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Abstract

Research on Automatic Story Generation
(ASG) relies heavily on human and automatic
evaluation. However, there is no consensus on
which human evaluation criteria to use, and no
analysis of how well automatic criteria corre-
late with them. In this paper, we propose to
re-evaluate ASG evaluation. We introduce a
set of 6 orthogonal and comprehensive human
criteria, carefully motivated by the social sci-
ences literature. We also present HANNA, an
annotated dataset of 1,056 stories produced by
10 different ASG systems. HANNA allows us to
quantitatively evaluate the correlations of 72 au-
tomatic metrics with human criteria. Our analy-
sis highlights the weaknesses of current metrics
for ASG and allows us to formulate practical
recommendations for ASG evaluation.

1 Introduction

Storytelling is at the heart of human societies: skill-
ful storytelling allows a narrator to connect more
authentically with their audience and listeners, and
to understand the essence of complex concepts
better (Suzuki et al., 2018). Numerous applica-
tions could benefit from strong automatic story
generation systems, including gaming (Hartsook
et al., 2011), communication (Alhussain and Azmi,
2021), and education (Aylett et al., 2007). Sev-
eral approaches have been explored to generate
stories automatically or with minimum editing ef-
forts (Alabdulkarim et al., 2021). Automatic story
generation (ASG) takes as input a short sentence
(a prompt) and aims at generating a narrative from
it (Cavazza and Pizzi, 2006; Lebowitz, 1985). Ad-
vances in neural language models (Radford et al.,
2018, 2019; Brown et al., 2020) have allowed sub-
stantial progress in ASG.
To further improve the quality of generated stories,
it is indispensable to systematically evaluate ASG

∗Previously from Laboratoire des Signaux et Systèmes
(L2S), CentraleSupélec, CNRS, Université Paris-Saclay.

models. However, there is little work that specifi-
cally studies ASG evaluation. Most research works
rely on human criteria such as coherence (Xu et al.,
2018; Colombo et al., 2019; Jalalzai et al., 2020),
relevance (Jhamtani and Berg-Kirkpatrick, 2020),
overall quality (Brahman and Chaturvedi, 2020),
narrative flow (Rashkin et al., 2020), and creativity
(Pascual et al., 2021). However, taken individually,
these criteria fail to encompass all aspects of the
task, and there is no consensus on a set of crite-
ria that would cover those aspects in a complete
and non-redundant fashion. Due to the high cost
of human annotation, system quality is also often
evaluated using automatic metrics. However, it is
not clear how these metrics correlate with human
judgment in ASG, and thus how suitable they are
at all for the evaluation of ASG.
Contributions. In this work, we revisit both hu-
man and automatic evaluation of ASG. We believe
that this meta-evaluation is a missing piece in the
ASG literature and a crucial step to strengthening
the foundations of ASG. Formally, our contribu-
tions to the ASG field are:

1. A comprehensive set of non-redundant hu-
man criteria for ASG evaluation. Motivated by
the social sciences literature (McCabe and Peter-
son, 1984; Dickman, 2003; Bae et al., 2021), we
introduce six human criteria: relevance, coherence,
empathy, surprise, engagement and complexity.

2. HANNA1, a large annotated dataset of Human-
ANnotated NArratives for ASG evaluation,
which contains 1,056 stories generated from 96
prompts. Each prompt is linked to a human story
and stories generated by 10 different ASG gen-
eration systems. Each story was annotated by 3
different human raters along our 6 proposed human
criteria.

1The HANNA dataset and corresponding code are
available on https://github.com/dig-team/
hanna-benchmark-asg.

https://github.com/dig-team/hanna-benchmark-asg
https://github.com/dig-team/hanna-benchmark-asg
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3. A meta-evaluation of ASG with fine-grained
recommendations. Relying on HANNA, we per-
form an extensive study of the performance of the
ASG systems and we analyze the correlations of 72
existing automatic metrics with our proposed hu-
man criteria. The obtained results demonstrate the
limitations of current automatic evaluation methods
and allow us to make recommendations on which
metrics to use for ASG evaluation.

2 Related work

2.1 Human evaluation

van der Lee et al. (2019) advise to define separate
and precise criteria for human evaluation to make
it as accurate as possible. However, in ASG, there
is no consensus on the criteria to be used: among
others, we find a pairing task (Fan et al., 2018),
fluency and coherence (Xu et al., 2018), creativ-
ity (Pascual et al., 2021), faithfulness (Peng et al.,
2018; Wang et al., 2020), fidelity (Yao et al., 2019),
grammar and logicality (Guan et al., 2019, 2020),
overall quality and relevance (Jhamtani and Berg-
Kirkpatrick, 2020; Goldfarb-Tarrant et al., 2020;
Guan et al., 2021b), outline utilisation and narrative
flow (Rashkin et al., 2020), emotion faithfulness
(Witon et al., 2018), and content quality (Brah-
man and Chaturvedi, 2020). Many of these criteria
are not specific to ASG (fluency, grammar, overall
quality, content quality), overlap with one another
(pairing task, faithfulness, and fidelity are varia-
tions of relevance; logicality and narrative flow, of
coherence) or are ascribed to a specific setting (out-
line utilisation, emotion faithfulness). Furthermore,
evaluation protocols mostly use only two or three
criteria, which is not enough to grasp all aspects
of a task as complex as ASG. They also do not
associate Likert scales with explicit descriptions,
even though such descriptions could reduce the
subjectivity of the labelling process.

2.2 Automatic evaluation

Although most of the research work in ASG relies
on BLEU and ROUGE, there exists a plethora of
automatic metrics to evaluate ASG. These can be
classified into two categories: reference-based (Ξ)
metrics evaluate a candidate text by comparing it
to a reference text (in our case, the human story),
and reference-free (¤) metrics rely only on the can-
didate story (and, possibly, on the prompt). In both
categories, we find string-based (§), embedding-
based (ε) and model-based (∆) metrics. String-

based metrics evaluate the textual representation of
the inputs; they cannot handle synonyms or para-
phrases. By contrast, embedding-based metrics
rely on word embeddings, e.g. word2vec (Mikolov
et al., 2013a,b), or contextualized embeddings, e.g.
obtained from BERT (Devlin et al., 2019). Finally,
model-based metrics leverage regression or pre-
trained language models to return a score. A syn-
optic classification can be found in Tab. 12.

Reference-based (Ξ) Reference-free (¤)

String-
based
(§)

BLEU (Papineni et al., 2002) Coverage (Grusky et al., 2018)
ROUGE (Lin, 2004) Density (Grusky et al., 2018)
METEOR (Banerjee and Lavie, 2005) Compression (Grusky et al., 2018)
CHRF (Popović, 2015) Text length (Fabbri et al., 2021)
CIDEr (Vedantam et al., 2015) Novelty (Fabbri et al., 2021)

Repetition (Fabbri et al., 2021)

Embed-
ding-
based
(ε)

ROUGE-WE (Ng and Abrecht, 2015)
BERTScore (Zhang et al., 2020)
MoverScore (Zhao et al., 2019) SUPERT (Gao et al., 2020)
BaryScore (Colombo et al., 2021d)
DepthScore (Staerman et al., 2021)

Model-
based
(∆)

S3 (Peyrard et al., 2017)
SummaQA (Scialom et al., 2019) BLANC (Vasilyev et al., 2020)
InfoLM (Colombo et al., 2022c)

BARTScore (Yuan et al., 2021)

Tab. 1: Classification of the automatic metrics consid-
ered in our study with symbols for easier identification.

2.3 Meta-evaluation

Several previous works have studied the relation-
ship between automatic metrics and human judg-
ment (Zhang et al., 2004; Ma et al., 2019), report-
ing weak correlation (Novikova et al., 2017; Stent
et al., 2005; Mathur et al., 2020) and strong bias
towards specific systems (Callison-Burch et al.,
2006). Meta-evaluation has been done in image
description (Elliott and Keller, 2014), dialogue re-
sponse generation (Liu et al., 2016), question gener-
ation (Nema and Khapra, 2018), table-to-text gen-
eration (Dhingra et al., 2019), question answering
(Chen et al., 2019), and summarization (Bhandari
et al., 2020). In ASG, Guan et al. (2021b) intro-
duced the OpenMEVA benchmark which compares
the overall quality of human and generated stories;
their work especially focused on the textual fea-
tures of stories. We build upon it and perform a
comprehensive analysis of the correlations between
72 automatic metrics and 6 human criteria specifi-
cally tailored for ASG.

2BARTScore was designed to be either reference-based
or reference-free depending on the setting.
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3 HANNA for ASG evaluation

3.1 ASG datasets

Story evaluation has been widely studied in differ-
ent scenarii. ROCStories (Mostafazadeh et al.,
2016), a corpus of 50k 5-sentence stories with ti-
tles, was designed for the Story Cloze Test: the
prediction of the final sentence of a story given
the four others. Huang et al. (2016) developed
the VisualStorytelling dataset, which con-
tains sequences of images with corresponding de-
scriptions divided in three tiers of temporal con-
text. More recently, Ammanabrolu et al. (2020)
proposed the WorldGeneration dataset which
adapts story generation to adventure games by guid-
ing the generation process with location, character
and object triplets. The WritingPrompts (WP)
dataset (Fan et al., 2018) contains stories generated
from short sentences called prompts. For our work,
we chose the WP dataset, because it has been ex-
tensively used in previous literature for the design
of ASG models (Rashkin et al., 2020; Goldfarb-
Tarrant et al., 2020; Fang et al., 2021; Wilmot
and Keller, 2021; Guan et al., 2021a). While
ROCStories has also been used in several works,
the shortness of the stories made it less suited for
our evaluation. An example prompt and story from
WP is shown in Tab. 2 (Fan et al., 2018).

3.2 Chosen setting

HANNA, our annotated dataset for ASG, contains
outputs from 10 different systems aligned on 96
common prompts with human stories from the WP
dataset, for 1,056 stories in total, with 3 human an-
notations per story (19,008 annotations in total) and
automatic metric scores, allowing for an analysis
of the correlations between these metrics (Sec. 4).

3.3 Chosen ASG sytems

We directly contacted the authors of articles that
introduced ASG systems and asked for the outputs
of their systems. We managed to collect the outputs
of 3 ASG systems3 on the WP dataset: Fusion
(Fan et al., 2018), HINT (Guan et al., 2021a), and
TD-VAE (Wilmot and Keller, 2021). We extracted
96 stories aligned on common prompts. We then
fine-tuned 7 pre-trained language models for
ASG on a causal language modeling task on WP
to generate stories on the same 96 prompts, using

3We also collected outputs from two other systems
(Goldfarb-Tarrant et al., 2020; Bai et al., 2021); unfortunately,
these were not aligned with the others.

the Transformers library (Wolf et al., 2020)4. We
trained BertGeneration (Rothe et al., 2020),
CTRL (Keskar et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), GPT (Rad-
ford et al., 2018), GPT-2 (Radford et al., 2019),
and GPT-2 (tag), another instance of GPT-2
trained with <EOP> (End Of Prompt) tags, as in-
spired by Bai et al. (2021), who argued that such
tags could improve generation.

3.4 Proposed human criteria
As mentioned in Ssec. 2.1, there is no consensus
on human criteria for ASG evaluation. At the same
time, work in social sciences has looked exten-
sively at the features that make for a “good” story
(McCabe and Peterson, 1984; Dickman, 2003; Bae
et al., 2021). We condense them as follows into a
new, comprehensive set of criteria:

1. Relevance (RE): how well the story matches
its prompt, used in Jhamtani and Berg-Kirkpatrick
(2020); Goldfarb-Tarrant et al. (2020);

2. Coherence (CH): how much the story makes
sense, used in Xu et al. (2018); Peng et al. (2018);
Yao et al. (2019); Pascual et al. (2021);

3. Empathy (EM): how well the reader understood
the character’s emotions, derived from the impor-
tance of emotional commentary (McCabe and Pe-
terson, 1984), passion (Dickman, 2003), and empa-
thy (Keen et al., 2007; Bae et al., 2021);

4. Surprise (SU): how surprising the end of the
story was, derived from the importance of schema
violation, or unexpectedness (Schank, 1978; Bae
et al., 2021), postdictability (Behrooz et al., 2019),
and novelty (Randall, 1999);

5. Engagement (EG): how much the reader en-
gaged with the story; a more subjective criterion
associated with projecting volitive modality (mak-
ing the reader formulate a subjective judgment and
express a desire to see something accomplished)
(Toolan, 2012) and story outcome, which is an un-
derlying cause of story liking (Iran-Nejad, 1987);

6. Complexity (CX): how elaborate the story is; de-
rived from the importance of detailed descriptions
and sophisticated problem-solving (McCabe and
Peterson, 1984) and good world-building (Roine,
2016).

4https://github.com/huggingface/
transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


5797

The four last criteria are an original contribution
and were designed to evaluate story features that
are different from the first two criteria (RE and CH),
which are currently most used in the ASG literature.
Examples of annotations w.r.t. those criteria are
shown in Tab. 2.

3.5 Annotation Protocol
To evaluate our human criteria on the 1,056 sto-
ries of HANNA, we conducted an annotation cam-
paign on Amazon Mechanical Turk. As advised
by Karpinska et al. (2021), for each task, we pro-
vided the human story alongside the story to be
annotated, so that the workers could calibrate their
judgment. Each of the stories was evaluated by
three workers on our six proposed criteria. For this
evaluation, we chose a 5-point Likert scale rather
than a rank-based comparison because we reckoned
that it would be tedious to order the large number of
evaluated systems. We estimated that a HIT should
take between 90 and 120 seconds, so we set the
remuneration at $0.28 per HIT, or between $8.40
and $11.40 per hour. To ensure that annotators
spoke fluent English, we restricted access to the
experiment to workers located in the UK, the US,
Canada, Australia and New Zealand. We further
required them to have the Masters Qualification. To
remove noisy annotations and ensure that the work-
ers read the stories, we chose to reject judgments
that were made in fewer than 30 seconds. We addi-
tionally asked workers to write down the name of
the first-mentioned fictional character of the story.
The detailed instructions of the experiment and the
inter-annotator agreement analysis can be found in
the appendix (see Ap. A and Ssec. 4.1). Finally,
following the recommendations of Shapira et al.
(2019), we obtained the human score of a story by
averaging the results of the three workers.

3.6 Meta-evaluation strategies
Notations. Let yji be the story generated by system
j ∈ {1, . . . , S} for prompt i ∈ {1, . . . , N}, and
m(yji ) the score associated to yji by a (human or au-
tomatic) metric m. Given a correlation coefficient
K (e.g. Pearson’s r (?), Spearman’s ρ (Melamed
et al., 2003) or Kendall’s τ (Kendall, 1938)), two
meta-evaluation strategies are commonly used to
evaluate metric quality.
Story-level correlation (Kstory

m1,m2) measures how
suited m1 is w.r.t. m2 if used as a loss or reward for
a model. The correlation is applied to each story
among all system outputs and the mean is taken.

Formally:

Kstory
m1,m2

≜
1

N

N∑
i=1

K(C
story
m1,i

,C
story
m2,i

), (1)

where C
story
m,i ≜

[
m(y1i ), · · · ,m(ySi )

]
.

System-level correlation (Ksys
m1,m2) measures how

suited m1 is w.r.t. m2 if used to compare the perfor-
mance of two systems. The correlation is applied
to the mean values over all stories for all systems
for both metrics. Formally:

Ksys
m1,m2

≜ K

(
1

N
Csys

m1
,
1

N
Csys

m2

)
, (2)

where Csys
m ≜

[
N∑
i=1

m(y1i ), . . . ,

N∑
i=1

m(ySi )

]
.

Statistical significance. Correlations computed
for two automatic metrics on the same annotated
dataset are not independent. We follow Graham
and Baldwin (2014) and use the Williams test
(Williams, 1959; Moon, 2019)5 to evaluate the sig-
nificance of an increase in dependent correlations
(Steiger, 1980).

4 HANNA Analysis

In this section, we analyse the scores of HANNA
in detail. Tab. 4 shows that human stories achieve
significantly higher scores than generated stories.
Following Mathur et al. (2020), who advise to re-
move outliers, we compute correlations with hu-
man stories removed6.

4.1 Inter-annotator agreement
To estimate the reliability of the annotations, we
computed an intra-class coefficient for each crite-
rion. Among the annotators which took part in the
experiment, three of them covered 2490 stories,
i.e., more than 78% of the dataset, but no annotator
graded the same story twice. Since the reliabil-
ity is to be estimated for the average of the three
ratings, the ICC2k coefficient (ICC for average
random raters) is the most relevant one, according
to Hallgren (2012). In particular, it accounts for
the systematic errors of raters and random residual
errors. The results are shown in Tab. 3.

Coefficients are dispersed between 29% and 56%
with relatively small confidence intervals (except
for RE and CH), which can be considered between

5https://github.com/inmoonlight/
nlp-williams

6The same applies for Sec. 5.

https://github.com/inmoonlight/nlp-williams
https://github.com/inmoonlight/nlp-williams
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Prompt: When you die, the afterlife is an arena
where you face every insect and animal you killed
in your life. If you win you go to heaven, lose you
go to hell. Your job was an exterminator on earth.

Human: 3,000 years have I been fighting.
Every morning, the raccoons scratch at my eyes.
Every evening, the skunks spray me while the
opossums chew at my feet. I have never had any
tools. I have only my hands. I don’t remember the
place I came from before this. [...]

Story #1: First of all, not everyone was enti-
tled to be an exterminator. But the ones that were –
maybe were, like, genius, because, yes, I had once
belonged to a less fortunate class of people – had
all the opportunity to work for the damn plant killer,
and it’s hard work. [...]

Story #2: It was hell. Not exactly a place
of torture. There were no guards in prison and you
couldn’t just walk through it, either, because you
would get killed regardless. hell was a young man,
and he was lying on his floor. He was unconscious.
[...]

Story RE CH EM SU EG CX

Human
5 5 1 3 4 1
2 2 3 2 2 3
4 4 3 2 4 4

Story #1
2 4 3 1 1 1
2 2 2 1 2 2
2 3 2 3 3 3

Story #2
5 5 3 3 3 2
3 2 3 2 2 3
3 4 3 4 4 3

Metric Human Story #1 Story #2

BLEUΞ§ (%) 1.00 0.01 0.01
ROUGE-1Ξ§ 1.00 0.24 0.33
chrFΞ§ (%) 1.00 0.32 0.39
BERTScoreΞε 1.00 0.50 0.52
MoverScoreΞε 1.00 0.51 0.51
BaryScoreΞε 0.00 0.92 0.92
S3Ξ∆ 1.39 0.07 0.15
BARTScoreΞ∆ -0.98 -3.97 -4.03
SUPERT¤ε 0.94 0.37 0.36

Tab. 2: Example prompt, human and generated stories from HANNA with human annotations and metric scores

“fair” and “moderate” according to Landis and
Koch (1977). These values are in tune with ex-
isting literature (Karpinska et al., 2021; Habernal
and Gurevych, 2017; Spooren and Degand, 2010;
Ritter et al., 2011; Graham et al., 2017) and show
the difficulty of evaluating natural language gen-
eration. Therefore, we follow the methodology of
Craggs and Wood (2005) and Artstein and Poe-
sio (2008), who argue against setting a specific
agreement threshold as long as there is a detailed
reporting of the methodology (see Ssec. 3.5 and
Tab. 7) and confidence intervals (Tab. 3).

Criterion LB ICC2k UB

RE 0.18 0.48 0.65
CH 0.10 0.29 0.48
EM 0.25 0.34 0.41
SU 0.16 0.28 0.37
EG 0.34 0.46 0.55
CX 0.48 0.56 0.63

Tab. 3: Intra-class coefficient per criterion. LB and UB
are the lower- and upper-bounds of the 95% confidence
interval

4.2 Evaluating our human criteria
In this experiment, we study the relationship be-
tween the proposed human criteria. To compute
story-level (Fig. 1) and system-level (Fig. 2) corre-

Fig. 1: Story-level
Kendall correlations (%)
between human criteria

Fig. 2: System-level
Kendall correlations (%)
between human criteria

lations, we average the human ratings.
Story-level analysis (Fig. 1). Kendall correlations
range from 16% (RE–SU) to 62% (CH–EG), aver-
aging at 40.7%. In the appendix, we also show
correlations with Spearman’s ρ (Fig. 10) and Pear-
son’s r (Fig. 12). EG correlates slightly more with
CH and CX; this could confirm that coherent and
intricate plots make readers more likely to connect
with a story. In contrast, RE is poorly correlated
to the other criteria, which makes sense: an excel-
lent story in every other aspect can be completely
unrelated to a prompt, and vice versa. Overall,
moderate to weak correlations suggest that our cri-
teria evaluate distinct aspects of storytelling which
cannot be regrouped in fewer criteria.
System-level analysis (Fig. 2). Compared to story-
level correlations, system level correlations are
higher. Spearman (Fig. 11) and Pearson (Fig. 13)
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Model RE CH EM SU EG CX Average

Human 4.17 ±0.14 4.43 ±0.10 3.22 ±0.14 3.15 ±0.15 3.88 ±0.12 3.73 ±0.13 3.76 ±0.06

BertGeneration 2.46 ±0.16 3.14 ±0.16 2.28 ±0.13 2.09 ±0.13 2.67 ±0.12 2.41 ±0.11 2.51 ±0.06

CTRL 2.54 ±0.16 2.93 ±0.16 2.26 ±0.13 1.93 ±0.12 2.53 ±0.12 2.23 ±0.10 2.40 ±0.06

GPT 2.40 ±0.16 3.22 ±0.15 2.37 ±0.12 2.13 ±0.13 2.76 ±0.13 2.49 ±0.12 2.56 ±0.06

GPT-2 * 2.81 ±0.16 3.29 ±0.14 * 2.47 ±0.12 2.21 ±0.13 2.86 ±0.12 2.68 ±0.10 2.72 ±0.06

GPT-2 (tag) 2.67 ±0.16 * 3.31 ±0.15 * 2.47 ±0.12 * 2.22 ±0.13 * 2.92 ±0.12 * 2.80 ±0.11 * 2.73 ±0.06

RoBERTa 2.54 ±0.16 3.22 ±0.16 2.27 ±0.12 2.12 ±0.13 2.74 ±0.12 2.41 ±0.11 2.55 ±0.06

XLNet 2.39 ±0.17 2.88 ±0.16 2.10 ±0.12 1.95 ±0.12 2.46 ±0.13 2.36 ±0.11 2.36 ±0.06

Fusion 2.09 ±0.16 2.86 ±0.16 1.99 ±0.12 1.72 ±0.12 2.27 ±0.14 1.92 ±0.11 2.14 ±0.06

HINT 2.29 ±0.16 2.38 ±0.16 1.74 ±0.13 1.56 ±0.11 1.75 ±0.12 1.45 ±0.10 1.86 ±0.06

TD-VAE 2.51 ±0.16 2.99 ±0.15 2.07 ±0.11 2.10 ±0.12 2.59 ±0.12 2.49 ±0.11 2.46 ±0.06

Tab. 4: Average system ratings per criterion with 95% confidence interval. Best value in bold marked with an
asterisk (*), values in the confidence interval of the best value in bold without asterisk

correlations are also higher than their story-level
counterparts. This suggests that a given system
tends to be uniformly better or worse than other
systems across all criteria.

4.3 Finding the best systems
On Tab. 4, we observe that generic fine-tuned mod-
els perform better than ASG systems according
to human annotators. The best system is GPT-2,
which scores better than all other systems on all cri-
teria. The GPT-2 variant trained with <EOP> tags
shows marginal improvement compared to GPT-2,
as reported in Bai et al. (2021). It is worth noting
that all models are still noticeably below human
performance, which emphasizes that current sys-
tems are still a long way from human-like narrative
intelligence.

5 Evaluation of automatic metrics using
HANNA

In this section we evaluate how suitable existing
automatic metrics are for ASG evaluation, using
the SummEval library (Fabbri et al., 2021)7. Due
to space constraints, in each figure, we selected
representative metrics from each of the categories
introduced in Ssec. 2.2. Full figures can be found
in the appendix.

5.1 Correlations with human judgement
Story-level analysis (Fig. 3). Most metrics have
either a moderate (between 30% and 50%) or weak
(below 30%) correlation with human criteria. RE
is particularly elusive, except for the SUPERT¤ε

metric, which is reference-free and compares the
prompt and the story. This corroborates Novikova
et al. (2017), who argue that automatic metrics

7https://github.com/Yale-LILY/SummEval

do not accurately reflect human judgment when
comparing instances despite performing reliably at
the system level. We also observe vertical “color
stripes”: metric performance is consistent across
criteria. A weak metric will correlate poorly with
all criteria, whereas a more robust metric will be
uniformly better.
System-level analysis (Fig. 4). Correlations are in-
deed higher at the system-level, hovering between
40% and 70% for most metrics. Therefore, while
metrics are poor estimators of human criteria at the
story level, they can be used to compare systems
with reasonable accuracy.
Best metrics per criterion (Tab. 5). We
observe that a few metrics are heavily rep-
resented in the top 3 for each level. Pre-
trained transformer-based metrics achieve strong
results. The metrics that correlate best with
human criteria at the system level are all
reference-based: ROUGE-S*Ξ§, BaryScoreΞε,
DepthScoreΞε, and BARTScoreΞ∆1 . At
the story level, BARTScore¤∆

2 , Novelty-1¤§

and Repetition-3¤§ are reference-free while
chrFΞ§, BERTScoreΞε, S3Ξ∆ are reference-
based. As Novelty-1 and Repetition-3 are
simple data statistics, their outperforming all met-
rics for SU and CH respectively highlights the short-
comings of current metrics.

5.2 Correlations between automatic metrics

Story-level analysis (Fig. 5). Reference-based
metrics are moderately to highly correlated with
one another. By contrast, embedding- and model-
based reference-free metrics such as SUPERT¤ε

and BLANC¤∆ are almost independent from all
other metrics, even other reference-free metrics.
System-level analysis (Fig. 6). Previous obser-

https://github.com/Yale-LILY/SummEval
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Fig. 3: Story-level absolute Kendall correlations (%)
between metrics and criteria. Full version: Fig. 14.

Fig. 4: System-level absolute Kendall correlations (%)
between metrics and criteria. Full version: Fig. 15.

Level Criterion Metric #1 |r| (%) Metric #2 |r| (%) Metric #3 |r| (%)

Story

RE BARTScore¤∆
2 42.6 SUPERT¤ε

1 41.2 SUPERT¤ε
2 40.2

CH Repetition-3¤§ 38.1 BERTScoreΞε
R 37.1 S3Ξ∆ 37.1

EM S3Ξ∆ 32.8 chrFΞ§ 32.4 BERTScoreΞε
R 32.1

SU Novelty-1¤§ 32.9 chrFΞ§ 32.7 ROUGE-1Ξ§ 31.3
EG BERTScoreΞε

R 43.0 Novelty-1¤§ 42.3 chrFΞ§ 41.1
CX chrFΞ§ 58.8 BERTScoreΞε

R 55.8 ROUGE-1Ξ§ 55.0

System

RE ROUGE-S*
Ξ§
F 80.4 ROUGE-SU*

Ξ§
F 80.3 ROUGE-S*

Ξ§
R 80.2

CH BaryScoreΞε
1 88.2 BaryScoreΞε

2 88.0 BERTScoreΞε
F 87.9

EM BaryScoreΞε
1 90.0 BaryScoreΞε

2 90.0 BERTScoreΞε
F 88.7

SU BARTScoreΞ∆
1 92.7 BERTScoreΞε

R 91.1 DepthScoreΞε 90.7
EG DepthScoreΞε 93.4 BARTScoreΞ∆

1 92.4 SUPERT¤ε
2 92.2

CX DepthScoreΞε 95.6 BERTScoreΞε
R 95.5 Compression¤§ 94.3

Tab. 5: Top 3 metrics per criterion per level (story or system) of absolute Pearson (r) correlation. Indices denote
different variants.

Fig. 5: Story-level absolute Kendall correlations (%)
between metrics. Full version: Fig. 20.

Fig. 6: System-level absolute Kendall correlations (%)
between metrics. Full version: Fig. 21.

vations at the story level remain mostly valid, al-
though correlations are overall higher. Reference-
based metrics form a large group of very highly
correlated metrics, with a majority of correlations

surpassing 70%. Embedding- and model-based
reference-free metrics remain weakly correlated to
other metrics.
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Fig. 7: Weighted macro F1-scores of paired bootstrap
resampling. Full version: Fig. 26.

5.3 Fine-grained analysis

Top-k systems (Fig. 8). Here, we evaluate whether
automatic metrics can reliably quantify differences
between systems of competitive performances. For
all criteria except RE and CX, correlations follow
a convex curve between k = 10 and k = 4, sug-
gesting that metrics should not be used to compare
systems of high variance in quality unless there
are enough of them. Indeed, removing a few sys-
tems causes correlations to worsen significantly,
until the remaining systems are few enough and of
competitive performance. RE correlations interest-
ingly increase as k decreases, which indicates that
system quantity is a lesser concern for RE.
Pairwise system comparison (Fig. 7). Here, we
evaluate the pairwise discrimative power of auto-
matic metrics. Following Bhandari et al. (2020),
we take all system pairs (s1, s2) and compute their
average ratings per criterion using paired bootstrap
resampling (Koehn, 2004; Dror et al., 2018). We
assign a label ytrue = 1 if s1 is better than s2
with 95% confidence, ytrue = 2 if s2 is better, and
ytrue = 0 if confidence is below 95%. We then
repeat the procedure for each metric m, getting
y
(m)
pred labels, and calculate the weighted macro F1-

scores (Goutte and Gaussier, 2005) between ytrue
and y

(m)
pred to evaluate if m is a good proxy for hu-

man criteria. We observe that reference-based met-
rics again perform better than reference-free met-
rics, with S3Ξ∆ and ROUGE-WE-3Ξε at the top.
DepthScoreΞε and BaryScoreΞε prove to be
very unsuited for pairwise system comparisons, de-
spite showing high system-level correlations (see
Fig. 3). Finally, SU appears to be the most trou-
blesome criterion for this task, suggesting that the
surprise factor is especially difficult to evaluate.
Statistical significance. Using the Williams test

(Ap. B), we found that increases in correlation with
human criteria between top 3 metrics per criterion
(Tab. 5) are not statistically significant, which sug-
gests that best-scoring metrics are of similar per-
formance. However, except for the RE criterion,
we notably find that the increases in correlation of
chrFΞ§ and BERTScoreΞε compared to BLEUΞ§

and ROUGEΞ§ variants are statistically significant.

5.4 Aggregated rankings of metrics

To aggregate the scores obtained by the three corre-
lation measures (Kendall, Pearson and Spearman),
we use the work of Colombo et al. (2022a)8, who
rely on the Kemeny consensus (Kemeny, 1959;
Myerson, 1996) and recommend to use the Borda
Count (BC) as an efficient approximation (Sibony,
2014). They experimentally show that Kemeny
consensus has more desirable properties than a
ranking obtained through a mean-aggregation pro-
cedure. We report the results in Tab. 6. To compare
system performance, model- or embedding-based
metrics (e.g.. BARTScoreΞε or BERTScoreΞε)
seem most adapted. However, at the story level,
chrFΞ§ and BERTScoreΞε are among the best
metrics, while BLEUΞ§ is completely absent from
the top spots. ROUGEΞ§ does appear in the ranking,
albeit below chrFΞ§.

Level Metric BC

Story

chrFΞ§ 1237
S3Ξ∆

p 1198
ROUGE-1Ξ§ 1186
S3Ξ∆

r 1177
BERTScoreΞε

R 1158

System

BARTScoreΞ∆ 1120
BaryScoreΞε

5 1110
BERTScoreΞε

F 1095
MoverScoreΞε 1070
DepthScoreΞε 1069

Tab. 6: Top 5 metrics computed by one-level ranking
per aggregation level, higher Borda count is better

6 Conclusions

Our analysis yields the following conclusions:

1. Large pre-trained language models seem to
produce the best results for ASG. Our benchmark
shows that GPT-2 performed better than systems
specifically tailored for ASG despite being older

8https://github.com/PierreColombo/
RankingNLPSystems

https://github.com/PierreColombo/RankingNLPSystems
https://github.com/PierreColombo/RankingNLPSystems
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Fig. 8: System-level absolute Pearson correlations (%) between automatic metrics and our proposed human criteria
on top-k systems

than some of them. Overall, all systems remain
significantly inferior to human output, illustrating
that ASG remains a challenging task for current
language models.
2. Stronger metrics, tailored explicitly for spe-
cific criteria of ASG, are desperately needed.
The weak correlations of automatic metrics with
human criteria still leave much to be desired. Ide-
ally, we would have automatic metrics which reflect
each of our proposed criteria.
3. Awaiting specific ASG metrics, researchers
should use better metrics than BLEUΞ§ and
ROUGEΞ§. chrFΞ§ and BARTScoreΞε are the
best performers at the story- and system-level re-
spectively. Given the overall weak results, however,
we strongly advise to rely on human annotations
for ASG evaluation.
4. Our new set of human criteria allows for a
standardized and extensive human evaluation.
The criteria are overall weakly correlated with one
another, which shows that they are non-redundant,
and produce coherent system rankings.

Future directions. Motivated by our search for
human criteria from the social science literature,
we reckon more collaboration between the NLP
and social science communities may yield valuable
insights into the question of how to computationally
capture good indicators of story quality. In this
spirit, we hope that HANNA will pave the way for
further progress in the evaluation of ASG.
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A Amazon Mechanical Turk experiment
details

To complement section 3.5, the details of the in-
structions we gave in our Amazon Mechanical Turk
experiment can be found in Tab. 7 below.

B Names of metric variants

Here we define the names we give to some variants
of the automatic metrics we used.
SUPERT and BLANC are summarization metrics
which normally require a source document and a
summary. In our setting, we have a prompt and a
generated story. The suffix PS means we used the
“Prompt as the Summary”, and SSmeans the “Story
as the Summary”. The Golden suffix means we
used the reference human story as the source docu-
ment and the generated story as the summary.
Given a couple of texts (x, y), BARTScore com-
putes a score based on the log probability of y given
x. We used the suffixes SH for (Story, Human), HS
for (Human, Story), SP for (Story, Prompt) and PS
for (Prompt, Story).

All other names are defined in their respective pa-
pers.
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Amazon Mechanical Turk example task
Please read the prompt, the human story and the subject story (both stories might be the same). The story
you will have to rate is the subject story.
Important: we will reject HITs which were done in fewer than 30 seconds (unless both stories are
exceptionally short). Please rest assured: if you take the work seriously, we have no reason to reject it.
Disclaimer: some stories have been automatically generated and might contain explicit or offensive
content.
Note: some stories have been abruptly cut in the middle of a sentence. Please rate them as if they ended
just before the unfinished sentence.
Note: if the story is not relevant with respect to the prompt, it only affects the Relevance criterion! Do
not rate 1 everywhere, or we will reject!
Then, please write down the name of the first character that is mentioned in the subject story; if no
name is mentioned, write “None”. Only proper nouns count as names.
Then, please rate the subject story on a scale from 1 (worst) to 5 (best) on the following criteria: relevance,
coherence, empathy, surprise, engagement, and complexity.

Prompt When you die the afterlife is an arena where you face every insect and animal
you killed in your life. If you win you go to heaven, lose you go to hell. Your
job was an exterminator on earth.

Human story 3,000 years have I been fighting. Every morning, the raccoons scratch at my
eyes. Every evening, the skunks spray me while the opossums chew at my feet.
I have never had any tools. I have only my hands. I don’t remember the place I
came from before this. All I remember is the daily fight between me and these
animals. No matter how many times I kill them, they come back the next day.
[...]

Subject story First of all, not everyone was entitled to be an exterminator. But the ones that
were – maybe were, like, *genius*, because, yes, I had once belonged to a less
fortunate class of people – had all the opportunity to work for the damn plant
killer, and it’s hard work. And the horrifying truth is, once you die, and the
entire planet turns into a glade that contains a golden fish that would’ve been
crushed by a million million goldfish just moments ago, you’re not really good
enough for heaven. Why? [...]

Name of the first
mentioned character
in the subject story

[Area to fill]

Relevance — mea-
sures how well the
story matches its
prompt

1 — The story has no relationship with the prompt at all.
2 — The story only has a weak relationship with the prompt.
3 — The story roughly matches the prompt.
4 — The story matches the prompt, except for one or two small aspects.
5 — The story matches the prompt exactly.
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Coherence — mea-
sures whether the
story makes sense

1 — The story does not make sense at all. For instance, the setting and/or
characters keep changing, and/or there is no understandable plot.
2 — Most of the story does not make sense.
3 — The story mostly makes sense but has some incoherences.
4 — The story almost makes sense overall, except for one or two small incoher-
ences.
5 — The story makes sense from beginning to end.

Empathy — mea-
sures how well
you understood the
characters’ emo-
tions (regardless of
whether you agreed
with them)

1 — The characters seemed apathetic to you.
2 — At least one character slightly related to you on an emotional level.
3 — You recognized specific, but not necessarily strong, emotions (eg sadness,
joy, fear. . . ) in at least one character.
4 — At least one character emotionally involved you, but minor details pre-
vented you from completely relating to them.
5 — At least one character completely involved you on an emotional level.

Surprise — measures
how surprising the
end of the story was

1 — The ending seemed completely obvious from the start, or doesn’t make
any sense at all.
2 — The ending was easily predictable after a few sentences.
3 — The ending was predictable after half of the story.
4 — The ending surprised you, but would have been difficult to predict.
5 — The ending surprised you, and still seemed as if it could very reasonably
have been predicted, ie, there were enough clues in the story.

Engagement —
measures how much
you engaged with
the story

1 — You found the story boring and were glad it was over.
2 — You found one or two things interesting in the story, but no more.
3 — The story was mildly interesting.
4 — The story almost kept you engaged until the end.
5 — You were so engaged that you wished there was a sequel.

Complexity — mea-
sures how elaborate
the story is

1 — The setting of the story is extremely simple; it only involves one or two
characters or concepts.
2 — The setting of the story is simple; one or two characters, a simple plot,
maybe an indication of time or location.
3 — The story is somewhat developed: it involves at least one of the following:
complex concepts, realistic characters, an intricate plot, an underlying history
or circumstances, precise descriptions.
4 — The story is developed: it involves at least two of the following: com-
plex concepts, realistic characters, an intricate plot, an underlying history or
circumstances, precise descriptions.
5 — The story is well thought-out: it involves at least three of the following:
complex concepts, realistic characters, an intricate plot, an underlying history
or circumstances, precise descriptions.

Tab. 7: Example task from our Amazon Mechanical Turk experiment
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C Distributions of human annotations
per system

Here we report the violin plots of the distribu-
tions of human annotations per system. Human
output scores visibly better than language mod-
els. Note that for our generation, we do not
use beam search (Colombo et al., 2021b, 2020;
Pichler et al., 2022; Colombo, 2021; Colombo
et al., 2022b; Garcia et al., 2019; Colombo et al.,
2021c). To further improve the generation a do-
main pre-trained language model could be con-
sidered (Chapuis et al., 2020; Colombo et al.,
2021a).

Fig. 9: Violin plots of the distributions of human annotations per system
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D Correlations between human
criteria

Here we report the story-level and system-level
absolute correlations between human criteria
with Spearman’s ρ (Fig. 10 and Fig. 11) and
Pearson’s r (Fig. 12 and Fig. 13).

Fig. 10: Story-level Spearman correlations (%) be-
tween our proposed human criteria

Fig. 11: System-level Spearman correlations (%)
between our proposed human criteria

Fig. 12: Story-level Pearson correlations (%) be-
tween our proposed human criteria

Fig. 13: System-level Pearson correlations (%) be-
tween our proposed human criteria
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E Correlations between human
criteria and automatic metrics

Here we report the full figures of story-level
and system-level absolute correlations between
human criteria and automatic metrics with all
three correlation coefficients.

Fig. 14: Story-level absolute Kendall correlations (%) between automatic metrics and our proposed human criteria

Fig. 15: System-level absolute Kendall correlations (%) between automatic metrics and our proposed human criteria

Fig. 16: Story-level absolute Spearman correlations (%) between automatic metrics and our proposed human criteria

Fig. 17: System-level absolute Spearman correlations (%) between automatic metrics and our proposed human
criteria
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Fig. 18: Story-level absolute Pearson correlations (%) between automatic metrics and our proposed human criteria

Fig. 19: System-level absolute Pearson correlations (%) between automatic metrics and our proposed human criteria
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F Correlations between automatic
metrics

Here we report the full figures of story-level
and system-level absolute correlations between
automatic metrics with all three correlation co-
efficients.

Fig. 20: Story-level absolute Kendall correlations (%) between automatic metrics
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Fig. 21: System-level absolute Kendall correlations (%) between automatic metrics
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Fig. 22: Story-level absolute Spearman correlations (%) between automatic metrics
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Fig. 23: System-level absolute Spearman correlations (%) between automatic metrics
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Fig. 24: Story-level absolute Pearson correlations (%) between automatic metrics
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Fig. 25: System-level absolute Pearson correlations (%) between automatic metrics
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G Best metrics per criterion per level
of correlation per correlation
coefficient

Here we report the top 5 metrics per criterion
per story-level and system-level absolute corre-
lation coefficient.

Criterion |τ | (%) |ρ| (%) |r| (%)

RE

SUPERT-SSΞε 29.95 SUPERT-SSΞε 38.58 BARTScore-SP¤∆ 42.55
BARTScore-SP¤∆ 29.61 BARTScore-SP¤∆ 37.98 SUPERT-SSΞε 41.16

SUPERT-PSΞε 28.59 SUPERT-PSΞε 36.40 SUPERT-PSΞε 40.15
BARTScore-SHΞ∆ 22.32 BARTScore-SHΞ∆ 28.53 BARTScore-SHΞ∆ 28.98

MoverScoreΞε 19.12 MoverScoreΞε 23.67 SUPERT-GoldenΞε 24.72

CH

ROUGE-WE-3 RecallΞε 25.29 ROUGE-WE-3 RecallΞε 32.22 Repetition-3¤§ 38.12
BARTScore-SHΞ∆ 25.06 CHRFΞ§ 32.03 BERTScore RecallΞε 37.12

CHRFΞ§ 24.61 BARTScore-SHΞ∆ 31.38 S3-PyramidΞ∆ 37.05
S3-PyramidΞ∆ 24.39 S3-ResponsivenessΞ∆ 31.31 CHRFΞ§ 36.99

S3-ResponsivenessΞ∆ 24.28 S3-PyramidΞ∆ 31.14 Repetition-2¤§ 36.54

EM

ROUGE-WE-3 RecallΞε 23.58 ROUGE-WE-3 RecallΞε 29.85 S3-PyramidΞ∆ 32.78
CHRFΞ§ 23.33 CHRFΞ§ 29.81 CHRFΞ§ 32.43

S3-PyramidΞ∆ 23.19 S3-PyramidΞ∆ 29.68 BERTScore RecallΞε 32.06
ROUGE-SU* RecallΞ§ 23.13 ROUGE-SU* RecallΞ§ 29.38 S3-ResponsivenessΞ∆ 31.78

ROUGE-S* RecallΞ§ 23.08 ROUGE-S* RecallΞ§ 29.32 BARTScore-SHΞ∆ 31.66

SU

CHRFΞ§ 24.45 CHRFΞ§ 31.55 Novelty-1¤§ 32.86
ROUGE-1 RecallΞ§ 23.67 ROUGE-1 RecallΞ§ 30.86 CHRFΞ§ 32.65

S3-ResponsivenessΞ∆ 23.35 S3-ResponsivenessΞ∆ 30.41 ROUGE-1 RecallΞ§ 31.32
Novelty-1¤§ 23.11 ROUGE-SU* RecallΞ§ 30.30 S3-PyramidΞ∆ 31.07

ROUGE-SU* RecallΞ§ 22.85 ROUGE-S* RecallΞ§ 30.25 BERTScore RecallΞε 30.98

EG

CHRFΞ§ 30.77 CHRFΞ§ 39.03 BERTScore RecallΞε 42.95
S3-PyramidΞ∆ 29.62 S3-PyramidΞ∆ 37.74 Novelty-1¤§ 42.27

ROUGE-1 RecallΞ§ 29.19 ROUGE-1 RecallΞ§ 37.02 CHRFΞ§ 41.07
S3-ResponsivenessΞ∆ 29.01 S3-ResponsivenessΞ∆ 36.85 S3-PyramidΞ∆ 40.34
BERTScore RecallΞε 28.93 ROUGE-S* RecallΞ§ 36.60 Repetition-3¤§ 39.53

CX

CHRFΞ§ 43.31 CHRFΞ§ 54.11 CHRFΞ§ 58.76
ROUGE-1 RecallΞ§ 40.65 ROUGE-1 RecallΞ§ 50.60 BERTScore RecallΞε 55.83

ROUGE-SU* RecallΞ§ 39.83 Text length¤§ 50.19 ROUGE-1 RecallΞ§ 55.01
Text length¤§ 39.82 Compression¤§ 50.19 METEORΞ§ 54.41

Compression¤§ 39.82 ROUGE-SU* RecallΞ§ 50.10 Compression¤§ 54.38

Tab. 8: Top 5 metrics per criterion per story-level correlation coefficient
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Criterion |τ | (%) |ρ| (%) |r| (%)

RE

S3-PyramidΞ∆ 60.00 MoverScoreΞε 78.18 ROUGE-S* F-ScoreΞ§ 80.39
CHRFΞ§ 60.00 S3-PyramidΞ∆ 75.76 ROUGE-SU* F-ScoreΞ§ 80.29

ROUGE-SU* RecallΞ§ 60.00 ROUGE-S* RecallΞ§ 75.76 ROUGE-S* RecallΞ§ 80.24
ROUGE-S* RecallΞ§ 60.00 ROUGE-SU* RecallΞ§ 75.76 ROUGE-SU* RecallΞ§ 80.23

ROUGE-W-1.2 F-ScoreΞ§ 60.00 CHRFΞ§ 74.55 BLEUΞ§ 79.89

CH

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 92.73 BaryScore-SD-0.01Ξε 88.15
BaryScore-SD-5Ξε 68.89 BaryScore-SD-5Ξε 78.18 BaryScore-WΞε 87.99

BaryScore-SD-10Ξε 68.89 BaryScore-SD-10Ξε 78.18 BERTScore F1Ξε 87.91
BaryScore-SD-1Ξε 64.44 BaryScore-SD-1Ξε 75.76 DepthScoreΞε 87.38

BaryScore-SD-0.5Ξε 60.00 BERTScore F1Ξε 74.55 MoverScoreΞε 86.95

EM

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 92.73 BaryScore-SD-0.01Ξε 90.01
BERTScore F1Ξε 73.33 BERTScore F1Ξε 84.24 BaryScore-WΞε 89.96

BaryScore-SD-0.01Ξε 73.33 BaryScore-SD-0.01Ξε 84.24 BERTScore F1Ξε 88.67
MoverScoreΞε 73.33 MoverScoreΞε 81.82 SUPERT-GoldenΞ∆ 88.10

BaryScore-WΞε 68.89 BaryScore-WΞε 80.61 ROUGE-WE-3 F-ScoreΞε 87.93

SU

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 90.30 BARTScore-SHΞ∆ 92.65
BaryScore-SD-5Ξε 68.89 BaryScore-SD-5Ξε 83.03 BERTScore RecallΞε 91.09

BaryScore-SD-10Ξε 68.89 BaryScore-SD-10Ξε 83.03 DepthScorΞεe 90.71
BaryScore-SD-1Ξε 64.44 BaryScore-SD-1Ξε 79.39 SUPERT-GoldenΞ∆ 89.83

BaryScore-SD-0.5Ξε 60.00 BaryScore-SD-0.5Ξε 76.97 Compression¤§ 89.24

EG

BaryScore-SD-0.001Ξε 77.78 BaryScore-SD-0.001Ξε 92.73 DepthScoreΞε 93.44
BaryScore-SD-5Ξε 68.89 BaryScore-SD-5Ξε 78.18 BARTScore-SHΞ∆ 92.44

BaryScore-SD-10Ξε 68.89 BaryScore-SD-10Ξε 78.18 SUPERT-GoldenΞ∆ 92.21
BaryScore-SD-1Ξε 64.44 BaryScore-SD-1Ξε 75.76 MoverScoreΞε 92.07

BaryScore-SD-0.5Ξε 60.00 BERTScore F1Ξε 74.55 BERTScore F1Ξε 91.74

CX

BaryScore-SD-10Ξε 76.41 BaryScore-SD-10Ξε 91.19 DepthScoreΞε 95.63
BaryScore-SD-5Ξε 76.41 BaryScore-SD-5Ξε 91.19 BERTScore RecallΞε 95.49
BaryScore-SD-1Ξε 71.91 BaryScore-SD-1Ξε 87.54 Compression¤§ 94.31

CHRFΞ§ 67.42 Novelty-1¤§ 87.54 BARTScore-SHΞ∆ 93.83
Novelty-1¤§ 67.42 BaryScore-SD-0.5Ξε 85.11 ROUGE-1 F-ScoreΞ§ 93.35

Tab. 9: Top 5 metrics per criterion per system-level correlation coefficient.
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H Weighted macro F1-scores between
automatic metrics and human
criteria

Here we report the weighted macro F1-scores
between automatic metrics and human criteria
obtained through the paired bootstrap resam-
pling test.

Fig. 26: Weighted macro F1-scores of paired bootstrap resampling
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I Williams tests between automatic
metrics

Here we report the p-values of the Williams
tests between automatic metrics for each crite-
rion with story-level and system-level Pearson
correlations.

Fig. 27: p-values (%) of the Williams tests between automatic metrics for the RE criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 28: p-values (%) of the Williams tests between automatic metrics for the CH criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 29: p-values (%) of the Williams tests between automatic metrics for the EM criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 30: p-values (%) of the Williams tests between automatic metrics for the SU criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 31: p-values (%) of the Williams tests between automatic metrics for the EG criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 32: p-values (%) of the Williams tests between automatic metrics for the CX criterion with story-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 33: p-values (%) of the Williams tests between automatic metrics for the RE criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 34: p-values (%) of the Williams tests between automatic metrics for the CH criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 35: p-values (%) of the Williams tests between automatic metrics for the EM criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 36: p-values (%) of the Williams tests between automatic metrics for the SU criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).



5835

Fig. 37: p-values (%) of the Williams tests between automatic metrics for the EG criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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Fig. 38: p-values (%) of the Williams tests between automatic metrics for the CX criterion with system-level Pearson
correlations. Green case means that the row metric has a higher correlation than the column metric, dark green
means the increase is statistically significant (p < 0.05).
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