0 2 4 6 8
token position relative to list onset

Semantically coherent list

LSTM-400 (Wikitext-103)

Second list
Repeated

Permuted

Novel

3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled preface string

3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled preface string

3 5 7 10
Set size

(n. tokens)

0

50

100

R
ep

ea
ts

ur
pr

is
al

(%
)

Arbitrary list

3 5 7 10
Set size

(n. tokens)

Semantically coherent
list

Second list
Repeated

Permuted

Novel

Shuffled preface string

Figure 7: Transformer memory retrieval results for control vignettes. We report relative list-averaged surprisal over
all non-initial tokens in lists (group median over N list = 230). Error bars denote 95% confidence interval around
the median (bootstrap estimate). Note that in the Wikitext-103 plots the y-axis starts at 70%.
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Figure 8: Repeat surprisal for randomly initialized transformer LM and a transformer with permuted attention
weights. Reported is relative list-averaged surprisal over all non-initial tokens in lists only. Points show group
median (over N list = 230). Error bars denote 95% confidence interval around the median (bootstrap estimate).
Note that in these plots y-axis starts at 70%.
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