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Abstract

Non-autoregressive translation (NAT) models,
which eliminate the sequential dependencies
within the target sentence, have achieved re-
markable inference speed, but suffer from in-
ferior translation quality. Towards exploring
the underlying causes, we carry out a thor-
ough preliminary study on the attention mech-
anism, which demonstrates the serious weak-
ness in capturing localness compared with con-
ventional autoregressive translation (AT). In re-
sponse to this problem, we propose to improve
the localness of NAT models by explicitly in-
troducing the information about surrounding
words. Specifically, temporal convolutions
are incorporated into both encoder and de-
coder sides to obtain localness-aware represen-
tations. Extensive experiments on several typi-
cal translation datasets show that the proposed
method can achieve consistent and significant
improvements over strong NAT baselines. Fur-
ther analyses on the WMT14 En⇒De transla-
tion task reveal that compared with baselines,
our approach accelerates the convergence in
training and can achieve equivalent perfor-
mance with a reduction of 70% training steps.

1 Introduction

Based on the encoder-decoder framework (Cho
et al., 2014; Sutskever et al., 2014), neural machine
translation (NMT) (Bahdanau et al., 2015; Gehring
et al., 2017; Vaswani et al., 2017) has achieved
tremendous success in the past several years due
to its excellent performance. Currently, state-of-
the-art NMT systems are built in an autoregressive
manner, which generates target tokens one by one
from continuous representations summarized by
the encoder. However, with the constraint of output
tokens conditioned on previously generated ones,
autoregressive translation (AT) inevitably suffers
from serious latency during decoding, which be-
comes a bottleneck of inference speed.

∗ Work done while at Microsoft Corporation.

Towards accelerating the inference process,
non-autoregressive neural machine translation
(NAT) (Gu et al., 2018; Ghazvininejad et al., 2019;
Du et al., 2021; Huang et al., 2022) has been pro-
posed to break the above bottleneck. Instead of
sequential generation in autoregressive translation,
NAT models output the entire target sentence at
once. Unfortunately, removing sequential depen-
dencies within the target sentence brings NAT mod-
els with serious weakness in capturing the highly
multimodal distribution of target sentences (Gu
et al., 2018). Accordingly, NAT models suffer
from two kinds of incoherent translations, includ-
ing repetitive translations and incomplete transla-
tions (Wang et al., 2019), which leads to inferior
translation performance.

Since both types of translation errors do not com-
monly appear in AT models, several works (Li et al.,
2019; Wei et al., 2019) have proposed to leverage
a well-trained AT model to enhance the training of
NAT models. Inspired by this consideration, we
empirically carry out a thorough study to present
the weakness of NAT by investigating the distinc-
tion between NAT and AT models. Specifically,
we inspect the attention mechanism on two trans-
lation tasks and reveal that, in contrast to autore-
gressive models, NAT models lack the ability of
either modeling the localness (Yang et al., 2018;
Ding et al., 2020) or producing localness-aware
representations.

Motivated by this observation, we propose
to improve non-autoregressive machine transla-
tion via explicitly modeling localness. Specifi-
cally, we incorporate multi-layer temporal convolu-
tions (MTC) into both encoder and decoder sides to
enhance the ability to model localness-aware repre-
sentations in NAT models. To validate the effective-
ness of our approach, we implement this method
on two advanced NAT models, namely conditional
masked language model (CMLM) (Ghazvininejad
et al., 2019) and Vanilla-NAT (Gu et al., 2018).
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Extensive experiments on typical translation bench-
marks demonstrate that our proposed approach can
significantly and consistently improve the transla-
tion quality by up to 1.0 BLEU points over a series
of strong NAT baselines. Further analyses reveal
that our approach enhances the ability to generate
localness-aware representations. In addition, the
analysis on the WMT14 En⇒De task shows that
compared with the original CMLM model, our ap-
proach accelerates the convergence in training and
achieves comparable performance with a reduction
of 70% training steps.

In summary, the contributions of this work are
detailed as follows:

• Our study demonstrates the necessity of
explicitly modeling localness for non-
autoregressive machine translation models.

• We propose a simple yet effective approach
to enhance the ability to generate localness-
aware representations in NAT models and ex-
tensive experiments validate the effectiveness
and universality of our approach.

• Further analyses reveal that our approach ben-
efits the translation for long sentences and
accelerates the convergence in training.

2 Background

Autoregressive Neural Machine Translation
In recent years, autoregressive models, which pre-
dict the target sentence sequentially conditioned
on translation history, have achieved extraordinary
success on machine translation. Specifically, given
a source sentence x = {x1, . . . , xI}, a standard
encoder-decoder autoregressive framework (Cho
et al., 2014; Bahdanau et al., 2015) optimizes
the conditional probability of a target sentence
y = {y1, . . . , yJ}, namely:

P (y|x; θ) =
J∏
j=1

P (yj |y<j ,x; θ), (1)

where y<j indicates the partial translation and θ
is a set of trainable parameters. The encoder-
decoder framework can be implemented as differ-
ent choices of architectures, such as recurrent neu-
ral network (Bahdanau et al., 2015), convolutional
neural network (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017). The typical training
objective is to maximize log-likelihood on a set of

training examples D = {[xm,ym]}Mm=1:

L(θ) = arg max
θ

M∑
m=1

logP (ym|xm; θ). (2)

In the inference, the conditional dependency
on translation history produces the autoregressive
property, which predicts the token sequentially
based on previous output tokens in the target. This
nature of sequential processing results in high la-
tency in translation.

Non-Autoregressive Neural Machine Transla-
tion In contrast, Gu et al. (2018) proposed to ac-
celerate the decoding process by generating target
tokens in parallel. In practice, by breaking the prob-
abilistic factorization, the prediction is modeled as
a product of the probability, which is independent
for each token:

P (y|x; θ) = P (J |x)

J∏
j=1

P (yj |x; θ), (3)

where P (J |x) indicates an auxiliary length pre-
dictor, which is used to determine the translation
length. NAT models employ an identical encoder
as the conventional Transformer architecture, while
the decoder is distinct from the original one as it
avoids the utilization of causal masks in the self-
attention mechanism.

However, due to the lack of explicit dependency
within targets, NAT models suffer from serious
multi-modality problem (Gu et al., 2018) and sig-
nificantly degenerate the translation performance.
This issue inevitably causes NAT models to suffer
from repeated and incomplete translations.

3 Preliminary Study

In this section, we conduct a thorough empirical
study on the attention mechanism to observe the
distinction between AT and NAT models. In prac-
tice, a good probabilistic distribution of attention
weights suggests a good alignment between source
and target words, and usually leads to more accu-
rate translation (Bahdanau et al., 2015; Luong et al.,
2015; Li et al., 2019). Inspired by this observation,
we systematically investigate the cross-attention
weights on both WMT14 En⇒De and WMT16
En⇒Ro translation tasks.

Specifically, given a source sentence x =
{x1, . . . , xI}, for the j-th token in the target sen-
tence y = {y1, . . . , yJ}, the attention probability
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Figure 1: Mean local attention probability on WMT14
En-De and WMT16 En-Ro translation tasks, varied by
the window size.

is computed as pj = {pj1, pj2, . . . , pjI}. To quan-
tify the extent of centralization on a window, we
define a measure γj , termed as local attention prob-
ability (LAP):

γj = avg(pj(fk(arg maxpj))), (4)

where k is the window size, avg(·) is the aver-
age function, and fk(·) indicates choosing sur-
rounding indexes based on the central index
(i.e., arg maxpj). For instance, for pj =
[0.2, 0.5, 0.2, 0.1] and k = 3, fk(·) returns the in-
dexes [1, 2, 3] and γj = (0.2 + 0.5 + 0.2)/3 = 0.3.
Particularly noted that the number of surrounding
indexes involved is less than k when the window
exceeds the bounds of the sequence. For a target
sentence, LAP is computed as γm = 1

J

∑
j γ

m
j .

We average γm on all translated sentences to ob-
tain mean local attention probability (MLAP): γ̄ =
1
M

∑
m γ

m. As seen, MLAP evaluates attention
weights on a fixed window within source words,
which is considered as local information.

We conduct this study on top of the advanced
CMLM model and compare MLAP with the last
layer and all heads of the encoder on three mod-
els: 1) Transformer (AT model), 2) NAT, and 3)
NAT-MTC. As shown in Figure 1, the results re-
veal two key points. First of all, as the window
size increases, the computation of MLAP includes
more words. The decrease of MLAP indicates that
attentions between target and source words usually
focus on neighbor words within the source sen-
tence. Secondly, compared with Transformer, the
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Figure 2: The framework of the proposed model. The
left and right figures represent the encoder and decoder
respectively. Distinct from conventional NAT models,
our model incorporates multi-layer temporal convolu-
tions to model localness for both encoder and decoder.

NAT model holds a smaller MLAP, which demon-
strates that it lacks the ability of modeling localness
effectively. However, our approach corrects this
phenomenon effectively (shown by the bar with
color blue vs. the bar with color orange).

4 Approach

In this section, we elaborate the proposed frame-
work of improving NAT models via explicitly mod-
eling localness. First of all, convolutional neural
networks benefit from effectively capturing local in-
formation and have achieved remarkable success in
computer vision (Krizhevsky et al., 2012; He et al.,
2016). Inspired by this observation, we augment
NAT models with temporal convolutions to en-
hance localness-aware representations. As shown
in Figure 2, we stack temporal convolutions on
top of the representations of word embedding. Let
ε ∈ R|V |×d denote trainable word embedding. The
input sentence x = {x1, . . . , xI} is represented as
E = {E1, . . . ,EI} = {ε[x1]+p1, . . . , ε[xI ]+pI},
where pi is a learnable positional embedding. The
incorporated multi-layer temporal convolutions en-
code the localness-aware representations and the
representations of the localness-aware encoder are
calculated by:

HTC = ENCTC(E), (5)

HSAN = ENCSAN(HTC), (6)

where ENCTC(·) represents multi-layer tempo-
ral convolutions, and ENCSAN(·) indicates self-
attention networks.
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Figure 3: The architecture of temporal convolutions.
The add operation indicates the residual connection.
The sigmoid and multiplicative boxes demonstrate
gated linear units.

Temporal Convolutional Structure In this pa-
per, we employ gated temporal convolutional net-
works to modeling localness, which is shown in
Figure 3. Let hli:j refer to the concatenation of
words {hli, . . . ,hlj}. A temporal convolution op-
eration over a sequence involves a filter kernel
{W,Wg} ∈ Rd×kd and bias {b, bg} ∈ Rd. Fol-
lowing gated linear units (GLU) (Dauphin et al.,
2017), the feature h′l+1

(i+j)/2 is generated by map-
ping hli:j to a vector with dimension d:

h′
l+1
(i+j)/2 = (W · hli:j + b)⊗ σ(Wg · hli:j + bg),

where (i + j)/2 is derived by i and j, and ⊗ de-
notes point-wise multiplication. The gate σ(·) is
the sigmoid function and it controls the relevance
of current context to the inputs.

Inspired by previous works (Dou et al., 2018;
Bapna and Firat, 2019), we propose to combine
the localness-aware representations with previous
representations. Specifically, conditioned on the
input latent representations, we employ a residual
connection (He et al., 2016) to generate representa-
tions: hl+1

i = (h′l+1
i + hli)× s, where we normal-

ize the output by a factor s =
√

0.5 to lower the
variance of the sum.

Incorporating into Transformer As a feature
extractor, the encoder in NAT models is dealing
with a more sophisticated task and takes a more
important role than the decoder regarding the trans-
lation quality (Guo et al., 2020b). Therefore, it is
natural to incorporate multi-layer temporal convo-
lutions into the encoder. Besides, compared with
the conventional decoder in autoregressive mod-
els, NAT models avoid the causal mask (Gu et al.,

2018) in self-attention networks (SAN). Therefore,
an identical temporal convolutional structure can be
introduced into the decoder accordingly. In our im-
plementation, we use multi-layer stacked temporal
convolutions to model localness-aware representa-
tions. The presented approach is model-agnostic
and can be applied in different NAT models. In this
paper, we mainly implement the proposed method
on top of advanced CMLM (Ghazvininejad et al.,
2019) and Vanilla-NAT (Gu et al., 2018) models.

5 Experiments

5.1 Setup

Datasets We conduct experiments on two typical
benchmark datasets: WMT14 English-German (En-
De)1 and WMT16 English-Romanian (En-Ro)2,
which consist of 4.0M and 610K sentence pairs re-
spectively. We strictly follow the dataset settings as
previous works (Gu et al., 2018; Lee et al., 2018).
Specifically, for the WMT14 En-De translation
task, we use newstest2013 and newstest2014 as the
validation and test set respectively. For the WMT16
En-Ro task, newsdev2016 and newstest2016 are
used as the validation and test set. We follow the
tokenization strategy from the translation example
of fairseq3. We preprocess our data using byte-pair
encoding (Sennrich et al., 2016) for both transla-
tion tasks, and learn the shared vocabulary with the
joint training corpus in both source and target sides.
For evaluation, we use 4-gram BLEU score (Pap-
ineni et al., 2002) as the evaluation metric for all
language pairs.

Knowledge Distillation As a key ingredient,
knowledge distillation (KD) (Zhou et al., 2020)
has been proven to reduce the complexity of target
data and benefits the training of NAT models effi-
ciently. Following previous works (Gu et al., 2018;
Lee et al., 2018), we apply sequence-level knowl-
edge distillation (Kim and Rush, 2016) to generate
the training data for NAT models. Specifically, for
each sentence pair in a parallel training corpus, we
replace the target sentence with the generated trans-
lation from a pre-trained autoregressive model. We
follow Ghazvininejad et al. (2019) to decode the
entire training set for both language pairs.

1https://www.statmt.org/wmt14/translation-task
2https://www.statmt.org/wmt16/translation-task
3https://github.com/pytorch/fairseq/blob/master/examples

/translation/prepare-wmt14en2de.sh
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# Model WMT14 WMT16
En⇒De De⇒En En⇒Ro Ro⇒En

Autoregressive models

1 Transformer (Vaswani et al., 2017) 27.74 31.09 34.28 33.99

Fully Non-Autoregressive models

2 Vanilla-NAT (Gu et al., 2018) 17.69 21.47 27.29 29.06
3 FCL-NAT (Guo et al., 2020a) 25.75 29.50 – –
4 ReorderNAT (Ran et al., 2021) 22.79 27.28 29.30 29.50
5 Flowseq (Ma et al., 2019) 23.72 28.39 29.73 30.72
6 AXE (Ghazvininejad et al., 2020) 23.53 27.90 30.75 31.54
7 Bag-of-ngrams (Shao et al., 2020) 20.90 24.60 28.30 29.30
8 EM+ODD (Sun and Yang, 2020) 24.54 27.93 – –
9 Imitate-NAT (Wei et al., 2019) 24.15 27.28 31.45 31.81
10 GLAT (Qian et al., 2021) 25.21 29.84 31.19 32.04

Iterative Non-Autoregressive models

11 Iter-NAT (Lee et al., 2018) 21.61 25.48 29.32 30.19
12 LaNMT (Shu et al., 2020) 26.30 – – 29.10
13 CMLM (Ghazvininejad et al., 2019) 27.03 30.53 33.08 33.31

Our work

14 CMLM (Reimp.) 26.73 30.33 33.02 33.39
15 + MTC 27.44 31.09 34.03 34.39

Table 1: Evaluation of translation performance on the test sets of WMT14 En-De and WMT16 En-Ro. “Reimp.”
indicates the results of corresponding models obtained by our implementation. “+” denotes appending new features
to the above row. “–” means not reported.

Model Configuration For model hyper-
parameters, we mainly follow the configurations in
(Lee et al., 2018; Gu et al., 2019). Specifically, for
both translation tasks, we use the hyper-parameters
of transformer-base (dmodel = 512, dhidden = 2048,
nlayer = 6, nhead = 8, pdropout = 0.3). We employ
twarmup = 10, 000 as the warm-up learning rate
schedule. In our implementation, the kernel size of
temporal convolution is set to 3. We use weight
decay 0.01 as well as label smoothing 0.1. We
implement our approach with the open-source
toolkit - fairseq (Ott et al., 2019)4. All the models
are trained for 300K updates on 8 NVIDIA Tesla
V100 GPUs with a batch size of 128K tokens
using Adam optimizer (Kingma and Ba, 2015).

5.2 Results

Overall Results We evaluate the proposed NAT-
MTC approach with the standard practice of knowl-
edge distillation on WMT14 En-De and WMT16
En-Ro datasets. Tabel 1 shows the results of

4https://github.com/pytorch/fairseq

our models and previous non-autoregressive base-
lines. As seen, our re-implementation (Row 14) of
CMLM model achieves comparable performance
with the original ones (Ghazvininejad et al., 2019)
across all translation tasks, which makes the evalua-
tion convincing in this work. Further, our approach
(Row 15) can outperform the strong baseline mod-
els (Row 14) by 0.71 and 0.76 BLEU points on
En⇒De and De⇒En respectively. Encouragingly,
on the En⇒Ro task, our model achieves a signif-
icant improvement by up to 1.01 BLEU points.
These results clearly demonstrate the effectiveness
of explicitly modeling localness for NAT models.

Effects of Model Capacity To rule out that the
improvement is due to higher modeling capacity,
we conduct experiments on matching the number
of parameters of our proposed model by adding
more self-attention layers to the original CMLM.
The results in Table 2 show that although adding
self-attention layers has more parameters than our
model (88.2M vs. 85.0M), our approach achieves
significant improvements (27.44 vs. 26.98). This
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Model #Enc #Dec #Para. BLEU

Transformer 6 6 64.9M 27.74

CMLM
6 6 66.1M 26.73
8 8 80.8M 26.87
9 9 88.2M 26.98

+ MTC 6 6 85.0M 27.44

Table 2: Effects of model capacity on the WMT14
En⇒De task. “#Enc” and “#Dec” indicates the number
of self-attention layers respectively. “#Para.” denotes
the number of trainable parameters.

clearly demonstrates that the improvement of trans-
lation quality is due to the inductive bias brought
by the architecture modification.

Different Model Architectures To verify the
universality of our approach, we also implement
our method on top of the non-iterative Vanilla-NAT
model (Gu et al., 2018) and the results on WMT14
En-De and WMT16 En-Ro are shown in Table 3.
For a fair comparison, we re-implement the Vanilla-
NAT model. As seen, our re-implementations
greatly outperform original Vanilla-NAT reported
by Gu et al. (2018), which makes our evaluation
convincing. For instance, compared with the origi-
nal implementation, our Vanilla-NAT achieves an
increase of 2.45 BLEU points on De⇒En task.
However, our approach shows a further improve-
ment by 0.91 BLEU points. In particular, on
Ro⇒En task, the presented method (+MTC) ob-
tains a significant improvement by 1.43 BLEU
scores. This demonstrates the effectiveness and
universality of our approach.

Model En⇒De De⇒En En⇒Ro Ro⇒En

Vanilla-NAT* 17.69 21.47 27.29 29.06

Vanilla-NAT (Reimp.) 19.05 23.92 29.65 28.88
+ MTC 20.02 24.83 30.43 30.31

Table 3: Translation performance on test sets of
WMT14 En-De and WMT16 En-Ro. “*” indicates that
the results are provided by Gu et al. (2018).

Effects of Decoding Speed To investigate the ef-
fects of our approach on decoding speed, we run
all models with one sentence at a time on a sin-
gle GPU and calculate the inference latency on the
WMT14 En-De task. The results are shown in Ta-
ble 4. In contrast to the respective backbone, our
model achieves a significant improvement with a
very small overhead (2.6× vs. 2.8× for CMLM,

Model BLEU Speed

Transformer 27.74 1.0×

CMLM 26.73 2.8×
+ MTC 27.44 2.6×

Vanilla-NAT 19.05 17.8×
+ MTC 20.02 17.4×

Table 4: Decoding speed on the WMT14 En⇒De task.

17.4× vs. 17.8× for Vanilla-NAT). This indicates
that our approach can efficiently improve the per-
formance of NAT models.

6 Analysis

In this section, we conduct extensive analyses on
the WMT14 En-De translation task to better un-
derstand our model in terms of: 1) effects of dif-
ferent strategies, 2) effects of the sentence length,
3) convergence speed, 4) effects of the number of
decoding iterations, 5) effects of predicted length
candidates, and 6) case study.

# Encoder Decoder BLEU ∆

1 × × 26.73 –

2 X X 27.44 +0.71
3 X × 27.37 +0.64
4 × X 26.87 +0.14

Table 5: Effects of different strategies of incorporating
MTC into NAT on the WMT14 En⇒De task.

Effects of Different Strategies We perform ex-
periments on WMT14 En⇒De to investigate the
effects of different incorporating strategies, which
are shown in Table 5. Specifically, we enumerate
the translation results of three strategies, namely
introducing MTC into: 1) encoder (Row 3), 2)
decoder (Row 4), and 3) both encoder and de-
coder (Row 2). As seen, augmenting the encoder
with MTC improves more BLEU scores than de-
coder (+0.64 vs. +0.14), and incorporating MTC
into both encoder and decoder sides accumulatively
achieves the best translation performance (+0.71
BLEU, Row 2). This demonstrates that augment-
ing encoder with generating localness-aware repre-
sentations is critical in NAT models and validates
the significance of encoder, which was also found
by Guo et al. (2020b).

Effects of Sentence Length We investigate the
translation results of CMLM and our approach on
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Figure 4: Translation performance on the WMT14
En⇒De test set with respect to different lengths of tar-
get sentences. The left axis denotes the BLEU scores
of NAT and NAT-MTC models, while the right axis in-
dicates the difference of BLEU scores for both models.

the WMT14 En⇒De task with respect to different
lengths of target sentences, which is shown in Fig-
ure 4. Specifically, the translations are allocated
into distinct buckets based on the respective lengths
of corresponding reference sentences and then we
evaluate the BLEU scores for each bucket. For
comparison, we also show the relative change of
BLEU score between NAT-MTC and NAT mod-
els. As expected, the presented approach achieves
improvements over the baseline system across all
buckets. In particular, for longer sentences (≥ 50),
our model improves by 1.72 BLEU points. This
clearly reveals that explicitly modeling localness
effectively benefits long-distance dependencies in
NAT models.
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Figure 5: Learning curves on the WMT14 En⇒De
translation task.

Convergence Speed We present the training pro-
cess to observe the effects of our approach on op-
timization, which is shown in Figure 5. As seen,
our approach converges faster concerning the train-
ing loss and validation BLEU score. In partic-
ular, the translation performance is significantly

boosted during training. Specifically, the NAT
model achieves the best BLEU score at 298K train-
ing step (indicated by a vertical line with the color
yellow in Figure 5b). However, our model achieves
an equivalent BLEU point at 92K training steps (in-
dicated by a vertical line with the color blue in
Figure 5b). Therefore, our approach largely bene-
fits convergence speed in training and can achieve
comparable translation accuracy with a reduction
of 70% training steps.

Iter. BLEU Rep.

NAT NAT-MTC ∆ NAT NAT-MTC ∆

2 23.12 24.39 +1.27 2.43% 2.08% -0.35%
4 25.62 26.69 +1.07 0.58% 0.45% -0.13%
6 26.43 27.16 +0.73 0.31% 0.24% -0.07%
8 26.45 27.21 +0.76 0.22% 0.16% -0.06%
10 26.73 27.44 +0.71 0.16% 0.13% -0.03%

Table 6: The translation performance and percentage of
repeating words on the WMT14 En⇒De task, varied
by the number of decoding iterations.

Effects of Iteration We study the translation per-
formance and repetitive words as the number of
decoding iterations changes, which is shown in
Table 6. Specifically, the percentage of repetitive
words is defined as β = Crep/C, where Crep enu-
merates the number of repetitive words (refer to
words, which are equivalent to adjacent words) and
C indicates the total number of words within de-
coding sentences. As seen, with the increase of
the number of iterations, our model improves the
translation performance, while reducing repetitive
words. Besides, our approach reduces more repeat-
ing words (-0.35%) while obtaining more improve-
ments in translation performance (+1.27 BLEU).
This clearly confirms that our approach benefits the
reduction of repetitive translations and alleviates
the multi-modality problem in NAT models.

#Cands. NAT NAT-MTC ∆

1 26.08 27.26 +1.18
2 26.04 27.32 +1.28
3 26.73 27.51 +0.78
4 26.50 27.40 +0.90
5 26.73 27.44 +0.71

Table 7: Translation performance on the WMT14
En⇒De task. “#Cands.” indicates the number of can-
didates with different predicted length.

Effects of Length Candidates We present the
translation performance with respect to the change
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Source Er selbst war im Jahr 2004 das erste Mal in Mauretanien im Cheijk-Zajed-Krankenhaus
in Nouakchott.

Target In 2004, he visited the Cheijk-Zajed Hospital in Nouakchott in Mauritania
for the first time.

NAT He himself was in Mauritania at the Cheijk Zajed Cheijk Hospital in Nouakchott in
2004.

NAT-MTC He himself was in Mauritania for the first time at the Cheijk-Zajed Hospital in
Nouakchott in 2004.

Table 8: A case study on the WMT14 De⇒En translation task. Phrases formatted as bold or underline indicate the
problem of repetitive and incomplete translations in the baseline but fixed by our model.

of predicted length candidates. As shown in Ta-
ble 7, when the number of candidates is reduced
to one, our model drops by fewer BLEU scores
compared with the NAT model (-0.18 vs. -0.65).
In addition, our model performs extremely stable
with the change of length candidates. These obser-
vations verify the robustness of our approach.

Case Study We further carry out a case study
to intuitively illustrate the performance of our ap-
proach and baseline. Table 8 shows an example
randomly selected from the test set on the WMT14
De⇒En translation task. As seen, introducing the
mechanism of generating localness-aware represen-
tations into NAT can produce more fluent and ade-
quate translations. For instance, the German words
“das erste Mal” are ignored by baseline, while the
NAT-MTC model accurately translates it into “for
the first time”. Besides, NAT tends to generate
repetitive words (e.g., “Cheijk Zajed Cheijk Hos-
pital”), while our model corrects this issue. This
demonstrates that our model can comprehensively
generate localness-aware representations in terms
of words, phrases and patterns.

7 Related Work

Fully Non-Autoregressive Models Gu et al.
(2018) first introduced non-autoregressive machine
translation, which enables the sequence genera-
tion in parallel and reduces the inference latency
significantly. Specifically, through sequence-level
knowledge distillation (Kim and Rush, 2016) and
modeling fertility as a latent variable, it maintains
a relatively competitive translation quality as op-
posed to the autoregressive Transformer. The idea
of modeling dependency as latent variables has
been investigated extensively (Kaiser et al., 2018;
Sun and Yang, 2020; Gu and Kong, 2021; Qian

et al., 2021; Du et al., 2021). Kaiser et al. (2018)
proposed to model a shorter sequence as discrete
latent variables, which are generated autoregres-
sively. Subsequently, this short latent sequence is
utilized to decode the output sequence in parallel.
In addition, a glancing mechanism with adaptively
sampling words from the reference (Qian et al.,
2021) was exploited to improve the translation per-
formance of non-iterative NAT.

Non-Autoregressive Models with Iterative Re-
finement To alleviate the multi-modality prob-
lem, a line of researches (Lee et al., 2018; Stern
et al., 2018; Ghazvininejad et al., 2019; Gu et al.,
2019; Saharia et al., 2020; Ding et al., 2021, 2022;
Huang et al., 2022) introduce an iterative refine-
ment process to maintain the translation accuracy.
Lee et al. (2018) first presented an iterative ap-
proach, which interprets the entire model as a latent
variable and each refinement step as a denoising
process. In addition, Stern et al. (2018) proposed
to make predictions for multiple time steps by in-
troducing a blockwise parallel decoding scheme.
Inspired by the pretraining approach (Devlin et al.,
2019; Lample and Conneau, 2019), Ghazvininejad
et al. (2019) utilized a masked language modeling
to predict any subset of the target sentence, which is
based on both the source sentence and a generated
translation with partially masking.

8 Conclusion

In this paper, we propose to improve NAT mod-
els via explicitly modeling localness. First of all,
we conduct a thorough empirical study on the at-
tention mechanism and reveal that compared with
autoregressive models, existing NAT models lack
the ability to effectively modeling local informa-
tion. Furthermore, we incorporate temporal con-
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volutions into both encoder and decoder sides to
enhance localness-aware representations in NAT
models. Empirical results on a variety of language
pairs and two advanced NAT models demonstrate
the effectiveness and universality of our approach.
Further analyses confirm that the proposed method
benefits translations for long sentences and acceler-
ates convergence during training.
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