
Proceedings of the 29th International Conference on Computational Linguistics, pages 1089–1097
October 12–17, 2022.

1089

Multi-Stage Framework with Refinement based Point Set Registration for
Unsupervised Bi-Lingual Word Alignment

Silviu Vlad Oprea∗
Amazon Alexa AI
Cambridge, UK

silviuvo@amazon.co.uk

Sourav Dutta
Huawei Research Centre

Dublin, Ireland
sourav.dutta2@huawei.com

Haytham Assem†
Amazon Alexa AI
Cambridge, UK

hithsala@amazon.co.uk

Abstract

Cross-lingual alignment of word embeddings
are important in knowledge transfer across
languages, for improving machine translation
and other multi-lingual applications. Current
unsupervised approaches relying on learning
structure-preserving transformations, using ad-
versarial networks and refinement strategies,
suffer from instability and convergence issues.
This paper proposes BioSpere, a novel multi-
stage framework for unsupervised mapping of
bi-lingual word embeddings onto a shared vec-
tor space, by combining adversarial initializa-
tion, refinement procedure and point set regis-
tration. Experiments for parallel dictionary in-
duction and word similarity demonstrate state-
of-the-art unsupervised results for BioSpere
on diverse languages – showcasing robustness
against variable adversarial performance.

1 Introduction and Background

Distributed word representations like
Word2Vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014) and FastText (Bojanowski
et al., 2017) capture rich semantic meaning, and is
used for a range of NLP tasks. Cross-lingual word
embeddings (CLWE) entails mapping vocabularies
of different languages onto a single vector
space for capturing semantic similarity across
languages (Upadhyay et al., 2016) – for machine
translation (Artetxe et al., 2018a; Lample et al.,
2018a,b), POS tagging (Zhang et al., 2016; Ahmad
et al., 2019), & named entity recognition (Tsai and
Roth, 2016; Xie et al., 2018; Chen et al., 2019).

Linguistic Correlation. This work is based
on the observation that, monolingual representa-
tion spaces learnt independently for different lan-
guages tend to exhibit similarity in terms of geo-
metric properties and orientations (Mikolov and
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Sutskever, 2013) 1. Further, the frequency of words
across languages have also been shown to follow
the Zipf’s distribution 2, with an overlap of nearly
70% for the most frequent words (Aldarmaki et al.,
2018) and 60% for synonyms (Dinu et al., 2015)
across language pairs. Existing techniques for ex-
tracting cross-lingual word correspondences rely
on above inter-dependencies to learn transforma-
tions across monolingual embedding spaces.

State-of-the-art & Challenges. Early ap-
proaches for obtaining multi-lingual word embed-
dings used parallel or comparable corpora (Gouws
et al., 2015; Mogadala and Rettinger, 2016; Vulić
and Moens, 2016). However, such methods are
not scalable as parallel datasets, especially for
low-resource languages, are scarce. Linear trans-
formations between two monolingual embedding
spaces (via optimization formulation (Schönemann,
1966)) using small manually created bi-lingual
dictionaries were thus proposed (Mikolov and
Sutskever, 2013; Artetxe et al., 2016). Words
having similar surface forms across languages
were used to induce seed dictionaries for semi-
supervised approaches (Artetxe et al., 2017; Zhou
et al., 2019; Doval et al., 2018). Rigid transfor-
mation based point set registration Cao and Zhao
(2018), supervised cross-lingual alignment, joint
training (Joulin et al., 2018; Jawanpuria et al.,
2019; Alaux et al., 2019; Wang et al., 2020) with
feedback-based learning (Yuan et al., 2020) were
also studied. Unsupervised bi-lingual word align-
ment using adversarial training (Barone, 2016;
Zhang et al., 2017a,b) were shown to produce good
results in MUSE (Conneau et al., 2018). Inverted
softmax (Smith et al., 2017) approach was shown to
tackle the “hubness problem” (Radovanović et al.,
2010) caused by dense vector space regions (called

1For example, the embedding vector distribution of num-
bers and animals in English show a similar geometric struc-
tural formation as their Spanish counterparts.

2observed on 10 million words from Wikipages on 30
languages (en.wikipedia.org/wiki/Zipf’s_law)

en.wikipedia.org/wiki/Zipf's_law)
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hubs), which adversely affected bi-lingual word
translation. However, the performance of adver-
sarial techniques were shown to suffer from con-
vergence instability. Further, Søgaard et al. (2018)
found the above approaches to fail for morpholog-
ically rich languages. Hence, optimization using
Gromov-Wasserstein, Sinkhorn distance, and Itera-
tive Closest Point were explored (Grave et al., 2019;
Alvarez-Melis and Jaakkola, 2018; Xu et al., 2018;
Hoshen and Wolf, 2018; Hartmann et al., 2019).
Adversarial auto-encoders using cyclic loss and
stacked refinements (Mohiuddin and Joty, 2019,
2020) recently achieved improved results.

Contributions. This paper proposes BioSpere
(Bi-Lingual Word Translation via Point Set
Registration and Refinement), a novel approach
for unsupervised bi-lingual word correspondence
induction. Our key contributions are as follows:
• BioSpere, an unsupervised multi-stage frame-
work for learning bi-lingual word alignment, by
using a combination of adversarial training, refine-
ment procedure, and point set registration;
• Unsupervised criterion using cycle-loss consis-
tency for adversarial model choice;
• Experiments on diverse language pairs showing
improved accuracy on different tasks; and,
• Robustness to hubness and convergence issues.

We next describe the detailed working of the
different modules in the BioSpere framework.

2 BioSpere Framework

Consider, two monolingual word embedding
spaces, X = {xn}Nn=1 and Y = {ym}Mm=1, trained
independently, to be provided as source and target
language representations, respectively. BioSpere
aims to map a word in the source language to
its translation (or semantically similar word) in
a target language, without cross-lingual supervi-
sion (Zhang et al., 2019). BioSpere consists of 4
modules – Align, Correspond, Transform and Gen-
erate (shown in Figure 1), as discussed next.
• Align Module – The Align module uses an ad-
versarial training (Ganin et al., 2016) to estimate
an initial mapping between the words across the
languages, by learning an rotational transforma-
tion between the input embeddings spaces. As-
suming x ∼ pdata(x) and y ∼ pdata(y) to be the
input data distributions, we learn two linear map-
pings F : X → Y and G : Y → X , referred
to as forward and backward generators, respec-
tively. A generative adversarial network is used

to train a model DY (discriminator) to discrim-
inate between generated synthetic target embed-
dings Ysyn = FX = {F (xn)}Nn=1, and the orig-
inal embeddings Y . Similarly, we train another
discriminator, DX , in the opposite direction to dis-
criminate between synthetic source embeddings
Xsyn = GY = {G(ym)}Mm=1 and the original X .

The adversarial loss formulates matching the
distribution of synthetic embeddings to the real
distribution. Thus, for forward generator F :
X → Y and its discriminator model DY , the
loss is: Ladv(F,DY , X, Y ) = Ey∼pdata(y)[logDY (y)] +

Ex∼pdata(x)[log(1−DY (F (x))] (refer Appendix B).
A similar loss Ladv(G,DX , Y,X) is used for back-

ward generator G : Y → X and discriminator DX .
We also incorporate the objective used in Mohi-

uddin and Joty (2020) (considering word transla-
tions are symmetric in general) – the learned gen-
erators should not contradict each other, but should
be cycle-consistent. That is, given a source em-
bedding x, the forward translation cycle should
attempt to produce an output that coincides with
x, i.e., G(F (x)) ≈ x; and vice-versa for the back-
ward translation cycle. Thus, we have:
Lcyc(F,G) = Ex∼data(x) ‖G(F (x))‖2+Ey∼data(y) ‖F (G(y))‖2

Following Conneau et al. (2018), to preserve dot
product and L2 distances from the monolingual
space, we ensure F and G remain roughly orthogo-
nal during training by alternating parameter update
with F ← (1+β)F−β(FF T )F (and analogously
for G). This corresponds to CycleGAN (Zhu et al.,
2017), a generative adversarial network (used in
our Align module), to provide an initial aligned
embedding space, XA = F (X) and YA = G(Y ).
• Correspond Module – The above alignment ob-
tained based on cyclic loss, might suffer from ad-
versarial network convergence instability. To ad-
dress this issue, the Correspond module performs
a refinement step based on symmetric re-weighting,
shown to be effective for alignment (Artetxe et al.,
2018a, 2016, 2017; Mohiuddin and Joty, 2020).

A synthetic seed parallel dictionary,D, is thus in-
duced by computing the mutual nearest neighbour
(in both directions) across the aligned embeddings
(XA and YA), as: σnm = δ(F (xn), ym)+δ(xn, G(ym)),
where δ is a distance measure in both XA and YA.
As in Conneau et al. (2018), we adopt the cross-
domain similarity local scaling (CSLS) measure,
which addresses the “hubness” problem. Observe,
σnm also uses bi-directional similarity computa-
tion. In our experiments, the dictionary induction



1091

Figure 1: Toy illustration (on en-ro language pair) of the different modules of BioSpere – (a) Align, (b) Correspond,
(c) Transform, and (d) Generate – for unsupervised parallel dictionary construction.

is on 25K most frequent words (out of 200K words)
from source and target languages. Symmetric re-
weighting is now performed via 3 steps:
(i) Whitening: makes the embedding dimensions
uncorrelated with unit variance using spherical
transformation. We use ZCA whitening, wherein
the original embeddings X and Y are normalized
and mean-centered, followed by a linear transfor-
mation via matrices Wx = (XTX)−1/2 and Wy =

(Y TY )−1/2, to obtain Xw = XWx and Yw = YWy.
(ii) Orthogonal Transformation: provides a trans-
formation of the whitened embeddings onto a com-
mon space. U , Σ, and V T are obtained via singu-
lar value decomposition of (XDw )TY Dw , where XDw
and Y Dw are whitened embeddings from the seed
dictionary D. The transformation is computed as
Xo = XwUΣ1/2 and Yo = YwV Σ1/2.
(iii) De-Whitening: restores the original variance
in the embedding dimensions of the transformed
vectors – computes a refined vector embedding as:
XC = XoU

T (XTX)1/2U and YC = YoV
T (Y TY )1/2V .

• Transform Module – The Transform module
performs a further refinement on the embeddings
XC and YC using the concept of point set registra-
tion. Specifically, we use the Coherent Point Drift
(CPD) algorithm (Myronenko and Song, 2010), an
unsupervised probabilistic framework which as-
signs point-to-point correspondence between two
sets of points, akin to finding word translation pairs
in our setting. Here, the task of aligning two em-
bedding spaces is performed using a density es-
timation problem based on the Gaussian Mixture
Model (GMM). We direct interested readers to the
details of CPD algorithm provided by Myronenko
and Song (2010), and briefly in Appendix A.

The use of CPD provides the following advan-
tages – (i) GMM enables BioSpere to tackle the

“hubness” problem (shown in Zhou et al. (2019)),
and (ii) CPD imposes Motion Coherence Theory
(MCT) (Yuille and Grzywacz, 1988) to force the
GMM centroids to move coherently as a group,
preserving the underlying topological structure.

We use affine CPD transformation, providing
a higher degree of freedom compared to the rigid
procedure of (Cao and Zhao, 2018) and Procrustes,
to compute the modified source embeddings as:
XT = (RXT

C ∗ s+ t)T , where R is a rotation matrix,
t is a translation vector, and s is a scaling constant.
We run CPD twice for each language pair, once in
each directions, generating the transformed source
and target language embeddings XT and YT .
• Generate Module – The Generate module iter-
ates between the above correspond and transform
steps until convergence is reached. Equipped with
the final alignedXT and YT embedding spaces, the
resultant parallel dictionary is computed using the
bi-directional CSLS measure, similar to the con-
struction of the intermediate dictionary in the Cor-
respond module. . For convergence of the iterative
symmetric re-weighting refinement and CPD, we
adopt the criteria of Artetxe et al. (2018b); Mohiud-
din and Joty (2020). The generated word pairs are
compared with ground-truth parallel dictionaries to
compute the accuracy of BioSpere.

Overview. Intuitively, the interactions across
the different components in BioSpere are as: The
adversarial module provides an initial embedding
space alignment, but might be prone to convergence
issues. The refinement stage then provides robust-
ness against such training losses. However, the
refinement process being a supervised approach by
definition, errors in intermediate synthetic dictio-
nary construction might propagate, degrading the
efficacy. The final point correspondence CPD step,
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Algorithm en-es en-de en-fr en-ru

→ ← → ← → ← → ←

Supervised Approaches

Non-Adv 81.4 82.9 73.5 72.4 81.1 82.4 51.7 63.7
DeMa-BME 82.8 85.4 77.2 75.1 83.2 83.5 49.2 63.6
GeoMM 81.4 85.5 74.7 76.7 82.1 84.1 51.3 67.6
RCSLS 84.1 86.3 79.1 76.3 83.3 84.1 57.9 67.2

Unsupervised Approaches

SinkHorn∗∗ 79.5 77.8 69.3 67.0 77.9 75.5 - -
Non-Adv 82.1 84.1 74.7 73.0 82.3 82.9 47.5 61.8
Was-Proc 82.8 84.1 75.4 73.3 82.6 82.9 43.7 59.1
GW-Proc 81.7 80.4 71.9 72.8 81.3 78.9 45.1 43.7
MUSE 81.7 83.3 74.0 72.2 82.3 82.1 44.0 59.1
VecMap†† 82.3 84.7 75.1 74.3 82.3 83.6 49.2 65.6
UMH 82.5 84.9 74.8 73.7 82.9 83.3 45.3 62.8
Adv-Auto 83.0 85.2 76.2 74.7 82.3 83.5 48.4 64.5

BioSpere 83.3 85.4 75.8 75.8 83.4 84.1 49.5 64.0
‘-’ denotes failure of the training network to converge reasonably
∗∗ Uses cosine similarity instead of CSLS, and results as reported in Zhou et al. (2019)
†† Results taken from Zhou et al. (2019)

Table 1: CSLS@1 word translation results on the
dataset of Conneau et al. (2018).

being unsupervised, is agnostic to such errors and
provides enhanced cross-lingual embedding space
alignment. The overall BioSpere framework (Cy-
cleGAN + SR + affine CPD) is seen to perform the
best and robustly across different languages in our
empirical evaluations. More details and evaluations
can be found in (Oprea et al., 2020).

3 Empirical Evaluation

We evaluate BioSpere on mapping semantically
similar words across languages, for bi-lingual dic-
tionary induction, word similarity and sentence
translation retrieval tasks across diverse languages.

Dataset. We follow the setup of Conneau et al.
(2018), and use FastText monolingual vector em-
beddings (with 300 dimensions) (Bojanowski et al.,
2017) for the top 200K most frequent words of
each language as input vocabulary. We consider
8 different language pairs (including morphologi-
cally rich) – English (en), German (de), French (fr),
Spanish (es), Italian (it), Russian (ru), Hebrew (he),
Finnish (fi), and Romanian (ro) – a mix of isolating,
fusional and agglutinative languages with depen-
dent and mixed marking (Søgaard et al., 2018).

Evaluation. On word translation (dictionary in-
duction), we use the gold dictionary with 1,500
source test words (and 200K target vocabulary)
(github.com/facebookresearch/MUSE), while sentence
translation retrieval uses Europarl corpus contain-
ing 2,000 source and 200K target sentences. We
report Precision@1 (P@1) based on CSLS crite-
ria (Conneau et al., 2018). For word similarity
on SemEval 2017 data (Camacho-Collados et al.,

2017) we report the Pearson’s correlation.
Baselines. The performance of BioSpere is com-

pared against the following unsupervised methods:
(1) MUSE (Conneau et al., 2018) – Uses

GAN (Goodfellow et al., 2014) to learn transfor-
mations with Procrustes (Schönemann, 1966) 3;

(2) Adv-Auto (Mohiuddin and Joty, 2020) – State-
of-the-art using adversarial auto-encoder to cre-
ate synthetic dictionary, refined by symmetric re-
weighting & Procrustes strategies 4;

(3) VecMap (Artetxe et al., 2018a) – Self-learning
iterative algorithms exploiting structural similari-
ties between embedding spaces for alignment 5;
(4) SinkHorn (Xu et al., 2018): GAN trained on

cyclic loss and Sinkhorn distance (Cuturi, 2013);
(5) Non-Adv (Hoshen and Wolf, 2018) – Uses

dimensionality reduction with Iterative Closest
Point (Besl and McKay, 1992) algorithm;

(6) Was-Proc (Grave et al., 2019) – Computes bi-
stochastic matrix for assignment by jointly optimiz-
ing Wasserstein dist. (Mémoli, 2011) & Procrustes;

(7) GW-Proc (Alvarez-Melis and Jaakkola, 2018)
– Formulates optimal flow across domains using
Gromov-Wasserstein distance (Mémoli, 2011); and

(8) UMH (Alaux et al., 2019) – Uses language
correlation for learning via constraint optimization.

We also report the supervised approaches:
(1) RCSLS (Joulin et al., 2018): Optimizes CSLS

criteria for learning (Conneau et al., 2018);
(2) GeoMM (Jawanpuria et al., 2019): Language

specific geometric rotations are learnt to align; and
(3) DeMa-BME (Zhou et al., 2019): Weakly-

supervised approach for learning Gaussian Mixture
Model between embeddings spaces.

Unsupervised Model Selection. For choosing
the best performing model setting during adver-
sarial training and convergence (a challenge in
unsupervised setting), we follow Conneau et al.
(2018) and use CSLS measure (denoted as DMC)
to quantify the closeness of source and target
mapped embedding spaces. However, adopting
cyclic-consistency, we extend CSLS (termed as
DualDMC) to measure the average bi-directional
cosine similarity between source and target spaces
(as in Correspond module), for model selection.

Parameter Setting. For a robust framework, we
did not perform extensive parameter search, and
most parameters were set to fixed values, or se-
lected via two successive degradation of the unsu-

3Code from github.com/facebookresearch/MUSE
4

ntunlpsg.github.io/project/unsup-word-translation
5Code obtained from github.com/artetxem/vecmap

github.com/facebookresearch/MUSE
github.com/facebookresearch/MUSE
ntunlpsg.github.io/project/unsup-word-translation
github.com/artetxem/vecmap
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Algorithm en-fi en-he en-ro Algorithm en-de en-es en-it Algorithm en-es en-fr en-fi

→ ← → ← → ← → ← → ← → ← → ← → ← → ←

MUSE 43.7 53.7 38.0 - 58.0 66.0 MUSE 0.708 0.713 0.712 0.711 0.710 0.712 MUSE 75.1 73.9 69.1 69.9 64.2 64.0
VecMap 49.9 63.5 44.6 57.7 64.2 71.8 VecMap 0.719 0.719 0.721 0.721 0.746 0.746 VecMap 74.7 74.4 69.6 69.3 64.4 64.1
Adv-Auto 49.8 65.5 46.1 58.6 62.6 71.9 Adv-Auto - 0.720 0.724 0.718 0.722 0.721 Adv-Auto 75.0 75.7 68.0 71.0 64.1 64.5
BioSpere 49.9 65.5 46.6 59.1 65.4 74.3 BioSpere 0.726 0.725 0.730 0.728 0.722 0.723 BioSpere 76.7 76.3 70.2 70.9 65.1 65.9

(a) (b) (c)

Table 2: Performance of competing approaches for (a) CSLS@1 on word translation for morphologically rich languages, (b) Pearson’s Correlation score for
word similarity task on SemEval 2017 dataset, and (c) Precision@1 results for sentence translation retrieval on Europarl data.

pervised DualDMC criteria. Following Conneau
et al. (2018), we fed the adversarial discriminator
with the 50K most frequent words, and the discrim-
inator had an input dropout layer with a rate of 0.1.
In our experiments, we only tuned the weight as-
signed to the cyclic loss between 5 and 10, and ran
the framework under different random seeds, pick-
ing the best model using unsupervised DualDMC.

3.1 Experimental Results

Word Translation – involves the retrieval of a
source word translation to a target language for
parallel dictionary construction. We use the ground-
truth dictionaries of Conneau et al. (2018). From
Table 1, we observe that BioSpere provides better
translation results in nearly all of the four language
pairs (across unsupervised methods). We achieve
better results compared to even supervised methods
like Non-Adv and DeMa-BME, and are compara-
ble to RCSLS (e.g., en→ es and en→ fr). Since,
MUSE, VecMap, and Adv-Auto consistently per-
form well, they are selected as competing baselines
for the remaining experiments. We also explore the
performance on “difficult” morphologically rich
languages like Finnish, Hebrew and Romanian (Sø-
gaard et al., 2018). Table 2(a) shows that BioSpere
is efficient in such settings, outperforming existing
approaches, across the languages.
Semantic Word Similarity – evaluates the quality
of cross-lingual word alignment based on the cor-
relation between cosine similarity between words
in different languages and human-annotated word
similarity scores. Table 2(b) shows that BioSpere
achieves a better Pearson’s correlation to human-
annotated scores across languages (except it) – pro-
viding better alignment across languages.
Sentence Translation Retrieval – studies sen-
tence translation retrieval on Europarl corpus. Sim-
ilar to Conneau et al. (2018), a sentence is rep-
resented as a bag-of-words and the idf-weighted
average of word embeddings is considered as its
encoding. For each source sentence, the closest
sentence from the target language is returned as its
translation. Table 2(c) depicts that BioSpere pro-
vides better sentence translation retrieval accuracy

Algorithm en-de en-fi en-ro

→ ← → ← → ←
MUSE GAN 59.8 60.5 22.3 24.1 34.5 49.6
CycleGAN 69.8 69.6 27.7 48.3 44.4 52.5
CycleGAN + Procrustes 73.8 73.3 46.2 62.0 59.5 67.2
CycleGAN + SR 75.5 74.7 46.9 64.9 63.5 71.6
CycleGAN + rigid CPD 74.5 74.2 45.9 62.3 60.5 67.3
CycleGAN + affine CPD 75.2 74.7 50.2 65.7 65.5 72.5
BioSpere 75.8 75.8 49.9 65.5 65.4 74.3

Bad-GAN 70.5 62.9 25.1 36.3 42.1 51.4
Bad-GAN + Procrustes 74.5 73.3 46.7 61.7 59.5 68.9
Bad-GAN + SR 75.9 73.8 45.7 61.7 63.1 72.3
Bad-GAN + affine CPD 75.3 74.7 51.7 65.7 63.1 72.6
BioSpere with Bad-GAN 75.9 75.9 51.7 65.4 64.0 73.1

Table 3: Ablation and Robustness study of BioSpere on
word translation with (Conneau et al., 2018) dataset.

with upto 1.5% P@1 score improvements.
Ablation Study – Table 3 tabulates the results

for varying components of BioSpere. CycleGAN
(using cycle-loss consistency) performs better than
MUSE GAN, while the refinement procedures of
symmetric re-weighting (SR) and Procrustes seem
to perform similarly (SR being slightly better for
morphologically rich languages). As discussed pre-
viously, we observe that higher degrees of transla-
tional freedom provided by affine CPD performs
better than rigid CPD (of Cao and Zhao (2018)).
To study the robustness of BioSpere to adversar-
ial convergence issues, we intentionally select a
sub-optimal CycleGAN model from the Align mod-
ule, denoted as Bad-GAN in Table 3. We observe
that SR refinement recovers from such convergence
issues (better than Procrustes) – providing an accu-
racy comparable to a properly trained model (se-
lected using DualDMC). Specifically, for fi→ en,
the performance of Bad-GAN is around 12% worse
than the best CycleGAN model. However, the fi-
nal accuracy of BioSpere differs by only 1% (in
Table 3) even with Bad-GAN initialization.

4 Conclusion

This paper proposed BioSpere, a multi-stage unsu-
pervised cross-lingual word embedding alignment
framework – based on the novel coupling of genera-
tive adversarial training, refinement procedure and
point set registration. Experiments with diverse
tasks on multiple languages demonstrate improved
results over existing methods, and also depict ro-
bustness to hubness and adversarial performance.
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A Background of CPD

Point Set Registration algorithms aim to compute
the correspondences for aligning two input point
sets. Rigid transformation involving rotation, trans-
lation and reflection, were used in Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992) and
other variants (Rusinkiewicz and Levoy, 2001) for
probabilistic alignment. Spectral methods (Scott
and Longuet-Higgins, 1991) and closed-form so-
lution for rigid probabilistic registration in multi-
dimensional cases was presented in Myronenko
and Song (2010). In addition to the rotation, trans-
lation and reflection, affine transformation also con-
siders scaling, homothety, similarity and shear –
providing more degrees of freedom for better point
set registration (Ho et al., 2007). Non-rigid trans-
formations are based on Gaussian Mixture model
and filters (Hinton et al., 1992; Gao and Tedrake,
2019), Bayesian modeling (Hirose, 2020) or Thin
Plate Spline (TPS) parameterization (Bookstein,
1989). Recent developments use convolutional neu-
ral networks (Huang et al., 2017) and other learn-
ing frameworks (Yew and Lee, 2018). An exten-
sive literature survey can be found in Tam et al.
(2013). We adopt Coherent Point Drift (CPD) (My-
ronenko and Song, 2010) combining Gaussian Mix-
ture Model and Motion Coherence Theory.

BioSpere Transform Module. The Transform
module performs a refinement on the transformed
embeddings XC and YC (obtained from the Cor-
respond module) using the concept of point set
registration. Specifically, we uses the Coherent
Point Drift (CPD) algorithm (Myronenko and Song,
2010), an unsupervised probabilistic framework
which assigns point-to-point correspondence be-
tween two sets of points, akin to finding word
translation pairs in our setting. The idea here is
to consider the task of aligning the two embedding
spaces as a density estimation problem based on
the Gaussian Mixture Model (GMM). This consid-
ers word embeddings of one language as GMM
centroids, and the other embedding space to rep-
resent data points. The centroids are then fitted to
data points by maximizing the likelihood, and at
optimum point correspondences are obtained using
GMM posterior probabilities.

Thus, we consider the target embeddings YC as
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the centroids and the source embedding space XC

as data points, to have been generated by the GMM
probability density function. The centroid locations
are estimated by Expectation Maximization (EM)
algorithm (Dempster et al., 1977).

B Related Background

Generative Adversarial Networks (GANs) cou-
ples the training of machine learning architecture
between a generative and a discriminative net-
work that work in tandem for “indirect” training
in an unsupervised manner (Goodfellow et al.,
2014). GANs have been shown to achieve impres-
sive results in the domain image processing (Zhu
et al., 2017), representation learning (Radford et al.,
2016) and reinforcement learning (Ho and Ermon,
2016). The task of supervised image-to-image
translation involves learning the transformation
from an input image to an output image (Long
et al., 2015). Unsupervised image-to-image trans-
lation approach, Co-GAN (Liu and Tuzel, 2016)
was proposed based on weight sharing scheme. Re-
moval of dependencies on task-specific similarity
functions and low-dimensionality in this aspect was
proposed by Zhu et al. (2017), and was shown in
visual tracking by enforcing forward-backward con-
sistency (Kalal et al., 2010). Improving translations
via “back translation and reconciliation” is used by
human translators (Brislin, 1970). We thus adopt
the unsupervised CycleGAN (Zhu et al., 2017) ad-
versarial training based on cycle-consistency loss.
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