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Abstract

Incorporating information from other lan-
guages can improve the results of tasks in low-
resource languages. A powerful method of
building functional natural language processing
systems for low-resource languages is to com-
bine multilingual pre-trained representations
with cross-lingual transfer learning. In general,
however, shared representations are learned
separately, either across tasks or across lan-
guages. This paper proposes a meta-learning
approach for inferring natural language in Per-
sian. Alternately, meta-learning uses different
task information (such as QA in Persian) or
other language information (such as natural
language inference in English). Also, we in-
vestigate the role of task augmentation strat-
egy in forming additional high-quality tasks.
We evaluate the proposed method using four
languages and an auxiliary task. Compared
to the baseline approach, the proposed model
consistently outperforms it, improving accu-
racy by roughly six percent. We also exam-
ine the effect of finding appropriate initial pa-
rameters using zero-shot evaluation and CCA
similarity. Our code is publicly available at
https://github.com/HassanMojab/MetaNLI.

1 Introduction

In natural language processing (NLP), the goal is
to improve models for the processing and produc-
tion of human languages. As part of NLP, several
tasks are defined, each covering a different level
of natural language understanding. Meanwhile,
natural language inference (NLI) is considered an
appropriate and rigorous measure of language com-
prehension. This task requires recognizing the con-
sequences of natural language sentences, which in-
dicates how well it understands the language (Mac-
Cartney, 2009).

NLI aims to determine the inferential relation-
ship between a premise p and a hypothesis h. The
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problem involves a three-class classification in
which every pair (p, h) falls into one of three cat-
egories: entailment, contradiction, and neutral. If
the hypothesis can be inferred from the premise,
pair (p, h) will be assigned to the entailment class.
For a hypothesis that contradicts the premise, pair
(p, h) will be assigned to the contradiction and neu-
tral otherwise (Amirkhani et al., 2020).

The Persian language lacks sufficient linguistic
resources when it comes to natural language un-
derstanding. The lack of data can be addressed by
collecting annotated data, but this process is both
time-consuming and expensive (Nooralahzadeh
et al., 2020). FarsTail (Amirkhani et al., 2020)
is currently available for Persian, which is cre-
ated using the same method as SciTail (Khot
et al., 2018). It contains 10,367 samples. Also,
ParsiNLU (Khashabi et al., 2021) is created for
high-level tasks in Persian, and for NLI, it con-
sists of 2700 samples. As it turns out, this amount
of data is too small compared with resource-
rich languages (such as English, which has only
550,000 samples in the SNLI (Bowman et al., 2015)
dataset).

Researchers have tried to solve the data scarcity
problem by using cross-language methods. Recent
work on cross-lingual learning has mainly focused
on transfer between languages already covered
by pre-trained representations (Wu and Dredze,
2019). Nonetheless, these techniques do not read-
ily transfer to low-resource languages in which (1)
large monolingual corpora are unavailable for pre-
training, and (2) sufficient labeled data is lacking
for fine-tuning downstream tasks (Xia et al., 2021).

The results of experimental studies for Per-
sian using different embedding methods includ-
ing word2vec (Mikolov et al., 2013), fastText (Bo-
janowski et al., 2017), ELMo (Peters et al., 2018),
and BERT (Devlin et al., 2019) and various mod-
els, such as, DecompAtt (Parikh et al., 2016),
ESIM (Chen et al., 2016), HBMP (Talman et al.,

https://github.com/HassanMojab/MetaNLI
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2019), and ULMFiT (Howard and Ruder, 2018) is
reported in FarsTail (Amirkhani et al., 2020). Al-
though this cross-lingual information sharing has
enabled success in various natural language pro-
cessing tasks, it raises the question of how we can
achieve more effective collaborative learning be-
tween languages or even between different tasks.

Recently, meta-learning has shown to be effec-
tive for a variety of machine learning tasks, includ-
ing NLP (Koch et al., 2015; Ravi and Larochelle,
2016; Qian and Yu, 2019). This paper uses a meta-
learning-based method for learning parameters in
the joint space of tasks and languages. Auxiliary
languages include English, Spanish, French, and
German, while QA is the auxiliary task.

Alternatively, an essential prerequisite for the
successful application of meta-learning is a task
distribution from which a large number of tasks
can be sampled to train the meta-learner. How-
ever, in NLP, datasets are usually considered as
tasks (Nooralahzadeh et al., 2020; Qi and Du,
2020). There are two main problems with treat-
ing entire datasets as tasks. The first problem is
overfitting, in which a meta-learner is overfitted
to a small number of training tasks since there is
only a small number of supervised datasets for each
NLP problem. A second concern is that the het-
erogeneity of NLP datasets may result in learn-
ing episodes that lead to memorization overfitting,
where a meta-learner ignores the support set and
fails to adapt (Murty et al., 2021). To improve the
quality and quantity of tasks, we use the DReCa
(Murty et al., 2021) approach as our data augmen-
tation strategy.

In this paper, we employ meta-learning algo-
rithms to enhance the Persian NLI task. Our models
are evaluated on the FarsTail dataset. Experimental
results show that we push Persian NLI accuracy
forward by more than 6% and zero-shot accuracy
by about 4%, setting a new state-of-the-art result
for this task. In summary, the main contributions
of our research are:

• We have enabled effective parameter sharing
across multiple languages and tasks by provid-
ing a meta-learning approach. To the best of
the authors’ knowledge, this is the first study
of the interaction between several languages
and tasks at different levels of abstraction to
solve a high-level problem in the Persian lan-
guage. The evaluation results are based on
the FarsTail dataset as a reference dataset in

the Persian language. The datasets available
in the XTREME benchmark (Hu et al., 2020)
have also been used for auxiliary languages
and tasks.

• We examine a metadata augmentation strategy
named DReCa (Murty et al., 2021) that takes
as input a set of tasks (entire datasets). We
then decompose them to approximate some
of the latent reasoning categories underlying
these datasets, such as various syntactic con-
structs within a dataset or semantic categories
such as quantifiers and negation.

• We also evaluate the trained model in zero-
shot mode, which means that the target lan-
guage (Persian) data is never used during the
training process. This test indicates the gener-
ality of the model.

The rest of the paper is arranged as follows: Sec-
tion 2 briefly describes related work. Section 3
introduces our method, and in section 4, we ex-
plain the details of the experimental setup. Section
5 presents practical results. The results analysis
and some justification are described in section 6.
We conclude the paper and summarize future direc-
tions in section 7.

2 Related Work

In this section, we briefly outline related work in
three areas. The first area is models based on cross-
lingual algorithms. In the second area, we highlight
methods based on meta-learning. Finally, we sum-
marize existing data augmentation strategies.

2.1 Models based on Cross-lingual

Cross-lingual learning is a method for transfer-
ring knowledge from one natural language to an-
other (Pikuliak et al., 2021). Pre-trained models
are one of the most widely used examples of cross-
lingual learning. Since these models have achieved
good results, so Wu and Dredze (2019) explored
the broader cross-lingual potential of mBERT (mul-
tilingual BERT) as a zero-shot language transfer
model with five NLP tasks, including NLI, cover-
ing a total of 39 languages. Also, Wang et al. (2019)
provides a comprehensive study of the contribution
of different components in mBERT to its cross-
lingual ability. In addition, it examines the impact
of the linguistic properties of the languages, the ar-
chitecture of the model, and the learning objectives.
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Conneau and Lample (2019) proposed two meth-
ods for learning cross-lingual language models, one
using monolingual data and the other using parallel
data and a new cross-lingual language model objec-
tive. Singh et al. (2019) introduced a cross-lingual
data augmentation method that substitutes part of
the input text with its translation into another lan-
guage.

Huertas-Tato et al. (2021) designed a new archi-
tecture called Siamese Inter-Lingual Transformer
(SILT) to align multilingual embeddings for NLI
efficiently. The paper points out that transformer
models are unable to generalize to other domains
and have problems with multilingual and inter-
linguistic scenarios. A new network has been de-
veloped to overcome these weaknesses by combin-
ing three parts: a multilingual transformer as pre-
trained embedding, an alignment matrix to com-
pute the similarity between two sentences, and a
multi-head self-attention block to interpret input
strings.

Despite the advances that Cross-lingual methods
have made, building NLP systems in these settings
are challenging for several reasons. First, the tar-
get language does not contain sufficient annotated
data for effective fine-tuning. Secondly, pre-trained
multilingual representations are not directly trans-
ferable due to language disparities (Xia et al., 2021).
In contrast to these methods, we consider setting
up training models simultaneously on multiple lan-
guages and tasks.

2.2 Meta-learning

Meta-learning addresses the problem of learning
to learn. By examining many learning problems,
a meta-learner learns a model (Liu et al., 2020).
Specifically, the meta-learner uses a meta training
set MS = {(Ssi ,Ts

i )}
Ns

i=1 , where (Ssi ,Ts
i ) are the

training (support) and test (query) set of the ith

learning problem and N s is the number of learn-
ing problems used for training; and a meta test set
MT =

{(
Sti,Tt

i

)}Nt

i=1
, where

(
Sti,Tt

i

)
are the sup-

port and query set of the ith test learning problem,
while N t is the number of learning problems used
for the test. Given MS, the meta-learner learns
how to map a pair (S,T) into an algorithm that
leverages S to optimally solve T.

Due to the lack of well-defined task distribution,
meta-learning has not yet succeeded in NLP, lead-
ing to attempts that treat datasets as tasks. An ad
hoc task distribution causes problems with quantity

and quality. Murty et al. (2021) provide a way to
break down heterogeneous tasks such as datasets
into a set of appropriate subtasks. With this method,
data is transferred to the feature space using a pre-
trained model. They use k-means to decompose
data into k clusters and create tasks by combining
these clusters.

Recently, however, the combination of cross-
lingual techniques in meta-learning frameworks
has also been extensively studied. To train a model
for low-resource languages on NLI and QA tasks,
Nooralahzadeh et al. (2020) uses the MAML al-
gorithm and auxiliary languages. van der Heij-
den et al. (2021) study the text documents classi-
fication problem in monolingual and multilingual
modes, using different algorithms such as, Pro-
totypical Networks (Snell et al., 2017), MAML
(Finn et al., 2017), Reptile (Nichol et al., 2018),
and ProtoMAML (Triantafillou et al., 2019). Also,
Tarunesh et al. (2021) examine the interaction be-
tween different languages and tasks to learn an
appropriate common feature space.

Additionally, transfer-learning can be helpful for
low-resource languages. Xia et al. (2021) introduce
a meta-learning-based framework called MetaXL
for extremely low-resource languages. MetaXL
learns an intelligent representational conversion
from several auxiliary languages to the target lan-
guage, bringing the feature space of these lan-
guages closer together for more efficient conver-
sion. The main idea is to use a Representation
Transformation network between the main model
layers which are trained only with the target lan-
guage.

To the best of our knowledge, this paper is the
first attempt to study meta-learning for solving the
NLI problem in the Persian language. Also, we
are pioneers in using task-language pairs as meta-
learning tasks in the Persian language.

2.3 Task Augmentation

Machine learning algorithms usually assume that
the train and test data have the same distribution. In
contrast, the meta-learning framework treats tasks
as training examples and trains a model to adapt to
all of them. Meta-learning also assumes that the
training and new tasks are drawn from the same
distribution of tasks p(τ). In NLP, datasets are
typically treated as tasks, and meta-learners are
then overfitting their adaptation mechanisms. NLP
datasets are highly heterogeneous, which causes
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many learning episodes to have a poor transfer be-
tween their support and query sets, which dissuades
meta-learners from adapting (Murty et al., 2021).

To deal with overfitting challenges, Yin et al.
(2019) propose a meta-regularizer to mitigate mem-
orization overfitting, but don’t study learner over-
fitting. Rajendran et al. (2020) study task augmen-
tation for mitigating meta-learners overfitting in
the context of few-shot label adaptation. SMLMT
method (Bansal et al., 2020) creates new self-
supervised tasks that improve meta-overfitting, but
this does not directly address the dataset-as-tasks
problem. In contrast, the DReCa method (Murty
et al., 2021) addresses the dataset-as-tasks prob-
lem and focuses on using clustering as a way to
subdivide and fix tasks that already exist. In this pa-
per, we use DReCa as a task augmentation strategy
for our method since it mitigates meta-overfitting
without any additional unlabeled data.

NLI QA
FA FarsTail (10.3K) PersianQA (9K)
EN XNLI (392k) —
ES tr. XNLI (392k) —
DE tr. XNLI (392k) —
FR tr. XNLI (392k) —

Table 1: Overview of datasets from a variety of sources.
For the NLI task, we use the XNLI dataset for English,
and its translated versions (tr.) for Spanish(ES), Ger-
man(DE), and French(FR) provided in XTREME. For
each dataset, the number of training instances is also
mentioned.

3 The Proposed Methodology

In our setting, firstly, we prepare a set of task-
language pairs to provide meta-learning tasks. Af-
terward, we sample some tasks in each episode and
feed them to the meta-learner. In the rest of this
section, we describe the proposed task sampling
strategy, the proposed meta-learning algorithm, and
the proposed task augmentation strategy.

3.1 The Proposed Task Sampling Strategy

In meta-learning, task selection has a profound im-
pact on model performance. For this reason, we cre-
ate a queue of tasks first. We can create this queue
using different scenarios such as selecting lan-
guages for a target task (Gu et al., 2018), selecting
tasks for a target language (Dou et al., 2019), and
picking from various auxiliary languages and auxil-
iary tasks. In the meta-training section, we sample

some tasks from the queue. Formally, the queue’s
tasks are represented by D. We need to sample
tasks fromM, which is a Multinomial distribution
over PD(i)s. Thus, we investigate temperature-
based heuristic sampling (Aharoni et al., 2019),
which defines the probability of any dataset as a
function of its size as,

PD(i) = q
1/τ
i /

(
n∑

k=1

q
1/τ
k

)
(1)

where PD(i) is the probability of sampling the ith
task, qi is the size of ith task, and τ is the temper-
ature parameter. With τ = 1, tasks are randomly
sampled proportionately to their dataset sizes, and
with τ →∞, they follow a uniform distribution.

3.2 The Proposed Meta-learning Algorithms
Meta-learning is the process of building a model
that can solve a new task with only a few labeled
examples by training on a variety of tasks with rich
annotations. The key idea is to train the model’s
initial parameters such that the model has maximal
performance on a new task after the parameters
have been updated through zero or a couple of gra-
dient steps (Yin, 2020). MAML (model-agnostic
meta-learning) (Finn et al., 2017) is one of the most
significant algorithms. We describe one episode of
the MAML algorithm in Appendix A.1. MAML is
quite challenging to train since there are two levels
of training. Therefore, we use the following two
optimization-based and metric-based meta-learning
algorithms in this work.

Reptile (Nichol et al., 2018) is a first-order
optimization-based algorithm that moves weights
toward a manifold of the weighted averages of
task-specific parameters θ(m)

i . It samples training
tasks from p(T ) : τ1, · · · , τi, · · · , τn. For each
training task, it generates an episode that just con-
tains the support set data. For training task τi,
let’s assume the original parameters θ have gone
through m steps of updating and become θ(m)

i (i.e.,
θ
(m)
i = AdamW(Lτi , θ,m) (2)), then Reptile up-

dates θ as follows (Yin, 2020):

θ ← θ + β
1

|{T }|
∑
τi∼M

(
θ
(m)
i − θ

)
(3)

Prototypical Networks (Snell et al., 2017) is a
metric-based meta-learning algorithm. Prototypi-
cal networks learn a metric space in which classifi-
cation can be performed by computing distances to
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prototype representations of each class. In general,
they are composed of an embedding network fθ and
a distance function d (x1, x2). Using the following
equation, the embedding network encodes the sup-
port set samples Sc and computes prototypes µc

per class based on the mean sample encodings for
that class.

µc =
1

|Sc|
∑

(xi,yi)∈Sc

fθ (xi) . (4)

A Prototypical network classifies a new sample
according to the following rule.

p(y = c | x) = exp (−d (fθ(x), µc))∑
c′∈C exp (−d (fθ(x), µc′))

(5)
Thus, we define the distance-based cross entropy

(DCE) loss as follows:

Loss(DCE) = − logP (y = c | x) (6)

To ensure that the feature space is robust to noise,
we also use the Cross Entropy (CE) loss (more
details can be found in Appendix A.3.1).

3.3 The Task Augmentation Strategy
First, we use the dataset-as-tasks strategy, which
is the most common method for selecting tasks
for meta-learning in NLP applications. Next, we
employ DReCa to form additional high-quality
tasks. The goal of DReCa is to take a hetero-
geneous task (such as a dataset) and produce a
decomposed set of tasks. Given a training task
T tr
i , DReCa first groups examples by their labels

and then embeds examples within each group with
an embedding function EMBED(.). Concretely,
for each N -way classification task T tr

i , it forms
groups gil = {(EMBED(xi) , yi) | yi = l}. Then,
it proceeds to refine each label group into K clus-
ters via k-means clustering to break down T tr

i into
groups

{
Cj
(
gil
)}K

j=1
for l = 1, 2, . . . , N. These

cluster groups can be used to produce KN potential
DReCa tasks. Each task is obtained by choosing
one of the K clusters for each of the N label groups
and taking their union.

4 Experimental Setup

4.1 Datasets
We use FarsTail (Amirkhani et al., 2020) for the tar-
get dataset. FarsTail is the only large-scale Persian
corpus for the NLI task, with 10,367 samples. The

samples are generated from 3,539 multiple-choice
questions with the least amount of annotators’ in-
terventions or selected from natural sentences that
already exist independently in the wild, similarly
to the SciTail dataset (Khot et al., 2018).

We also use XTREME (Hu et al., 2020) as an
auxiliary dataset. XTREME is a multilingual multi-
task benchmark consisting of classification, struc-
tured prediction, QA, and retrieval tasks. We use
this benchmark to prepare NLI data for auxiliary
languages. Note that large-scale datasets for NLI
were only available in English. However, the au-
thors of XTREME developed a custom-built trans-
lation system to get translated datasets for NLI.
Furthermore, we consider the QA as an auxiliary
task. Therefore, we use PersianQA (Ayoubi and
Davoodeh, 2021), which is a Persian reading com-
prehension dataset for QA containing over 9000
entries. Table 1 summarizes the employed dataset
specifications.

4.2 Baselines

On the FarsTail dataset, Amirkhani et al. (2020)
presents results of various traditional and deep
learning-based methods. According to the re-
sults of this paper, the highest test accuracy is
obtained by using a translation-based approach,
i.e., Translate-Source with fastText embeddings. In
Translate-Source, the Persian-translated MultiNLI
training set is combined with FarsTail training
data for training an ESIM model. Furthermore,
FarsTail’s authors reported mBERT fine-tuning re-
sults in FarsTail webpage1. Therefore, we use these
results as baselines.

4.3 Implementation Details

In this study, we aim to compare the effects of meta-
learning algorithms on classification accuracy with
those of fine-tuning and non-episodic algorithms.
To make a fair comparison, we first fine-tune our
pre-trained models using training data of the aux-
iliary task in a non-episodic approach. Afterward,
we fine-tune the obtained model using the training
data of the target task. In this approach, we use
mBERT (Devlin et al., 2019), and XLM-R (Con-
neau et al., 2020), which are known as the state-of-
the-art multilingual pre-trained models, and Pars-
BERT (Farahani et al., 2021) as a monolingual
transformer-based model for the Persian language.

1https://github.com/dml-qom/FarsTail

https://github.com/dml-qom/FarsTail
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In the meta-learning approach, we use the XLM-
R model with output layers tailored for each task
and train it with Reptile and Prototypical algo-
rithms. To select the hyperparameters of the Rep-
tile algorithm, we utilize the experiments done in
Tarunesh et al. (2021). Appendix A.2 provides fur-
ther details. The Prototypical algorithm is used
only in cross-lingual experiments, and we use Eu-
clidean distance as its distance function. The auxil-
iary languages are arranged in two scenarios. In the
first scenario, support and query set data are gener-
ated from auxiliary languages, while in the second
scenario, the query set is drawn from both auxil-
iary and target languages. Detailed information is
provided in Appendix A.3.2.

Furthermore, we fine-tune the obtained models
on Persian training data using the following two
methods. The first method is non-episodic, which
involves fine-tuning models in batches. The second
method is episodic, in which episodes are con-
structed first, and then the models are fine-tuned
according to the algorithm used.

5 Results

The meta-learning model is tested on different com-
binations and configurations of the auxiliary tasks.
The accuracy results of the Reptile algorithm are
presented in Table 2. In addition to the zero-shot
and fine-tuning results, we report the accuracy of
another scenario. In this scenario, training data of
the target language is placed in the meta-training
stage along with other auxiliary tasks and cooperate
in a training process. Consequently, this scenario
does not involve fine-tuning phase. The results
of the mentioned scenario are shown in the last
column of Table 2.

Table 3 shows the accuracy scores using the Pro-
totypical Network. In the first section of this table,
we generate both support and query sets from Per-
sian language data, without using auxiliary tasks.
In the second section of this table, the results of the
first multi-lingual scenario (where both the support
and query sets are generated from auxiliary lan-
guages data) are reported in rows 5 to 12. In rows
13 to 16, we show the results of the second multi-
lingual scenario (where the support set is drawn
from auxiliary language data and the query set is
drawn from both auxiliary and Persian language
data). Lastly, we added the DReCa strategy and
presented the results in rows 17 to 20.

Additionally, we conducted zero-shot evalua-

tions of both algorithms. Zero-shot results are pre-
sented in the first accuracy column of Tables 2 and
3. The confusion matrices of the best-performing
models for both Reptile and Prototypical algo-
rithms are also depicted in Appendix A.4.

6 Discussion and Analysis

Table 2 shows that the multi-lingual models are
always better than the multi-task models due to
the fact that tasks like NLI (which require deeper
semantic representations) are more likely to benefit
from combining data from different languages. We
found that our meta-learned models perform bet-
ter than baselines and non-episodic models. The
reason is that the goal of standard meta-learning
is to find a model that generalizes well to a new
target task. In addition, we compared two different
meta-learning algorithms to evaluate their superi-
ority in this paper. From Tables 2 and 3, we can
see that Prototypical performed better than Rep-
tile. It is because Prototypical networks use class
representations instead of example representations.
Therefore, it finds a suitable representation for each
class during the meta-train stage.

As part of another experiment, we combined
data from the target language with data from other
auxiliary tasks for meta-training. Based on the re-
sults of these experiments (last column of Table 2
for Reptile and rows 13 to 16 of Table 3 for Proto-
typical), the model’s accuracy has decreased. This
is due to the fact that target language data is small
when compared with auxiliary language data. So,
unbalanced training data confuses the training pro-
cess and decreases the model’s accuracy. In any
case, the cooperation of the target language during
the training process is a excellent idea for future
work.

As indicated in the last two columns of Table 3,
episodic fine-tuning is significantly superior to non-
episodic fine-tuning. It demonstrates that episodic
training is effective even on single language data
and creates a generality in the level of training and
test data.

We examined the proximity between the fea-
ture spaces of the auxiliary languages and the tar-
get language quantitatively and qualitatively. At
first, we collect representations of the auxiliary and
target languages from non-episodic, Reptile, and
Prototypical models. In Fig. 1, we present a 2-
component PCA visualization for comparison. We
also evaluated the models using a distance metric
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Row Model Shot Aux. Tasks Zero-shot Non-episodic f.t. Add NLI-fa in m.t.
Baselines

1 Translate-Source∗ — — — 78.13 —
2 mBERT∗ — — — 83.38 —

Non-episodic approach
3 ParsBERT — — — 74.64 —
4

mBERT
— — — 81.95 —

5 — NLI-en 56.53 81.38 —
6 — NLI-(en, es, de, fr) 67.88 82.34 —
7

XLM-R
— — — 81.97 —

8 — NLI-en 69.49 86.55 —
9 — NLI-(en, es, de, fr) 69.09 84.69 —

Meta-learning approach
10

XLM-R

1

NLI-en

64.19 84.31 83.37
11 4 70.96 87.17 86.00
12 8 70.70 87.11 86.65
13 16 71.03 87.43 86.52
14 1

NLI-(en, es, de, fr)

65.17 85.21 83.91
15 4 72.27 87.57 85.74
16 8 71.61 88.35 88.22
17 16 71.22 88.02 87.76
18 1

QA-fa

34.18 81.48 81.58
19 4 34.18 81.38 84.96
20 8 33.79 82.14 83.59
21 16 34.18 82.23 84.70
22 1

NLI-en, QA-fa

46.42 83.53 85.16
23 4 66.02 86.52 86.26
24 8 64.26 86.98 86.46
25 16 46.88 86.52 86.13

Table 2: Average test accuracy of the Reptile algorithm with baselines and non-episodic approach results on the
Persian NLI task. The first accuracy column shows results before fine-tuning on the Persian NLI train-set (called
zero-shot). In the second accuracy column, we provided results after fine-tuning (f.t.) on the Persian NLI train-sets.
The last accuracy column reports results of using the Persian NLI train-set in the meta-training phase (m.t.). The
data with ∗ comes from FarsTail’s paper and webpage.

Row Model Shot Support Query Zero-shot Non-episodic f.t. Episodic f.t.
Without auxiliary tasks

1

XLM-R

1

NLI-fa NLI-fa

— 70.38 79.30
2 4 — 81.97 85.22
3 8 — 83.98 84.64
4 16 — 85.29 85.74

With auxiliary tasks
5

XLM-R

1

NLI-en NLI-en

68.10 84.83 86.07
6 4 70.57 86.72 87.50
7 8 70.77 86.72 87.37
8 16 73.18 87.76 88.54
9 1

NLI-(en, es, de, fr) NLI-(en, es, de, fr)

69.15 85.01 85.97
10 4 70.25 86.78 87.63
11 8 71.09 88.48 89.39
12 16 72.20 88.15 88.28
13 1

NLI-(en, es, de, fr) NLI-(en, es, de, fr, fa)

— 84.15 85.12
14 4 — 86.33 86.78
15 8 — 86.33 86.46
16 16 — 86.78 87.24
17

XLM-R+
DReCa

8 NLI-en NLI-en 70.44 87.96 88.87
18 16 71.94 87.24 88.74
19 8 NLI-(en, es, de, fr) NLI-(en, es, de, fr) 71.16 87.74 88.48
20 16 71.61 87.30 88.22

Table 3: Average test accuracy on the Persian NLI task using Prototypical algorithm with and without auxiliary
tasks. The last accuracy column reports results after episodic fine-tuning (f.t.) on the Persian NLI train-set.
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Figure 1: PCA visualization of non-episodic, Reptile and Prototypical models to examine the closeness of the
auxiliary and target languages feature spaces.

commonly used in vision and NLP tasks (Hutten-
locher et al., 1993; Dubuisson and Jain, 1994; Pa-
tra et al., 2019; Xia et al., 2021). Informally, the
Hausdorff distance measures the distance between
data representations of auxiliary languages and the
target language. Given a set of representations
of the auxiliary language S = {s1, s2, . . . , sm}
and a set of representations of the target language
T = {t1, t2, . . . , tm} we compute the Hausdorff
distance as follows:

max

{
max
s∈S

min
t∈T

d(s, t),max
t∈T

min
s∈S

d(s, t)

}
(7)

where cosine distance is used as the inner distance,
i.e.,

d(s, t) ≜ 1− cos(s, t) (8)

Compared to the non-episodic method, we ob-
serve a drastic drop of Hausdorff distance from
0.18 to 0.05 for Prototypical, and also we see a
minor decline of Hausdorff distance from 0.18 to
0.13 for the Reptile. Both qualitative visualization
and quantitative metrics confirm that meta-learning
approaches bring the distributions of auxiliary and
target language data closer together, thus increasing
the accuracy on the target language.

The advantage of meta-learning methods is that
they obtain the appropriate initial parameters for
the target language, as mentioned. The zero-shot
test is used as a criterion to evaluate this point,
and it shows that meta-learning-based models are
more accurate than other methods. The generality
of the initial parameters can also be assessed via
canonical correlation analysis (CCA) (Raghu et al.,
2017; Morcos et al., 2018). Using this criterion,
we compare the output of each layer before and
after fine-tuning, and the results are presented in
Fig. 2. The meta-learning models have a higher
CCA similarity, which indicates the model obtained
more general parameters before fine-tuning.
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Figure 2: CCA similarity for each transformer layer. We
calculate the similarity before and after fine-tuning on
the FarsTail training data.

In the next experiment, we apply the DReCa
strategy and train the model with the Prototypical
algorithm. DReCa is a task augmentation strategy
used when a small number of auxiliary tasks are
available. The identification of clusters requires a
more detailed examination of the method. However,
in this paper, we are not interested in obtaining
meaningful clusters but in generating more auxil-
iary tasks. So we used the DReCa strategy for the
best results obtained with the Prototypical method,
hoping to get more improvements. According to
Table 3, there is a slight improvement when we di-
vided a single English NLI auxiliary task into eight
auxiliary tasks. Whereas DReCa did not help the
model when we used several auxiliary tasks. It il-
lustrates that task augmentation in meta-algorithms
affects the model’s accuracy. However, defining the
appropriate task augmentation strategy still needs
research.
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7 Conclusion

We present effective use of meta-learning to ben-
efit from other tasks or languages. We advanta-
geously leverage this approach to improve NLI in
Persian as a low-resource language. We found that
our meta-learning model outperformed competi-
tive baseline models. In response to the concept of
treating entire datasets as tasks, we use DReCa as
a general-purpose task augmenting approach. Fi-
nally, zero-shot evaluations illustrate the generality
of the results obtained by meta-learning. This work
will be extended to other cross-lingual NLP tasks
in Persian in the future. Furthermore, we would
like to use a self-supervised approach to provide a
useful starting point for parameters.
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A Appendix

A.1 MAML Description
MAML is one of the most popular meta-learning
algorithms and has proven its effectiveness in vari-
ous fields (e.g., computer vision). MAML is able
to find good initialization parameter values and
adapt to new tasks quickly. This algorithm can be
performed in one episode by following these steps:

• Make a copy of the model with its initial pa-
rameters θ.

• Use the training set Dtrain
i to train the model

as
θ̂ = θ − α∇θLi

(
θ,Dtrain

i

)
(9)

• Apply the model with the updated parameters
θ̂ to the validation set Dval

i .

• Use the loss on the validation set to update the
initial parameters θ

θ = θ − β∇θ
∑
i

Li
(
θ̂,Dval

i

)
(10)

A.2 Hyperparameters
Models are implemented using the PyTorch2 frame-
work. ParsBERT, mBERT, and XLM-R implemen-
tations are taken from the HuggingFace library 3.

In our experiments, we used the AdamW opti-
mizer (Loshchilov and Hutter, 2018) with learning
rate 1e-5 to perform the inner loop of the Reptile
algorithm (2), which is known as meta-step. The
hyperparameters for the Reptile algorithm are listed
in Table 4.

The hyperparameters for the Prototypical algo-
rithm are also shown in Table 5. Some parame-
ters are calculated based on a grid search, such as
Distance Cross-Entropy (DCE) and Cross-Entropy
(CE) coefficients, and others are chosen similarly
to the Reptile algorithm.

The number of iterations parameter varies ac-
cording to the value of the shot and is chosen to
ensure that all instances in the dataset appear at
least once in each epoch.

A.3 Prototypical Networks
A.3.1 Loss Function
As we mentioned in section 2.2, the primary loss
function of the Prototypical algorithm is DCE.

2https://pytorch.org/
3https://huggingface.co/
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Hyperparameter Value
epochs 2
number of iterations 20000
sequence length (for NLI) 128
sequence length (for QA) 384
dropout 0.1
optimizer AdamW
learning rate 1e-5
update steps (m) 3
number of class per episode (way) 2
queue length 4
temperature parameter (τ ) 1

Table 4: Hyperparameters for the Reptile algorithm

Hyperparameter Value
epochs 2
number of iterations 20000
sequence length (for NLI) 128
dropout 0.1
optimizer AdamW
learning rate 1e-5
number of class per episode (way) 3
DCE coefficient (λ1) 1.0
CE coefficient (λ2) 1.0

Table 5: Hyperparameters for the Prototypical algorithm

Since a prototype consists of distribution informa-
tion from instances associated with it, the choice of
these instances may introduce noise in the learned
representation if the neural network is trained only
by using the DCE loss. We use CE loss in addition
to the DCE loss to make the feature space robust
to noise. As a whole, we train the model with a
combination of DCE loss and CE loss given by the
following equation.

Loss(overall) = λ1 Loss(DCE) + λ2 Loss(CE)
(11)

A.3.2 Scenarios
We considered two scenarios for making the
episodes. In the first scenario, the model is trained
only on auxiliary languages, then fine-tuned using
the target language. Therefore, only auxiliary lan-
guages are used to generate support and query sets.
An episode of the first scenario is shown in Table 6.

In the second scenario, in addition to auxiliary
languages, we also used the target language for
training. So, the support set is constructed from

auxiliary language data, and the query set is gener-
ated from both auxiliary and Persian language data.
Table 7 shows an episode of the second scenario.

A.4 Confusion Matrices
The confusion matrices for the top-performing
models (8-shot with four auxiliary languages) are
depicted in Fig. 3, showing the success of this
method in improving the accuracy in all classes,
especially the neutral class.
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Example Category

Support set (or Query set)
In the midst of this amazing amalgam of cultures is a passion for continuity
⇒ A passion for continuity is not the most important of these cultures

neutral

The river plays a central role in all visits to Paris.
⇒ The river is central to all vacations to Paris

entailment

For the moment, he sought refuge in retreat, and left the room precipitately.
⇒ He stayed put and sat on the floor.

contradiction

Table 6: Example for a 3-way 1-shot episode in the first scenario. In this example we select support set and query
set samples from English dataset. As support and query sets are generated similarly, only one set is shown in this
table.

Example Category

Support set
Recuerda que una vez mencionó que su padre era médico?
⇒ Ella mencionó que su padre era médico hace mucho tiempo

neutral

Dies ist etwas anderes als eine Cantina-Leuchte
⇒ Dies ist sicherlich keine Cantina-Leuchte

entailment

Ensuite, il enfonce un tube respiratoire dans la gorge du patient mort.
⇒ Le patient vit toujours.

contradiction

English Translation
You remember her once mentioning that her father was a doctor?

⇒ She mentioned her father being a doctor a long time ago.
neutral

This is something other than a cantina fixture.

⇒ This is certainly not a cantina fixture.
entailment

Next he shoves a breathing tube down the dead patient ’s throat .

⇒ The patient is still alive.
contradiction

Query set
Une pièce qualifie Frank Lloyd Wright de terrible ingénieur.
⇒ Piece a également déclaré que Wright était un bien meilleur concepteur.

neutral

Sus rápidos oídos captaron el sonido del tren que se acercaba.
⇒Escuchó que el tren se acercaba rápidamente.

entailment

یافت. کاربرد ایتالیا در بار نخستین برای عربی ارقام بعد به دوازدهم قرن از

کرد.⇒ استفاده عربی ارقام از که بود کشوری اولین فرانسه

contradiction

English Translation
A piece calls Frank Lloyd Wright an awful engineer.

⇒Piece also stated Wright was a much better designer.
neutral

Her quick ears caught the sound of the approaching train.

⇒She heard the train approaching fast.
entailment

From the twelfth century onwards, Arabic numerals were first used in Italy.

⇒France was the first country to use Arabic numerals.
contradiction

Table 7: Example for a 3-way 1-shot episode in the second scenario. In this example, the support set samples are
selected from French, Spanish, and German datasets, respectively, and the query set samples are selected from
French, Spanish, and Persian datasets, respectively.
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Figure 3: Confusion matrices of the best-obtained model (8-shot with four auxiliary languages) in both meta-learning
algorithms on the FarsTail test set. (Top): Reptile algorithm results. (Bottom): Prototypical algorithm results.
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