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Abstract

Prompting, which casts downstream applica-
tions as language modeling tasks, has shown to
be sample efficient compared to standard fine-
tuning with pre-trained models. However, one
pitfall of prompting is the need of manually-
designed patterns, whose outcome can be unin-
tuitive and requires large validation sets to tune.
To tackle the challenge, we propose AutoSeq,
a fully automatic prompting method: (1) We
adopt natural language prompts on sequence-
to-sequence models, enabling free-form gen-
eration and larger label search space; (2) We
propose label sequences – phrases with indef-
inite lengths to verbalize the labels – which
eliminate the need of manual templates and
are more expressive than single label words;
(3) We use beam search to automatically gen-
erate a large amount of label sequence candi-
dates and propose contrastive re-ranking to get
the best combinations. AutoSeq significantly
outperforms other no-manual-design methods,
such as soft prompt tuning, adapter tuning,
and automatic search on single label words;
the generated label sequences are even better
than curated manual ones on a variety of tasks.
Our method reveals the potential of sequence-
to-sequence models in few-shot learning and
sheds light on a path to generic and automatic
prompting. The source code of this paper can
be obtained from https://github.com/
thunlp/Seq2Seq-Prompt.

1 Introduction

Among ways of adapting pre-trained language mod-
els (Devlin et al., 2019; Raffel et al., 2020) to
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A wonderful movie. It was[MASK].

Highly recommended.
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great
terribleSingle label word

Label sequence

A wonderful movie.[MASK]

Sequence-to-sequence model

MLM or
Sequence-to-sequence model

Manually designed template

No template

Figure 1: Single label words vs label sequences. Label
sequences are more expressive and eliminate the need
of manually-designed templates.

downstream applications, prompting, which uses a
natural language prompt to reformulate tasks as
cloze questions, has shown to be especially ef-
fective (Brown et al., 2020; Schick and Schütze,
2021a,b; Gao et al., 2021). For example, in sen-
timent classification, prompting appends a tem-
plate “It was [MASK]” to the original input, and
defines “great” and “terrible” as the label words,
whose probabilities at [MASK] indicate the prob-
abilities of the positive and negative sentiment la-
bels. Prompting possesses better sample efficiency
and performs significantly better than standard fine-
tuning in the low resource case.

However, the prompting performance is highly
sensitive to the prompt choice, whose effectiveness
needs abundant validation data to evaluate and is
difficult to predict by intuition (Gao et al., 2021;
Perez et al., 2021). Even though there exist meth-
ods that explore automatic prompt search (Schick
et al., 2020; Gao et al., 2021), they still require
substantial human efforts, for the algorithms start
from either manual templates or label words.

We propose AutoSeq, a prompting method that
is fully automatic and requires no human input. Au-
toSeq has three innovations: (1) AutoSeq adopts
sequence-to-sequence models like T5 (Raffel et al.,

https://github.com/thunlp/Seq2Seq-Prompt
https://github.com/thunlp/Seq2Seq-Prompt
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2020). Compared to masked language models
(MLM) like BERT (Devlin et al., 2019), it allows
free-form generation, enables more types of tasks,
and extends the label space for prompting. (2)
We propose label sequences, which are indefinite-
length phrases or sentences that represent each la-
bel. They are more expressive than previous single
label words and eliminate the need for a manual
template (Figure 1). (3) We design an automatic la-
bel sequence search pipeline, which first generates
a large amount of candidates by T5, then re-ranks
them by contrastive probability.

Our main experiment results on natural language
understanding datasets show that AutoSeq per-
forms significantly better than automatic prompt
search using single label words as well as no-
prompt methods like soft prompt tuning and
adapter tuning. AutoSeq also outperforms hand-
crafted prompts on a variety of tasks. We hope our
work enlightens automatic prompting and building
a universal prompt-based fine-tuning framework.

2 Related Work

Prompting. Schick and Schütze (2021a,b); Gao
et al. (2021) introduced prompting into MLM.
Though showing remarkable few-shot perfor-
mance, those models are constrained by the sin-
gle [MASK] token and are limited to classification
tasks; they also require manually-designed prompts.
In parallel, soft prompt tuning (Lester et al., 2021)
and adapter tuning (Houlsby et al., 2019; Zaken
et al., 2022; Hu et al., 2022) do not require manual
design, but they lag behind prompting in few-shot
performance (Gu et al., 2022). Recent work (Zhang
et al., 2022) tries to mitigate the gap, but it still re-
quires the help of manual prompts and thus falls
out of the scope of our discussion.

Automatic prompt search. There have been
plenty of attempts for automatic prompt search –
yet all of them require to start from either human-
designed label words or templates (Davison et al.,
2019; Jiang et al., 2020; Shin et al., 2020; Schick
et al., 2020; Gao et al., 2021; Yuan et al., 2021;
Haviv et al., 2021). In contrast, our AutoSeq is
a general-purpose, fully automatic search method
that depends only on few-shot annotations.

3 AutoSeq

3.1 Prompts for sequence-to-sequence models
We introduce the sequence-to-sequence version
of prompt-based fine-tuning, bringing in label se-
quences that are more expressive than one token.
Using sentiment classification as an example, and
given the input sentence as x, the model input can
be formulated as “x [MASK]”. We define the label
sequences for the positive class as “Highly recom-
mended.” and that for the negative class as “Not for
me.”. Then the probability of each class is tied with
that of the T5 model generating “Highly recom-
mended.” and “Not for me.” at position [MASK].
As we compare the MLM single label words to
our label sequences (Figure 1), we see that label
sequences encode richer semantic meaning and
get rid of sophisticated templates, since label se-
quences themselves can be standalone sentences.

In natural language inference (NLI) tasks1 with
two input sentences, our model input changes to
“x1? [MASK], x2” and label sequences can be “I
mean” (entailment), “For example” (neutral), and
“However” (contradiction).

Formally, we have a task-specific template T 2

and a task-specific mapping M : Y → V+ from
the task label space Y to the label sequence space
(V is the vocabulary of the model L). Then, for
a formulated example T (x) and its correspond-
ing label sequences, we use the cross-entropy loss
(the same way how T5 is trained)3 to fine-tune the
model. In inference, we compute the score of each
class y ∈ Y as the auto-regressive log-probability
of the corresponding label sequence:

q(M(y) | T (x)) =

|M(y)|∑
j=1

logPL
(
tj | t1:j−1, T (x)

)
, (1)

where PL denotes the output probability of
the sequence-to-sequence model, M(y) =
(t1, . . . , t|M(y)|) is the corresponding label se-
quence tokens, and t1:j−1 is t1, ..., tj−1.

3.2 Automatic label sequence generation
Thanks to the introduction of label sequences,
manually-designed templates are no longer needed,
and the goal of automatic prompt search is simply
to construct a label sequence mapping M that per-
forms well. Our proposed automatic label sequence

1We have details for all tasks in Appendix B.2.
2Unlike in the MLM case, the template here is simply the

way to concatenate the input and the mask.
3For regression tasks like STS-B, we use the same method

as Gao et al. (2021) to compute the loss instead.
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Figure 2: Illustration of AutoSeq. We first use T5 to generate label sequence candidates given each label’s training
instances; we then use contrastive re-ranking to get label sequences that are more label-specific; in the end we
enumerate all the combinations and re-rank by the fine-tuning performance.

generation pipeline contains three steps (Figure 2):
(1) candidate generation by using T5 and beam
search; (2) re-ranking by contrastive probability;
(3) enumerating label sequence combinations and
re-ranking by fine-tuning performance.

We first use the T5 model and beam search to
generate multiple sequence label candidates Sy ⊂
V+ for each class y. Denote Dy

train ⊂ Dtrain be the
subset of all few-shot training data of class y, we
find sy that has the top scores by this equation:∑

(x,y)∈Dy
train

q(sy | T (x)), (2)

where q(·) is defined as Eq. (1). Since the search
space is too large, we decompose it to an auto-
regressive decoding following Gao et al. (2021):

|sy |∑
j=1

∑
(x,y)∈Dy

train

logPL(s
y
j |s

y
1:j−1, T (x)). (3)

By using beam search, we can generate a large
amount of label sequence candidates by just one
decoding pass. However, we notice that it tends to
generate similar generic label sequences across dif-
ferent classes, while we expect the label sequences
to be distinguishable for each class. For example,
in sentiment classification, both classes will get a
generic candidate of “Thank you”, which is coher-
ent to be put at the mask but does not help with the
classification (more discussion in Appendix F).

To eliminate the problem, we introduce the sec-
ond step of our automatic pipeline, which re-ranks
all the candidates based on the contrastive proba-
bility q̃(sy) of sy ∈ Sy:∑

(x,y)∈Dy
train

q(sy | T (x))

|Dy
train|

−
∑

(x,y′)∈Dy
train

q(sy | T (x))

|Dy
train|

, (4)

where Dy
train = Dtrain\Dy

train.
Then, we define the score of a label mapping as

the sum of corresponding q̃(sy) for each class y.
To shorten the time for further re-ranking, we only
select the top n mappings with the highest scores.
Finally, we fine-tune the model over the top n label

mapping candidates, and re-rank them to find the
best one based on the few-shot development set,
which has been proved critical in the label mapping
selection (Gao et al., 2021).

4 Experiments

4.1 Main results

We use a T5-base v1.1 (Shazeer, 2020)4 model
and set the number of training examples per class
as 16 in our experiments. Datasets and experiments
details can be found in Appendix A and B. To make
our results convincing, we compare to the follow-
ing baselines in our few-shot setting: (1) parameter-
efficient tuning – soft prompt tuning (Lester et al.,
2021) and adapter tuning (Houlsby et al., 2019;
Karimi Mahabadi et al., 2022) – which fixes the pre-
trained model parameters and only tunes the soft
prompt or adapter part; (2) standard fine-tuning; (3)
manual prompts (Table D.1) proposed in Logan IV
et al. (2021); (4) automatic label word search (Au-
toWord), which has the same setting as AutoSeq
except that it is limited to only using one single
token as a label word. This can be seen as an ap-
proximation of Auto-L in Gao et al. (2021). We
also include the results from standard fine-tuning
based on the full training set.

Table 1 shows our main results. First, prompt-
based fine-tuning can significantly beat stan-
dard fine-tuning, either using manual prompts or
generated ones, let alone parameter-efficient tun-
ing. Our method AutoSeq achieves a 9.4% gain on
average compared to standard fine-tuning.

Second, AutoSeq achieves a 3.2% improve-
ment on average compared to the manual
prompts, and performs significantly better in NLI
tasks. However, for most of the sentiment clas-
sification tasks, though without engineering, the
manual prompts can still outperform AutoSeq. We
attribute it to the simplicity of these tasks, making
the manual design of prompts more intuitive.

4The released original T5 models are also fine-tuned on
downstream tasks while T5 v1.1 models exclude those tasks.
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Prompt tuning 51.4 (0.0) 24.9 (0.0) 50.6 (0.0) 50.7 (0.0) 50.0 (0.0) 59.9 (0.0) 22.6 (0.0) -4.0 (0.0)
Adapter tuning 84.7 (3.2) 27.7 (4.8) 73.6 (3.9) 86.9 (1.4) 78.6 (3.6) 84.7 (3.3) 27.6 (3.6) 4.8 (4.8)

Fine-tuning 80.9 (2.0) 36.0 (2.2) 70.1 (7.1) 76.7 (6.8) 80.9 (2.6) 84.3 (4.4) 68.3 (14.7) 0.5 (6.3)
Prompt-based FT (Manual) 91.2 (0.7) 45.2 (1.5) 85.4 (1.5) 89.8 (1.5) 85.1 (2.9) 89.1 (1.1) 80.0 (2.5) 0.7 (5.3)
Prompt-based FT (AutoWord) 87.6 (2.0) 40.4 (4.1) 82.1 (2.7) 87.0 (4.7) 75.1 (4.5) 87.4 (5.0) 82.4 (3.7) 8.5 (4.5)
Prompt-based FT (AutoSeq) 89.8 (1.1) 42.3 (3.4) 83.9 (1.3) 87.2 (2.5) 82.5 (2.7) 91.6 (1.9) 85.2 (4.3) 7.6 (9.9)

Fine-tuning (Full train set) 93.3 56.1 89.3 86.9 89.0 96.2 97.0 30.1

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

Prompt tuning 34.6 (0.0) 34.2 (0.0) 34.1 (0.0) 54.2 (0.0) 47.3 (0.0) 81.2 (0.0) 53.8 (0.0) 10.7 (0.0)
Adapter tuning 33.5 (1.4) 33.9 (1.8) 34.7 (1.3) 55.4 (2.5) 50.2 (2.0) 77.4 (2.3) 50.7 (5.2) 6.8 (2.8)

Fine-tuning 36.1 (2.3) 36.4 (2.6) 36.0 (3.0) 58.6 (2.5) 51.8 (2.7) 74.9 (5.2) 57.0 (3.5) 11.9 (2.8)
Prompt-based FT (Manual) 41.9 (3.4) 43.0 (3.6) 40.8 (1.6) 55.5 (3.1) 53.3 (3.1) 75.6 (7.0) 55.4 (1.8) 17.3 (9.5)
Prompt-based FT (AutoWord) 49.0 (4.7) 51.3 (4.6) 56.2 (8.4) 59.9 (4.7) 48.7 (2.4) 73.5 (6.3) 60.6 (4.3) 30.0 (8.4)
Prompt-based FT (AutoSeq) 51.8 (1.8) 53.9 (2.0) 62.7 (3.7) 61.3 (4.0) 55.3 (4.9) 72.3 (4.9) 66.2 (2.6) 17.8 (13.4)

Fine-tuning (Full train set) 86.9 87.1 91.6 91.0 59.6 84.0 87.9 86.1

BoolQ CB COPA MultiRC ReCoRD WiC WSC Average
(acc) (F1) (acc) (F1) (F1) (acc) (acc)

Prompt tuning 59.5 (0.0) 36.4 (0.0) 47.0 (0.0) 54.4 (0.0) 16.3 (0.0) 50.0 (0.0) 65.4 (0.0) 42.8
Adapter tuning 45.3 (1.5) 55.3 (9.0) 47.2 (3.7) 59.1 (0.0) 23.2 (5.2) 51.7 (1.9) 60.2 (2.2) 50.1

Fine-tuning 48.1 (6.2) 66.4 (14.1) 47.4 (7.2) 59.1 (0.0) 18.1 (2.4) 50.3 (2.8) 60.4 (5.1) 52.6
Prompt-based FT (Manual) 48.3 (5.5) 75.5 (8.6) 51.6 (1.5) 56.0 (3.3) 56.6 (3.5) 52.5 (3.5) 63.5 (2.7) 58.8
Prompt-based FT (AutoWord) 50.1 (3.9) 66.1 (15.8) 49.8 (3.2) 57.9 (1.5) 56.6 (3.5) 53.1 (3.6) 62.1 (1.4) 59.8
Prompt-based FT (AutoSeq) 55.4 (8.1) 76.6 (10.7) 52.0 (6.8) 58.2 (0.9) 56.6 (3.5) 52.6 (2.9) 62.1 (1.4) 62.0

Fine-tuning (Full train set) 64.1 92.1 52.0 59.1 76.0 59.1 66.3 77.4

Table 1: Our main results using T5-base (16 training examples per class). We report mean (and standard deviation)
performance over 5 different splits. FT: fine-tuning; Manual: human-designed prompts (Table D.1); AutoWord:
automatically searched single label words. The score marked as bold means the best performance in few-shot. The
score marked with an underline means the best performance among automatic search methods.

SST-2 SNLI QQP MultiRC

Manual with eng. 90.8 64.1 56.1 57.5
AutoSeq 89.8 62.7 66.2 58.2

Table 2: Manual prompts with engineering on large
validation sets vs AutoSeq (Full results in Table E.2).

Third, using AutoSeq leads to steady gains in
a majority of tasks compared to AutoWord, indi-
cating that label sequences, which is only enabled
by using sequence-to-sequence models, are more
expressive than single label words.

The results indicate that automatic prompt gen-
eration, especially with template-free format and
label sequences, is a promising path for prompt-
based fine-tuning in low resource scenarios.

4.2 Analysis of prompt engineering

Table 2 compares manual prompts with consider-
able engineering efforts (Table E.1) to AutoSeq.
In general, AutoSeq achieves on par performance

SNLI QQP ReCoRD WSC

RoBERTa-PET 43.3 53.4 42.7 55.0
T5-AutoSeq 62.7 66.2 56.6 62.1

Table 3: Sequence-to-sequence vs MLM prompting.

with models using manual prompts across various
types of tasks, illustrating the effectiveness of our
method, especially when trial-and-error with large
validation sets is impossible.

4.3 Analysis of different pre-trained models
To highlight the advantages of using sequence-to-
sequence models, we also report the PET5 results
with RoBERTa-base in Table 3. We see that T5
performs better than RoBERTa by a large margin.
Although the comparison is not fair6 given T5 and
RoBERTa are pre-trained with different corpora,
we highlight the importance to have sequence-to-

5Without unlabeled corpora and ensemble.
6Surprisingly, T5-base has a lower GLUE average

(84.67) than RoBERTa-base (86.35) with full-dataset.
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sequence models in the world of prompt-based fine-
tuning. Furthermore, for tasks like ReCoRD and
WSC that require generation in prompting, T5 is
perfectly fit for their output formats, while MLM
models like RoBERTa require tricky workaround.

5 Conclusion

In this paper, we propose AutoSeq, a prompt-
based fine-tuning method with (1) sequence-to-
sequence models that enable free-form genera-
tion, (2) label sequences that significantly extend
the prediction space, and (3) automatic prompt
search that requires no human efforts for designing
prompts. Comprehensive experiments show that
AutoSeq significantly outperforms other prompt-
based or parameter-efficient tuning methods. We
hope AutoSeq further inspires research on explor-
ing template-free prompt-based fine-tuning.
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A Datasets

We use datasets from GLUE (Wang et al., 2019b),
SuperGLUE (Wang et al., 2019a), and a number of
other sentence classification datasets.

For SST-2 (Socher et al., 2013), SST-5 (Socher
et al., 2013), MR (Pang and Lee, 2005), CR (Hu
and Liu, 2004), MPQA (Wiebe et al., 2005),
Subj (Pang and Lee, 2004), TREC (Voorhees
and Tice, 2000), CoLA (Warstadt et al., 2019),
MNLI (Williams et al., 2018), SNLI (Bowman
et al., 2015), QNLI (Rajpurkar et al., 2016),
RTE (Dagan et al., 2005; Bar Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
MRPC (Dolan and Brockett, 2005), QQP7 and STS-
B (Cer et al., 2017), we refer to Gao et al. (2021) for
their test settings. For BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018),
ReCoRD (Zhang et al., 2018), WiC (Pilehvar and
Camacho-Collados, 2019) and WSC (Levesque
et al., 2011), we take their original development
sets as the test sets.

B Experimental Details

B.1 Hyper-parameter selection
We take batch sizes from {2, 4, 8} for all few-
shot experiments. For fine-tuning, we take learning
rates from {7e-5, 1e-4, 2e-4}. For prompt-based
fine-tuning, we take learning rates from {2e-5, 6e-
5, 9e-5}, which are selected by pre-experiments on
the SST-2 and SNLI datasets. For each trial, we
follow Gao et al. (2021) and set the training steps
as 1000, validation steps as 100, then pick the best
model based on the validation results.

B.2 Automatic label sequence generation
For automatic label sequence generation, we use
T5-large, limiting the maximum length of 20
tokens (AutoSeq) and one token (AutoWord). Con-
sidering the trade-off between efficiency and effec-
tiveness, we set beam search width to 50 and set
n to 20. Given that the number of experiments is
relatively large in automatic generation, we fix the
batch size as 8 and the learning rate as 6e-5 when
training the model over the top n label mappings.

Besides our T for one-sentence classifica-
tion tasks8 and NLI tasks mentioned in Sec-
tion 3, we also design more T , always a

7https://www.quora.com/q/quoradata/
8One exception: MPQA consists of incomplete sentences,

so we adopt manual template without engineering.

SST-2 SNLI QQP MultiRC

Manual w/o templates 90.2 64.1 57.7 56.2
Manual with eng. 90.8 64.1 56.1 57.5

Table C.1: Comparison between manual label words
without templates (so the input is the same as AutoSeq),
and manual prompts with deliberate engineering.

simple concatenation of input fields and the
[MASK] token, for other complicated tasks. For
BoolQ, T is “x1? [MASK], x2”. For COPA,
T is “x1 x2? x3? [MASK], x4”. For MultiRC,
T is “x2 [MASK], x3 x1”. For WiC, T is
“x1 x2 ‘x3’ [MASK]”. Since ReCoRD and WSC
can be easily and intuitively transformed into fill-
in-the-blank tasks, we follow Schick and Schütze
(2021b) and do not process the automatic label se-
quence generation for them. To make the input
closer to pre-training, we refer to Gao et al. (2021)
for the implementation details of prompts.

C Analysis of Templates

Table C.1 gives the results of using only manual
label words with engineering and no templates (so
the mask token is concatenated the same way as
AutoSeq). This can be seen as the null prompts
from Logan IV et al. (2021). Our results further
validate that null prompts perform comparably or
even better to manual prompts in most cases.

D Manual Prompts

Table D.1 demonstrates all the manual templates
and label words adopted by us. We basically follow
Logan IV et al. (2021) for these prompts. For the
tasks that are not covered by Logan IV et al. (2021),
we manually write one prompt for each of them,
using only our intuition.

E Manual Prompts with Engineering

Table E.1 gives all the manual templates and label
words with careful engineering (Gao et al. (2021)
for GLUE and Schick and Schütze (2021b) for
SuperGLUE) that we use in our experiments.

Table E.2 compares the full results of manual
prompts with engineering to our AutoSeq. Overall,
AutoSeq performs comparably or even better com-
pared with manual prompts, particularly for tasks
where developing solid manual prompts is less in-
stinctive (e.g., TREC, QNLI, QQP and COPA).

https://www.quora.com/q/quoradata/
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Task Template Label words

SST-2 <S1> Overall my impression is [MASK] . positive: good, negative: bad
SST-5 <S1> Overall my impression is [MASK] . v.positive: very good, positive: good, neutral: not bad, negative: bad, v.negative: very bad
MR <S1> Overall my impression is [MASK] . positive: good, negative: bad
CR <S1> Overall my impression is [MASK] . positive: good, negative: bad
MPQA <S1> Overall my impression is [MASK] . positive: good, negative: bad
Subj <S1> The sentence is [MASK] . subjective: subjective, objective: objective
TREC <S1> The question is about [MASK] . abbreviation: abbreviation, entity: entity, description: description

human: human, location: location, numeric: numeric
COLA <S1> The grammar is [MASK] . grammatical: acceptable, not_grammatical: unacceptable

MNLI Premise: <S2> Hypothesis: <S1> Label: [MASK] entailment: yes, netural: maybe, contradiction: no
SNLI Premise: <S2> Hypothesis: <S1> Label: [MASK] entailment: yes, netural: maybe, contradiction: no
QNLI Question: <S1> Sentence: <S2> Label: [MASK] entailment: yes, not_entailment: no
RTE Premise: <S1> Hypothesis: <S2> Label: [MASK] entailment: yes, not_entailment: no
MRPC <S1> and <S2> are the [MASK] . equivalent: same, not_equivalent: different
QQP <S1> and <S2> are the [MASK] . equivalent: same, not_equivalent: different
STS-B <S1> and <S2> are the [MASK] . yu: same, yl: different
BoolQ Passage: <S1> Question: <S2> Answer: [MASK] . True: true, False: false
CB Premise: <S1> Hypothesis: <S2> Label: [MASK] entailment: yes, netural: maybe, contradiction: no

COPA Premise: <S3> Question: <S4> Choice1: <S1> Alternative 1: Choice1, Alternative 2: Choice2
Choice2: <S2> Answer: [MASK] .

MultiRC Paragraph: <S1> Question: <S2> Answer: <S3> True: true, False: false
Label: [MASK]

ReCoRD <S1> <S3>
WiC ‘<S3>’ in <S1> and ‘<S3>’ in <S2> are the [MASK] . True: same, False: different
WSC <S1> <S3> is [MASK] .

Table D.1: Manual templates and label words following Logan IV et al. (2021). Note that for ReCoRD and WSC
we follow Schick and Schütze (2021b) and do not design the label words for them.

F Automatically Generated Label
Sequences

We demonstrate the top 1 automatically generated
label sequences before and after re-ranking with
contrastive probability for all tasks in Table F.1.
It can be observed that our contrastive probability
draws a strong distinction between different classes,
especially for those multi-classification tasks like
SST-5 and TREC, in which our beam search tends
to find the same sequence whatever the class is.

Generally speaking, the generated results after
re-ranking conform with our intuition in a majority
of single and two-sentence tasks. For more compli-
cated ones, such as COPA and WiC, the generated
label sequences can be counterintuitive, calling for
a more elegant solution in the future.
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Task Template Label words

SST-2 <S1> It was [MASK] . positive: great, negative: terrible
SST-5 <S1> It was [MASK] . v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible
MR <S1> It was [MASK] . positive: great, negative: terrible
CR <S1> It was [MASK] . positive: great, negative: terrible
MPQA <S1> It was [MASK] . positive: great, negative: terrible
Subj <S1> This is [MASK] . subjective: subjective, objective: objective
TREC [MASK] : <S1> abbreviation: Expression, entity: Entity, description: Description

human: Human, location: Location, numeric: Number
COLA <S1> This is [MASK] . grammatical: correct, not_grammatical: incorrect

MNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
SNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
QNLI <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
RTE <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
MRPC <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No
QQP <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No
STS-B <S1> [MASK] , <S2> yu: Yes, yl: No
BoolQ <S1> Question: <S2> ? Answer: [MASK] . True: Yes, False: No
CB <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No

COPA <S1> or <S2> ? <S3> , <S4> [MASK] .
MultiRC <S1> Question: <S2> Is it <S3> ? [MASK] . True: Yes, False: No
ReCoRD <S1> <S3>
WiC <S1> <S2> Does <S3> have the same True: Yes, False: No

meaning in both sentences? [MASK]
WSC <S1> The pronoun <S3> refers to [MASK] .

Table E.1: Manual templates and label words with deliberate engineering that we use in our experiments. Note that
for COPA, ReCoRD and WSC, we follow Schick and Schütze (2021b) and do not design the label words for them.

SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Manual with eng. 90.8 (0.4) 47.2 (2.4) 86.1 (0.6) 90.4 (1.0) 84.1 (2.4) 91.4 (1.2) 81.3 (4.8) 9.6 (11.6)
AutoSeq 89.8 (1.1) 42.3 (3.4) 83.9 (1.3) 87.2 (2.5) 82.5 (2.7) 91.6 (1.9) 85.2 (4.3) 7.6 (9.9)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

Manual with eng. 55.3 (2.3) 57.3 (2.4) 64.1 (4.1) 59.7 (3.4) 59.1 (4.3) 71.2 (6.6) 56.1 (2.5) 17.7 (12.5)
AutoSeq 51.8 (1.8) 53.9 (2.0) 62.7 (3.7) 61.3 (4.0) 55.3 (4.9) 72.3 (4.9) 66.2 (2.6) 17.8 (13.4)

BoolQ CB COPA MultiRC ReCoRD WiC WSC Average
(acc) (F1) (acc) (F1) (F1) (acc) (acc)

Manual with eng. 57.5 (2.1) 79.7 (5.5) 48.8 (2.5) 57.5 (1.6) 56.6 (3.5) 53.4 (4.0) 62.5 (5.2) 62.5
AutoSeq 55.4 (8.1) 76.6 (10.7) 52.0 (6.8) 58.2 (0.9) 56.6 (3.5) 52.6 (2.9) 62.1 (1.4) 62.0

Table E.2: Comparison between manual prompts with engineering and our automatically searched label sequences.
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Task Before re-ranking After re-ranking

SST-2 (positive/negative)
Highly recommended./Thank you. Highly recommended./Sigh.

SST-5 (very positive/positive/neutral/negative/very negative)
Highly recommended./Highly recommended././
Highly recommended./Highly recommended. A must see./I love this movie./Enjoy!/Sigh./Not recommended.

MR (positive/negative)
Highly recommended./Highly recommended. Highly recommended./Not for me.

CR (positive/negative)
I love it./Thank you. I love it./I hate it.

MPQA (positive/negative)
./. ./Why?

Subj (subjective/objective)
I love it./What do you think? I love it./The rest is history.

TREC (abbreviation/entity/description/human/location/numeric)
Why?/Why?/./Why?/Why?/. Discuss!/What is it?/For?/Who is?/USA./15?

CoLA (grammatical/not_grammatical)
./. Enjoy!/.

MNLI (entailment/neutral/contradiction)
Yes/Yes/No I mean/For example/However

SNLI (entailment/neutral/contradiction)
Yes/Yes/Yes Yes/In this video/Next

QNLI (entailment/not_entailment)
In fact/In fact In the past/Also

RTE (entailment/not_entailment)
Yes/Yes Yes/However

MRPC (equivalent/not_equivalent)
Yes/Yes Yes/Meanwhile

QQP (equivalent/not_equivalent)
Also/Also So/Also

STS-B (yu/yl)
Yes/Yes Yes/Also

BoolQ (True/False)
Yes/Yes If so/No

CB (entailment/neutral/contradiction)
Yes/Yes/I mean Indeed/A: Yes/A: No

COPA (Alternative 1/Alternative 2)
No/No No/Yes

MultiRC (True/False)
Yes/Yes The answer is/Also

WiC (True/False)
is used./is used. is used./is an adjective.

Table F.1: Top 1 automatically generated label sequences before and after re-ranking with contrastive probability for
all tasks based on one few-shot split.


