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Abstract

Recent pre-trained language models (PLMs)
achieved great success on many natural lan-
guage processing tasks through learning lin-
guistic features and contextualized sentence
representation. Since attributes captured in
stacked layers of PLMs are not clearly iden-
tified, straightforward approaches such as em-
bedding the last layer are commonly preferred
to derive sentence representations from PLMs.
This paper introduces the attention-based pool-
ing strategy, which enables the model to pre-
serve layer-wise signals captured in each layer
and learn digested linguistic features for down-
stream tasks. The contrastive learning objec-
tive can adapt the layer-wise attention pooling
to both unsupervised and supervised manners.
It results in regularizing the anisotropic space
of pre-trained embeddings and being more uni-
form. We evaluate our model on standard se-
mantic textual similarity (STS) and seman-
tic search tasks. As a result, our method im-
proved the performance of the base contrastive
learned BERTbase and variants.

1 Introduction

Pre-trained language models (PLMs) (Kenton and
Toutanova, 2019; Liu et al., 2019; Radford et al.,
2019; Raffel et al., 2019) have shown competi-
tive performance on many natural language pro-
cessing (NLP) tasks. Also, contrastive learning us-
ing the PLMs shows the highest performance in
sentence representation. Contrastive learning is to
learn effective representations by staying semanti-
cally close sample pairs together while dissimilar
ones are far apart(Hadsell et al., 2006).

In general, PLMs use either [CLS] tokens in the
last layer, AV G which is the average representa-
tion of tokens in the last layer(Reimers et al., 2019;
Li et al., 2020), or AV GFL which is the average

* These authors contributed equally.
† These authors are corresponding authors.

Figure 1: Spearsman’s correlation score of each layer
evaluated on STS-B test set

Figure 2: Spearsman’s correlation score depending on
the pooling methods of PLMs for each domain

representation of tokens in the first and last lay-
ers(Gao et al., 2021), to pool out sentence represen-
tation from word representations. However, since
language models show performance gaps by do-
main when trained on different objectives, the fixed
pooling strategy has limitations in performance im-
provement.

Figure 1 and 2 show the Spearman’s correlation
score of each layer or pooling method in PLMs.
We evaluated the test set of the standard semantic
textual similarity (STS) dataset(Cer et al., 2017;
Agirre et al., 2012, 2013, 2014, 2015, 2016; Marelli
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et al., 2014).
The comparison of performance when pooling

each layer shown in Figure 1 indicates that using
only a specific layer for pooling is insufficient.
Other layers other than the last layer may con-
tain substantial information for sentence represen-
tation. For example, for the STS benchmark (STS-
B) task(Cer et al., 2017), BERTbase with [CLS]
embedding scored the highest at the fourth layer
(48.66%), which is about 20% higher than the last
layer.

Figure 2 shows that simply pooling from more
layers impedes the performance by comparing mod-
els pooled from the first and last layer and the last
layer. In addition, there is no consistent tendency
to compare effectiveness for a given layer between
[CLS] pooling and average pooling.

Motivated by this point, we designed the atten-
tion networks and task-agnostic pooling methods
to assign more weights to spots that need more fo-
cus in the layer and lead to representation vector
optimization. Our proposed method outperforms
previously fixed pooling strategies in contrastive
learning. In addition, contrastive learning models
with layer-wise attention pooling show a higher
semantic search performance with the same param-
eters.

In summary, the contributions of this paper are
as follows:

• We proposed layer-wise attention pooling* to
assign weights to each layer and learn sen-
tence representation fitted to a given task.

• To our knowledge, our pooling strategy shows
the best performance out of all InfoNCE-
based loss functions for the sentence embed-
ding tasks.

• For the semantic search evaluation, we ex-
cluded the proposed pooling method in the
inference phase and obtained better perfor-
mance.

2 Method

In this section, we present a layer-wise pooling
strategy based on attention mechanisms to improve
the quality of sentence representations from lan-
guage models. In addition, we describe the process
of applying the proposed pooling strategy to be
leveraged on three contrastive learning schemes.

*https://github.com/nlpods/LayerAttPooler

2.1 Layer-Wise Attention Pooling

This paper proposes a new layer-wise pooling
based on a multiplicative attention mechanism (Lu-
ong et al., 2015). As shown in Figure 1, the per-
formance with [CLS] pooling varied dramatically
according to which layer to pool from. There is no
significant performance gap between layers when
using AV G pooling. It can be explained that each
layer can contain different information for sentence
representation, while average pooling can mitigate
the information gap between layers.

In Equation 1, ha is the AV G representation,
which is the mean vector of tokens in the sentence,
and hc is the input representation [CLS] of each
layer. αi is the importance of the i-th layer. In Equa-
tion 2, hl is the representation with the importance
score per layer. In Equation 3, hL is the mean vec-
tor of hl and is the representation that contains the
relevance of all layers (N is the number of layers).
Wk,Wq and Wv are learnable parameters.

αi =
Wqh

c
iWkh

a
i∑

j∈N WqhciWkh
a
j

(1)

hli =
∑
j∈N

αiWvh
a
j (2)

hL =
1

N

N∑
i

hli (3)

We add a Multi-Layer Perceptron (MLP) layer
randomly initialized after pooling, following the
method in the Gao et al. (2021), and keep it with
random initialization. As for Equation 4, hclast is
the input representation [CLS] of the last layer.
We concatenate the input representation hclast with
the layer representation hL as the input of an MLP.
Finally, h is represented in the same dimension
as the sentence representation dimension of the
original language model through the MLP layer.

hCL = [hclast;h
L] (4)

h =MLP (hCL) (5)

2.2 Contrastive Learning with Layer-wise
Attention Pooling

We prove that the proposed pooling strategy is ef-
fective with three training objectives li.
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Basic Supervised Contrastive Learning We
use the basic supervised contrastive learning
model proposed by Chen et al. (2020). This
model learns the premise(xi) and entailment(x+i )
of the NLI(SNLI(Bowman et al., 2015) +
MNLI(Williams et al., 2018)) datasets. When D =
(xi, x

+
i )

m

i=1 is a set of paired samples, where xi and
x+i are semantically related. And, it takes the cross-
entropy objective with an in-batch negative(Chen
et al., 2017; Henderson et al., 2017). hi and h+i
are representations of xi and x+i through proposed
pooling strategy. the training objective li is :

li = −log
esim(hi,h

+
i )/τ∑M

j=1 e
sim(hi,h

+
j )/τ

(6)

M is the mini-batch, and τ is the temperature
hyperparameter and sim(·, ·) is the cosine similar-
ity.

Unsupervised Contrastive Learning Unsuper-
vised contrastive learning uses x+i = xi in the
collection of sentences {xi}mi=1. The idea is to
use an independently sampled dropout mask for
xi and x+i which gets this to work as identical
positive pairs during training. And, unsupervised
contrastive learning denotes hzi = f(xi, z) using
h obtained in Equation 5. z is a random mask
for dropout. It gets two embeddings with differ-
ent dropout masks z, z

′
from the encoder with the

same input twice, and the training objective li is
represented:

li = −log
esim(h

zi
i ,h

z
′
i

i )/τ

∑M
j=1 e

sim(h
zi
i ,h

z
′
j

j )/τ

(7)

In Equation 7, z is the standard dropout of the
transformer.

Supervised Contrastive Learning with Hard
Negative Supervised contrastive learning with
hard negative trains natural language inference
(NLI) datasets. The NLI datasets are labeled, given
one premise, as true(entailment), neutral, and def-
initely false (contradiction). The model predicts
whether the relationship between two sentences is
entailment, neutral, or contradiction. The positive
pairs (xi, x+i ) use the entailment of the NLI(SNLI +
MNLI) datasets. Next, contradiction pairs (xi, x−i )
from the NLI datasets are used as hard negatives.
Thus, it expands from (xi, x

+
i ) to (xi, x

+
i , x

−
i ).

And, (xi, x+i , x
−
i ) is represented as (hi, h

+
i , h

−
i )

through Equation 5. As a result, in Equation 8, the
training objective li is :

−log esim(hi,h
+
i )/τ∑M

j=1(e
sim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ )

(8)

3 Experiments

3.1 Experimental Setup

Our main experiments uses the STS(Cer et al.,
2017; Agirre et al., 2012, 2013, 2014, 2015, 2016;
Marelli et al., 2014) dataset. This data set consists
of sentence pairs labeled with a similarity score
between 0 and 5. The evaluation is done by the Sen-
tEval toolkit. The parameter setting of the model
used in the experiment is written in Table 4 of
the Appendix. Additionally, to measure the search
effect and efficiency of the proposed model, it is
evaluated on the same parameters as the original
language model. We evaluate the performance of
the semantic search† with FAISS‡ using the Quora
Duplicate Questions Dataset(Shankar et al., 2021)
containing more than 400,000 pairs of questions.

3.2 Main Results

In Table 1, we investigate whether the proposed
layer-wise attention pooling of language models
performs better in contrastive learning. The exper-
iment compares performance by training on lan-
guage models with three training objectives. All
results evaluate sentence embeddings on all STS
tasks. Equation 6 is basic supervised learning pro-
posed by (Chen et al., 2020). And, Equations 7 and
8 are unsupervised, supervised learning proposed
by Gao et al. (2021). However, in this paper, we
could not experiment with the same parameters due
to hardware. Therefore, as specified in Table 4 of
the Appendix, there is a difference from the orig-
inal performance because it learns by choosing a
low mini-batch size. † is the original performance,
and ‡ is our reimplementations. As a result, the pro-
posed pooling strategy shows higher performance
in different language models and in all domains.

3.3 Ablation Studies

We investigate performance differences according
to different pooling strategies in supervised con-
trastive learning. All results are reported in this

†https://github.com/autoliuweijie/BERT-whitening-
pytorch

‡https://github.com/facebookresearch/faiss
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Unsupervised Models

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg
BERTbase(CLSLast)(Equation 7)† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RoBERTabase(CLSLast)(Equation 7)† 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
RoBERTalarge(CLSLast)(Equation 7)† 72.86 83.99 75.62 84.77 81.80 81.98 71.23 78.89

Our Reimplementations
BERTbase(CLSLast)(Equation 7)‡ 69.53 78.98 75.50 80.07 79.01 78.28 71.35 76.10
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 70.27 80.22 75.65 80.71 79.74 79.51 72.18 76.90
RoBERTabase(CLSLast)(Equation 7)‡ 68.72 78.29 74.35 80.40 80.83 80.14 68.71 75.92
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 68.96 78.83 75.37 81.05 81.53 80.99 69.03 76.54
RoBERTalarge(CLSLast)(Equation 7)‡ 70.82 79.66 76.26 83.25 81.86 81.25 71.09 77.74
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.52 79.86 76.86 83.50 82.38 84.56 71.46 78.59

Supervised Models

BERTbase(CLSLast)(Equation 8)† 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
RoBERTabase(CLSLast)(Equation 8)† 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
RoBERTalarge(CLSLast)(Equation 8)† 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

Our Reimplementations
BERTbase(CLSLast)(Equation 8)‡ 70.50 80.77 79.52 83.82 81.17 84.34 79.04 79.88
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.34 80.84 79.76 83.86 81.42 86.76 79.80 80.54
RoBERTabase(CLSLast)(Equation 8)‡ 70.80 81.31 79.60 83.48 82.86 85.71 79.77 80.50
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.35 81.44 79.82 83.79 83.89 87.42 80.11 81.12
RoBERTalarge(CLSLast)(Equation 8)‡ 72.36 83.06 81.99 85.39 85.51 87.11 80.46 82.27
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 72.65 84.41 82.31 86.38 85.54 87.58 81.56 82.92

BERTbase(CLSLast)(Equation 6) 69.29 78.69 76.45 80.87 79.82 79.41 76.41 77.28
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 69.58 78.84 76.70 81.13 80.11 87.23 76.45 78.58
RoBERTabase(CLSLast)(Equation 6) 68.85 77.28 74.67 80.11 80.80 87.42 76.51 77.95
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 69.51 78.72 75.97 81.32 81.47 89.58 76.83 79.06
RoBERTalarge(CLSLast)(Equation 6) 70.82 80.33 77.79 82.03 83.04 85.38 76.84 79.46
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 71.15 81.45 78.04 83.03 83.09 88.88 77.39 80.43

Table 1: Performance of sentence embedding on all STS tasks (Spearman’s correlation). †: published in Gao et al.
(2021); and ‡: models from our reimplementations. We are shown in bold the highest performance among models
from our reimplementation.

section using the STS-B test set. All models ex-
tract sentence embeddings by adding an MLP layer
as suggested in Gao et al. (2021). Table 2 shows
the performance difference between the fixed pool-
ing method and the layer-wise attention pooling.
Additionally, we compare the representation con-
catenated between fixed pooling because we con-
struct the h representation by concatenating hclast
and hL. The layer-wise attention pooling shows the
results of ablation studies with [CLS] and AV G.
For [CLS]All and AV GAll, hl computes the im-
portance between each layer and the others. In ad-
dition, [CLS]All + AV GAll represent hl by calcu-
lating the importance between [CLS] and AV G
of all layers. All of these methods show higher
performance than the fixed pooling strategy. How-
ever, as described in Section 2, the pooling strategy
concatenated with [CLS]Last shows the highest
performance.

3.4 Semantic Search Results

In Table 3, we compare semantic search speed and
performance on the same parameters. This experi-
ment proves that the proposed pooling strategy is
effective for training the language models and also

Model STS-B
BERTbase(Equation 8)
w/ (CLSLast) 84.34
w/ (AVGLast) 84.84
w/ (AVGFL) 84.76
w/ (AVGLast+AVGFL concat) 84.93
w/ (CLSLast+AVGLast concat) 85.11
w/ LayerAttPooler(CLSAll attention) 85.45
w/ LayerAttPooler(AVGAll attention) 85.72
w/ LayerAttPooler(CLSAll + AVGAll attention) 86.57
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 86.76

Table 2: Ablation studies of different pooling methods
in supervised model on STS-B task (Spearman’s corre-
lation)

for semantic search performance with the same pa-
rameters during inference. Sentence embeddings
for all supervised learning models use [CLS]Last.
MRR@10 is used to measure the performance of
semantic search, and Average Retrieval Time (ms)
measures retrieval efficiency. Memory Usage (GB)
shows memory usage. FAISS experiments in CPU
mode. nlist = 1024 and the CPU is Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz. Result shows that
the performance of semantic search is higher when
the proposed pooling strategy is used during train-
ing.
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Model MRR@10 Average Retrieval Time Memory Usage
(ms) (GB)

BERTbase(Equation 8)
w/ (CLSLast) 63.48 1.46 0.25
w/ LayerAttPooler (train) 64.32 1.45 0.25
RoBERTabase(Equation 8)
w/ (CLSLast) 63.89 1.56 0.25
w/ LayerAttPooler (train) 65.05 1.48 0.25
RoBERTalarge(Equation 8)
w/ (CLSLast) 65.85 2.22 0.33
w/ LayerAttPooler (train) 66.32 2.21 0.33

Table 3: Performance of semantic search evaluation us-
ing the Quora Duplicate Questions Dataset with FAISS.
w/ LayerAttPooler (train) : remove layer-wise attention
pooling after training

4 Conclusion

In this work, we propose layer-wise attention pool-
ing to capture the importance of the weight in each
layer for the pre-trained language models (PLMs).
Training layer-wise attention layer with contrastive
learning objectives outperforms BERT and vari-
ants of PLMs. No matter what pooling method is
used, our model achieved higher scores than prior
state-of-the-art models. In addition, this layer-wise
attention technique also can be exploited in seman-
tic search tasks, in which more cost-efficient com-
putation (i.e. less latency and memory usage) is
required. The model trained with our method ob-
tained higher performance with the same or less
time and memory usage, even if the added attention
layer is detached in the inference stage.
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A Training Details

Unsupervised Models

Models Batch Size Learning Rate
BERTbase(Equation 7) 64 3e-5
w/ LayerAttPooler 64 3e-5
RoBERTabase(Equation 7) 256 1e-5
w/ LayerAttPooler 256 1e-5
RoBERTalarge(Equation 7) 256 3e-5
w/ LayerAttPooler 256 3e-5
BERTbase(DiffCSE) 64 7e-6
w/ LayerAttPooler 64 3e-5

Supervised Models

BERTbase(Equation 6) 256 5e-5
w/ LayerAttPooler 256 1e-5
RoBERTabase(Equation 6) 256 5e-5
w/ LayerAttPooler 256 3e-5
RoBERTalarge(Equation 6) 256 1e-5
w/ LayerAttPooler 256 5e-5

BERTbase(Equation 8) 256 5e-5
w/ LayerAttPooler 256 2e-5
RoBERTabase(Equation 8) 256 5e-5
w/ LayerAttPooler 256 3e-5
RoBERTalarge(Equation 8) 256 1e-5
w/ LayerAttPooler 256 5e-5

Table 4: Batch sizes and learning rate for each models

Due to hardware problems, Equations 7 and 8
train at a smaller batch size than the Gao et al.
(2021) paper. The GPU used in the experiment is
RTX 8000, and the the hyperparameters are speci-
fied in the Table 4.

B Experiments on Different Model

DiffCSE model

Model STS-B
BERTbase(CLSLast) (w/o BatchNorm)† 83.23
w/ LayerAttPooler(CLSAll + AVGAll attention) + (CLSLast concat) 83.87

Table 5: Development set results of STS-B. †: pub-
lished in Chuang et al. (2022); Bold shows the high-
est performance among models from our reimplemen-
tation.

We experiment with whether the proposed pool-
ing strategy is effective for a contrastive learning
model with a different structure. DiffCSE model
(Chuang et al., 2022) improves the performance of
sentence representation by adding generator and
discriminator structures of ELECTRA (Clark et al.,
2020). While training, DiffCSE freezes the genera-
tor’s weight and updates the sentence encoder and
discriminator for sentence embedding with the con-
trastive learning objective. However, the discrimi-

nator is not used for inference since only represen-
tations from the sentence encoder and generator are
needed. We applied our proposed pooling strategy
to the sentence encoder with a contrastive learning
objective. As a result, layer-wise attention pooling
improves the performance of the DiffCSE model
(Table 5). We use the one linear layer with the
tanh activation function following SimCSE as in
Equation 5, while DiffCSE uses a two-layer pooler
with Batch Normalization (BatchNorm) (Ioffe and
Szegedy, 2015). However, BatchNorm is not used
for a fair comparison of results.
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Figure 3: Attention scores of layer-wise pooling only
(b) and concatenating the [CLS]Last representation of
the last layer (a) on a sentence "You should do it."
(short) and "People on motorcycles wearing racing gear
ride around a racetrack." (long) sentences. These scores
are implemented on BERTbase.
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We also analyze the layer-wise attention scores de-
pending on the length of sentences. Figure 3 (a)
case explains that the last layer relatively contains
more information than other layers by the [CLS]
token of the last layer. However, the attention score
of the last layer is calculated differently for the long
and short sentences. Figure 3 (b) case indicates that
other layers than the last layer have substantial in-
formation for the same sentence, and the balanced
attention weight per layer supports it.


